JP2006196663A - Etching method, program, recording, computer-readable recording medium, and plasma processor - Google Patents

Etching method, program, recording, computer-readable recording medium, and plasma processor Download PDF

Info

Publication number
JP2006196663A
JP2006196663A JP2005006332A JP2005006332A JP2006196663A JP 2006196663 A JP2006196663 A JP 2006196663A JP 2005006332 A JP2005006332 A JP 2005006332A JP 2005006332 A JP2005006332 A JP 2005006332A JP 2006196663 A JP2006196663 A JP 2006196663A
Authority
JP
Japan
Prior art keywords
film
etching
gas
silicon
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005006332A
Other languages
Japanese (ja)
Inventor
Akihiro Kikuchi
秋広 菊池
Yuichiro Sakamoto
雄一郎 坂本
Takashi Tsunoda
崇司 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005006332A priority Critical patent/JP2006196663A/en
Priority to TW095101054A priority patent/TWI390626B/en
Priority to KR1020060002951A priority patent/KR100761563B1/en
Priority to US11/330,336 priority patent/US7655570B2/en
Priority to CNB2006100012803A priority patent/CN100508135C/en
Publication of JP2006196663A publication Critical patent/JP2006196663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/04Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/12Manhole shafts; Other inspection or access chambers; Accessories therefor
    • E02D29/14Covers for manholes or the like; Frames for covers
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/04Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps
    • E03F2005/0416Gullies inlets, road sinks, floor drains with or without odour seals or sediment traps with an odour seal

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control breakdown and deterioration of underlayer film on the occasion of etching a laminated insulating film, having a coated silicon-based insulating film. <P>SOLUTION: A substrate W, on which an SOG film and a TEOS film are laminated on the underlayer film of a titanium nitride film, is accommodated within a processing chamber S and is supported on a susceptor 13. The processing chamber S is maintained in the evacuated atmosphere and the etching gas, that does not contain O<SB>2</SB>gas but C<SB>4</SB>F<SB>8</SB>gas and N<SB>2</SB>gas, is introduced into the processing chamber S from an upper electrode 30. High frequency is impressed on the susceptor 13 by a high-frequency power source, and the gas in the processing chamber S is converted to plasma. Consequently, the laminated film is etched on the substrate W. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,基板上に積層されたシリコン系絶縁膜をエッチングするエッチング方法,当該エッチング方法を実行するためのプログラム,コンピュータ読み取り可能な記録媒体及びプラズマ処理装置に関する。   The present invention relates to an etching method for etching a silicon-based insulating film stacked on a substrate, a program for executing the etching method, a computer-readable recording medium, and a plasma processing apparatus.

例えば多層配線構造などを有する電子デバイスの製造プロセスにおいては,例えば基板の下地膜上にシリコン系絶縁膜が多層に形成される。その後,そのシリコン系絶縁膜が積層されて形成された積層膜は,溝やホールなどの所定形状にエッチングされる。従来,この積層膜のエッチングは,例えば上層から一層ずつ,CF(フロロカーボン)系の反応ガスを含むエッチングガスを用いて行われていたが,スループットの観点から,積層膜を一括してエッチングする方法が提案されている(例えば,特許文献1参照)。また,エッチングガスには,余剰カーボンを除去するために,CF系の反応ガスにOガスが添加されているものが用いられていた。 For example, in a manufacturing process of an electronic device having a multilayer wiring structure or the like, for example, silicon-based insulating films are formed in a multilayer on a base film of a substrate. Thereafter, the stacked film formed by stacking the silicon-based insulating films is etched into a predetermined shape such as a groove or a hole. Conventionally, etching of this laminated film has been performed using, for example, an etching gas containing a CF (fluorocarbon) -based reaction gas one layer at a time from the upper layer. Has been proposed (see, for example, Patent Document 1). In addition, an etching gas in which O 2 gas is added to a CF-based reaction gas in order to remove excess carbon has been used.

ところで,電子デバイスには,図10に示すように多層配線構造内に,例えば上下方向にずれた複数のAl配線100が形成されることがある。Al配線100の上層には,下地膜101を介して絶縁性のある積層膜102が形成され,さらにその上層には,エッチングマスクとなるレジスト膜Rが形成される。かかる場合,ずれたAl配線100による影響をなくして,積層膜102の表面を平坦化するために,積層膜102のなかの一層には,SOG(Spin On Glass)膜などの塗布法による塗布絶縁膜103が用いられる。この塗布絶縁膜103は,液体状の塗布液を塗布し乾燥させることによって形成され,上面が平らになるように場所によって膜厚が異なっている。   By the way, in an electronic device, as shown in FIG. 10, a plurality of Al wirings 100 shifted in the vertical direction, for example, may be formed in a multilayer wiring structure. On the upper layer of the Al wiring 100, an insulating laminated film 102 is formed with a base film 101 interposed therebetween, and a resist film R serving as an etching mask is further formed thereon. In such a case, in order to eliminate the influence of the shifted Al wiring 100 and flatten the surface of the laminated film 102, one layer of the laminated film 102 is coated and insulated by a coating method such as an SOG (Spin On Glass) film. A membrane 103 is used. The coating insulating film 103 is formed by applying and drying a liquid coating solution, and the film thickness varies depending on the location so that the upper surface is flat.

このような膜厚が変動している塗布絶縁膜103を有する積層膜102が,上述したように酸素ガスを添加したCF系エッチングガスにより,エッチングされる場合,塗布絶縁膜103は,他の絶縁膜104に比べてエッチング速度が遅いため,積層膜102全体のエッチング時間が塗布絶縁膜103の厚みに大きく影響される。このため,塗布絶縁膜103が厚い場所と薄い場所では,積層膜102のエッチング時間が大きく異なってくる。つまり,積層膜102の表面のエッチングが開始されてから下地膜101が露出するまでの時間が,各Al配線100毎に大きく異なる。この結果,積層膜102全面のエッチングが終了するまでの間に,一部の下地膜101がエッチングガスに長時間曝されることになる。このため,エッチング対象でない下地膜101が削られ,下地膜101が破損,或いは劣化することがあった。   When the laminated film 102 having the coating insulating film 103 whose film thickness varies as described above is etched by the CF-based etching gas to which oxygen gas is added as described above, the coating insulating film 103 is made of another insulating film. Since the etching rate is slower than that of the film 104, the etching time of the entire laminated film 102 is greatly influenced by the thickness of the coating insulating film 103. For this reason, the etching time of the laminated film 102 differs greatly between a place where the coating insulating film 103 is thick and a place where the coating insulating film 103 is thin. That is, the time from when etching of the surface of the laminated film 102 is started until the base film 101 is exposed varies greatly for each Al wiring 100. As a result, part of the base film 101 is exposed to the etching gas for a long time before the etching of the entire surface of the laminated film 102 is completed. For this reason, the base film 101 which is not an object to be etched is scraped, and the base film 101 may be damaged or deteriorated.

特開2000-235973号公報JP 2000-235773 A

本発明は,かかる点に鑑みてなされたものであり,シリコン系の塗布絶縁膜を含む積層膜をエッチングする場合において,下地膜の破損や劣化を抑制することを目的とする。   The present invention has been made in view of this point, and an object of the present invention is to suppress damage and deterioration of a base film when etching a laminated film including a silicon-based coating insulating film.

上記目的を達成するために,本発明は,基板上に形成され,複数層のシリコン系絶縁膜を有する積層膜をエッチングする方法であって,前記積層膜には,塗布法により形成された塗布シリコン系絶縁膜が含まれており,フッ化炭素系ガスと窒素ガスを含有しかつ酸素ガスを含まないエッチングガスを処理室内に導入し,当該処理室内で基板上の積層膜をエッチングすることを特徴とする。なお,シリコン系絶縁膜とは,シリコンを含有した絶縁膜である。また,シリコン絶縁膜には,シリコンと酸素を含有した,SiO,SiOF,SiOCなどの酸化シリコン系の絶縁膜が含まれる。 In order to achieve the above object, the present invention provides a method for etching a laminated film formed on a substrate and having a plurality of silicon-based insulating films, wherein the laminated film is formed by a coating method. An etching gas containing a silicon-based insulating film and containing a fluorocarbon-based gas and a nitrogen gas and not containing an oxygen gas is introduced into the processing chamber, and the stacked film on the substrate is etched in the processing chamber. Features. Note that the silicon-based insulating film is an insulating film containing silicon. The silicon insulating film includes a silicon oxide insulating film such as SiO 2 , SiOF, or SiOC containing silicon and oxygen.

本発明のように,エッチングガスの一部として窒素ガスを用いることにより,塗布シリコン系絶縁膜とそれ以外のシリコン系絶縁膜のエッチング速度の差を低減できる。この結果,塗布シリコン系絶縁膜の他のシリコン系絶縁膜に対するエッチング速度が相対的に上昇するので,例えば塗布シリコン系絶縁膜に場所による膜厚差があっても,積層膜のエッチングが終了して下地膜にまで到達するタイミングの時間差を低減できる。したがって,一部の下地膜がエッチングガスに長時間曝されることがなくなり,下地膜の破損や劣化を抑制できる。また,塗布シリコン系絶縁膜とそれ以外のシリコン系絶縁膜のエッチング速度が同程度の速度になるので,エッチングが垂直に行われエッチング形状が改善される。なお,塗布法は,液体の塗布液を基板上に塗布し,乾燥させることにより膜を形成するものである。   By using nitrogen gas as part of the etching gas as in the present invention, the difference in etching rate between the coated silicon-based insulating film and the other silicon-based insulating films can be reduced. As a result, the etching rate of the coated silicon-based insulating film relative to other silicon-based insulating films increases relatively. For example, even if the coated silicon-based insulating film has a film thickness difference depending on the location, the etching of the laminated film is completed. Thus, the time difference in timing to reach the base film can be reduced. Therefore, a part of the base film is not exposed to the etching gas for a long time, and damage and deterioration of the base film can be suppressed. In addition, since the etching rate of the coated silicon-based insulating film and the other silicon-based insulating films are approximately the same, the etching is performed vertically and the etching shape is improved. In the coating method, a film is formed by applying a liquid coating solution on a substrate and drying it.

前記塗布シリコン系絶縁膜は,SOG膜であってもよい。また,窒素ガスの導入量を調整して,前記塗布シリコン系絶縁膜とそれ以外のシリコン系絶縁膜のエッチング速度の比を調整してもよい。こうすることにより,塗布膜とそれ以外の絶縁膜とのエッチング速度比を最適化して,積層膜を所望の形状にエッチングできる。   The coated silicon insulating film may be an SOG film. Further, the ratio of the etching rates of the coated silicon-based insulating film and the other silicon-based insulating films may be adjusted by adjusting the amount of nitrogen gas introduced. By doing so, the laminated film can be etched into a desired shape by optimizing the etching rate ratio between the coating film and the other insulating film.

前記積層膜には,前記塗布シリコン系絶縁膜以外に,化学気相成長法により形成されたCVDシリコン系絶縁膜が含まれていてもよい。前記CVDシリコン系絶縁膜は,シリコン酸化膜であってもよい。   The laminated film may include a CVD silicon-based insulating film formed by chemical vapor deposition in addition to the coated silicon-based insulating film. The CVD silicon-based insulating film may be a silicon oxide film.

前記窒素ガスの導入量は,エッチングガスの全流量の30〜40%の流量に調整されるようにしてもよい。   The introduction amount of the nitrogen gas may be adjusted to a flow rate of 30 to 40% of the total flow rate of the etching gas.

前記積層膜の下地膜は,窒素系の金属膜であってもよい。かかる場合,エッチングガスによる積層膜と下地膜とのエッチング選択比が上がる。それ故,下地膜のエッチングがさらに抑制され,下地膜の破損が抑制される。なお,前記窒素系の金属膜は,窒化チタンであってもよい。   The underlying film of the laminated film may be a nitrogen-based metal film. In such a case, the etching selectivity between the laminated film and the base film by the etching gas increases. Therefore, etching of the base film is further suppressed, and damage to the base film is suppressed. The nitrogen-based metal film may be titanium nitride.

別の観点による本発明によれば,請求項1〜8のいずれかに記載のエッチング方法をコンピュータに実現させるためのプログラムが提供される。また,別の観点による本発明によれば,請求項1〜8のいずれかに記載のエッチング方法をコンピュータに実現させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。さらに,別の観点による本発明によれば,請求項1〜8のいずれかに記載のエッチング方法を行う制御部を有するプラズマ処理装置が提供される。   According to another aspect of the present invention, there is provided a program for causing a computer to implement the etching method according to any one of claims 1 to 8. According to another aspect of the present invention, there is provided a computer-readable recording medium on which a program for causing a computer to implement the etching method according to any one of claims 1 to 8 is recorded. Furthermore, according to another aspect of the present invention, there is provided a plasma processing apparatus having a control unit that performs the etching method according to any one of claims 1 to 8.

本発明によれば,エッチング時の下地膜の破損や劣化を抑制できるので,デバイスの品質を向上できる。   According to the present invention, damage and deterioration of the underlying film during etching can be suppressed, so that the device quality can be improved.

以下,本発明の好ましい実施の形態について説明する。図1は,本実施の形態にかかるエッチング方法が実施されるエッチング装置1の構成の概略を示す縦断面の説明図である。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is an explanatory view of a longitudinal section showing an outline of a configuration of an etching apparatus 1 in which an etching method according to this embodiment is performed.

エッチング装置1は,例えば略円筒形状の処理容器10を有している。処理容器10の内部には,処理室Sが形成されている。処理容器10は,例えばアルミニウム合金により形成され,内壁面がアルミナ膜又はイットリウム酸化膜により被覆されている。   The etching apparatus 1 has, for example, a substantially cylindrical processing container 10. A processing chamber S is formed inside the processing container 10. The processing vessel 10 is formed of, for example, an aluminum alloy, and the inner wall surface is covered with an alumina film or an yttrium oxide film.

処理容器10内の中央の底部には,絶縁板11を介在して円柱状のサセプタ支持台12が設けられている。サセプタ支持台12上には,基板Wを載置するサセプタ13が支持されている。サセプタ13は,下部電極を構成している。サセプタ13は,例えばアルミニウム合金により形成されている。   A cylindrical susceptor support 12 is provided at the center bottom in the processing vessel 10 with an insulating plate 11 interposed. A susceptor 13 on which the substrate W is placed is supported on the susceptor support 12. The susceptor 13 constitutes a lower electrode. The susceptor 13 is made of, for example, an aluminum alloy.

サセプタ13の上部には,基板Wを保持する静電チャック14が設けられている。静電チャック14は,内部に直流電源15に接続された電極層16を有しており,直流電源15から電極層16に直流電圧を印加し,クーロン力を発生させて,サセプタ13の上面に基板Wを吸着できる。   An electrostatic chuck 14 that holds the substrate W is provided on the susceptor 13. The electrostatic chuck 14 has an electrode layer 16 connected to a DC power source 15 inside, and a DC voltage is applied from the DC power source 15 to the electrode layer 16 to generate a Coulomb force. The substrate W can be adsorbed.

サセプタ支持台12の内部には,リング状の冷媒室17が形成されている。冷媒室17は,配管17a,17bを通じて,処理容器10の外部に設置されたチラーユニット(図示せず)に連通している。冷媒室17には,配管17a,17bを通じて冷媒又は冷却水が循環供給され,この循環供給によりサセプタ13上の基板Wの温度を制御できる。   A ring-shaped refrigerant chamber 17 is formed inside the susceptor support 12. The refrigerant chamber 17 communicates with a chiller unit (not shown) installed outside the processing container 10 through pipes 17a and 17b. The coolant or cooling water is circulated and supplied to the coolant chamber 17 through the pipes 17a and 17b, and the temperature of the substrate W on the susceptor 13 can be controlled by this circulation supply.

静電チャック14の上面には,サセプタ13及びサセプタ支持台12内を通るガス供給ライン18が通じており,基板Wと静電チャック14との間にHeガスなどの伝熱ガスを供給できる。   A gas supply line 18 that passes through the susceptor 13 and the susceptor support 12 is connected to the upper surface of the electrostatic chuck 14, and heat transfer gas such as He gas can be supplied between the substrate W and the electrostatic chuck 14.

サセプタ13には,整合器19を介して高周波電源20が電気的に接続されている。高周波電源20は,例えば2MHz〜20MHz程度の周波数の高周波電圧を出力できる。   A high frequency power supply 20 is electrically connected to the susceptor 13 via a matching unit 19. The high frequency power supply 20 can output a high frequency voltage having a frequency of about 2 MHz to 20 MHz, for example.

サセプタ13の上方には,サセプタ13と平行に対向する上部電極30が設けられている。サセプタ13と上部電極30との間には,プラズマ生成空間が形成される。   Above the susceptor 13, an upper electrode 30 facing the susceptor 13 in parallel is provided. A plasma generation space is formed between the susceptor 13 and the upper electrode 30.

上部電極30は,サセプタ13に載置された基板W上に所定のエッチングガスを噴出するシャワーヘッドを構成している。上部電極30は,例えば円板形状を有し,上部電極30には,エッチングガスを処理室S内に導入する多数のガス噴出孔30aが形成されている。   The upper electrode 30 constitutes a shower head that ejects a predetermined etching gas onto the substrate W placed on the susceptor 13. The upper electrode 30 has, for example, a disk shape, and a plurality of gas ejection holes 30 a for introducing an etching gas into the processing chamber S are formed in the upper electrode 30.

処理容器10の上面には,上部電極30のガス噴出孔30aに通じるガス供給管40が接続されている。ガス供給管40は,途中で分岐して,複数,例えば4つの各ガス供給源41,42,43,44に接続されている。本実施の形態においては,例えば第1のガス供給源41には,Cガスが封入されており,第2のガス供給源42には,Nガスが封入されている。第3のガス供給源43には,Arガスが封入されており,第4のガス供給源44には,COガスが封入されている。ガス供給管40における各ガス供給源に通じる分岐管には,それぞれマスフローコントローラ45が設けられている。これにより,ガス供給源41〜44からのガスを所定の流量比で混合して処理室Sに供給できる。なお,各マスフローコントローラ45における流量制御は,後述する装置制御部46により行われている。 A gas supply pipe 40 communicating with the gas ejection hole 30 a of the upper electrode 30 is connected to the upper surface of the processing container 10. The gas supply pipe 40 branches in the middle and is connected to a plurality of, for example, four gas supply sources 41, 42, 43, 44. In the present embodiment, for example, the first gas supply source 41 is filled with C 4 F 8 gas, and the second gas supply source 42 is filled with N 2 gas. Ar gas is sealed in the third gas supply source 43, and CO gas is sealed in the fourth gas supply source 44. A mass flow controller 45 is provided in each branch pipe leading to each gas supply source in the gas supply pipe 40. Thereby, the gases from the gas supply sources 41 to 44 can be mixed and supplied to the processing chamber S at a predetermined flow rate ratio. The flow rate control in each mass flow controller 45 is performed by a device control unit 46 described later.

エッチング装置1には,直流電源15,高周波電源20及びマスフローコントローラ45などのエッチング処理を実行するための各種諸元の動作を制御する装置制御部46が設けられている。装置制御部46は,例えばコンピュータにより構成され,図2に示すようにエッチング処理を実現するためのプログラムPが記録される記録部46aや,プログラムPを実行するCPUからなる演算部46bなどを備えている。装置制御部46には,例えば図1に示すように工程管理者がエッチング装置1を管理するためにコマンドの入力操作などを行うキーボードやディスプレイから構成されたユーザインターフェイス部47が接続されている。例えばこのインターフェイス部47から,記録媒体によりプログラムPをインストールし,記録部46aに記憶できる。装置制御部46は,プログラムPに従って,マスフローコントローラ45などのエッチング装置1の動作を制御し,所定のエッチング処理を実現できる。   The etching apparatus 1 is provided with an apparatus control unit 46 that controls the operation of various specifications for performing an etching process such as the DC power supply 15, the high-frequency power supply 20, and the mass flow controller 45. The apparatus control unit 46 is configured by a computer, for example, and includes a recording unit 46a in which a program P for realizing an etching process is recorded as shown in FIG. 2, an arithmetic unit 46b including a CPU that executes the program P, and the like. ing. For example, as shown in FIG. 1, a user interface unit 47 including a keyboard and a display on which a process manager inputs commands to manage the etching apparatus 1 is connected to the apparatus control unit 46. For example, the program P can be installed from the interface unit 47 using a recording medium and stored in the recording unit 46a. The apparatus control unit 46 can control the operation of the etching apparatus 1 such as the mass flow controller 45 according to the program P, and can realize a predetermined etching process.

処理容器10の底部の側方には,図示しない真空ポンプなどの排気装置に通じる排気管50が接続されている。この排気管50からの排気により,処理室S内を所望の圧力に設定できる。   An exhaust pipe 50 leading to an exhaust device such as a vacuum pump (not shown) is connected to the side of the bottom of the processing container 10. By exhausting from the exhaust pipe 50, the inside of the processing chamber S can be set to a desired pressure.

処理容器10の周囲には,水平磁場形成磁石60が設けられている。水平磁場形成磁石60により処理室S内に磁場を形成することにより,処理室S内に発生するプラズマを高密度化し,エッチング効率を向上できる。   A horizontal magnetic field forming magnet 60 is provided around the processing container 10. By forming a magnetic field in the processing chamber S by the horizontal magnetic field forming magnet 60, the plasma generated in the processing chamber S can be densified and the etching efficiency can be improved.

次に,以上のエッチング装置1を用いて行われる基板Wのエッチング処理について説明する。基板W上には,例えば図3に示すように下地膜としての窒化チタン膜80,CVDシリコン系絶縁膜としてのTEOS(テトラエトキシシラン)膜81,塗布シリコン系絶縁膜としてのSOG膜82,CVD絶縁膜としてのTEOS膜83及び所定のパターンに露光されたレジスト膜Rが下から順に積層されている。TEOS膜81,83は,TEOSを原料としてCVD法により形成されたSiO膜(シリコン酸化膜)である。なお,TEOS膜81,SOG膜82及びTEOS膜83により積層膜84が形成されている。このエッチング処理では,積層膜84を上面から凹状に除去し,積層膜84に溝(トレンチ)を形成する。 Next, the etching process of the substrate W performed using the above etching apparatus 1 will be described. On the substrate W, for example, as shown in FIG. 3, a titanium nitride film 80 as a base film, a TEOS (tetraethoxysilane) film 81 as a CVD silicon-based insulating film, an SOG film 82 as a coated silicon-based insulating film, CVD A TEOS film 83 as an insulating film and a resist film R exposed to a predetermined pattern are stacked in order from the bottom. The TEOS films 81 and 83 are SiO 2 films (silicon oxide films) formed by CVD using TEOS as a raw material. The TEOS film 81, the SOG film 82, and the TEOS film 83 form a stacked film 84. In this etching process, the laminated film 84 is removed from the upper surface in a concave shape, and a groove (trench) is formed in the laminated film 84.

先ず,基板Wがサセプタ13上に吸着保持される。サセプタ13上において基板Wは,所定温度に調整される。続いて,排気管50からの排気により,処理室S内が所定の圧力に調整される。上部電極30からは,例えばCガス,Nガス,Arガス及びCOガスからなるエッチングガスが処理室S内に供給される。例えば,Nガスは,エッチングガスの全流量の30%〜40%の流量比になるように供給される。高周波電源20により,サセプタ13に高周波が印加され,処理室S内のガスがプラズマ化される。また,処理室S内には,水平磁場形成磁石60により磁場が形成され,プラズマが高密度化される。このプラズマの作用により,図4に示すように基板W上の積層膜84が上面から下方に向けて凹状にエッチングされ,溝が形成される。 First, the substrate W is sucked and held on the susceptor 13. The substrate W is adjusted to a predetermined temperature on the susceptor 13. Subsequently, the inside of the processing chamber S is adjusted to a predetermined pressure by the exhaust from the exhaust pipe 50. From the upper electrode 30, for example, an etching gas composed of C 4 F 8 gas, N 2 gas, Ar gas, and CO gas is supplied into the processing chamber S. For example, the N 2 gas is supplied so as to have a flow rate ratio of 30% to 40% of the total flow rate of the etching gas. A high frequency power is applied to the susceptor 13 by the high frequency power supply 20, and the gas in the processing chamber S is turned into plasma. In the processing chamber S, a magnetic field is formed by the horizontal magnetic field forming magnet 60, and the plasma is densified. Due to the action of the plasma, as shown in FIG. 4, the laminated film 84 on the substrate W is etched in a concave shape from the upper surface downward to form a groove.

次に,上述のエッチング処理のように,SOG膜82とTEOS膜81,83を有する積層膜84を,CガスとNガスを含むエッチングガスによりエッチングした場合のSOG膜82とTEOS膜81,83のエッチング速度について検証する。 Next, as in the etching process described above, the SOG film 82 and the TEOS when the laminated film 84 having the SOG film 82 and the TEOS films 81 and 83 is etched with an etching gas containing C 4 F 8 gas and N 2 gas. The etching rate of the films 81 and 83 will be verified.

図5は,エッチングガスの総流量に対するNガスの流量比と,SOG膜82,TEOS膜81,83のエッチング速度との関係を示す実験データである。この実験は,処理圧力:3.99Pa(30mT),高周波パワー:1300W,C/CO/Arの流量:12/50/200cm/min,基板温度:20℃の条件の下で行われた。図5によれば,SOG膜82とTEOS膜81,83のエッチング速度がNガスの流量比に応じて変動し,Nガスの流量比が30%〜40%になると,SOG膜82とTEOS膜81,83のエッチング速度が近づくことが確認できる。例えばNガスの流量比が30%〜40%の場合,SOG膜82とTEOS膜81,83とのエッチング速度比(SOG膜/TEOS膜)が0.6〜0.8以上になっている。このように,Nガスの流量比を調整することにより,SOG膜82とTEOS膜81,83のエッチング速度を近づけることができ,この結果エッチング形状を改善できる。例えば図6に示すように高さの異なる複数のAl配線90が形成されており,各Al配線90の上層に,下地膜である窒化チタン膜80を介して,TEOS膜81と,厚さの異なるSOG膜82と,TEOS膜83が下から順に形成されているような場合であっても,SOG膜82におけるエッチングがTEOS膜81と同程度の速度で進行するので,エッチングが積層膜84の表面から各Al配線90の窒化チタン膜80に到達するまでのエッチング時間Tの差が低減される。この結果,一部の窒化チタン膜80がエッチングガスに長時間曝されることがなく,窒化チタン膜80の破損や劣化を抑制される。なお,図6における多層膜構造は,説明のためのものであり,実際の縮尺とは異なる。 FIG. 5 is experimental data showing the relationship between the flow rate ratio of the N 2 gas to the total flow rate of the etching gas and the etching rates of the SOG film 82 and the TEOS films 81 and 83. This experiment was performed under the conditions of processing pressure: 3.99 Pa (30 mT), high frequency power: 1300 W, flow rate of C 4 F 8 / CO / Ar: 12/50/200 cm 3 / min, substrate temperature: 20 ° C. It was broken. According to FIG. 5, the etching rate of SOG film 82 and TEOS film 81 and 83 is varied in accordance with the flow ratio of N 2 gas flow rate ratio of N 2 gas of 30% to 40%, the SOG film 82 It can be confirmed that the etching rate of the TEOS films 81 and 83 approaches. For example, when the flow rate ratio of N 2 gas is 30% to 40%, the etching rate ratio (SOG film / TEOS film) between the SOG film 82 and the TEOS films 81 and 83 is 0.6 to 0.8 or more. . Thus, by adjusting the flow rate ratio of N 2 gas, the etching rates of the SOG film 82 and the TEOS films 81 and 83 can be made closer, and as a result, the etching shape can be improved. For example, as shown in FIG. 6, a plurality of Al wirings 90 having different heights are formed, and a TEOS film 81 and a thickness of each of the Al wirings 90 are formed on each Al wiring 90 via a titanium nitride film 80 as a base film. Even when different SOG films 82 and TEOS films 83 are formed in order from the bottom, the etching in the SOG film 82 proceeds at the same speed as the TEOS film 81, so that the etching is performed on the stacked film 84. The difference in etching time T from the surface to the titanium nitride film 80 of each Al wiring 90 is reduced. As a result, a part of the titanium nitride film 80 is not exposed to the etching gas for a long time, and damage and deterioration of the titanium nitride film 80 are suppressed. Note that the multilayer structure in FIG. 6 is for explanation and is different from the actual scale.

また,図7に示すように,Nガスの流量比を上げることにより,レジスト膜Rに対する積層膜84のエッチング選択性が向上することが確認でき,レジスト膜Rの膜減りも抑制できる。 Further, as shown in FIG. 7, it can be confirmed that the etching selectivity of the laminated film 84 with respect to the resist film R is improved by increasing the flow rate ratio of the N 2 gas, and the film loss of the resist film R can be suppressed.

次に,上述のエッチング処理のように,エッチングガスにNガスを付加した場合の積層膜84と窒化チタン膜80とのエッチング選択比について検証する。図8は,エッチングガスにOガスを付加した場合のエッチング状態と,エッチングガスにNガスを付加した場合のエッチング状態を示すものである。図9は,図8のエッチング結果から求められた,Oガスを付加した場合とNガスを付加した場合の窒化チタン膜に対するエッチング選択比(積層膜のエッチング速度/窒化チタンのエッチング速度)を示す表である。この実験は,処理圧力:3.99Pa(30mT),高周波パワー:1300W,C/CO/Ar/Oの流量:10/100/200/9cm/min,C/CO/Ar/Nの流量:12/50/200/60cm/min,基板温度:20℃の条件で行われた。図9に示すように,Oガスを付加するよりNガスを付加した方が,積層膜の窒化チタン膜に対するエッチング選択比が著しく高いことが確認できる。したがって,エッチングガスにOガスではなく,Nガスを付加することにより,エッチング時の窒化チタン膜80の削れを抑制できる。また,図8から,Oガスを付加した場合よりもNガスを付加した場合の方が,下部の幅が広がるボーイング(bowing)現象が少なく,エッチング形状も改善されている。 Next, the etching selectivity between the laminated film 84 and the titanium nitride film 80 when N 2 gas is added to the etching gas as in the above-described etching process is verified. FIG. 8 shows an etching state when O 2 gas is added to the etching gas and an etching state when N 2 gas is added to the etching gas. FIG. 9 shows the etching selectivity with respect to the titanium nitride film obtained when the O 2 gas is added and N 2 gas is added (etching speed of the laminated film / etching speed of the titanium nitride) obtained from the etching result of FIG. It is a table | surface which shows. In this experiment, treatment pressure: 3.99 Pa (30 mT), high frequency power: 1300 W, flow rate of C 4 F 8 / CO / Ar / O 2 : 10/100/200/9 cm 3 / min, C 4 F 8 / CO / Ar / N 2 flow rate: 12/50/200/60 cm 3 / min, substrate temperature: 20 ° C. As shown in FIG. 9, it can be confirmed that the etching selectivity of the laminated film to the titanium nitride film is significantly higher when N 2 gas is added than when O 2 gas is added. Therefore, by adding N 2 gas instead of O 2 gas to the etching gas, it is possible to suppress the scraping of the titanium nitride film 80 during etching. Further, as shown in FIG. 8, when N 2 gas is added, there is less bowing phenomenon in which the width of the lower portion is widened, and the etching shape is improved than when O 2 gas is added.

以上,本発明の実施の形態の一例について説明したが,本発明はこの例に限らず種々の態様を採りうるものである。例えば上記実施の形態では,積層膜84がTEOS膜81,SOG膜82及びTEOS膜83が下から順に積層された三層膜であったが,本発明は,SOG膜が少なくとも一層含まれる,他の層数の積層膜のエッチングにも適用できる。また,積層膜84のSOG膜82は,他の塗布シリコン系絶縁膜,例えばSiLK(ダウケミカル社の登録商標),HSQ膜などのLow−k膜(低誘電率膜)であってもよい。また,積層膜84のTEOS膜81,83は,他のCVD膜,例えばHTO,BPSG,BSG,PSG,又はSiOC,SiOFなどのLow−k膜であってもよい。さらに,SOG膜82以外のシリコン系絶縁膜は,CVD膜以外の他の成膜法,例えばスパッタリング法,熱酸化法などにより形成されたものであってもよい。下地膜の窒化チタン膜80は,他の窒素系金属膜,例えばTaN膜であってもよい。また,反応ガスとして供給されるフッ化炭素系ガスも,Cに限られず,エッチング材料に応じてCF,CHF,C,CHなどの他のフッ化炭素系ガスであってもよい。また本発明は,半導体ウェハ,FPD(フラットパネルディスプレイ),フォトマスク用のマスクレチクルなどの基板に対するエッチングに適用できる。 The example of the embodiment of the present invention has been described above, but the present invention is not limited to this example and can take various forms. For example, in the above embodiment, the laminated film 84 is a three-layer film in which the TEOS film 81, the SOG film 82, and the TEOS film 83 are laminated in order from the bottom, but the present invention includes at least one SOG film. The present invention can also be applied to etching a laminated film having the number of layers. Further, the SOG film 82 of the laminated film 84 may be another coated silicon insulating film, for example, a Low-k film (low dielectric constant film) such as SiLK (registered trademark of Dow Chemical Co.) or HSQ film. Further, the TEOS films 81 and 83 of the laminated film 84 may be other CVD films such as HTO, BPSG, BSG, PSG, or Low-k films such as SiOC and SiOF. Furthermore, the silicon-based insulating film other than the SOG film 82 may be formed by a film forming method other than the CVD film, such as a sputtering method or a thermal oxidation method. The underlying titanium nitride film 80 may be another nitrogen-based metal film such as a TaN film. In addition, the fluorocarbon gas supplied as a reaction gas is not limited to C 4 F 8 , but other fluorocarbons such as CF 4 , CHF 3 , C 2 F 6 , and CH 2 F 2 depending on the etching material. It may be a system gas. The present invention can also be applied to etching of substrates such as semiconductor wafers, FPDs (flat panel displays), and mask reticles for photomasks.

本発明は,塗布シリコン系絶縁膜を含む多層の絶縁膜をエッチングする際に有用である。   The present invention is useful when etching a multilayer insulating film including a coated silicon-based insulating film.

エッチング装置の構成の概略を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the outline of a structure of an etching apparatus. 装置制御部の構成を示すブロック図である。It is a block diagram which shows the structure of an apparatus control part. 基板上の膜構造の縦断面図である。It is a longitudinal cross-sectional view of the film | membrane structure on a board | substrate. エッチング後の膜構造の縦断面図である。It is a longitudinal cross-sectional view of the film | membrane structure after an etching. ガスの流量比と,SOG膜及びTEOS膜のエッチング速度との関係を示すグラフである。And a flow rate ratio of N 2 gas is a graph showing the relationship between the etching rates of SOG film and the TEOS film. 下地膜に凹凸のある膜構造の縦断面図である。It is a longitudinal cross-sectional view of the film | membrane structure with an unevenness | corrugation in a base film. ガスの流量比と,レジスト膜と積層膜の削れ量との関係を示すグラフである。And a flow rate ratio of N 2 gas is a graph showing the relationship between the amount of chipping of the resist film and laminated film. ガスを供給した場合とNガスを供給した場合の実際のエッチング状態を示す図である。Where the N 2 gas supplied to the O 2 gas is a diagram showing an actual etching state when supplied. ガスを供給した場合とNガスを供給した場合の窒化チタン膜に対するエッチング選択比を示す表である。Where the N 2 gas supplied to the O 2 gas is a table showing the etch selectivity with respect to the titanium nitride film when supplied. エッチングの下地膜への到達時間の違いを説明するための膜構造の縦断面図である。It is a longitudinal cross-sectional view of the film | membrane structure for demonstrating the difference in the arrival time to the base film of an etching.

符号の説明Explanation of symbols

1 エッチング装置
10 処理容器
13 サセプタ
30 上部電極
41〜44 ガス供給源
S 処理室
W 基板
DESCRIPTION OF SYMBOLS 1 Etching apparatus 10 Processing container 13 Susceptor 30 Upper electrode 41-44 Gas supply source S Processing chamber W Substrate

Claims (11)

基板上に形成され,複数層のシリコン系絶縁膜を有する積層膜をエッチングする方法であって,
前記積層膜には,塗布法により形成された塗布シリコン系絶縁膜が含まれており,
フッ化炭素系ガスと窒素ガスを含有しかつ酸素ガスを含まないエッチングガスを処理室内に導入し,当該処理室内で基板上の積層膜をエッチングすることを特徴とする,エッチング方法。
A method of etching a stacked film formed on a substrate and having a plurality of silicon-based insulating films,
The laminated film includes a coated silicon insulating film formed by a coating method,
An etching method comprising introducing an etching gas containing a fluorocarbon gas and a nitrogen gas and not containing an oxygen gas into a processing chamber, and etching the laminated film on the substrate in the processing chamber.
前記塗布シリコン系絶縁膜は,SOG膜であることを特徴とする,請求項1に記載のエッチング方法。 The etching method according to claim 1, wherein the coated silicon-based insulating film is an SOG film. 窒素ガスの導入量を調整して,前記塗布シリコン系絶縁膜とそれ以外のシリコン系絶縁膜のエッチング速度の比を調整することを特徴とする,請求項1又は2のいずれかに記載のエッチング方法。 3. The etching according to claim 1, wherein the ratio of the etching rate of the coated silicon-based insulating film and the other silicon-based insulating film is adjusted by adjusting the amount of nitrogen gas introduced. Method. 前記積層膜には,前記塗布シリコン系絶縁膜以外に,化学気相成長法により形成されたCVDシリコン系絶縁膜が含まれていることを特徴とする,請求項1〜3のいずれかに記載のエッチング方法。 4. The laminated film includes a CVD silicon-based insulating film formed by a chemical vapor deposition method in addition to the coated silicon-based insulating film. Etching method. 前記CVDシリコン系絶縁膜は,シリコン酸化膜であることを特徴とする,請求項4に記載のエッチング方法。 The etching method according to claim 4, wherein the CVD silicon-based insulating film is a silicon oxide film. 前記窒素ガスの導入量は,エッチングガスの全流量の30〜40%の流量に調整されることを特徴とする,請求項5に記載のエッチング方法。 6. The etching method according to claim 5, wherein the amount of nitrogen gas introduced is adjusted to a flow rate of 30 to 40% of the total flow rate of the etching gas. 前記積層膜の下地膜は,窒素系の金属膜であることを特徴とする,請求項1〜6のいずれかに記載のエッチング方法。 The etching method according to claim 1, wherein the base film of the laminated film is a nitrogen-based metal film. 前記窒素系の金属膜は,窒化チタンであることを特徴とする,請求項7に記載のエッチング方法。 The etching method according to claim 7, wherein the nitrogen-based metal film is titanium nitride. 請求項1〜8のいずれかに記載のエッチング方法をコンピュータに実現させるためのプログラム。 The program for making a computer implement | achieve the etching method in any one of Claims 1-8. 請求項1〜8のいずれかに記載のエッチング方法をコンピュータに実現させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium recording a program for causing a computer to implement the etching method according to claim 1. 請求項1〜8のいずれかに記載のエッチング方法を行う制御部を有するプラズマ処理装置。 The plasma processing apparatus which has a control part which performs the etching method in any one of Claims 1-8.
JP2005006332A 2005-01-13 2005-01-13 Etching method, program, recording, computer-readable recording medium, and plasma processor Pending JP2006196663A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005006332A JP2006196663A (en) 2005-01-13 2005-01-13 Etching method, program, recording, computer-readable recording medium, and plasma processor
TW095101054A TWI390626B (en) 2005-01-13 2006-01-11 Etching methods, programs, computer-readable recording media and plasma processing devices
KR1020060002951A KR100761563B1 (en) 2005-01-13 2006-01-11 Etching method, program, computer readable storage medium and plasma processing apparatus
US11/330,336 US7655570B2 (en) 2005-01-13 2006-01-12 Etching method, program, computer readable storage medium and plasma processing apparatus
CNB2006100012803A CN100508135C (en) 2005-01-13 2006-01-12 Etching method, program, computer readable storage medium and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005006332A JP2006196663A (en) 2005-01-13 2005-01-13 Etching method, program, recording, computer-readable recording medium, and plasma processor

Publications (1)

Publication Number Publication Date
JP2006196663A true JP2006196663A (en) 2006-07-27

Family

ID=36802502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006332A Pending JP2006196663A (en) 2005-01-13 2005-01-13 Etching method, program, recording, computer-readable recording medium, and plasma processor

Country Status (4)

Country Link
JP (1) JP2006196663A (en)
KR (1) KR100761563B1 (en)
CN (1) CN100508135C (en)
TW (1) TWI390626B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070232A (en) * 2013-09-30 2015-04-13 株式会社東芝 Semiconductor device manufacturing method and semiconductor manufacturing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360876B1 (en) * 2009-06-03 2014-02-11 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for etching
JP6154820B2 (en) * 2012-11-01 2017-06-28 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330057A (en) * 1998-05-08 1999-11-30 Tokyo Electron Ltd Method for etching oxide film
JP2001077086A (en) * 1999-08-31 2001-03-23 Oki Electric Ind Co Ltd Dry etching method of semiconductor device
JP2001127040A (en) * 1999-10-26 2001-05-11 Tokyo Electron Ltd Etching method
JP2001351974A (en) * 2000-06-08 2001-12-21 Seiko Epson Corp Manufacturing method of semiconductor device
WO2002039494A1 (en) * 2000-11-08 2002-05-16 Daikin Industries, Ltd. Dry etching gas and method for dry etching
JP2003533042A (en) * 2000-05-12 2003-11-05 東京エレクトロン株式会社 Method for etching highly selective SAC
JP2004193627A (en) * 1999-06-24 2004-07-08 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2004200299A (en) * 2002-12-17 2004-07-15 Toshiba Corp Method of manufacturing electronic device
JP2005005697A (en) * 2003-05-21 2005-01-06 Semiconductor Leading Edge Technologies Inc Manufacturing method of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269879A (en) * 1991-10-16 1993-12-14 Lam Research Corporation Method of etching vias without sputtering of underlying electrically conductive layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330057A (en) * 1998-05-08 1999-11-30 Tokyo Electron Ltd Method for etching oxide film
JP2004193627A (en) * 1999-06-24 2004-07-08 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2001077086A (en) * 1999-08-31 2001-03-23 Oki Electric Ind Co Ltd Dry etching method of semiconductor device
JP2001127040A (en) * 1999-10-26 2001-05-11 Tokyo Electron Ltd Etching method
JP2003533042A (en) * 2000-05-12 2003-11-05 東京エレクトロン株式会社 Method for etching highly selective SAC
JP2001351974A (en) * 2000-06-08 2001-12-21 Seiko Epson Corp Manufacturing method of semiconductor device
WO2002039494A1 (en) * 2000-11-08 2002-05-16 Daikin Industries, Ltd. Dry etching gas and method for dry etching
JP2004200299A (en) * 2002-12-17 2004-07-15 Toshiba Corp Method of manufacturing electronic device
JP2005005697A (en) * 2003-05-21 2005-01-06 Semiconductor Leading Edge Technologies Inc Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070232A (en) * 2013-09-30 2015-04-13 株式会社東芝 Semiconductor device manufacturing method and semiconductor manufacturing device

Also Published As

Publication number Publication date
TWI390626B (en) 2013-03-21
TW200633052A (en) 2006-09-16
KR100761563B1 (en) 2007-09-27
CN1819122A (en) 2006-08-16
KR20060082799A (en) 2006-07-19
CN100508135C (en) 2009-07-01

Similar Documents

Publication Publication Date Title
TWI743072B (en) Etching method and etching device
JP6604833B2 (en) Plasma etching method
KR101384589B1 (en) Method for producing semiconductor device
JP4701776B2 (en) Etching method and etching apparatus
TWI436419B (en) A plasma etch method and a computer readable memory medium
JP2008198659A (en) Plasma etching method
TW201727738A (en) Etching method
US7655570B2 (en) Etching method, program, computer readable storage medium and plasma processing apparatus
TWI745590B (en) Method of etching porous membrane
JP5072531B2 (en) Plasma etching method and storage medium
JP5090443B2 (en) Dry etching method
JP2006196663A (en) Etching method, program, recording, computer-readable recording medium, and plasma processor
JP2008172184A (en) Plasma etching method, plasma etching device, control program and computer storage medium
JP4684924B2 (en) Plasma etching method, plasma etching apparatus and computer storage medium
JP2021028968A (en) Substrate and substrate processing method
JP2004031888A (en) Deposition method of fluorocarbon film
JP6666601B2 (en) Method for etching a porous film
JPH11330057A (en) Method for etching oxide film
JP4615290B2 (en) Plasma etching method
KR20190015132A (en) Method for processing target object
US10811275B2 (en) Plasma etching method and plasma etching apparatus
WO2024009815A1 (en) Substrate processing method
JP4800077B2 (en) Plasma etching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201