JP2006196599A - Conduction method between both surfaces of substrate and wiring board - Google Patents

Conduction method between both surfaces of substrate and wiring board Download PDF

Info

Publication number
JP2006196599A
JP2006196599A JP2005005397A JP2005005397A JP2006196599A JP 2006196599 A JP2006196599 A JP 2006196599A JP 2005005397 A JP2005005397 A JP 2005005397A JP 2005005397 A JP2005005397 A JP 2005005397A JP 2006196599 A JP2006196599 A JP 2006196599A
Authority
JP
Japan
Prior art keywords
substrate
hole
metal particles
wiring board
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005005397A
Other languages
Japanese (ja)
Other versions
JP4609072B2 (en
Inventor
Koji Honma
孝治 本間
Yoji Kato
洋史 加藤
Toru Degawa
通 出川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIGITAL POWDER SYSTEMS Inc
Original Assignee
DIGITAL POWDER SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIGITAL POWDER SYSTEMS Inc filed Critical DIGITAL POWDER SYSTEMS Inc
Priority to JP2005005397A priority Critical patent/JP4609072B2/en
Publication of JP2006196599A publication Critical patent/JP2006196599A/en
Application granted granted Critical
Publication of JP4609072B2 publication Critical patent/JP4609072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conduction method between both surfaces of a substrate which has simple process for conducting both plate surfaces and may not thermally deteriorating the substrate, and to provide a wiring board. <P>SOLUTION: Metallic particles 3 are filled in a hole (through hole) 2 formed on the substrate 1, and the metallic particles 3 are pressed in a thickness direction of the substrate 1. The metallic particles 3 are plastically deformed, pressed onto the inner wall of the hole 2, and fixed in the inside of the hole 2. Thus, conduction can be realized between both the surfaces of the substrate 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器に用いられる基板両面の導通方法及び配線基板に係わり、特に、内外層回路の相互の導通を行なうための孔(スルーホール)を有する基板両面の導通方法と、この方法により得られた配線基板に関するものである。   The present invention relates to a conductive method for both surfaces of a substrate and a wiring board used in an electronic device, and more particularly, a conductive method for both surfaces of a substrate having holes (through holes) for performing mutual conduction between inner and outer layer circuits, and this method. The present invention relates to the obtained wiring board.

一般に、両面印刷配線板及び多層印刷配線板には、その表裏両面もしくは表裏両面及び内層に形成された導電体層からなる配線を相互に接続するための貫通孔(スルーホール)が形成されている。この孔は、その内壁に、例えば銅などの金属メッキが施され、この金属メッキからなる導電体層により多層に形成された配線間の導通が行なわれるようになっている。   In general, a double-sided printed wiring board and a multilayer printed wiring board are formed with through-holes (through holes) for connecting wirings made of a conductive layer formed on both the front and back surfaces or both front and back surfaces and an inner layer. . The hole is plated with a metal such as copper on the inner wall thereof, and conduction between wirings formed in multiple layers by a conductor layer made of the metal plating is performed.

従来、このような印刷配線板は、例えば、絶縁基板である両面銅張積層板に、ドリリングもしくはパンチングにより貫通孔を形成する工程と、貫通孔内壁を含む銅張積層板の表面に銅のパネルメッキを施す工程と、銅張積層板表面に配線パターンを形成するためのエッチングレジスト層を形成する工程と、エッチングを行なう工程と、前記レジスト層を剥離する工程と、配線パターンが形成された後に銅張積層板の表面にソルダーレジスト(SR)層を形成する工程を経て製造されている。   Conventionally, such a printed wiring board is, for example, a process of forming a through hole in a double-sided copper-clad laminate as an insulating substrate by drilling or punching, and a copper panel on the surface of the copper-clad laminate including the inner wall of the through-hole. A step of plating, a step of forming an etching resist layer for forming a wiring pattern on the surface of the copper-clad laminate, a step of etching, a step of removing the resist layer, and after the wiring pattern is formed It is manufactured through a process of forming a solder resist (SR) layer on the surface of the copper clad laminate.

より簡便な方法として、貫通孔に導電性ペーストを充填し、焼成する方法も行われている(例えば、下記特許文献1,2)。
特開平5−183268号公報 特開平8−255982号公報
As a simpler method, a method of filling a through-hole with a conductive paste and baking it is also performed (for example, Patent Documents 1 and 2 below).
JP-A-5-183268 JP-A-8-255982

上記メッキによる方法は、工程が煩雑で工業的に不利である。上記導電性ペーストを用いる方法であれば、メッキによる方法に比べて少ない工程数で製造可能であるが、この方法であっても、導電性ペーストを乾燥させ、さらに焼成する工程が必要であり、工程がいまだに煩雑であると共に、基板が焼成時の熱に耐えうるものに限られるという欠点がある。   The plating method is industrially disadvantageous because of complicated processes. If it is a method using the above-mentioned conductive paste, it can be manufactured with a smaller number of steps than the method by plating, but even this method requires a step of drying and further baking the conductive paste, There are drawbacks that the process is still complicated and that the substrate is limited to one that can withstand the heat during firing.

本発明は、両板面の導通のための作業工程が簡易であり、しかも基板を熱劣化させるおそれもない基板両面の導通方法及びこの方法によって得られる配線基板を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for conducting both surfaces of a substrate, in which a work process for conduction between both plate surfaces is simple and there is no risk of thermal degradation of the substrate, and a wiring board obtained by this method.

本発明(請求項1)の基板両面の導通方法は、基板の一方の板面側と他方の板面側とを、該板面に貫通された孔内の導電体によって導通させる基板両面の導通方法において、該孔内に金属粒子を充填した後、該金属粒子を基板の厚み方向にプレスして該孔内に固定することを特徴とするものである。   The method for conducting both surfaces of a substrate according to the present invention (Claim 1) is to conduct both surfaces of a substrate by electrically connecting one plate surface side of the substrate and the other plate surface side by a conductor in a hole penetrating the plate surface. In the method, the metal particles are filled in the holes, and then the metal particles are pressed in the thickness direction of the substrate to be fixed in the holes.

請求項2の基板両面の導通方法は、請求項1において、前記金属粒子は貴金属粒子であることを特徴とするものである。   According to a second aspect of the present invention, there is provided the conduction method for both surfaces of the substrate according to the first aspect, wherein the metal particles are noble metal particles.

請求項3の基板両面の導通方法は、請求項2において、該貴金属粒子は金粒子であることを特徴とするものである。   According to a third aspect of the present invention, there is provided the conductive method for both surfaces of the substrate according to the second aspect, wherein the noble metal particles are gold particles.

請求項4の基板両面の導通方法は、請求項1ないし3のいずれか1項において、前記孔は一端側が小径であり、他端側が大径であり、前記金属粒子の粒径は、該孔の該一端側の径よりも大きく該他端側の径よりも小さいことを特徴とするものである。   The conduction method for both surfaces of the substrate according to claim 4 is the method according to any one of claims 1 to 3, wherein the hole has a small diameter on one end side and a large diameter on the other end side. The diameter is larger than the diameter on the one end side and smaller than the diameter on the other end side.

本発明(請求項5)の配線基板は、一方の板面側から他方の板面側に貫通する少なくとも1個の孔を備えた基板と、該孔内に配置され、該一方の板面側と他方の板面側とを導通させる導電体とを備えた配線基板において、該導電体は、該孔内に充填され、該基板の厚み方向にプレスすることにより該孔内に固定された、少なくとも1個の金属粒子よりなることを特徴とするものである。   A wiring board according to the present invention (Claim 5) is provided with a substrate having at least one hole penetrating from one plate surface side to the other plate surface side, and disposed in the hole, the one plate surface side. In the wiring board provided with a conductor that conducts to the other plate surface side, the conductor is filled in the hole, and fixed in the hole by pressing in the thickness direction of the board, It consists of at least one metal particle.

請求項6の配線基板は、請求項5において、前記金属粒子は前記孔内に複数個充填されており、前記プレスにより、該金属粒子同士の接触部分が塑性変形していることを特徴とするものである。   A wiring board according to a sixth aspect of the present invention is the wiring board according to the fifth aspect, wherein a plurality of the metal particles are filled in the holes, and a contact portion between the metal particles is plastically deformed by the pressing. Is.

請求項7の配線基板は、請求項5又は6において、前記金属粒子は貴金属粒子であることを特徴とするものである。   A wiring board according to a seventh aspect is the wiring board according to the fifth or sixth aspect, wherein the metal particles are noble metal particles.

請求項8の配線基板は、請求項7において、該貴金属粒子は金粒子であることを特徴とするものである。   According to an eighth aspect of the present invention, there is provided the wiring board according to the seventh aspect, wherein the noble metal particles are gold particles.

請求項9の配線基板は、請求項5ないし8のいずれか1項において、前記孔の内壁に導電層が形成されていることを特徴とするものである。   A wiring board according to a ninth aspect is characterized in that, in any one of the fifth to eighth aspects, a conductive layer is formed on an inner wall of the hole.

請求項10の配線基板は、請求項5ないし8のいずれか1項において、前記基板はシリコンよりなり、前記孔の内壁に、絶縁層が形成されていることを特徴とするものである。   A wiring board according to a tenth aspect is the wiring board according to any one of the fifth to eighth aspects, wherein the substrate is made of silicon and an insulating layer is formed on an inner wall of the hole.

請求項11の配線基板は、請求項10において、前記絶縁層は、前記内壁のシリコンを酸化して形成されたものであることを特徴とするものである。   A wiring board according to an eleventh aspect is the wiring board according to the tenth aspect, wherein the insulating layer is formed by oxidizing silicon on the inner wall.

本発明の基板両面の導通方法及び配線基板によると、孔(スルーホール)内に金属粒子を配置し、該金属粒子をプレスして孔内に固定することにより、基板の両板面を導通する導体を形成することができる。この際、本発明では、熱処理は行わないことから、基板が熱で劣化することもない。従って、基板は、耐熱性のものに限定されない。   According to the conduction method and the wiring board on both sides of the substrate of the present invention, the metal particles are arranged in the holes (through holes), and the metal particles are pressed and fixed in the holes to conduct both the plate surfaces of the substrate. A conductor can be formed. At this time, in the present invention, since the heat treatment is not performed, the substrate is not deteriorated by heat. Therefore, the substrate is not limited to a heat-resistant substrate.

また、この工程は、金属粒子の充填工程とその後のプレス工程との、いずれも簡便な工程からなるものであり、作業が簡易である。   Moreover, this process consists of a simple process of the metal particle filling process and the subsequent pressing process, and the operation is simple.

この孔内に複数個の金属粒子が充填される場合、基板の厚み方向のプレスにより金属粒子同士の接触部分が塑性変形していることが好ましい。この場合、接触部分の面積が大きくなり、接触部分に電流がより流れ易くなる。   When a plurality of metal particles are filled in the holes, it is preferable that the contact portion between the metal particles is plastically deformed by pressing in the thickness direction of the substrate. In this case, the area of the contact portion increases, and the current easily flows through the contact portion.

上記の金属粒子としては、耐食性に優れ、しかも電気抵抗が低い貴金属粒子が好適であり、特に展延性の良好な金粒子が好適である。   As the metal particles, noble metal particles having excellent corrosion resistance and low electrical resistance are preferable, and gold particles having particularly good spreadability are preferable.

本発明では、孔の一端側を小径とし、他端側を大径とし、金属粒子の粒径をこの孔の一端側(小径)よりも大径とし、他端側(大径)よりも小径とすることが好ましい。このようにすれば、金属粒子を他端側から孔に充填するに際し、一端側から脱落することが無いので、金属粒子の充填作業性が向上する。   In the present invention, one end side of the hole has a small diameter, the other end side has a large diameter, and the particle size of the metal particles is larger than one end side (small diameter) of the hole and smaller than the other end side (large diameter). It is preferable that If it does in this way, when filling a metal particle into a hole from the other end side, since it will not drop out from the one end side, filling workability of a metal particle will improve.

この孔の内壁には、導電層が形成されていてもよい。このようにすれば、電流は金属粒子内を流れると共に、この導電層内をも流れることが可能となり、より導通性に優れたものとなる。   A conductive layer may be formed on the inner wall of the hole. In this way, the current can flow in the metal particles and also in the conductive layer, so that the conductivity is more excellent.

また、基板の材質がシリコンよりなる場合、孔の内壁に絶縁層を形成し、金属粒子の金属が基板内に拡散することを防止してもよい。   Further, when the material of the substrate is made of silicon, an insulating layer may be formed on the inner wall of the hole to prevent the metal particles from diffusing into the substrate.

この絶縁層として、孔の内壁のシリコンを酸化して酸化シリコン層を形成する場合には、容易に絶縁層を形成することができる。   As this insulating layer, when a silicon oxide layer is formed by oxidizing silicon on the inner wall of the hole, the insulating layer can be easily formed.

以下、図面を参照して本発明の実施の形態を詳細に説明する。図1は実施の形態に係る基板両面の導通方法及び配線基板を説明する断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view for explaining a conductive method on both sides of a substrate and a wiring substrate according to an embodiment.

図1の通り、基板1に形成された孔(スルーホール)2内に金属粒子3を充填し、該金属粒子3を基板1の厚み方向にプレスして、該孔2内に該金属粒子3を固定することにより、基板1の両面の導通が図られる。   As shown in FIG. 1, metal particles 3 are filled into holes (through holes) 2 formed in the substrate 1, the metal particles 3 are pressed in the thickness direction of the substrate 1, and the metal particles 3 are inserted into the holes 2. Is fixed, conduction between both surfaces of the substrate 1 is achieved.

即ち、図1(a)の通り、基板1の厚み方向に、貫通孔(スルーホール)2が形成されている。この孔2は、エッチング、レーザー、ドリルなどにより形成される。   That is, as shown in FIG. 1A, a through hole (through hole) 2 is formed in the thickness direction of the substrate 1. The hole 2 is formed by etching, laser, drill, or the like.

この基板1の材質は、特に限定はなく、例えば、ケイ酸アルカリ系ガラス、無アルカリガラス、石英ガラス等のガラス、窒化アルミニウム、アルミナ、炭化珪素、窒化珪素等のセラミックス、エポキシ樹脂、フィラーや微粒子を混合した複合樹脂等の絶縁性材料や、シリコン等の半導体材料が用いられる。   The material of the substrate 1 is not particularly limited, and examples thereof include glass such as alkali silicate glass, non-alkali glass and quartz glass, ceramics such as aluminum nitride, alumina, silicon carbide and silicon nitride, epoxy resin, filler and fine particles. An insulating material such as a composite resin mixed with or a semiconductor material such as silicon is used.

この孔2は、本実施の形態では、基板1の一方の板面(図1では上面)から他方の板面(図1では下面)に向けて次第に縮径する形状となっている。この孔2の上端側の内径(以下「大口部径」と称す場合がある。)は、例えば6〜400μm程度、下端側の内径(以下「小口部径」と称す場合がある。)は、例えば40〜250μm程度であり、好ましくは、大口部径が100〜200μm、小口部径が80〜150μm、または大口部径が280〜320μm、小口部径が160〜200μm程度である。この基板1の厚さは、例えば100〜500μm程度であり、この孔2のテーパー角θは45〜85°程度であることが好ましい。   In the present embodiment, the hole 2 has a shape that gradually decreases in diameter from one plate surface (upper surface in FIG. 1) to the other plate surface (lower surface in FIG. 1). The inner diameter of the upper end side of the hole 2 (hereinafter may be referred to as “large-portion diameter”) is, for example, about 6 to 400 μm, and the inner diameter of the lower end side (hereinafter may be referred to as “small-portion diameter”). For example, it is about 40-250 micrometers, Preferably, a large opening part diameter is 100-200 micrometers, a small opening part diameter is 80-150 micrometers, or a large opening part diameter is 280-320 micrometers, and a small opening part diameter is about 160-200 micrometers. The thickness of the substrate 1 is, for example, about 100 to 500 μm, and the taper angle θ of the hole 2 is preferably about 45 to 85 °.

図1(b)の通り、この孔2内に金属粒子3を充填する。   As shown in FIG. 1B, the metal particles 3 are filled in the holes 2.

この金属粒子3の材質としては、電気伝導率が高く、耐食性に優れ、軟質で展性、延性に優れたものが好ましく、例えば、金、銀、白金等の貴金属、銅、又はこれらの合金、金と錫等よりなる金合金が好ましく、とりわけ金及び金−錫合金が好ましい。   As the material of the metal particles 3, a material having high electrical conductivity, excellent corrosion resistance, soft and excellent malleability and ductility is preferable. For example, noble metals such as gold, silver and platinum, copper, or alloys thereof, Gold alloys composed of gold and tin are preferable, and gold and gold-tin alloys are particularly preferable.

また、金属球の表面に上記金属又は合金よりなるメッキを施したものを、金属粒子3としてもよい。   Alternatively, the metal particles 3 may be formed by plating the surface of the metal sphere with the metal or the alloy.

この金属粒子3の形状は、真球であることがハンドリングの点において好ましいが、必ずしも真球である必要はなく、例えば八面体や16面体等の多面体構造や卵型等の形状であっても良い。   The shape of the metal particles 3 is preferably a true sphere in terms of handling, but is not necessarily a true sphere, and may be a polyhedral structure such as an octahedron or a 16-hedron, or an egg shape, for example. good.

本実施の形態では、この金属粒子3の直径は、孔2の大口部径よりも小さく、かつ小口部径よりも大きくなっている。このため、孔2の上方から金属粒子3を孔2内に挿入することができ、かつ、図1(b)の通り、孔2の下側から該金属粒子3が落下することが防止される。但し、金属粒子3を押圧して該金属粒子3を孔2内に挿入することが可能な程度であれば、この金属粒子3の直径は孔2の大口部径より大きくてもよい。また、孔2の下端側を板等で閉鎖して、金属粒子3が孔2から落下することを防止すれば、該金属粒子3の直径を孔2の小口部径より小さくしてもよい。   In the present embodiment, the diameter of the metal particle 3 is smaller than the large diameter of the hole 2 and larger than the small diameter. For this reason, the metal particles 3 can be inserted into the holes 2 from above the holes 2, and the metal particles 3 are prevented from falling from below the holes 2 as shown in FIG. . However, the diameter of the metal particle 3 may be larger than the large diameter of the hole 2 as long as the metal particle 3 can be pressed and inserted into the hole 2. Further, if the lower end side of the hole 2 is closed with a plate or the like to prevent the metal particles 3 from falling from the hole 2, the diameter of the metal particles 3 may be made smaller than the diameter of the small opening of the hole 2.

ただし、取り扱い作業性や孔への充填性等の面から、金属粒子3の直径は、孔2の小口部径の1.05〜2.0倍であって、孔2の大口部径の1/1.1〜1/3倍程度であることが好ましい。   However, from the viewpoints of handling workability and filling into the hole, the diameter of the metal particle 3 is 1.05 to 2.0 times the small diameter of the hole 2 and is 1 of the large diameter of the hole 2. It is preferable that it is about /1.1 to 1/3 times.

本実施の形態では、孔2内に金属粒子3を3個充填しているが、孔2の寸法及び金属粒子3の寸法等に応じ、金属粒子3を1個、2個又は4個以上充填してもよい。   In the present embodiment, three metal particles 3 are filled in the hole 2, but one, two, or four or more metal particles 3 are filled according to the size of the hole 2 and the size of the metal particle 3. May be.

孔2に金属粒子3を充填した後、図1(b)の通り、金属粒子3を基板1の厚み方向にプレスする。このプレスにより、図1(c)の通り、金属粒子3は孔2の内壁に押圧されて孔2内に固定される。図1(c)の通り、金属粒子3同士は、互いに接触しており、かつ孔2の最高位に配置された金属粒子3の上端が基板1の上面と面一となり、孔2の最低位に配置された金属粒子3の下端が基板1の下面と面一となっている。このため、基板1の上面側と下面側とが金属粒子3によって導通されている。なお、最高位の金属粒子3の上端及び最低位の金属粒子3の下端は、それぞれ基板1の上面及び下面から突出していてもよい。   After filling the holes 2 with the metal particles 3, the metal particles 3 are pressed in the thickness direction of the substrate 1 as shown in FIG. By this pressing, the metal particles 3 are pressed against the inner wall of the hole 2 and fixed in the hole 2 as shown in FIG. As shown in FIG. 1C, the metal particles 3 are in contact with each other, and the upper end of the metal particle 3 disposed at the highest position of the hole 2 is flush with the upper surface of the substrate 1. The lower end of the metal particle 3 disposed on the substrate 1 is flush with the lower surface of the substrate 1. For this reason, the upper surface side and the lower surface side of the substrate 1 are electrically connected by the metal particles 3. The upper end of the highest metal particle 3 and the lower end of the lowest metal particle 3 may protrude from the upper surface and the lower surface of the substrate 1, respectively.

本実施の形態では、プレスにより金属粒子が塑性変形し、孔2の内壁に強固に固定されている。また、金属粒子同士の接触部分の面積が大きくなり、この接触部分に電流が流れ易くなっている。   In the present embodiment, the metal particles are plastically deformed by pressing and are firmly fixed to the inner wall of the hole 2. Moreover, the area of the contact part between metal particles becomes large, and an electric current flows through this contact part easily.

上記実施の形態は本発明の一例であり、本発明は上記実施の形態に限定されない。例えば、図2の通り、内壁部に段部4を有する孔2Aを形成した基板1Aを用いても良く、この場合には、この段部4で金属粒子3を保持し、その落下を防止することができる。この場合にあっても、孔2A内に充填した金属粒子を基板1Aの厚さ方向にプレスすることにより、金属粒子が塑性変形して小孔2Aの下端にまで達し、基板1Aの上面側と下面側とがこの金属粒子によって導通される。   The above embodiment is an example of the present invention, and the present invention is not limited to the above embodiment. For example, as shown in FIG. 2, a substrate 1A in which a hole 2A having a step portion 4 is formed on the inner wall portion may be used. In this case, the metal particles 3 are held by the step portion 4 and prevented from falling. be able to. Even in this case, by pressing the metal particles filled in the holes 2A in the thickness direction of the substrate 1A, the metal particles are plastically deformed to reach the lower end of the small holes 2A, and the upper surface side of the substrate 1A The lower surface side is electrically connected by the metal particles.

なお、本発明において良好な導通性を確保するために、基板1の孔2内に固定された金属粒子3(プレス後に孔2内に存在する金属粒子3)の合計体積は少なくとも孔2の容積の60%以上であり、金属粒子3,3間の空隙は孔2の容積の30%以下、特に15%以下となるようにすることが好ましい。   In the present invention, in order to ensure good electrical conductivity, the total volume of the metal particles 3 (the metal particles 3 present in the holes 2 after pressing) fixed in the holes 2 of the substrate 1 is at least the volume of the holes 2. It is preferable that the gap between the metal particles 3 and 3 is 30% or less, particularly 15% or less of the volume of the hole 2.

また、図3の通り、孔2の内壁に導電層5を形成してなる基板1Bを、図1の基板1の代りに用いてもよい。この場合、孔2内に金属粒子を充填して該金属粒子を基板厚み方向にプレスすることにより、金属粒子同士が接触すると共に、金属粒子と導電層とが接触し、基板1Bの上面側と下面側との導通がより一層良好なものとなる。   Further, as shown in FIG. 3, a substrate 1B formed by forming a conductive layer 5 on the inner wall of the hole 2 may be used instead of the substrate 1 of FIG. In this case, by filling the metal particles in the holes 2 and pressing the metal particles in the thickness direction of the substrate, the metal particles are in contact with each other, the metal particles are in contact with the conductive layer, and the upper surface side of the substrate 1B is The conduction with the lower surface side is further improved.

なお、この導電層5は、例えばCVDやスパッタによって形成される。また、この導電層5の材質としては、例えば、金、銀、白金等の貴金属、銅、又はこれらの合金、金と錫等よりなる金合金が好ましく、とりわけ金及び金−錫合金が好ましい。   The conductive layer 5 is formed by, for example, CVD or sputtering. The material of the conductive layer 5 is preferably, for example, a noble metal such as gold, silver or platinum, copper, or an alloy thereof, or a gold alloy composed of gold and tin, and particularly preferably gold and a gold-tin alloy.

また、図4の通り、基板1Cの材質がシリコンよりなる場合、孔2の内壁のシリコンを酸化して酸化ケイ素よりなる絶縁層6を形成し、金属粒子の金属が基板1C内に拡散することを防止してもよい。   Further, as shown in FIG. 4, when the material of the substrate 1C is made of silicon, silicon on the inner wall of the hole 2 is oxidized to form the insulating layer 6 made of silicon oxide, and the metal particles diffuse into the substrate 1C. May be prevented.

なお、図3の導電層5の厚みは0.01〜10μm程度であることが好ましい。0.005μm程度であると、導電性向上効果に乏しく、10μmを超えても導電性の向上効果に差異はなく、むしろ導電層が剥離し易くなると共に形成コストが高くつく。   In addition, it is preferable that the thickness of the conductive layer 5 of FIG. 3 is about 0.01-10 micrometers. When the thickness is about 0.005 μm, the effect of improving the conductivity is poor, and even if the thickness exceeds 10 μm, there is no difference in the effect of improving the conductivity. Rather, the conductive layer is easily peeled off and the formation cost is high.

また、図4の絶縁層6の厚みは0.1〜10μm程度であることが好ましい。0.05μm程度であると、絶縁層を形成したことによる上記効果を十分に得ることができず、10μmを超えると形成コストが高くつく。   Further, the thickness of the insulating layer 6 in FIG. 4 is preferably about 0.1 to 10 μm. When the thickness is about 0.05 μm, the above-mentioned effect due to the formation of the insulating layer cannot be sufficiently obtained, and when it exceeds 10 μm, the formation cost is high.

実施の形態に係る基板両面の導通方法を説明する断面図である。It is sectional drawing explaining the conduction | electrical_connection method of the both surfaces of the board | substrate which concerns on embodiment. 本発明で用いる基板の異なる実施の形態を示す断面図である。It is sectional drawing which shows different embodiment of the board | substrate used by this invention. 本発明で用いる基板のさらに異なる実施の形態を示す断面図である。It is sectional drawing which shows further another embodiment of the board | substrate used by this invention. 本発明で用いる基板の別の実施の形態を示す断面図である。It is sectional drawing which shows another embodiment of the board | substrate used by this invention.

符号の説明Explanation of symbols

1,1A,1B,1C 基板
2,2A 孔
3 金属粒子
4 段部
5 導電層
6 絶縁層
1, 1A, 1B, 1C substrate 2, 2A hole 3 metal particle 4 step part 5 conductive layer 6 insulating layer

Claims (11)

基板の一方の板面側と他方の板面側とを、該板面に貫通された孔内の導電体によって導通させる基板両面の導通方法において、
該孔内に金属粒子を充填した後、該金属粒子を基板の厚み方向にプレスして該孔内に固定することを特徴とする基板両面の導通方法。
In the conduction method on both sides of the substrate, where one plate surface side and the other plate surface side of the substrate are made conductive by a conductor in a hole penetrating the plate surface,
A method of conducting both surfaces of a substrate, wherein the holes are filled with metal particles, and the metal particles are pressed in the thickness direction of the substrate and fixed in the holes.
請求項1において、前記金属粒子は貴金属粒子であることを特徴とする基板両面の導通方法。   2. The conduction method on both sides of a substrate according to claim 1, wherein the metal particles are noble metal particles. 請求項2において、該貴金属粒子は金粒子であることを特徴とする基板両面の導通方法。   3. The conduction method for both surfaces of a substrate according to claim 2, wherein the noble metal particles are gold particles. 請求項1ないし3のいずれか1項において、前記孔は一端側が小径であり、他端側が大径であり、
前記金属粒子の粒径は、該孔の該一端側の径よりも大きく該他端側の径よりも小さいことを特徴とする基板両面の導通方法。
The hole according to any one of claims 1 to 3, wherein the hole has a small diameter at one end and a large diameter at the other end.
A method for conducting both surfaces of a substrate, wherein the particle size of the metal particles is larger than the diameter on the one end side of the hole and smaller than the diameter on the other end side.
一方の板面側から他方の板面側に貫通する少なくとも1個の孔を備えた基板と、該孔内に配置され、該一方の板面側と他方の板面側とを導通させる導電体とを備えた配線基板において、
該導電体は、該孔内に充填され、該基板の厚み方向にプレスすることにより該孔内に固定された、少なくとも1個の金属粒子よりなることを特徴とする配線基板。
A substrate having at least one hole penetrating from one plate surface side to the other plate surface side, and a conductor disposed in the hole and electrically connecting the one plate surface side and the other plate surface side In a wiring board with
The wiring board, wherein the conductor is composed of at least one metal particle filled in the hole and fixed in the hole by pressing in the thickness direction of the substrate.
請求項5において、前記金属粒子は前記孔内に複数個充填されており、前記プレスにより、該金属粒子同士の接触部分が塑性変形していることを特徴とする配線基板。   The wiring board according to claim 5, wherein a plurality of the metal particles are filled in the holes, and a contact portion between the metal particles is plastically deformed by the pressing. 請求項5又は6において、前記金属粒子は貴金属粒子であることを特徴とする配線基板。   7. The wiring board according to claim 5, wherein the metal particles are noble metal particles. 請求項7において、該貴金属粒子は金粒子であることを特徴とする配線基板。   8. The wiring board according to claim 7, wherein the noble metal particles are gold particles. 請求項5ないし8のいずれか1項において、前記孔の内壁に導電層が形成されていることを特徴とする配線基板。   9. The wiring board according to claim 5, wherein a conductive layer is formed on an inner wall of the hole. 請求項5ないし8のいずれか1項において、前記基板はシリコンよりなり、前記孔の内壁に、絶縁層が形成されていることを特徴とする配線基板。   9. The wiring board according to claim 5, wherein the substrate is made of silicon, and an insulating layer is formed on an inner wall of the hole. 請求項10において、前記絶縁層は、前記内壁のシリコンを酸化して形成されたものであることを特徴とする配線基板。   11. The wiring board according to claim 10, wherein the insulating layer is formed by oxidizing silicon on the inner wall.
JP2005005397A 2005-01-12 2005-01-12 Conducting method on both sides of board and wiring board Expired - Fee Related JP4609072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005397A JP4609072B2 (en) 2005-01-12 2005-01-12 Conducting method on both sides of board and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005397A JP4609072B2 (en) 2005-01-12 2005-01-12 Conducting method on both sides of board and wiring board

Publications (2)

Publication Number Publication Date
JP2006196599A true JP2006196599A (en) 2006-07-27
JP4609072B2 JP4609072B2 (en) 2011-01-12

Family

ID=36802446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005397A Expired - Fee Related JP4609072B2 (en) 2005-01-12 2005-01-12 Conducting method on both sides of board and wiring board

Country Status (1)

Country Link
JP (1) JP4609072B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244303A (en) * 2007-03-28 2008-10-09 Tdk Corp Electronic component and manufacturing method of electronic component
JP2010087249A (en) * 2008-09-30 2010-04-15 Kyocera Kinseki Corp Metal material burying device for wafer and metal material burying method for wafer
JP2010087248A (en) * 2008-09-30 2010-04-15 Kyocera Kinseki Corp Metal material burying device for wafer and metal material burying method for wafer
JP2010232641A (en) * 2009-03-05 2010-10-14 Tdk Corp Method of forming through electrode and semiconductor substrate
JP2011091117A (en) * 2009-10-20 2011-05-06 Freesia Makurosu Kk Method for manufacturing electronic component mounting substrate and electronic component mounting substrate
JP4917668B1 (en) * 2010-12-29 2012-04-18 パナソニック株式会社 Multilayer wiring board and method for manufacturing multilayer wiring board
CN113658936A (en) * 2021-08-16 2021-11-16 浙江水晶光电科技股份有限公司 Metallized glass and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251751A (en) * 1998-02-27 1999-09-17 Kyocera Corp Wiring board and its production
JP2001077497A (en) * 1999-09-01 2001-03-23 Denso Corp Printed board and manufacture thereof
JP2001156415A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Printed-wiring board, its manufacturing method, for manufacturing multilayer printed-wiring board
JP2002314245A (en) * 2001-04-11 2002-10-25 Ngk Insulators Ltd Method for manufacturing core board, core board manufactured by the method, method for manufacturing multilayer core board using the core board, and method for manufacturing multilayer laminated board
JP2003115658A (en) * 2001-10-05 2003-04-18 Advantest Corp Manufacturing method of wiring board, filling inserting method, wiring board and element package
JP2003273517A (en) * 2002-03-19 2003-09-26 Nitto Denko Corp Multilayer circuit board and method for manufacturing the same
JP2005332907A (en) * 2004-05-19 2005-12-02 Matsushita Electric Ind Co Ltd Flexible printed wiring board and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251751A (en) * 1998-02-27 1999-09-17 Kyocera Corp Wiring board and its production
JP2001077497A (en) * 1999-09-01 2001-03-23 Denso Corp Printed board and manufacture thereof
JP2001156415A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Printed-wiring board, its manufacturing method, for manufacturing multilayer printed-wiring board
JP2002314245A (en) * 2001-04-11 2002-10-25 Ngk Insulators Ltd Method for manufacturing core board, core board manufactured by the method, method for manufacturing multilayer core board using the core board, and method for manufacturing multilayer laminated board
JP2003115658A (en) * 2001-10-05 2003-04-18 Advantest Corp Manufacturing method of wiring board, filling inserting method, wiring board and element package
JP2003273517A (en) * 2002-03-19 2003-09-26 Nitto Denko Corp Multilayer circuit board and method for manufacturing the same
JP2005332907A (en) * 2004-05-19 2005-12-02 Matsushita Electric Ind Co Ltd Flexible printed wiring board and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244303A (en) * 2007-03-28 2008-10-09 Tdk Corp Electronic component and manufacturing method of electronic component
JP2010087249A (en) * 2008-09-30 2010-04-15 Kyocera Kinseki Corp Metal material burying device for wafer and metal material burying method for wafer
JP2010087248A (en) * 2008-09-30 2010-04-15 Kyocera Kinseki Corp Metal material burying device for wafer and metal material burying method for wafer
JP2010232641A (en) * 2009-03-05 2010-10-14 Tdk Corp Method of forming through electrode and semiconductor substrate
JP2011091117A (en) * 2009-10-20 2011-05-06 Freesia Makurosu Kk Method for manufacturing electronic component mounting substrate and electronic component mounting substrate
JP4917668B1 (en) * 2010-12-29 2012-04-18 パナソニック株式会社 Multilayer wiring board and method for manufacturing multilayer wiring board
CN113658936A (en) * 2021-08-16 2021-11-16 浙江水晶光电科技股份有限公司 Metallized glass and preparation method thereof

Also Published As

Publication number Publication date
JP4609072B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4609072B2 (en) Conducting method on both sides of board and wiring board
TWI610601B (en) A double sided copperizing ceramic circuit board and manufacturing method thereof
US8415791B2 (en) Semiconductor device and fabrication method therefor
US9107313B2 (en) Method of manufacturing a hybrid heat-radiating substrate
JP6021441B2 (en) Semiconductor device
TW201414392A (en) Multi-layered board and semiconductor package
JP2006339609A (en) Wiring board and manufacturing method of the same
JP4846455B2 (en) A method for manufacturing a nitride ceramic circuit board.
US20140041906A1 (en) Metal heat radiation substrate and manufacturing method thereof
JP2007201188A (en) Manufacturing method of structure, wiring board, and structure with interconnection
TW202121595A (en) Via substrate, electronic unit, method for manufacture of via substrate, and method for manufacture of electronic unit
KR101119259B1 (en) Hybrid heat-radiating substrate and manufacturing method thereof
JP2004221388A (en) Multilayer circuit board for mounting electronic component and its manufacturing method
JP2008159969A (en) Circuit board, electronic apparatus, and method of manufacturing circuit board
JP2008166432A (en) Solder jointing portion less apt to generate cracks, electronic component on circuit substrate having same solder connecting portion, semiconductor device, and manufacturing method of the electronic component
TWI295911B (en) Manufacturing method of circuit board
TWI313716B (en) Metal electroplating process of electrically connecting pad structure on circuit board and structure thereof
JP2007273648A (en) Printed wiring board and its manufacturing method
JP5003940B2 (en) Wiring board
JP2007242740A (en) Metal core printed wiring board and its manufacturing method
JP5840945B2 (en) Circuit board and electronic device having the same
JP6445672B2 (en) Semiconductor device
JP2009218287A (en) Through-hole filled substrate, and method of manufacturing the same
JP2011006762A (en) Surface film structure of terminal connection part and method for forming the same
JP2006229036A (en) Circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees