JP2009218287A - Through-hole filled substrate, and method of manufacturing the same - Google Patents

Through-hole filled substrate, and method of manufacturing the same Download PDF

Info

Publication number
JP2009218287A
JP2009218287A JP2008058439A JP2008058439A JP2009218287A JP 2009218287 A JP2009218287 A JP 2009218287A JP 2008058439 A JP2008058439 A JP 2008058439A JP 2008058439 A JP2008058439 A JP 2008058439A JP 2009218287 A JP2009218287 A JP 2009218287A
Authority
JP
Japan
Prior art keywords
conductor
hole
substrate
intermediate layer
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008058439A
Other languages
Japanese (ja)
Inventor
Takeshi Koide
剛士 小出
Yoshihiro Suzuki
祥浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2008058439A priority Critical patent/JP2009218287A/en
Publication of JP2009218287A publication Critical patent/JP2009218287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a through-hole filled substrate whose through-hole has a high allowable current value, and to provide a method of manufacturing the same. <P>SOLUTION: A through conductor 24 is composed of an intermediate layer 26 and an inner peripheral conductor 28 using two kinds of conductor pastes differing in baking shrinkage rate, so the intermediate layer 26 is firmly fixed to an inner peripheral surface of the through-hole 22 and the inner peripheral conductor 28 and then the through conductor 24 composed of them is firmly fixed in the through-hole 22. Further, the paste for the inner peripheral conductor has a small baking shrinkage rate and then size variation of the through conductor 24 during baking and in a temperature cycle is suppressed, so peeling of the through conductor 24 from the inner peripheral surface of the through-hole 22 and breaking of wiring between wiring layers 16 and 20 on upper and lower end surfaces thereof are suitably suppressed in combination with firm fixation of the intermediate layer 26 to the inner peripheral surface of the through-hole 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基板に開けた貫通孔に貫通導体が充填されたスルーホール充填基板およびその製造方法に関する。   The present invention relates to a through-hole-filled board in which a through-hole filled in a through-hole formed in the board and a manufacturing method thereof.

例えば、アルミナ等から成るセラミック基板を用いた厚膜回路基板において、その基板に貫通孔(すなわちスルーホール)を設け、そのスルーホール内壁面に導体層を形成して基板両面に備えられた配線を相互に接続することが行われている(例えば特許文献1,2を参照。)。このようなスルーホールは、高い導電性を有するものの、基板厚み方向の導体断面積が小さいことから例えば1(A)程度の小電流用途に用いられており、大電流を流すことの可能な接続構造が望まれている。例えば、大型車の電動パワーステアリング(EPS)用の基板では50〜60(A)程度の電流が望まれるのである。   For example, in a thick film circuit board using a ceramic substrate made of alumina or the like, a through hole (that is, a through hole) is provided in the substrate, a conductor layer is formed on the inner wall surface of the through hole, and wiring provided on both sides of the substrate is provided. They are connected to each other (see, for example, Patent Documents 1 and 2). Although such a through hole has high conductivity, the conductor cross-sectional area in the substrate thickness direction is small, so it is used for small current applications, for example, about 1 (A). A structure is desired. For example, a current of about 50 to 60 (A) is desired for a board for an electric power steering (EPS) of a large vehicle.

大電流を通電可能とするためには、貫通孔内の導体断面積を大きくすることが必要であり、例えば、貫通孔全体に導体材料を充填することが考えられる。しかしながら、スルーホール用の導体ペーストは焼成収縮が大きいため、貫通孔内に充填して焼成処理を施すと内壁面から剥離する問題がある。また、焼成収縮によって端面が基板表面から著しく凹んだ状態になるため、基板両面の配線との接続確保が困難な問題もある。
特開平03−050781号公報 特開平09−307207号公報 特開2006−287019号公報 特開2000−058995号公報 特開2001−094223号公報 特開2004−343056号公報 特開2007−027684号公報
In order to allow a large current to flow, it is necessary to increase the cross-sectional area of the conductor in the through hole. For example, it is conceivable to fill the entire through hole with a conductive material. However, since the conductive paste for through holes has a large shrinkage due to firing, there is a problem of peeling from the inner wall surface when the through holes are filled and fired. In addition, since the end surface is remarkably recessed from the substrate surface due to firing shrinkage, there is a problem that it is difficult to ensure connection with wiring on both surfaces of the substrate.
Japanese Patent Laid-Open No. 03-050781 Japanese Patent Laid-Open No. 09-307207 JP 2006-287019 A JP 2000-058995 A JP 2001-094223 A JP 2004-343056 A JP 2007-027684 A

これに対して、従来から、スルーホール内に導体を充填した構造が種々提案されている。例えば、スルーホール壁面にNiおよびCrから成る金属膜をスパッタ等で設け、CuおよびSnから成る電極材を充填するものがある(例えば特許文献3を参照。)。また、スルーホールの内壁面にWまたはMoのメタライズ層を設け、CuまたはAgのメッキ層を充填形成するものがある(例えば特許文献4を参照。)。また、スルーホール内にCuを20〜35(重量%)含むCu-W金属柱を配置して基板両面の金属回路板をこれに接続するものがある(例えば特許文献5を参照。)。また、基板両面に750(℃)以下で焼成されたCu系の導体層を設け、スルーホール内に充填したAg系の導体で両面の導体層を接続するものがある(例えば特許文献6を参照。)。   On the other hand, conventionally, various structures in which a conductor is filled in a through hole have been proposed. For example, a metal film made of Ni and Cr is formed on the wall surface of the through hole by sputtering or the like, and an electrode material made of Cu and Sn is filled (see, for example, Patent Document 3). Also, there is a type in which a metallized layer of W or Mo is provided on the inner wall surface of the through hole and a plated layer of Cu or Ag is filled (see, for example, Patent Document 4). In addition, there is a type in which a Cu-W metal column containing 20 to 35 (% by weight) of Cu is disposed in the through hole and the metal circuit boards on both sides of the substrate are connected to this (for example, see Patent Document 5). Also, there is a type in which a Cu-based conductor layer baked at 750 (° C.) or less is provided on both surfaces of the substrate, and the conductor layers on both sides are connected by an Ag-based conductor filled in the through hole (see, for example, Patent Document 6). .).

しかしながら、上記特許文献3,4に記載された構造では、スパッタやメタライズ等による膜形成が必要であることから、製造工程が複雑になり延いては製造コストが高くなる問題がある。また、前記特許文献5に記載された構造では、貫通孔内壁面に設けたメタライズ層に前記金属柱をロウ付けすることから、メタライズが必要となって工程が複雑化し延いては高コスト化する問題がある。しかも、金属柱と金属回路板は単に接触させられるだけの状態のため、十分な導電性を確保するためには、それらの接触面の平滑性を極めて高くすることが必要となるので、これが製造コストを一層高くする。また、前記特許文献6に記載された構造は、前述したように焼成収縮が大きい一般的な導体膜用の厚膜銀ペーストを用いると、貫通孔内壁面から剥離し易く実現困難である。   However, the structures described in Patent Documents 3 and 4 require film formation by sputtering, metallization, and the like, and thus there is a problem that the manufacturing process becomes complicated and the manufacturing cost increases. Moreover, in the structure described in the said patent document 5, since the said metal pillar is brazed to the metallizing layer provided in the inner wall surface of the through-hole, the metallization is necessary, the process becomes complicated and the cost increases. There's a problem. Moreover, since the metal pillar and the metal circuit board are simply brought into contact with each other, it is necessary to extremely smooth the contact surfaces in order to ensure sufficient conductivity. Increase costs further. In addition, the structure described in Patent Document 6 is difficult to realize when it is easily peeled off from the inner wall surface of the through-hole when using a general thick film silver paste for a conductor film that has large firing shrinkage as described above.

因みに、セラミック基板に設けた貫通孔に金属材料を充填することは、その基板の放熱性を高めることを目的として従来から行われており、サーマルビアと称される(例えば特許文献7を参照。)。基板の裏面にはアルミニウム等の熱伝導に優れた金属などから成るヒートシンクが配置され、基板の表面側で発生した熱をサーマルビアを経由させて裏面側に導き、そのヒートシンクに逃がすことで放熱性が高められる。このような放熱性の改善によって基板表面の温度上昇が抑制されるので、例えば、その基板表面における部品の実装密度を高めることができる。この結果、基板の小型化や高機能化が容易になる。   Incidentally, filling a through hole provided in a ceramic substrate with a metal material has been conventionally performed for the purpose of improving heat dissipation of the substrate, and is referred to as a thermal via (see, for example, Patent Document 7). ). A heat sink made of metal such as aluminum that has excellent heat conduction is placed on the back side of the board. Is increased. Since the temperature rise on the substrate surface is suppressed by such improvement in heat dissipation, for example, the mounting density of components on the substrate surface can be increased. As a result, it is easy to reduce the size and increase the functionality of the substrate.

上記のサーマルビアは、上述した熱伝達が良好に行われるようにその両端面が部品およびヒートシンクに密着している必要がある。そのため、例えば粒径を大きくして焼結性が抑制された材料を用いることで焼成収縮が小さくされ、端面が基板表面から凹むことが好適に抑制されている。しかしながら、サーマルビア用ペーストをそのままスルーホール用に用いたところ、基板両面の配線層との電気的接続が得られない貫通孔が40(%)程度の割合で生じる結果となった。しかも、当初は電気的接続が得られた貫通孔でも、基板厚み方向の抵抗値は例えば平均で12.6(mΩ)程度と高く、更に、冷熱サイクル試験を実施すると全ての貫通孔で電気的接続が失われ、配線接続用途には利用できないことが判明した。上記のサーマルビア用ペーストは、焼結性が抑制された結果として粒子相互の接触面積が小さく且つセラミック基板との接着強度が低いので、導電性が低くなると共に、焼成時或いは冷熱サイクル時の収縮によって貫通孔内壁面から剥離して配線層との接続が断たれたものと考えられる。   The thermal via needs to have both end surfaces in close contact with the component and the heat sink so that the above-described heat transfer is performed satisfactorily. Therefore, for example, by using a material having a large particle size and suppressed sinterability, firing shrinkage is reduced, and the end surface is suitably suppressed from being recessed from the substrate surface. However, when the thermal via paste was used as it is for the through holes, through-holes where electrical connection with the wiring layers on both sides of the substrate could not be obtained were generated at a rate of about 40 (%). Moreover, even in the through holes in which electrical connection was initially obtained, the resistance value in the direction of the substrate thickness was as high as, for example, about 12.6 (mΩ) on average, and further, when the thermal cycle test was performed, electrical connection was made in all the through holes. It was lost and turned out to be unusable for wiring connections. The above paste for thermal vias has a small contact area between particles as a result of suppression of sinterability and low adhesion strength to the ceramic substrate, resulting in low conductivity and shrinkage during firing or cooling cycle. It is considered that the connection with the wiring layer was broken due to peeling from the inner wall surface of the through hole.

本発明は、以上の事情を背景として為されたものであって、その目的は、スルーホールの許容電流値の高いスルーホール充填基板およびその製造方法を提供することにある。   The present invention has been made in the background of the above circumstances, and an object thereof is to provide a through-hole-filled substrate having a high permissible through-hole current value and a method for manufacturing the same.

斯かる目的を達成するため、第1発明の要旨とするところは、セラミック基板の両面に所定の平面形状で形成された配線層がその基板を厚み方向に貫通する貫通孔内に充填形成された貫通導体で相互に接続されたスルーホール充填基板であって、(a)前記貫通導体は、前記貫通孔の内周面に固着された第1導体材料から成る筒状の中間層と、前記中間層の内周面に固着された第2導体材料から成る内周導体とを含み、前記第1導体材料は前記第2導体材料に比較して焼成収縮率が大きく且つ前記セラミック基板との接着強度が高いことにある。   In order to achieve such an object, the gist of the first invention is that a wiring layer formed in a predetermined planar shape on both surfaces of a ceramic substrate is filled and formed in a through-hole penetrating the substrate in the thickness direction. A through-hole-filled substrate connected to each other by through conductors, wherein (a) the through conductor is a cylindrical intermediate layer made of a first conductor material fixed to an inner peripheral surface of the through hole, and the intermediate An inner conductor made of a second conductor material fixed to the inner circumference of the layer, and the first conductor material has a larger firing shrinkage ratio than the second conductor material and has an adhesive strength to the ceramic substrate. Is that it is expensive.

また、前記目的を達成するための第2発明の要旨とするところは、セラミック基板の両面に所定の平面形状で形成された配線層がその基板を厚み方向に貫通する貫通孔内に充填形成された貫通導体で相互に接続されたスルーホール充填基板を製造する方法であって、(a)前記貫通孔の内周面に所定の第1導体ペーストを塗布して焼成処理を施すことによって前記貫通導体の外周部を構成する所定厚さ寸法の中間層を形成する中間層形成工程と、(b)所定の第2導体ペーストを前記中間層が形成された前記貫通孔内に充填して焼成処理を施すことによって前記貫通導体の内周部を構成する内周導体を形成する内周導体形成工程とを含み、前記第1導体ペーストは前記第2導体ペーストに比較して焼成収縮率が大きく且つ前記セラミック基板との接着強度が高いことにある。   In addition, the gist of the second invention for achieving the above object is that a wiring layer formed in a predetermined planar shape on both sides of a ceramic substrate is filled and formed in a through-hole penetrating the substrate in the thickness direction. A method of manufacturing through-hole-filled substrates connected to each other by through conductors, wherein: (a) a predetermined first conductor paste is applied to the inner peripheral surface of the through-holes and subjected to a firing treatment; An intermediate layer forming step of forming an intermediate layer of a predetermined thickness that constitutes the outer peripheral portion of the conductor; and (b) a predetermined second conductor paste filled in the through-hole in which the intermediate layer is formed and fired. Forming an inner peripheral conductor that forms an inner peripheral portion of the through conductor, and the first conductor paste has a larger firing shrinkage ratio than the second conductor paste and Contact with the ceramic substrate High wear strength.

前記第1発明によれば、前記貫通導体は、中間層およびその内周側の内周導体から構成されるが、中間層を構成する第1導体材料は、内周導体を構成する第2導体材料に比較して前記セラミック基板との接着強度が高いことから、内周導体はその中間層を介して貫通孔内に強固に固着され、延いては、中間層および内周導体を備えた貫通導体がセラミック基板に強固に固着される。このとき、第2導体材料は第1導体材料に比較して焼成収縮率が小さいことから、焼成時や冷熱サイクル時の貫通導体の寸法変化が抑制されるので、中間層が貫通孔内壁面に強固に固着されていることと相俟って、貫通導体が貫通孔内壁面から剥離することやセラミック基板両面の配線層との間で断線することが好適に抑制される。また、貫通孔内には貫通導体が充填されるが、焼成収縮率の相対的に大きい第1導体材料から成る中間層は高い導電性を有すると共に、焼成収縮率の相対的に小さい第2導体材料から成る内周導体も中間層には劣るものの導電性を有するので、貫通導体全体の導電性は、貫通孔内に薄い中間層のみを設けた場合、すなわち貫通孔内に導体を充填しないスルーホールの場合に比較しても、貫通導体全体を第2導体材料で構成した場合に比較しても、格段に向上する。したがって、スルーホールの許容電流値の高いスルーホール充填基板が得られる。   According to the first aspect of the invention, the through conductor is composed of an intermediate layer and an inner peripheral conductor on the inner peripheral side thereof, but the first conductor material constituting the intermediate layer is the second conductor constituting the inner peripheral conductor. Since the adhesive strength with the ceramic substrate is higher than that of the material, the inner peripheral conductor is firmly fixed in the through hole through the intermediate layer, and the through-hole having the intermediate layer and the inner peripheral conductor is extended. The conductor is firmly fixed to the ceramic substrate. At this time, since the second conductor material has a smaller firing shrinkage ratio than the first conductor material, the dimensional change of the through conductor during firing or cooling / cooling cycle is suppressed, so that the intermediate layer is formed on the inner wall surface of the through hole. Combined with being firmly fixed, the through conductor is preferably prevented from peeling from the inner wall surface of the through hole and from being disconnected between the wiring layers on both sides of the ceramic substrate. The through hole is filled with the through conductor, but the intermediate layer made of the first conductor material having a relatively high firing shrinkage rate has high conductivity and the second conductor has a relatively low firing shrinkage rate. Since the inner conductor made of material is also inferior to the intermediate layer, the conductivity of the entire through conductor is limited to the case where only a thin intermediate layer is provided in the through hole, that is, the through hole does not fill the conductor. Compared to the case of a hole or a case where the entire through conductor is made of the second conductor material, the improvement is remarkably improved. Therefore, a through-hole-filled substrate having a high through-hole allowable current value can be obtained.

また、前記第2発明によれば、中間層形成工程において、貫通孔内周面に第1導体ペーストが塗布され且つ焼成されることによって中間層が形成され、内周導体形成工程において、その中間層が形成された貫通孔内に第2導体ペーストが充填され且つ焼成されることによって内周導体が形成される。すなわち、中間層および内周導体を備えた貫通導体が形成される。このとき、第1導体ペーストは第2導体ペーストに比較して前記セラミック基板との接着強度が高いことから、内周導体はその中間層を介して貫通孔内に強固に固着され、延いては、中間層および内周導体を備えた貫通導体がセラミック基板に強固に固着される。このとき、第2導体ペーストは第1導体ペーストに比較して焼成収縮率が小さいことから、焼成時や冷熱サイクル時の貫通導体の寸法変化が抑制されるので、中間層が貫通孔内壁面に強固に固着されていることと相俟って、貫通導体が貫通孔内壁面から剥離することやセラミック基板両面の配線層との間で断線することが好適に抑制される。また、貫通孔内には貫通導体が充填されるが、焼成収縮率の相対的に大きい第1導体ペーストから生成される中間層は高い導電性を有すると共に、焼成収縮率の相対的に小さい第2導体ペーストから生成される内周導体も中間層には劣るものの導電性を有するので、貫通導体全体の導電性は、貫通孔内に薄い中間層のみを設けた場合、すなわち貫通孔内に導体を充填しないスルーホールの場合に比較しても、貫通導体全体を第2導体ペーストで形成した場合に比較しても、格段に向上する。したがって、スルーホールの許容電流値の高いスルーホール充填基板を製造することができる。   According to the second invention, in the intermediate layer forming step, the intermediate layer is formed by applying and baking the first conductor paste on the inner peripheral surface of the through hole, and in the inner peripheral conductor forming step, the intermediate layer is formed. The inner conductor is formed by filling and firing the second conductor paste in the through hole in which the layer is formed. That is, a through conductor having an intermediate layer and an inner peripheral conductor is formed. At this time, since the first conductor paste has higher adhesive strength with the ceramic substrate than the second conductor paste, the inner peripheral conductor is firmly fixed in the through-hole through the intermediate layer, and The through conductor provided with the intermediate layer and the inner peripheral conductor is firmly fixed to the ceramic substrate. At this time, since the second conductor paste has a smaller shrinkage in firing than the first conductor paste, the dimensional change of the through conductor during firing or cooling cycle is suppressed, so that the intermediate layer is formed on the inner wall surface of the through hole. Combined with being firmly fixed, the through conductor is preferably prevented from peeling from the inner wall surface of the through hole and from being disconnected between the wiring layers on both sides of the ceramic substrate. Further, the through-hole is filled in the through-hole, but the intermediate layer produced from the first conductor paste having a relatively high firing shrinkage rate has high conductivity and has a relatively low firing shrinkage rate. Since the inner conductor formed from the two-conductor paste is also inferior to the intermediate layer, the conductivity of the entire through conductor is that when only a thin intermediate layer is provided in the through hole, that is, the conductor in the through hole. Compared to the case of a through hole not filled with, and the case where the entire through conductor is formed of the second conductor paste, the improvement is markedly improved. Therefore, it is possible to manufacture a through-hole-filled substrate having a high allowable current value of the through-hole.

なお、本願において、焼成収縮率は、乾燥後の膜厚をTd、焼成後の膜厚をTfとしたとき、[(Td−Tf)/Td]×100 で求められる値である。 In the present application, firing shrinkage, the film thickness after drying T d, when the film thickness after firing was T f, a value obtained by [(T d -T f) / T d] × 100 is there.

また、上記製造方法において、前記中間層形成工程および前記内周導体形成工程は、それぞれの焼成処理を別々に行う方が良く、一括して行うことは好ましくない。すなわち、前記「第2導体ペーストを前記中間層が形成された前記貫通孔内に充填」における「中間層」は、好ましくは焼成処理を終えた中間層を意味する。   Moreover, in the said manufacturing method, it is better to perform each baking process separately and it is not preferable to perform the said intermediate | middle layer formation process and the said inner periphery conductor formation process separately. That is, the “intermediate layer” in the “filling the through hole in which the intermediate layer is formed with the second conductive paste” preferably means an intermediate layer that has been subjected to a firing treatment.

また、前記第1導体材料、第2導体材料、第1導体ペースト、第2導体ペーストは、前述した焼成収縮率およびセラミック基板との接着強度の関係を満足する範囲で、所望する接着強度や導電性が得られるように適宜のものを用い得る。前記中間層を形成するための第1導体材料或いは第1導体ペーストとしては、従来からスルーホール用に用いられているもの或いはこれに準ずる焼結性を有するものを好適に用い得る。また、前記内周導体を形成するための第2導体材料或いは第2導体ペーストとしては、従来からサーマルビア用に用いられている金属ペースト或いはこれに準ずる焼結性を有するものを好適に用い得る。   In addition, the first conductor material, the second conductor material, the first conductor paste, and the second conductor paste have desired adhesive strength and conductivity within a range satisfying the relationship between the firing shrinkage ratio and the adhesive strength with the ceramic substrate. Appropriate ones can be used so as to obtain the properties. As the first conductor material or the first conductor paste for forming the intermediate layer, those conventionally used for through-holes or those having sinterability equivalent thereto can be suitably used. Further, as the second conductor material or the second conductor paste for forming the inner peripheral conductor, a metal paste conventionally used for thermal vias or a material having sinterability equivalent thereto can be suitably used. .

因みに、従来から用いられているスルーホール用導体は、前記セラミック基板との接着強度が比較的高い反面で焼成収縮率が比較的大きい。また、従来から用いられているサーマルビア用導体は、焼成収縮率は比較的小さい反面で、セラミック基板との接着強度が比較的低い。そのため、これら2種の導体の何れを用いた場合にも、単独で貫通孔に充填すると、焼成時および冷熱サイクル時の収縮によって発生する剥離方向の力が接着強度を容易に上回るので、貫通孔の内周面から剥離し易く、その結果、表面に形成されている配線層との間で断線が生じることとなる。   Incidentally, the conventionally used through-hole conductor has a relatively high bonding strength with the ceramic substrate, but has a relatively high firing shrinkage rate. Conventional thermal via conductors have a relatively small firing shrinkage ratio, but have a relatively low adhesive strength with a ceramic substrate. Therefore, even when using any of these two types of conductors, if the through hole is filled alone, the force in the peeling direction generated by the shrinkage during firing and cooling cycle easily exceeds the adhesive strength. As a result, disconnection occurs between the inner peripheral surface and the wiring layer formed on the surface.

ここで、好適には、前記第1導体材料または前記第1導体ペーストは、酸化ビスマスおよび酸化銅を含むものである。このようにすれば、酸化ビスマスは導体粉末の焼結を促進すると共に導体ペーストとセラミックスとの濡れ性を高める利点があり、酸化銅は生成される導体膜とセラミックスとの密着性を高める利点があるので、これらが含まれていると導電性が一層高く且つ断線が一層生じ難い充填導体が得られる。   Here, preferably, the first conductive material or the first conductive paste contains bismuth oxide and copper oxide. In this way, bismuth oxide has the advantage of promoting the sintering of the conductor powder and improving the wettability between the conductor paste and the ceramic, and copper oxide has the advantage of improving the adhesion between the produced conductor film and the ceramic. Therefore, when these are contained, a filled conductor having higher conductivity and less occurrence of disconnection can be obtained.

また、好適には、前記中間層は、前記セラミック基板の少なくとも一方の表面において前記貫通孔の周囲に広がる部分を有するものである。このようにすれば、中間層が貫通孔内周面から剥離することが一層抑制される。このような鍔状部は、セラミック基板の一方の面のみに設けられていても十分な効果を享受できるが、両面に設ければ剥離防止および導通確保の面で一層好ましい。   Preferably, the intermediate layer has a portion extending around the through hole on at least one surface of the ceramic substrate. This further suppresses the intermediate layer from peeling from the inner peripheral surface of the through hole. Such a hook-shaped portion can enjoy a sufficient effect even if it is provided on only one surface of the ceramic substrate, but it is more preferable in terms of prevention of peeling and securing conduction if it is provided on both surfaces.

また、好適には、前記第1導体ペーストは、平均粒径が0.4〜0.6(μm)の範囲内且つ比表面積が1.5〜1.8(m2/g)の範囲内の球状を成す銀粉末を導体成分として含むものであり、前記第2導体ペーストは、最大粒径が10(μm)以上且つ平均粒径が前記第1導体ペーストに含まれるものよりも大きい銀粉末を導体成分として含むものである。このようにすれば、第1導体ペーストは粒径が十分に小さい焼結性の高い銀粉末を導体成分として含むので、セラミック基板との密着性が高く導電性の高い中間層を生成できる。また、第2導体ペーストは粒径が十分に大きい焼結性の低い銀粉末を導体成分として含むので、焼成収縮率が十分に小さい内周導体が得られる。なお、第1導体ペーストに含まれる銀粉末は、平均粒径が小さいほど焼結性の面では好ましいが、0.4(μm)未満では取扱いが著しく困難になると共に分散性も悪くなる。第1導体ペーストに含まれる導体成分は特に限定されず、銅系或いは金系の材料でも良いが、銀系材料が最も好ましい。なお、上記粒径は、レーザ回折・散乱法で測定したもので、平均粒径は、粒度分布計による50%平均粒径である。 Preferably, the first conductive paste is made of conductive silver powder having a spherical shape having an average particle size in the range of 0.4 to 0.6 (μm) and a specific surface area of 1.5 to 1.8 (m 2 / g). The second conductor paste includes a silver powder having a maximum particle size of 10 (μm) or more and an average particle size larger than that contained in the first conductor paste as a conductor component. In this way, since the first conductor paste contains silver powder having a sufficiently small particle size and high sinterability as a conductor component, an intermediate layer having high adhesion to the ceramic substrate and high conductivity can be generated. Further, since the second conductor paste contains silver powder having a sufficiently large particle size and low sinterability as a conductor component, an inner peripheral conductor having a sufficiently small firing shrinkage ratio can be obtained. The silver powder contained in the first conductor paste is preferable in terms of sinterability as the average particle size is smaller. However, if it is less than 0.4 (μm), handling becomes extremely difficult and dispersibility also deteriorates. The conductor component contained in the first conductor paste is not particularly limited and may be a copper-based or gold-based material, but a silver-based material is most preferable. The particle diameter is measured by a laser diffraction / scattering method, and the average particle diameter is a 50% average particle diameter measured by a particle size distribution meter.

また、好適には、前記第1導体ペーストは、前記銀粉末が酸化ジルコニウムで被覆されたものである。このようにすれば、銀粉末の焼結が酸化ジルコニウム被膜によって抑制されるので、過焼結や異常粒成長等が生じ難くなり、適度な焼結性を有する第1導体ペーストが得られる。   Preferably, the first conductive paste is a paste in which the silver powder is coated with zirconium oxide. In this way, since the sintering of the silver powder is suppressed by the zirconium oxide film, oversintering, abnormal grain growth, etc. are unlikely to occur, and a first conductor paste having appropriate sinterability can be obtained.

また、好適には、前記第2導体材料または前記第2導体ペーストに含まれる銀粉末はアトマイズ法で製造したものである。このようにすれば、アトマイズ法で製造した銀粉末は球状を成し、焼結性が低いことから、第1導体材料および第1導体ペーストに比較して焼成収縮率の小さい第2導体材料および第2導体ペーストの導体成分として好適である。   Preferably, the silver powder contained in the second conductor material or the second conductor paste is manufactured by an atomizing method. In this way, since the silver powder produced by the atomizing method has a spherical shape and low sinterability, the second conductor material having a smaller firing shrinkage ratio than the first conductor material and the first conductor paste and It is suitable as a conductor component of the second conductor paste.

また、好適には、前記中間層および前記内周導体は何れも銀系厚膜材料から成るものであり、前記配線層は銅系厚膜材料から成るものである。前記中間層および前記内周導体から成る前記貫通導体は、セラミック基板との十分に高い接着強度を有することから、貫通孔の内周面から剥離し難い特性を有するため、銀系厚膜材料および銅系厚膜材料のように導体相互の接着強度の確保が困難な組合せにおいても、配線と貫通導体との間の断線が好適に抑制されて導通を確保できる。そのため、銀系或いは金系材料に比較して安価な銅系材料で配線を設けたスルーホール充填基板が得られる。   Preferably, both of the intermediate layer and the inner peripheral conductor are made of a silver-based thick film material, and the wiring layer is made of a copper-based thick film material. Since the through conductor composed of the intermediate layer and the inner peripheral conductor has a sufficiently high adhesive strength with the ceramic substrate, it has a characteristic that it is difficult to peel off from the inner peripheral surface of the through hole. Even in a combination such as a copper-based thick film material in which it is difficult to ensure the adhesive strength between conductors, disconnection between the wiring and the through conductor can be suitably suppressed to ensure conduction. Therefore, a through-hole-filled substrate in which wiring is provided with a copper-based material that is cheaper than silver-based or gold-based material can be obtained.

また、好適には、前記第1導体材料および前記第1導体ペーストは、50(%)以上の焼成収縮率を有するものである。前記中間層を形成するための第1導体材料および第1導体ペーストには、前記セラミック基板との接着強度が高く且つ導電性が高いことが望まれるが、50(%)以上の焼成収縮率を有する材料であれば、接着強度および導電性も十分に高くなる。   Preferably, the first conductor material and the first conductor paste have a firing shrinkage rate of 50 (%) or more. The first conductor material and the first conductor paste for forming the intermediate layer are desired to have high adhesive strength with the ceramic substrate and high conductivity, but have a firing shrinkage of 50% or more. If it is the material which has, adhesive strength and electroconductivity will become high enough.

また、好適には、前記第2導体材料および前記第2導体ペーストは、収縮抑制作用を有する粒子(以下、収縮抑制剤という)を含むものである。前記第1発明および前記第2発明には、前記のように焼結性の低い銀粉末を導体成分として含むことで第2導体材料および第2導体ペーストの焼成収縮率を小さくするものに限られず、焼成抑制作用を有する粒子を添加することでそれら第2導体材料および第2導体ペーストの焼成収縮率を小さくしたものも含まれる。上記焼成収縮剤としては、窒化珪素やパラジウムなどが挙げられる。また、前記のような焼結性の低い銀粉末と上記収縮抑制剤とを併用することも好ましい。   Preferably, the second conductor material and the second conductor paste contain particles having a shrinkage-inhibiting action (hereinafter referred to as a shrinkage-inhibiting agent). The first invention and the second invention are not limited to the above-described one that reduces the sintering shrinkage rate of the second conductor material and the second conductor paste by including silver powder having low sinterability as a conductor component as described above. Moreover, the thing which made the baking shrinkage rate of these 2nd conductor material and 2nd conductor paste small by adding the particle | grains which have a baking inhibitory effect is contained. Examples of the firing shrinkage agent include silicon nitride and palladium. Moreover, it is also preferable to use together the silver powder with low sinterability as described above and the shrinkage inhibitor.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例のスルーホール充填基板10の要部断面を模式的に示す図である。図1において、スルーホール充填基板10は、基板12と、その基板12の表面14に設けられた表面側配線層16と、裏面18に設けられた裏面側配線層20(以下、これらを特に区別しないときは配線層16,20という)と、基板12に厚み方向に貫通して設けられたスルーホール22内に備えられた貫通導体24とを備えている。   FIG. 1 is a view schematically showing a cross-section of the main part of a through-hole-filled substrate 10 according to an embodiment of the present invention. In FIG. 1, the through-hole-filled substrate 10 includes a substrate 12, a front surface side wiring layer 16 provided on the front surface 14 of the substrate 12, and a back surface side wiring layer 20 provided on the back surface 18 (hereinafter, these are particularly distinguished). When not, it is referred to as wiring layers 16 and 20) and a through conductor 24 provided in a through hole 22 provided through the substrate 12 in the thickness direction.

上記の基板12は、例えば厚膜回路基板によく用いられているアルミナから成るものであって、例えば0.8(mm)程度の厚さ寸法を備えている。この基板12に設けられているスルーホール22は、例えば0.2(mm)程度の直径を有するもので、その内部全体が前記貫通導体24で埋められている。すなわち、スルーホール22には導体がその内壁面に密着した状態で充填されている。   The substrate 12 is made of alumina, which is often used for thick film circuit boards, for example, and has a thickness dimension of about 0.8 (mm), for example. The through hole 22 provided in the substrate 12 has a diameter of about 0.2 (mm), for example, and the entire inside thereof is filled with the through conductor 24. That is, the through hole 22 is filled with the conductor in close contact with the inner wall surface.

上記の貫通導体24は、その上下端面がそれぞれ基板12の表面14および裏面18と略同一平面上に位置する。すなわち、貫通導体24の上下端面は、それら表面14および裏面18と同一平面に位置するか、僅かに凹み、或いは僅かに突き出した状態にある。図1では、僅かに突き出した状態を描いている。この貫通導体24は、外周側に位置し、スルーホール22の内周面に固着された円筒状の中間層26と、その中間層26の内周面に固着された円柱状の内周導体28とから構成されている。   The upper and lower end surfaces of the through conductors 24 are located on substantially the same plane as the front surface 14 and the back surface 18 of the substrate 12, respectively. That is, the upper and lower end surfaces of the through conductor 24 are located on the same plane as the front surface 14 and the rear surface 18, or are slightly recessed or slightly protruded. FIG. 1 depicts a slightly protruding state. The through conductor 24 is located on the outer peripheral side, and has a cylindrical intermediate layer 26 fixed to the inner peripheral surface of the through hole 22, and a columnar inner peripheral conductor 28 fixed to the inner peripheral surface of the intermediate layer 26. It consists of and.

上記の中間層26および内周導体28は、何れも厚膜導体材料、例えば厚膜銀から成るものである。中間層26は、例えばスルーホール導体用に好適に用い得るものであって、例えば2〜3(μm)程度の薄い厚さ寸法でスルーホール22の内周面に強固に固着されている。また、中間層26は、基板12の表面14および裏面18との間の抵抗値(以下、端面間抵抗値という)が例えば3〜4(mΩ)程度の比較的高い導電性を有する。この中間層26は、その上下両端が表面14および裏面18の各々に僅かに突き出す状態になっており、その突き出した端部はスルーホール22の周囲に鍔状に広がって表面14および裏面18にそれぞれ固着されている。   The intermediate layer 26 and the inner peripheral conductor 28 are both made of a thick film conductor material, for example, thick film silver. The intermediate layer 26 can be suitably used for, for example, a through-hole conductor, and is firmly fixed to the inner peripheral surface of the through-hole 22 with a thin thickness of about 2 to 3 (μm), for example. Further, the intermediate layer 26 has a relatively high conductivity such that a resistance value between the front surface 14 and the back surface 18 of the substrate 12 (hereinafter referred to as an end surface resistance value) is about 3 to 4 (mΩ), for example. The intermediate layer 26 has its upper and lower ends slightly protruding from the front surface 14 and the back surface 18, and the protruding end portion spreads around the through hole 22 in a bowl shape to the front surface 14 and the back surface 18. Each is fixed.

一方、上記の内周導体28は、例えば従来からサーマルビア用に用いられているものであって、例えば194〜196(μm)程度の直径を備え、端面間抵抗値が例えば3〜4(mΩ)程度の導電性を有するものである。内周導体28は中間層26に比較して大きい断面積を備えているが、導電率が劣るため、端面間抵抗値は同程度になっている。この内周導体28は、その上下両端が上記中間層26の両端と略同一平面上に位置している。貫通導体24は、このような中間層26および内周導体28から構成されることから、全体の端面間抵抗値は例えば2.5(mΩ)程度で、比較的高い導電性を備えている。   On the other hand, the inner peripheral conductor 28 is conventionally used for thermal vias, for example, and has a diameter of, for example, about 194 to 196 (μm), and a resistance value between end faces of, for example, 3 to 4 (mΩ). ) Having a certain degree of conductivity. The inner peripheral conductor 28 has a larger cross-sectional area than the intermediate layer 26, but the conductivity between the inner peripheral conductors 28 is inferior, so that the resistance value between the end faces is approximately the same. The upper and lower ends of the inner peripheral conductor 28 are located on substantially the same plane as both ends of the intermediate layer 26. Since the through conductor 24 is composed of the intermediate layer 26 and the inner peripheral conductor 28 as described above, the overall resistance value between end faces is, for example, about 2.5 (mΩ) and has a relatively high conductivity.

上記の中間層26は、例えば、導体成分として銀を98.9(wt%)程度、無機酸化物を1.1(wt%)程度含み、比較的高い焼結性を有する材料から成る。上記無機酸化物は例えば酸化ビスマスおよび酸化銅で、例えば2:1程度の割合で含まれている。   The intermediate layer 26 is made of a material having a relatively high sinterability, for example, containing about 98.9 (wt%) silver and about 1.1 (wt%) inorganic oxide as conductor components. The inorganic oxide is, for example, bismuth oxide and copper oxide, and is contained in a ratio of about 2: 1, for example.

また、上記の内周導体28は、例えば導体成分として銀および錫をそれぞれ94.1(wt%)程度、5.1(wt%)程度、金属酸化物を0.8(wt%)程度含み、中間層26の構成材料に比較して低い焼結性を有する材料から成る。上記金属酸化物は、例えば酸化アルミニウム、酸化珪素、酸化鉄、酸化亜鉛、酸化ルビジウムで、酸化亜鉛は0.5(wt%)程度、他の酸化物は0.1(wt%)以下の範囲でそれぞれ含まれている。   The inner conductor 28 includes, for example, about 94.1 (wt%) and about 5.1 (wt%) of silver and tin as conductor components and about 0.8 (wt%) of metal oxide, respectively. It consists of material which has low sinterability compared with material. Examples of the metal oxide include aluminum oxide, silicon oxide, iron oxide, zinc oxide, and rubidium. Zinc oxide is included in the range of about 0.5 (wt%), and other oxides are included in the range of 0.1 (wt%) or less. ing.

また、前記の配線層16,20は、例えば銅を導体成分として含む厚膜導体材料から成るもので、表面14に例えば5〜150(μm)程度の厚さ寸法で設けられている。図2に上記表面側配線層16の要部を拡大して示す。表面側配線層16は、予め定められた平面形状で導体配線が設けられたものであって、例えば、前記スルーホール22上にはそれよりも十分に大きい面積の接続部30が備えられている。平面形状の図示は省略するが、裏面側配線層20も同様にスルーホール22上に接続部を備えた導体配線が表面側配線層16とは異なる平面形状で設けられたものである。   The wiring layers 16 and 20 are made of, for example, a thick film conductor material containing copper as a conductor component, and are provided on the surface 14 with a thickness of about 5 to 150 (μm), for example. FIG. 2 shows an enlarged view of the main part of the surface side wiring layer 16. The front-side wiring layer 16 is provided with conductor wiring in a predetermined planar shape. For example, a connection portion 30 having a sufficiently larger area is provided on the through hole 22. . Although illustration of the planar shape is omitted, the back surface side wiring layer 20 is similarly provided with a conductor wiring having a connection portion on the through hole 22 in a planar shape different from that of the front surface side wiring layer 16.

このように、上記の配線層16,20は、何れも前記スルーホール22上に設けられていることから、その内部に設けられた貫通導体24の上下端面にそれぞれ固着されている。この結果、その貫通導体24を介して配線層16,20が電気的に接続されている。前述したように、貫通導体24は、例えば抵抗値が2.5(mΩ)程度の比較的高い導電性を有していることから、表面14および裏面18の配線層16,20を低抵抗で接続する。しかも、貫通導体24は、スルーホール22内に導体が充填されることによって大きな断面積を備えていることから、スルーホール22の内周面に薄い導体層が設けられているだけの接続構造に比較して、例えば50〜60(A)程度の大電流を通電し得る利点がある。   As described above, since both the wiring layers 16 and 20 are provided on the through hole 22, they are respectively fixed to the upper and lower end surfaces of the through conductor 24 provided therein. As a result, the wiring layers 16 and 20 are electrically connected through the through conductor 24. As described above, since the through conductor 24 has a relatively high conductivity of, for example, a resistance value of about 2.5 (mΩ), the wiring layers 16 and 20 on the front surface 14 and the back surface 18 are connected with a low resistance. . Moreover, since the through conductor 24 has a large cross-sectional area by filling the through hole 22 with a conductor, it has a connection structure in which a thin conductor layer is provided on the inner peripheral surface of the through hole 22. In comparison, for example, there is an advantage that a large current of about 50 to 60 (A) can be applied.

なお、図示は省略するが、上記のようなスルーホール22および貫通導体24は、基板12に多数設けられており、配線層16,20は、それら複数個の貫通導体24を介して複数箇所で相互に接続されている。また、基板12上には、ICや抵抗体等の電子部品が実装されると共に、基板12の裏面18にはヒートシンクが接着剤等によって必要に応じて固着されている。このようにヒートシンクが設けられる場合には、スルーホール22内に充填形成された前記貫通導体24は表面14側から裏面18側に熱を逃がすためのサーマルビアとしても機能させることができる。但し、これらは本実施例の理解には無用であるので、図示および詳細な説明は省略する。   Although not shown, the through hole 22 and the through conductor 24 as described above are provided in large numbers on the substrate 12, and the wiring layers 16 and 20 are provided at a plurality of locations via the plurality of through conductors 24. Are connected to each other. Further, electronic components such as ICs and resistors are mounted on the substrate 12, and a heat sink is fixed to the back surface 18 of the substrate 12 with an adhesive or the like as necessary. When the heat sink is provided in this way, the through conductor 24 filled in the through hole 22 can also function as a thermal via for releasing heat from the front surface 14 side to the back surface 18 side. However, since these are unnecessary for understanding the present embodiment, illustration and detailed description are omitted.

図3は、上記のスルーホール充填基板10の製造工程の要部を説明するための工程流れ図である。先ず、中間層用ペースト塗布・乾燥工程P1では、別途製造した前記基板12のスルーホール22に、別途調製した中間層用ペーストを裏面側から吸引しつつ表面側から塗布し、乾燥処理を施す。これにより、前記中間層26を形成するための塗布膜が形成される。   FIG. 3 is a process flowchart for explaining the main part of the manufacturing process of the through-hole-filled substrate 10 described above. First, in the intermediate layer paste applying / drying step P1, the separately prepared intermediate layer paste is applied from the back side to the through hole 22 of the substrate 12 manufactured separately, and dried. Thereby, a coating film for forming the intermediate layer 26 is formed.

上記の基板12は、例えば、よく知られた適宜のシート成形法を利用して成形したセラミック未焼成シートに前記スルーホール22を形成すると共に予め定められた大きさに切断し、焼成処理を施すことで製造される。また、上記の中間層用ペーストは、例えば下記の組成に調製されたものである。下記組成において、導体は平均粒径(D50)が0.4〜0.6(μm)、比表面積が1.5〜1.8(m2/g)で、球状を成し、表面にZrO2が被覆されたものを用いた。また、無機酸化物は酸化ビスマスおよび酸化銅である。このように構成される中間層用ペーストは、微細な銀粉末を含むことから高い焼結性を有し、例えば焼成時に50(%)程度の収縮が生ずるもので、導体を充填しない形式のスルーホール導体形成に好適に用い得るものである。上記平均粒径は粒度分布計を用いてレーザ回折・散乱法で測定した50%平均粒径である。
The substrate 12 is formed, for example, by forming the through-hole 22 in a ceramic unfired sheet formed by using a well-known appropriate sheet forming method, cutting it into a predetermined size, and subjecting it to a firing process. It is manufactured by. Moreover, said intermediate | middle layer paste is prepared by the following composition, for example. In the following composition, the conductor has an average particle diameter (D 50 ) of 0.4 to 0.6 (μm), a specific surface area of 1.5 to 1.8 (m 2 / g), has a spherical shape, and is coated with ZrO 2 on the surface. Using. The inorganic oxides are bismuth oxide and copper oxide. The intermediate layer paste thus constituted has high sinterability because it contains fine silver powder, and for example, shrinkage of about 50 (%) occurs during firing. It can be suitably used for forming a hole conductor. The average particle diameter is a 50% average particle diameter measured by a laser diffraction / scattering method using a particle size distribution meter.

次いで、焼成工程P2では、塗布した中間層用ペーストの焼成処理を施す。この焼成処理は、例えば、酸化雰囲気中にて850(℃)程度の焼成温度で行われる。これにより、中間層用ペーストから前記中間層26が生成される。このとき、中間層用ペーストは前記のように高い焼結性を有することから、生成される中間層26は、スルーホール22の内周面に強固に固着される。本実施例においては、中間層用ペースト塗布・乾燥工程P1および焼成工程P2が中間層形成工程に対応する。   Next, in the firing step P2, the applied intermediate layer paste is fired. This firing process is performed at a firing temperature of about 850 (° C.) in an oxidizing atmosphere, for example. As a result, the intermediate layer 26 is generated from the intermediate layer paste. At this time, since the intermediate layer paste has high sinterability as described above, the generated intermediate layer 26 is firmly fixed to the inner peripheral surface of the through hole 22. In this embodiment, the intermediate layer paste application / drying step P1 and the firing step P2 correspond to the intermediate layer forming step.

次いで、内周導体用ペースト塗布・乾燥工程P3では、前記中間層26用の塗布膜を形成したスルーホール22内に、別途調製した内周導体用ペーストを塗布して充填し、乾燥処理を施す。このペーストの充填は、例えば、裏面18側から吸引しつつ表面14側からスルーホール22にペーストを塗布することで行われる。これにより、前記内周導体28を形成するための充填物が生成される。   Next, in the inner conductor paste applying / drying step P3, a separately prepared inner conductor paste is applied and filled in the through hole 22 in which the coating film for the intermediate layer 26 is formed, and then subjected to a drying process. . The filling of the paste is performed, for example, by applying the paste to the through hole 22 from the front surface 14 side while sucking from the back surface 18 side. Thereby, a filling for forming the inner peripheral conductor 28 is generated.

上記の内周導体用ペーストは、例えばサーマルビア用として市販されているもの(例えば、田中貴金属工業株式会社製 TR6906)で、例えば下記の組成に調製されたものである。下記組成において、銀は例えばアトマイズ法で製造されたもので、グラインドゲージ(粒度ゲージとも言う)で測定した最大粒径が40〜45(μm)程度の比較的粗大な粒子である。また、ガラスは硼素、珪素、カルシウム、アルミニウム等から成るものであり、バインダーは例えばエチルセルロースであり、溶剤は例えばターピネオール、ブチルジグリコールアセテート、芳香族炭化水素から成るものである。なお、上記内周導体用ペーストは、比較的粗大な銀粉末を含むことから、低い焼結性を有し、焼成収縮率は例えば-2.1(%)程度である。
The above-mentioned inner conductor paste is, for example, commercially available for thermal vias (for example, TR6906 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and prepared, for example, in the following composition. In the following composition, silver is produced by, for example, the atomizing method, and is a relatively coarse particle having a maximum particle size measured by a grind gauge (also referred to as a particle size gauge) of about 40 to 45 (μm). The glass is made of boron, silicon, calcium, aluminum, etc., the binder is, for example, ethyl cellulose, and the solvent is, for example, terpineol, butyl diglycol acetate, or aromatic hydrocarbon. Since the inner conductor paste contains a relatively coarse silver powder, it has low sinterability, and the firing shrinkage is, for example, about -2.1 (%).

なお、上記グラインドゲージによる最大粒径は、例えば、連続して10(mm)以上の線が3本以上並んで現れた位置の目盛を読み取る線条法評価によって得た値であるが、走査型電子顕微鏡(SEM)で観察したところでは、殆どの粒子が10〜15(μm)、すなわち平均粒径が10〜15(μm)程度で、40(μm)以上の粒子は認められなかった。したがって、前記最大粒径は10(μm)程度の数個の粒子が凝集した凝集粒の測定値と考えられ、本実施例においては、内周導体用ペーストを構成する銀粉末は最大粒径が10(μm)以上で前記中間層用ペーストに含まれる銀粉末よりも平均粒径が大きいものが用いられている。   The maximum particle diameter by the above-mentioned grind gauge is a value obtained by a linear method evaluation that reads a scale at a position where three or more continuous lines of 10 (mm) or more appear side by side. When observed with an electron microscope (SEM), most of the particles were 10 to 15 (μm), that is, the average particle size was about 10 to 15 (μm), and particles of 40 (μm) or more were not recognized. Therefore, the maximum particle size is considered to be a measurement value of agglomerates in which several particles of about 10 (μm) are aggregated, and in this example, the silver powder constituting the inner conductor paste has a maximum particle size. Those having an average particle diameter of 10 (μm) or more and larger than the silver powder contained in the intermediate layer paste are used.

次いで、焼成工程P4では、塗布・充填した内周導体用ペーストの焼成処理を施す。この焼成処理は、例えば、酸化雰囲気中にて850(℃)程度の焼成温度で行われる。これにより、内周導体用ペーストから前記内周導体28が生成され且つ前記中間層26と一体化させられて、前記貫通導体24が生成される。このとき、内周導体用ペーストは前記のように焼成収縮率が小さいことから、焼成時の寸法変化が小さいので、生成される内周導体28は、中間層26に強固に固着されながら中実状態に保たれると共に、その上下端面の表面14および裏面18からの凹み量が微小に留められる。本実施例においては、内周導体用ペースト塗布・乾燥工程P3および焼成工程P4が内周導体形成工程に対応する。   Next, in the firing step P4, the coated / filled inner conductor paste is fired. This firing process is performed at a firing temperature of about 850 (° C.) in an oxidizing atmosphere, for example. As a result, the inner peripheral conductor 28 is generated from the inner peripheral conductor paste and is integrated with the intermediate layer 26 to generate the through conductor 24. At this time, since the inner peripheral conductor paste has a low firing shrinkage ratio as described above, the dimensional change during firing is small, so that the produced inner peripheral conductor 28 is solid while being firmly fixed to the intermediate layer 26. While being kept in a state, the amount of dents from the front surface 14 and the back surface 18 of the upper and lower end surfaces is kept small. In this embodiment, the inner conductor paste applying / drying step P3 and the firing step P4 correspond to the inner conductor forming step.

次いで、配線形成工程P5では、別途調製した厚膜導体ペーストを前記基板12の表面14および裏面18に予め定められた平面形状で塗布し、その厚膜導体ペーストの組成に応じて予め定められた温度で焼成処理を施すことにより、前記表面側配線層16および前記裏面側配線層20を形成する。これにより、前記スルーホール充填基板10が得られる。上記厚膜導体ペーストは、例えば銅等の導体材料および無機結着剤等をビヒクルに分散して調製されたものである。なお、必要に応じて、上記配線形成に先立ち、別途調製した厚膜抵抗体ペーストを前記基板12の表面14および裏面18の予め定められた箇所に例えば矩形パターンで塗布し、その抵抗体ペーストの組成に応じて予め定められた温度で焼成処理を施すことにより、厚膜抵抗体が形成される。   Next, in the wiring formation step P5, a separately prepared thick film conductor paste is applied to the front surface 14 and the back surface 18 of the substrate 12 in a predetermined planar shape, and predetermined according to the composition of the thick film conductor paste. The front surface side wiring layer 16 and the back surface side wiring layer 20 are formed by performing a baking treatment at a temperature. Thereby, the through-hole-filled substrate 10 is obtained. The thick film conductor paste is prepared by dispersing a conductor material such as copper and an inorganic binder in a vehicle, for example. If necessary, prior to the formation of the wiring, a separately prepared thick film resistor paste is applied to predetermined locations on the front surface 14 and the back surface 18 of the substrate 12, for example, in a rectangular pattern. A thick film resistor is formed by performing a baking process at a predetermined temperature according to the composition.

次いで、保護層形成工程P6では、別途調製したガラスペーストを前記基板12の裏面18に配線層20を覆うように塗布し、そのガラスの種類に応じた温度で焼成処理を施すことにより、図示しない保護層を形成する。なお、保護層は合成樹脂から成るものでもよく、その場合には、ガラスペーストに変えて樹脂ペーストを用いると共に、焼成温度をその材料に応じて変更すればよい。   Next, in the protective layer forming step P6, a separately prepared glass paste is applied to the back surface 18 of the substrate 12 so as to cover the wiring layer 20, and is subjected to a baking treatment at a temperature corresponding to the type of the glass, which is not shown. A protective layer is formed. The protective layer may be made of a synthetic resin. In that case, the resin paste may be used instead of the glass paste, and the firing temperature may be changed according to the material.

本実施例によれば、貫通導体24が上記のようにして焼成収縮率が互いに異なる2種の導体ペーストを用いた中間層26および内周導体28から構成されることから、その中間層26がスルーホール22の内周面および内周導体28に強固に固着されるので、その内周導体28がその中間層26を介してスルーホール22内に強固に固着され、延いては、それらによって構成される貫通導体24がスルーホール22内に強固に固着される。しかも、内周導体用ペーストは焼成収縮率が小さいことから、焼成時や冷熱サイクル時の貫通導体24の寸法変化が抑制されるので、中間層26がスルーホール22の内周面に強固に固着されていることと相俟って、貫通導体24がスルーホール22の内周面から剥離することや、その上下端面における配線層16,20との間の断線が好適に抑制される。   According to the present embodiment, the through conductor 24 includes the intermediate layer 26 and the inner peripheral conductor 28 using the two kinds of conductor pastes having different firing shrinkage rates as described above. Since it is firmly fixed to the inner peripheral surface of the through hole 22 and the inner peripheral conductor 28, the inner peripheral conductor 28 is firmly fixed to the through hole 22 through the intermediate layer 26, and as a result, constituted by them. The through conductor 24 is firmly fixed in the through hole 22. In addition, since the inner conductor paste has a small firing shrinkage ratio, the dimensional change of the through conductor 24 during firing and cooling / cooling cycles is suppressed, so that the intermediate layer 26 is firmly fixed to the inner peripheral surface of the through hole 22. Combined with this, the through conductor 24 is peeled off from the inner peripheral surface of the through hole 22 and the disconnection between the upper and lower end surfaces of the wiring layers 16 and 20 is suitably suppressed.

次に、上記のようにして貫通導体24が形成された実施例のスルーホール充填基板10の貫通導体24の特性を、構成の異なる比較例と合わせて評価した結果について説明する。図4に示すスルーホール充填基板32は、前記内周導体28と同一の導体ペーストを用いて、貫通導体34全体を構成したものである。これを比較例1とする。また、図5に示すスルーホール充填基板36は、上記スルーホール充填基板32と同様な貫通導体34の上下端面を覆って中間層38,40を設け、その上に配線層16,20を設けたものである。中間層38,40は、前記中間層26と同一の導体ペーストを用いて形成したものである。これを比較例2とする。これら実施例および比較例1,2について、スルーホール内の充填性、配線層16,20との接合状態、内壁との接着性、抵抗値信頼性を評価した。   Next, the results of evaluating the characteristics of the through conductor 24 of the through hole filling substrate 10 of the example in which the through conductor 24 is formed as described above, together with comparative examples having different configurations will be described. The through-hole-filled substrate 32 shown in FIG. 4 comprises the entire through conductor 34 using the same conductor paste as the inner peripheral conductor 28. This is referred to as Comparative Example 1. Further, in the through hole filling substrate 36 shown in FIG. 5, intermediate layers 38 and 40 are provided so as to cover the upper and lower end surfaces of the through conductor 34 similar to the through hole filling substrate 32, and the wiring layers 16 and 20 are provided thereon. Is. The intermediate layers 38 and 40 are formed using the same conductive paste as the intermediate layer 26. This is referred to as Comparative Example 2. About these Examples and Comparative Examples 1 and 2, the filling property in the through hole, the bonding state with the wiring layers 16 and 20, the adhesiveness to the inner wall, and the resistance value reliability were evaluated.

上記の充填性および接着性は、スルーホール22の断面をSEMで観察して、外観によって判断した。充填性は貫通導体内に空洞が存在しないものを合格とした。また、接着性はスルーホール22の内周面との間に隙間が存在しないものを合格とした。また、抵抗値信頼性は、スルーホール22の上下端面間の抵抗値を、製造後、高温放置後、および冷熱サイクル後で測定し、初期値および変化度合いを評価した。抵抗値は5(mΩ)以下を合格とした。   The above filling property and adhesiveness were determined by observing the cross-section of the through-hole 22 with an SEM and the appearance. The filling property was determined to be acceptable when there was no cavity in the through conductor. Further, the adhesiveness was determined to be acceptable if there was no gap between the inner peripheral surface of the through hole 22. In addition, the resistance value reliability was measured by measuring the resistance value between the upper and lower end surfaces of the through-hole 22 after manufacturing, after leaving at high temperature, and after cooling cycle, and evaluated the initial value and the degree of change. A resistance value of 5 (mΩ) or less was accepted.

図6〜図9に比較例1のスルーホール22近傍の断面のSEM写真を、図10〜図13に比較例2のスルーホール22近傍の断面のSEM写真を、図14〜図17に実施例のスルーホール22近傍の断面のSEM写真をそれぞれ示す。図6、図10、図14はスルーホール22の全体像、図7、図11、図15はスルーホール22の開口部近傍、図8、図12、図16はスルーホール22の内周面と貫通導体24,34との境界近傍、図9、図13、図17はその境界近傍を更に拡大したものである。   6 to 9 show SEM photographs of the cross section near the through hole 22 of Comparative Example 1, FIGS. 10 to 13 show SEM photographs of the cross section near the through hole 22 of Comparative Example 2, and FIGS. The SEM photograph of the cross section of the through-hole 22 vicinity of each is shown. 6, 10, and 14 show the entire image of the through hole 22, FIGS. 7, 11, and 15 show the vicinity of the opening of the through hole 22, and FIGS. 8, 12, and 16 show the inner peripheral surface of the through hole 22. The vicinity of the boundary with the through conductors 24 and 34, FIGS. 9, 13, and 17 are further enlarged views of the vicinity of the boundary.

充填性は、図6、図10、図14等に基づいて判断したが、実施例および比較例1,2の何れにもおいても空洞が認められず、全て問題の無い状態である。また、配線層16,20との接合状態は、図7、図11、図15等に基づいて判断した。各写真において上方から半分弱の位置に配線層16と貫通導体24,34との境界が現れており、横方向に伸びる部分が配線層16,縦方向に伸びる部分が貫通導体24,34である。比較例1,2では、これらの境界に大きな隙間が存在するが、実施例では、隙間が何ら認められず、良好な接合状態であることが判る。また、内壁との接着性は、図8、図9、図12、図13、図16、図17等に基づいて判断した。各写真における左側部分が基板12、右側部分が貫通導体24,34である。比較例1,2では、基板12と貫通導体34との間に明らかに隙間が存在するが、実施例では隙間が存在せず、良好な接着状態である。   The fillability was determined based on FIGS. 6, 10, 14 and the like. However, no cavities were observed in any of the examples and comparative examples 1 and 2, and all were satisfactory. Moreover, the joining state with the wiring layers 16 and 20 was determined based on FIG. 7, FIG. 11, FIG. In each photograph, the boundary between the wiring layer 16 and the through conductors 24 and 34 appears at a position slightly less than half from above, the portion extending in the horizontal direction is the wiring layer 16, and the portion extending in the vertical direction is the through conductors 24 and 34. . In Comparative Examples 1 and 2, there are large gaps at these boundaries, but in the Examples, no gaps are observed, and it can be seen that the bonded state is good. Moreover, the adhesiveness with the inner wall was judged based on FIG. 8, FIG. 9, FIG. 12, FIG. 13, FIG. The left part in each photograph is the substrate 12, and the right part is the through conductors 24 and 34. In Comparative Examples 1 and 2, there is clearly a gap between the substrate 12 and the through conductor 34, but in the example, there is no gap and a good adhesion state is obtained.

上述したように、比較例1,2では、配線層16,20および基板12と貫通導体34との間に隙間が生じている。貫通導体34は、前述したように粗大な銀粉末が用いられることによって焼結が抑制されているため、焼成収縮が小さく、寸法変化の小さい特性を有している。しかしながら、このように焼結性が低下させられた結果として、基板12や配線層16,20との接着強度も低下させられているので、焼成時の収縮やその後の冷熱サイクル等に起因して貫通導体34が基板12から剥離し、或いは、配線層16,20と断裂し易くなっているのである。   As described above, in Comparative Examples 1 and 2, there are gaps between the wiring layers 16 and 20 and the substrate 12 and the through conductor 34. As described above, the through conductor 34 is suppressed in sintering due to the use of coarse silver powder, and thus has a characteristic that the shrinkage during firing is small and the dimensional change is small. However, as a result of the reduced sinterability, the adhesive strength between the substrate 12 and the wiring layers 16 and 20 is also reduced, which is caused by shrinkage during firing and subsequent cooling and heating cycles. The through conductor 34 is peeled off from the substrate 12 or is easily broken with the wiring layers 16 and 20.

図18は、上記比較例1,2および実施例の初期抵抗値を測定した結果を示したものである。各比較例、実施例において、st1〜st6は、サンプル番号である。各サンプルは1面12個取りで製造し、それら12個の各々について、予め定めた位置にあるスルーホール22の抵抗値を測定して、サンプル番号毎に測定データを図示した。但し、比較例1,2では、当初から断線して測定不能(すなわち抵抗値無限大)なものもあったため、測定できたもののみ、すなわち、比較例1のst1は7点、st2、st3はそれぞれ1点のデータのみを示した。st4は全て測定不能であったため、データがない。また、比較例2のst1は7点、st2は11点のデータのみを示した。比較例2のst3〜st6はそれぞれ12点全てを測定可能であった。   FIG. 18 shows the results of measuring the initial resistance values of Comparative Examples 1 and 2 and the Example. In each comparative example and example, st1 to st6 are sample numbers. Each sample was manufactured with 12 pieces per side, and for each of the 12 pieces, the resistance value of the through hole 22 at a predetermined position was measured, and the measurement data was shown for each sample number. However, in Comparative Examples 1 and 2, there were some that were disconnected from the beginning and could not be measured (that is, the resistance value was infinite), so only those that could be measured, ie, st1 of Comparative Example 1 was 7 points, and st2 and st3 were Only one point of data is shown for each. Since all st4 was not measurable, there is no data. In Comparative Example 2, only data of 7 points and 11 points of st1 is shown. In Comparative Example 2, all 12 points of st3 to st6 could be measured.

上記図18に示されるように、比較例1では、当初から断線しているものが40(%)程度と多く、断線していないものでも平均で12(mΩ)以上の高い抵抗値を示しており、表面14および裏面18間の配線接続用途には不適当である。一方、比較例2では、st1、st2で断線が生じているものも存在し、接続が得られた一部のスルーホール22で6(mΩ)前後の抵抗値であったが、殆どのスルーホール22で5(mΩ)以下で、平均も基準値の5(mΩ)を下回る4.5(mΩ)程度である。また、実施例では、全てのサンプルで確実に接続が得られ、全て3(mΩ)以下、平均値で2.4(mΩ)程度の極めて高い導電性を有することが確かめられた。しかも、図18に現れている通り、実施例ではばらつきも極めて小さいものとなっている。   As shown in FIG. 18 above, in Comparative Example 1, there were many disconnections from the beginning of about 40 (%), and even those that were not disconnected showed an average high resistance value of 12 (mΩ) or more. Therefore, it is not suitable for wiring connection between the front surface 14 and the back surface 18. On the other hand, in Comparative Example 2, there was a case where disconnection occurred at st1 and st2, and the resistance value was about 6 (mΩ) in some through holes 22 where the connection was obtained. 22 is 5 (mΩ) or less, and the average is about 4.5 (mΩ), which is lower than the standard value of 5 (mΩ). Also, in the examples, it was confirmed that all the samples were securely connected and all had extremely high conductivity of 3 (mΩ) or less and an average value of about 2.4 (mΩ). Moreover, as shown in FIG. 18, the variation in the embodiment is extremely small.

図19は、比較例1,2および実施例のサンプルを高温放置し或いは冷熱サイクルに曝して抵抗値変化を確かめた結果をまとめたものである。高温放置試験は、サンプルを150±3(℃)にて200時間、500時間、1000時間保持し、それぞれ保持後の抵抗値を測定した。また、冷熱サイクル試験は、サンプルを-40±5(℃)に冷却し、30分間保持後、150(℃)まで加熱し、30分間保持する冷却・加熱を200サイクル、500サイクル、1000サイクル行い、それぞれの規定回数後の抵抗値を測定した。上記冷却温度と加熱温度との切り替えは15分以内に行うこととした。なお、比較例1については、冷熱サイクル試験のみを行った。   FIG. 19 summarizes the results of confirming the resistance value change by leaving the samples of Comparative Examples 1 and 2 and the example at high temperature or exposing them to a cooling cycle. In the high temperature standing test, the sample was held at 150 ± 3 (° C.) for 200 hours, 500 hours, and 1000 hours, and the resistance value after holding was measured. In the thermal cycle test, the sample is cooled to -40 ± 5 (° C), held for 30 minutes, heated to 150 (° C), and cooled and heated for 30 minutes for 200 cycles, 500 cycles, and 1000 cycles. The resistance value after each specified number of times was measured. Switching between the cooling temperature and the heating temperature was performed within 15 minutes. In addition, about the comparative example 1, only the thermal cycle test was done.

上記図19に示されるように、比較例1の冷熱サイクル試験では、200サイクルで著しく抵抗値が上昇し、500サイクルで全て断線して測定不能となった。一方、比較例2の高温放置試験では、放置時間が長くなるに従って抵抗値が上昇する傾向が明らかに認められ、500時間放置で抵抗値が平均で2.7(%)程度増大した。したがって、比較例2は、比較例1に比較すると変化は小さいものの十分な信頼性を有するとは言えない。また、冷熱サイクル試験では比較的少ない回数の冷熱サイクルで急激な抵抗値上昇が認められ、500時間では抵抗値が76.6(%)程度増大する。したがって、比較例2も冷熱サイクルに対する十分な耐性を有するとは言えない。   As shown in FIG. 19, in the cooling / heating cycle test of Comparative Example 1, the resistance value increased remarkably at 200 cycles, and all the wires were disconnected at 500 cycles, making measurement impossible. On the other hand, in the high temperature standing test of Comparative Example 2, a tendency for the resistance value to increase as the standing time increased was clearly observed, and the resistance value increased by an average of about 2.7 (%) after standing for 500 hours. Therefore, it cannot be said that Comparative Example 2 has sufficient reliability although the change is smaller than that of Comparative Example 1. Further, in the cooling cycle test, a rapid increase in resistance value is observed in a relatively small number of cooling cycles, and the resistance value increases by about 76.6 (%) in 500 hours. Therefore, it cannot be said that Comparative Example 2 has sufficient resistance to the cooling and heating cycle.

これらに対して、実施例の高温放置試験では、抵抗値変化が殆ど認められず、500時間放置後でも抵抗値の増大は0.15(%)程度に留まる結果となった。また、冷熱サイクル試験においては、僅かに増大傾向が認められるものの、500サイクルで4.8(%)程度の増大に留まり、1000サイクル後にも平均で2.5(mΩ)程度に保たれる結果となった。   On the other hand, in the high temperature storage test of the example, almost no change in the resistance value was observed, and the increase in the resistance value remained at about 0.15 (%) even after being left for 500 hours. In the thermal cycle test, although a slight increasing tendency was observed, the increase was only about 4.8 (%) at 500 cycles, and the average was maintained at about 2.5 (mΩ) after 1000 cycles.

上記結果によれば、本実施例のように焼成収縮率が大きく基板12との接着強度の高い中間層26と、焼成収縮率が小さく基板12との接着強度の低い内周導体28とから成る貫通導体24を備えた構造とすることにより、抵抗値が低く且つ信頼性の高いスルーホール充填基板10が得られる。   According to the above results, the intermediate layer 26 having a high firing shrinkage ratio and a high adhesive strength to the substrate 12 and the inner peripheral conductor 28 having a low fired shrinkage rate and a low adhesive strength to the substrate 12 as in the present embodiment. By adopting a structure including the through conductor 24, the through-hole-filled substrate 10 having a low resistance value and high reliability can be obtained.

なお、比較例1において、抵抗値が初期的に高く且つ冷熱サイクル試験で著しく抵抗値が増大し、更には測定不能となった理由は、前記図7に示されるように、配線層16,20と貫通導体34との間に亀裂が生じ、これらが断線したためと考えられる。比較例1では、基板12との接着強度の低い貫通導体34がスルーホール22に充填されているだけの構造であることから、前記図8、図9に示されるように貫通導体34と基板12との間に隙間が生じた状態、すなわち、接着されていない状態になっている。そのため、冷熱サイクル試験の際の貫通導体34の僅かな膨張、収縮によって貫通導体34と配線層16,20との間が断裂させられ、導通が得られなくなったものと考えられる。   In Comparative Example 1, the reason why the resistance value was initially high and the resistance value was remarkably increased in the cooling / heating cycle test and became unmeasurable was as shown in FIG. It is considered that a crack was generated between the through conductor 34 and the through conductor 34, and these were disconnected. In Comparative Example 1, since the through conductor 34 having low adhesion strength with the substrate 12 is merely filled in the through hole 22, the through conductor 34 and the substrate 12 are shown in FIGS. Are in a state where a gap is formed between them, that is, in a state where they are not bonded. Therefore, it is considered that conduction between the through conductor 34 and the wiring layers 16 and 20 is broken due to slight expansion and contraction of the through conductor 34 during the cooling / heating cycle test, and electrical conduction cannot be obtained.

比較例2では、配線層16,20と貫通導体34との間に基板12および貫通導体34との接着強度の高い中間層38,40が備えられているため、比較例1よりは貫通導体34と配線層16,20との接続性が高められ、断線も生じ難くなっている。しかしながら、貫通導体34の膨張、収縮を抑制するものが何ら設けられていないことは比較例1と同様であり、その結果、冷熱サイクルで容易に部分的な断裂が生じ、抵抗値が著しく増大するものと考えられる。   In Comparative Example 2, intermediate layers 38 and 40 having high adhesion strength between the substrate 12 and the through conductor 34 are provided between the wiring layers 16 and 20 and the through conductor 34. And the wiring layers 16 and 20 are improved, and disconnection is less likely to occur. However, it is the same as that of Comparative Example 1 that there is no provision for suppressing the expansion and contraction of the through conductor 34. As a result, partial tearing easily occurs in the cooling and heating cycle, and the resistance value increases remarkably. It is considered a thing.

これら比較例1,2に比較すると、実施例の構造では、貫通導体34と同材料で構成される内周導体28とスルーホール22内周面との間に中間層26が備えられることによって、貫通導体24がそのスルーホール22内周面に強固に固着されているため、貫通導体24の収縮、膨張が抑制され、配線層16,20との界面における断裂等が好適に抑制されるものと考えられる。   Compared to these comparative examples 1 and 2, in the structure of the example, the intermediate layer 26 is provided between the inner peripheral conductor 28 made of the same material as the through conductor 34 and the inner peripheral surface of the through hole 22. Since the through conductor 24 is firmly fixed to the inner peripheral surface of the through hole 22, shrinkage and expansion of the through conductor 24 are suppressed, and tearing at the interface with the wiring layers 16 and 20 is preferably suppressed. Conceivable.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

本発明の一実施例のスルーホール充填基板の要部断面を模式的に示す図である。It is a figure which shows typically the principal part cross section of the through-hole filling board | substrate of one Example of this invention. 図1のスルーホール充填基板のスルーホール上に設けられた配線層の要部を拡大して示す平面図である。It is a top view which expands and shows the principal part of the wiring layer provided on the through hole of the through hole filling board | substrate of FIG. 図1の厚膜回路基板の製造工程の要部を説明するための工程図である。It is process drawing for demonstrating the principal part of the manufacturing process of the thick film circuit board of FIG. 比較例1のスルーホール充填基板の構造を模式的に示す図である。It is a figure which shows typically the structure of the through-hole filling board | substrate of the comparative example 1. FIG. 比較例2のスルーホール充填基板の構造を模式的に示す図である。It is a figure which shows typically the structure of the through-hole filling board | substrate of the comparative example 2. FIG. 比較例1のスルーホール断面SEM像である。2 is a through-hole cross-sectional SEM image of Comparative Example 1. 図6のスルーホール開口部近傍を拡大して示す図である。It is a figure which expands and shows the through-hole opening part vicinity of FIG. 図6のスルーホール中間部を拡大して示す図である。It is a figure which expands and shows the through-hole intermediate part of FIG. 図6のスルーホール中間部を更に拡大して示す図である。It is a figure which expands further and shows the through-hole intermediate part of FIG. 比較例2のスルーホール断面SEM像である。6 is a cross-sectional SEM image of a through hole of Comparative Example 2. 図10のスルーホール開口部近傍を拡大して示す図である。It is a figure which expands and shows the through-hole opening part vicinity of FIG. 図10のスルーホール中間部を拡大して示す図である。It is a figure which expands and shows the through-hole intermediate part of FIG. 図10のスルーホール中間部を更に拡大して示す図である。It is a figure which further expands and shows the through-hole intermediate part of FIG. 実施例のスルーホール断面SEM像である。It is a through-hole cross-sectional SEM image of an Example. 図14のスルーホール開口部近傍を拡大して示す図である。It is a figure which expands and shows the through-hole opening part vicinity of FIG. 図14のスルーホール中間部を拡大して示す図である。It is a figure which expands and shows the through-hole intermediate part of FIG. 図14のスルーホール中間部を更に拡大して示す図である。It is a figure which expands further and shows the through-hole intermediate part of FIG. 実施例および比較例の初期抵抗値を示す図である。It is a figure which shows the initial stage resistance value of an Example and a comparative example. 実施例および比較例の抵抗値変化を評価した結果を示す図である。It is a figure which shows the result of having evaluated the resistance value change of the Example and the comparative example.

符号の説明Explanation of symbols

10:スルーホール充填基板、12:基板、14:表面、16:表面側配線層、18:裏面、20:裏面側配線層、22:スルーホール、24:貫通導体、26:中間層、28:内周導体、30:接続部 10: Through hole filled substrate, 12: Substrate, 14: Front surface, 16: Front side wiring layer, 18: Back side, 20: Back side wiring layer, 22: Through hole, 24: Through conductor, 26: Intermediate layer, 28: Inner conductor, 30: connection

Claims (7)

セラミック基板の両面に所定の平面形状で形成された配線層がその基板を厚み方向に貫通する貫通孔内に充填形成された貫通導体で相互に接続されたスルーホール充填基板であって、
前記貫通導体は、前記貫通孔の内周面に固着された第1導体材料から成る筒状の中間層と、前記中間層の内周面に固着された第2導体材料から成る内周導体とを含み、前記第1導体材料は前記第2導体材料に比較して焼成収縮率が大きく且つ前記セラミック基板との接着強度が高いことを特徴とするスルーホール充填基板。
A through-hole-filled substrate in which wiring layers formed in a predetermined planar shape on both surfaces of a ceramic substrate are connected to each other by through conductors filled in through-holes that penetrate the substrate in the thickness direction,
The through conductor includes a cylindrical intermediate layer made of a first conductor material fixed to the inner peripheral surface of the through hole, and an inner peripheral conductor made of a second conductor material fixed to the inner peripheral surface of the intermediate layer. The through-hole-filled substrate is characterized in that the first conductor material has a larger firing shrinkage ratio and a higher adhesive strength with the ceramic substrate than the second conductor material.
前記第1導体材料は、酸化ビスマスおよび酸化銅を含むものである請求項1のスルーホール充填基板。   The through-hole-filled substrate according to claim 1, wherein the first conductor material contains bismuth oxide and copper oxide. 前記中間層は、前記セラミック基板の少なくとも一方の表面において前記貫通孔の周囲に広がる部分を有するものである請求項1または請求項2のスルーホール充填基板。   3. The through-hole-filled substrate according to claim 1, wherein the intermediate layer has a portion extending around the through hole on at least one surface of the ceramic substrate. セラミック基板の両面に所定の平面形状で形成された配線層がその基板を厚み方向に貫通する貫通孔内に充填形成された貫通導体で相互に接続されたスルーホール充填基板を製造する方法であって、
前記貫通孔の内周面に所定の第1導体ペーストを塗布して焼成処理を施すことによって前記貫通導体の外周部を構成する所定厚さ寸法の中間層を形成する中間層形成工程と、
所定の第2導体ペーストを前記中間層が形成された前記貫通孔内に充填して焼成処理を施すことによって前記貫通導体の内周部を構成する内周導体を形成する内周導体形成工程と
を含み、前記第1導体ペーストは前記第2導体ペーストに比較して焼成収縮率が大きく且つ前記セラミック基板との接着強度が高いことを特徴とするスルーホール充填基板の製造方法。
This is a method of manufacturing a through-hole-filled substrate in which wiring layers formed in a predetermined planar shape on both surfaces of a ceramic substrate are connected to each other by through conductors filled in through-holes that penetrate the substrate in the thickness direction. And
An intermediate layer forming step of forming an intermediate layer of a predetermined thickness dimension constituting the outer peripheral portion of the through conductor by applying a predetermined first conductor paste to the inner peripheral surface of the through hole and performing a firing process;
An inner circumference conductor forming step of forming an inner circumference conductor constituting an inner circumference portion of the through conductor by filling a predetermined second conductor paste into the through hole in which the intermediate layer is formed and performing a firing treatment; The method of manufacturing a through-hole-filled substrate, wherein the first conductor paste has a larger firing shrinkage ratio and a higher adhesive strength with the ceramic substrate than the second conductor paste.
前記第1導体ペーストは、酸化ビスマスおよび酸化銅を含むものである請求項4のスルーホール充填基板の製造方法。   The method for manufacturing a through-hole-filled substrate according to claim 4, wherein the first conductor paste contains bismuth oxide and copper oxide. 前記第1導体ペーストは、平均粒径が0.4〜0.6(μm)の範囲内且つ比表面積が1.5〜1.8(m2/g)の範囲内の球状を成す銀粉末を導体成分として含むものであり、前記第2導体ペーストは、最大粒径が10(μm)以上且つ平均粒径が前記第1導体ペーストに含まれるものよりも大きい銀粉末を導体成分として含むものである請求項4または請求項5のスルーホール充填基板の製造方法。 The first conductor paste contains, as a conductor component, silver powder having a spherical shape with an average particle diameter in the range of 0.4 to 0.6 (μm) and a specific surface area in the range of 1.5 to 1.8 (m 2 / g). The said 2nd conductor paste contains silver powder whose maximum particle diameter is 10 (micrometer) or more and whose average particle diameter is larger than what is contained in the said 1st conductor paste as a conductor component. Manufacturing method of through-hole filled substrate. 前記第1導体ペーストは、前記銀粉末が酸化ジルコニウムで被覆されたものである請求項6のスルーホール充填基板の製造方法。   The method for manufacturing a through-hole-filled substrate according to claim 6, wherein the first conductor paste is obtained by coating the silver powder with zirconium oxide.
JP2008058439A 2008-03-07 2008-03-07 Through-hole filled substrate, and method of manufacturing the same Pending JP2009218287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058439A JP2009218287A (en) 2008-03-07 2008-03-07 Through-hole filled substrate, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058439A JP2009218287A (en) 2008-03-07 2008-03-07 Through-hole filled substrate, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009218287A true JP2009218287A (en) 2009-09-24

Family

ID=41189889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058439A Pending JP2009218287A (en) 2008-03-07 2008-03-07 Through-hole filled substrate, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009218287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107199A1 (en) * 2012-01-19 2013-07-25 华为技术有限公司 Golden finger and plate edge interconnection device
CN113321486A (en) * 2021-06-07 2021-08-31 安徽省隆达建材科技有限公司 Foaming ceramic insulation board added with kaolin and processing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107199A1 (en) * 2012-01-19 2013-07-25 华为技术有限公司 Golden finger and plate edge interconnection device
US9699901B2 (en) 2012-01-19 2017-07-04 Huawei Technologies Co., Ltd. Golden finger and board edge interconnecting device
CN113321486A (en) * 2021-06-07 2021-08-31 安徽省隆达建材科技有限公司 Foaming ceramic insulation board added with kaolin and processing method thereof

Similar Documents

Publication Publication Date Title
KR100908985B1 (en) Ceramic Electronic Components and Manufacturing Method Thereof
US8138428B2 (en) Lead-embedded metallized ceramics substrate and package
EP2720520B1 (en) Circuit board and electronic device provided with same
KR20140001735A (en) Ceramic via substrate, metallized ceramic via substrate, and method for manufacturing both
EP2773169A1 (en) Circuit board and electronic apparatus provided with same
JP3571957B2 (en) Conductive paste and method of manufacturing ceramic multilayer substrate
JP2007018884A (en) Conductive paste
JP4609072B2 (en) Conducting method on both sides of board and wiring board
KR20080092910A (en) Process for producing matallized ceramic substrate, metallized ceramic substrate produced by the process, and package
CN110691762B (en) Ceramic circuit board and method for manufacturing the same
JP2009218287A (en) Through-hole filled substrate, and method of manufacturing the same
JP4933998B2 (en) Conductor paste and thick film circuit board
JP6788974B2 (en) Electronic components
JP7132591B2 (en) Conductive paste and sintered body
JP4544837B2 (en) Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board
JP2000077805A (en) Wiring board and manufacture thereof
JP5248941B2 (en) Ceramic parts and manufacturing method thereof
JP5265256B2 (en) Ceramic wiring board
JP4352311B2 (en) Thick film circuit board
JP3257953B2 (en) Method for manufacturing substrate for hybrid integrated circuit
JP2004087990A (en) Composite and its production method, and production of ceramic substrate
JP5313526B2 (en) Conductive paste for low-temperature fired multilayer substrates
JP2013118119A (en) Conductive paste, and low-temperature-baked ceramic multilayer substrate with the same
JP2010109068A (en) Wiring board, and method of manufacturing the same
KR20080107932A (en) Conductive paste composition and low temperature co-fire cerimic