JP4933998B2 - Conductor paste and thick film circuit board - Google Patents
Conductor paste and thick film circuit board Download PDFInfo
- Publication number
- JP4933998B2 JP4933998B2 JP2007255652A JP2007255652A JP4933998B2 JP 4933998 B2 JP4933998 B2 JP 4933998B2 JP 2007255652 A JP2007255652 A JP 2007255652A JP 2007255652 A JP2007255652 A JP 2007255652A JP 4933998 B2 JP4933998 B2 JP 4933998B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- paste
- thick film
- silicon nitride
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Conductive Materials (AREA)
Description
本発明は、基板に開けた貫通孔に貫通導体を設けるために充填される導体ペーストおよびその貫通孔に導体を充填して貫通導体を生成した厚膜回路用基板に関する。 The present invention relates to a conductor paste filled to provide a through conductor in a through hole opened in a substrate and a thick film circuit board in which the through hole is filled with a conductor to generate a through conductor.
例えば、アルミナ等から成るセラミック基板を用いた厚膜回路基板において、その基板に貫通孔(すなわちビア)を設け、そのビアに金属ペーストを充填することによって、基板の放熱性を高めることが行われている(例えば特許文献1を参照。)。このような放熱用のビアはサーマルビアと称される。上記基板の裏面にはアルミニウム等の熱伝導に優れた金属などから成るヒートシンクが配置され、基板の表面側で発生した熱をサーマルビアを経由させて裏面側に導き、そのヒートシンクに逃がすことで放熱性が高められる。 For example, in a thick film circuit board using a ceramic substrate made of alumina or the like, the substrate is provided with a through hole (that is, a via), and the via is filled with a metal paste to improve the heat dissipation of the substrate. (For example, refer to Patent Document 1). Such a heat dissipation via is referred to as a thermal via. A heat sink made of a metal with excellent heat conduction such as aluminum is arranged on the back side of the above board, and heat generated on the front side of the board is guided to the back side via the thermal via and released to the heat sink Sexuality is enhanced.
上記のような放熱性の改善は、例えば、基板表面における部品の実装密度を高めることを目的として行われる。実装密度を高めると発熱量は増大するが、基板裏面に熱を逃がすことで、部品が実装された基板表面の温度上昇を抑制できる。この結果、基板の小型化や高機能化が容易になる。
従来、上記サーマルビアを形成するに際しては、焼結性の低い金属粉末を含む金属ペーストが用いられていた。効率よく熱を逃がすためには、サーマルビアが、表面側においては実装された部品の裏面に接し、裏面側においてはヒートシンクに接している必要がある。そのため、金属ペーストの焼成収縮を抑制し、延いては基板の表面および裏面よりもサーマルビアが凹んだ状態になることを抑制するために、焼結性の低い金属粉末が用いられる。また、金属ペーストの焼成収縮を抑制すると、ビア内壁面からの導体剥離が抑制される利点もある。 Conventionally, when forming the thermal via, a metal paste containing a metal powder with low sinterability has been used. In order to efficiently release heat, the thermal via needs to be in contact with the back surface of the mounted component on the front surface side and in contact with the heat sink on the back surface side. Therefore, metal powder having low sinterability is used to suppress firing shrinkage of the metal paste, and thus to prevent the thermal via from being recessed from the front and back surfaces of the substrate. Further, if the firing shrinkage of the metal paste is suppressed, there is an advantage that the conductor peeling from the inner wall surface of the via is suppressed.
上記の金属粉末としては、例えば、Ag-Pdが用いられているが、焼結が抑制されたAg-Pdから成るサーマルビア用ペーストは抵抗値が大きいので、導体配線用途には利用できない。そのため、基板の表裏の配線を接続するためには内壁面に導体膜を形成したスルーホールがサーマルビアとは別に設けられている。 As the metal powder, for example, Ag—Pd is used. However, the thermal via paste made of Ag—Pd in which sintering is suppressed has a large resistance value and cannot be used for conductor wiring. Therefore, in order to connect the wiring on the front and back of the substrate, a through hole in which a conductor film is formed on the inner wall surface is provided separately from the thermal via.
しかしながら、上記のスルーホールでは、基板厚み方向の導体断面積が小さいことから大電流を流すことができない。例えば、大型車の電動パワーステアリング(EPS)用の基板では50〜60(A)程度の電流が望まれるが、スルーホールの許容電流値はせいぜい1(A)程度に過ぎない。そのため、大電流を流すことのできる接続構造、例えば、配線接続にも利用可能なサーマルビアが望まれていた。 However, in the above-described through hole, a large current cannot flow because the conductor cross-sectional area in the substrate thickness direction is small. For example, a current of about 50 to 60 (A) is desired for an electric power steering (EPS) board of a large vehicle, but the allowable current value of the through hole is only about 1 (A) at most. Therefore, a connection structure capable of flowing a large current, for example, a thermal via that can be used for wiring connection has been desired.
なお、金属ペーストにアルミノ珪酸塩等を膨張剤として或いは収縮抑制剤として添加することによって金属ペーストの焼成収縮を抑制し、配線接続のためのスルーホール内に導体を充填することも提案されている(例えば特許文献2〜4を参照。)。スルーホール内に導体を充填して断面積を大きくすれば大電流に対応できるが、内壁面に導体形成するためのペーストは焼成収縮が著しく、これをスルーホール内に充填すると収縮によって内壁面から剥がれることになる。そのため、従来のペーストでは断面積を大きくすることが困難であった。上記特許文献2等に記載されているように焼成収縮を抑制すれば、内壁面から剥がれることを抑制できる。 In addition, it has also been proposed to suppress the firing shrinkage of the metal paste by adding aluminosilicate or the like to the metal paste as an expansion agent or as a shrinkage inhibitor, and to fill a conductor in a through hole for wiring connection. (For example, see Patent Documents 2 to 4.) A large current can be accommodated by filling the through hole with a conductor to increase the cross-sectional area. However, the paste for forming the conductor on the inner wall is markedly baked and shrunk. It will be peeled off. Therefore, it is difficult to increase the cross-sectional area with the conventional paste. If firing shrinkage is suppressed as described in Patent Document 2 and the like, peeling from the inner wall surface can be suppressed.
しかしながら、上記特許文献2〜4に記載の金属ペーストでは、導体材料の収縮率が大きいことから、収縮を抑制するために比較的多量の膨張剤或いは収縮抑制剤が用いられている。そのため、収縮、導電性、および熱伝導性を同時に満足させることが困難であった。 However, in the metal pastes described in Patent Documents 2 to 4, a relatively large amount of expansion agent or shrinkage inhibitor is used to suppress shrinkage because the shrinkage rate of the conductor material is large. For this reason, it has been difficult to satisfy shrinkage, conductivity, and thermal conductivity at the same time.
本発明は、以上の事情を背景として為されたものであって、その目的は、高い導電性を有して配線接続にも用い得る貫通導体を形成可能な導体ペーストおよびその貫通導体が形成された厚膜回路用基板を提供することにある。 The present invention has been made in the background of the above circumstances, and an object of the present invention is to form a conductive paste capable of forming a through conductor that has high conductivity and can be used for wiring connection, and the through conductor. Another object of the present invention is to provide a thick film circuit board.
斯かる目的を達成するため、第1発明の要旨とするところは、セラミック基板に設けられた貫通孔に充填して焼成するための導体ペーストであって、(a)アトマイズ法で製造した銀粉末と、(b)窒化珪素粉末とを、含むことにある。 In order to achieve such an object, the subject matter of the first invention is a conductor paste for filling and firing through holes provided in a ceramic substrate, and (a) a silver powder produced by an atomizing method And (b) silicon nitride powder.
また、第2発明の厚膜回路用基板の要旨とするところは、(a)貫通孔を有するセラミック基板と、(b)前記貫通孔内に充填された前記第1発明の導体ペーストから酸化雰囲気で焼成されることによって生成された貫通導体とを、含むことにある。 The thick film circuit board according to the second aspect of the invention includes (a) a ceramic substrate having a through hole, and (b) an oxidizing atmosphere from the conductor paste of the first invention filled in the through hole. And a through conductor produced by firing.
前記第1発明によれば、導体ペーストには、アトマイズ法で製造した銀粉末が用いられると共に、窒化珪素粉末が含まれていることから、この導体ペーストは、焼成収縮が十分に抑制されると共に、生成される貫通導体は高い導電性および高い熱伝導性を有する。アトマイズ法で製造した銀粉末は球状を成し、焼結性が低いことに加え、窒化珪素粉末が含まれていることから、このような導体ペーストを酸化雰囲気で焼成すると、窒化珪素はSiO2とN2に分解して膨張することにより、導体ペーストの収縮を妨げる。したがって、セラミック基板に設けた貫通孔にこのペーストを充填して酸化雰囲気で焼成処理を施せば、サーマルビアとしても配線接続用としても用い得る貫通導体が得られる。 According to the first invention, since the silver paste produced by the atomizing method is used as the conductive paste and the silicon nitride powder is contained, the conductive paste is sufficiently suppressed from firing shrinkage. The generated through conductor has high conductivity and high thermal conductivity. Since the silver powder produced by the atomizing method has a spherical shape and low sinterability and contains silicon nitride powder, when such a conductive paste is baked in an oxidizing atmosphere, silicon nitride becomes SiO 2 by expanding decomposed into N 2 and prevents the shrinkage of the conductive paste. Therefore, if the paste is filled in the through holes provided in the ceramic substrate and subjected to a firing process in an oxidizing atmosphere, a through conductor that can be used for both thermal vias and wiring connection can be obtained.
また、前記第2発明によれば、上記第1発明の導体ペーストから酸化雰囲気で焼成されることによって生成された貫通導体がセラミック基板に備えられていることから、高い導電性および高い熱伝導率を共に有し、サーマルビアとしても配線接続用としても用い得る貫通導体を備えた厚膜回路用基板が得られる。 According to the second invention, since the ceramic substrate is provided with the through conductors produced by firing from the conductor paste of the first invention in an oxidizing atmosphere, high conductivity and high thermal conductivity are provided. Thus, a thick film circuit board having through conductors that can be used both as thermal vias and for wiring connection is obtained.
なお、焼成収縮率は、乾燥後の膜厚をTd、焼成後の膜厚をTfとしたとき、[(Td−Tf)/Td]×100 で求められる値である。 The firing shrinkage when the film thickness after drying T d, the film thickness after firing was T f, is a value determined by [(T d -T f) / T d] × 100.
ここで、好適には、前記導体ペーストは、前記銀粉末および前記窒化珪素粉末が無機結着剤と共にビヒクル中に分散させられたものである。 Here, it is preferable that the conductive paste is obtained by dispersing the silver powder and the silicon nitride powder together with an inorganic binder in a vehicle .
また、好適には、前記銀粉末は1乃至5(μm)の平均粒径を有するものである。銀粉末の平均粒径は特に限定されないが、平均粒径が1(μm)以上であれば、焼結性が十分に低いことから、焼成収縮率が十分に小さくなって、貫通導体を生成した際に貫通孔内壁面からの剥がれが生じ難くなる。また、平均粒径が5(μm)以下であれば、銀粉末相互の接触面積が十分に大きくなるので、生成される貫通導体の抵抗値が十分に低くなる。なお、平均粒径が大きくなるほど焼結性が低下するから、焼成収縮を抑制する観点からは好ましいが、平均粒径が大きくなり過ぎるとペースト調製時の混練に一般に用いられている三本ロールミルによる混練が困難になる問題もある。 Preferably, the silver powder has an average particle diameter of 1 to 5 (μm). The average particle size of the silver powder is not particularly limited, but if the average particle size is 1 (μm) or more, the sinterability is sufficiently low, so the firing shrinkage rate is sufficiently small, and a through conductor is generated. In this case, peeling from the inner wall surface of the through hole is difficult to occur. If the average particle size is 5 (μm) or less, the contact area between the silver powders is sufficiently large, so that the resistance value of the generated through conductor is sufficiently low. In addition, since the sinterability decreases as the average particle size increases, it is preferable from the viewpoint of suppressing firing shrinkage. However, if the average particle size becomes too large, a three-roll mill generally used for kneading during paste preparation is used. There is also a problem that kneading becomes difficult.
また、好適には、前記窒化珪素粉末はペースト全体に対する質量割合で2.5乃至10(%)の範囲で含まれるものである。窒化珪素粉末の割合が2.5(%)以上であれば、ペーストの焼成収縮を十分に抑制できる。また、10(%)以下であれば、生成される貫通導体の抵抗値が十分に低くなる。 Preferably, the silicon nitride powder is contained in a range of 2.5 to 10 (%) in terms of mass ratio to the entire paste. If the ratio of the silicon nitride powder is 2.5 (%) or more, firing shrinkage of the paste can be sufficiently suppressed. Moreover, if it is 10 (%) or less, the resistance value of the through conductor to be generated is sufficiently low.
また、好適には、前記窒化珪素粉末は、イミド分解法で合成されたものである。窒化珪素粉末は、金属珪素の直接窒化法、シリカ還元窒化法、イミド分解法、有機珪素化合物の熱分解法、気相反応法等、一般に用いられる種々の合成方法によって合成されたものを用い得るが、イミド分解法粉末が最も好ましい。例えば、直接窒化法粉末を添加すると、焼成後に膨れが生じ易い問題が認められた。膨れの生ずる理由は定かではないが、直接窒化法による窒化珪素粉末は分解温度がやや高く、銀粉末の焼結が相当程度進んでから分解して窒素ガスが発生するためと考えられる。 Preferably, the silicon nitride powder is synthesized by an imide decomposition method. As the silicon nitride powder, those synthesized by various commonly used synthesis methods such as direct nitridation method of metal silicon, silica reduction nitridation method, imide decomposition method, pyrolysis method of organic silicon compound, gas phase reaction method, etc. can be used. However, the imide decomposition method powder is most preferable. For example, when a direct nitriding powder was added, there was a problem that blistering was likely to occur after firing. The reason why blistering occurs is not clear, but it is considered that the silicon nitride powder obtained by the direct nitriding method has a slightly high decomposition temperature and decomposes after the silver powder has been sintered to a considerable extent to generate nitrogen gas.
以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.
図1は、本発明の一実施例の導体ペーストで貫通導体10が形成された厚膜回路基板12の断面構造を模式的に示す図である。図1において、厚膜回路基板12は、それぞれ前記貫通導体10が設けられた多数のビア14が形成された基板16の表面18に、IC20が固着されると共に、その裏面22にヒートシンク24が固着されたものである。
FIG. 1 is a diagram schematically showing a cross-sectional structure of a thick
上記の基板16は、例えば厚膜回路基板によく用いられているアルミナから成るものであって、例えば0.8(mm)程度の厚さ寸法を備えている。この基板16に設けられているビア14は、例えば0.2(mm)程度の直径を有するもので、その内部全体が前記貫通導体10で埋められている。すなわち、ビア14には導体がその内壁面に密着した状態で充填されている。
The
上記の貫通導体10は、その上下端面がそれぞれ表面18および裏面22と略同一平面上に位置する。すなわち、貫通導体10の上下端面は、それら表面18および裏面22と同一平面に位置するか、僅かに凹み、或いは僅かに突き出した状態にある。貫通導体10は、例えば厚膜導体材料から成るもので、例えば、6(mΩ/□)程度の十分に低いシート抵抗値を備え、導電成分である銀、無機結着剤、フィラー等から構成されている。無機結着剤は基板16との接着強度を高めるためのものである。
The penetrating
また、前記IC20は、例えば5(mm)×5(mm)程度の平面寸法を備えたもので、例えば、半田26によって基板16に固着され、表面18に設けられた導体配線28にワイヤ30で電気的に接続されている。なお、ワイヤ30は、IC20に備えられている端子数に応じて多数本が接続されるが、図1においては1本だけを例示した。図2に平面図を示すように、前記ビア14は、このIC20の固着面全体に亘って多数本が備えられている。半田26の厚さ寸法は例えば0.1(mm)程度である。
The
上記の導体配線28は、Ag、Ag/Pd、Ag/Pt、Auなどを導電成分として含む厚膜導体材料から成るもので、表面18に例えば5〜30(μm)程度の厚さ寸法で設けられている。この導体配線28は、IC20から離れた位置に設けられたビア14に充填された貫通導体10に接続されており、その貫通導体10を経由して裏面22に備えられた導体配線32に接続されている。IC20の直下に配置されている貫通導体10と、上記導体配線28に接続されている貫通導体10とは、共通の厚膜導体材料から成る。なお、図1において34は基板16に印刷形成された厚膜抵抗体で、RuO2等から構成されている。図1には厚膜抵抗体34を一つだけ例示しているが、厚膜抵抗体34は、厚膜回路基板12の使用目的に応じて適宜の個数が備えられるものである。
The
基板16の裏面22においては、貫通導体10の端面、導体配線32、厚膜抵抗体34等が保護層36で覆われている。保護層36は、ガラスや合成樹脂等の絶縁体材料から成るもので、前記ヒートシンク24は、このような保護層36を介して、接着剤層38によって基板16に固着されている。ヒートシンク24は、例えばアルミニウム等の熱伝導性および導電性の高い材料から成るものであり、上記の保護層36は、導体材料から成るヒートシンク24によって裏面22上の導体配線32等が短絡することを防止するためのものである。これら保護層36および接着剤層38の厚さ寸法は例えばそれぞれ0.1(mm)程度である。
On the
以上のように構成された厚膜回路基板12によれば、表面18に実装されたIC20等から発生した熱は、その直下に設けられているビア14内の貫通導体10を介して裏面22側のヒートシンク24に伝達される。そのため、本実施例によれば、厚膜回路基板12の配線密度や部品実装密度などを高められている場合にも、発生した熱がヒートシンク24から好適に放熱されるので、その厚膜回路基板12の温度上昇が抑制される。すなわち、貫通導体10が充填されたビア14のうちIC20の直下に配置されたものは、基板表面18側で発生した熱を裏面22へ逃がすサーマルビアとして機能するものである。
According to the thick
一方、IC20から外れた位置に設けられた貫通導体10は、前述したように表面18側の配線28と裏面22側の配線32とを電気的に接続するために設けられており、厚膜回路基板12の導体配線の一部を構成する。したがって、本実施例においては、同一材料から成る貫通導体10が、サーマルビアとしても導体配線としても利用できるので、ビア14内に充填する導体材料をそのビア14の用途に応じて区別することなく、一括して導体形成できる。また、上記の貫通導体10は、従来から配線接続に用いられているスルーホールすなわち貫通孔の内壁面のみに導体が設けられたものに比較して導体の断面積が著しく大きくなるため、例えば50〜60(A)程度の大電流を流すことが望まれる用途にも好適に用い得る利点がある。
On the other hand, the through
図3は、上記の厚膜回路基板12の製造工程の要部を説明するための工程流れ図である。ビア充填印刷工程S1では、別途製造した前記基板16の前記ビア14に、別途調製したビア用導体ペーストを充填する。導体ペーストの充填は、例えば、裏面22側から吸引しつつ表面18側からビア14に導体ペーストを塗布することで行われる。ビア用導体ペーストは、例えば、銀粉末と、窒化珪素粉末と、無機結着剤とをビヒクルに分散させたもので、本実施例においては、このビア用導体ペーストが請求の範囲に言う導体ペーストに相当する。上記銀粉末は、例えば、アトマイズ法で製造されたもので、平均粒径が2.5(μm)程度の球状粒子から成り、焼成収縮率は35(%)程度のものである。また、窒化珪素粉末は、例えばイミド分解法で合成されたもので、BET法測定値で7(m2/g)程度の比表面積を備えたものである。また、ビヒクルは適宜の樹脂結合剤や溶剤等から成るもので、無機結着剤は種々の金属酸化物から成るものであるが、本実施例の理解には必要では無いのでこれらの詳細は省略する。
FIG. 3 is a process flowchart for explaining the main part of the manufacturing process of the thick
次いで、焼成工程S2では、ビア14に充填したビア用導体ペーストの焼成処理を施す。この焼成処理は、例えば、酸化雰囲気中にて850(℃)程度の焼成温度で行われる。これにより、ビア用導体ペーストから前記貫通導体10が生成される。このとき、ビア用導体ペーストは、銀粉末がアトマイズ法で製造された焼結性の低い球状粒子であって、前述したように焼成収縮率が35(%)程度と低いことに加え、窒化珪素粉末が含まれていることから、ペーストの焼成収縮率が6(%)程度に留められている。そのため、生成される貫通導体10は、前述したようにビア14の内壁面に密着し、且つその上下端面の表面18および裏面22からの凹み量或いは突き出し量が極めて小さいものとなる。
Next, in the firing step S2, the via conductor paste filled in the via 14 is fired. This firing process is performed at a firing temperature of about 850 (° C.) in an oxidizing atmosphere, for example. Thereby, the through
次いで、抵抗印刷工程S3では、別途調製した厚膜抵抗体ペーストを前記基板16の表面18および裏面22の予め定められた箇所に例えば矩形パターンで塗布し、抵抗焼成工程S4では、その抵抗体ペーストの組成に応じて予め定められた温度で焼成処理を施す。これにより、前記厚膜抵抗体34が形成される。なお、上記の厚膜抵抗体ペーストは、RuO2等の抵抗体材料および無機結着剤等をビヒクルに分散して調製される。
Next, in the resistance printing step S3, a separately prepared thick film resistor paste is applied to predetermined locations on the
次いで、導体印刷工程S5では、別途調製した厚膜導体ペーストを前記基板16の表面18および裏面22に予め定められた平面形状で塗布し、導体焼成工程S6においてその厚膜導体ペーストの組成に応じて予め定められた温度で焼成処理を施すことにより、前記導体配線28,32を形成する。上記厚膜導体ペーストは、Ag、Ag/Pd等の導体材料および無機結着剤等をビヒクルに分散して調製されるものである。
Next, in the conductor printing step S5, a separately prepared thick film conductor paste is applied to the
次いで、保護ガラス印刷工程S7では、別途調製したガラスペーストを前記基板16の裏面22に導体配線32や厚膜抵抗体34を覆うように塗布し、保護ガラス焼成工程S8においてそのガラスの種類に応じた温度で焼成処理を施すことにより、前記保護層36が形成される。なお、前述したように、保護層36は合成樹脂から成るものでもよく、その場合には、ガラスペーストに変えて樹脂ペーストを用いると共に、焼成温度をその材料に応じて変更すればよい。
Next, in the protective glass printing step S7, separately prepared glass paste is applied to the
次いで、抵抗値調整工程S9では、厚膜回路基板12上に形成されている厚膜抵抗体34の抵抗値を個々に全て測定し、その測定値が設定値から許容値を超えて外れているものについて、よく知られたレーザトリミングなどの適宜の方法を用いて抵抗値を調整する。
Next, in the resistance value adjustment step S9, all the resistance values of the
次いで、樹脂印刷工程S10では、別途用意した樹脂ペーストを印刷し、樹脂硬化工程S11において、その種類に応じて予め定められた照度でUV硬化処理を施す。これにより、塗布された樹脂ペーストが硬化させられ、樹脂保護層が生成され、前述した厚膜回路基板12を製造するために用いられる厚膜回路用基板が得られる。なお、前記図1では樹脂保護層を省略した。
Next, in the resin printing step S10, a separately prepared resin paste is printed, and in the resin curing step S11, a UV curing process is performed at an illuminance predetermined according to the type. Thereby, the applied resin paste is cured, a resin protective layer is generated, and a thick film circuit substrate used for manufacturing the thick
次いで、検査工程S12では、各構成部分の形成状態、寸法、特性値等が規格を満たしているか否かの検査が次工程に送る前に行われ、部品組付工程S13では、検査を合格したものが送られて前記IC20の半田付け等が行われると共に、前記ヒートシンク24が固着されることにより、前記厚膜回路基板12が得られる。
Next, in the inspection step S12, an inspection is performed before sending to the next step whether or not the formation state, dimensions, characteristic values, etc. of the respective constituent parts satisfy the standard, and the inspection has passed in the component assembling step S13. Then, the
次に、前記ビア充填印刷工程S1において用いられる前記ビア用導体ペーストの調合組成を種々変更して実験した結果について説明する。下記の表1は、評価した際のペースト調合仕様をまとめたものである。表1において、調合Aは、窒化珪素を含まない組成、すなわち従来から一般に用いられているものと同様に、銀粉末、無機結着剤、およびビヒクルから成るペーストの場合の組成である。調合Bは、調合Aに対して窒化珪素をペースト全体に対する重量百分率で2.50(%)添加した組成で、銀粉末の割合を2.50(%)減じることで全体量を調整し、無機結着剤およびビヒクルの量は窒化珪素を添加しない調合Aと同一とした。調合C〜Eについても、窒化珪素の添加量が5.00(%)〜10.00(%)の範囲で異なるものとされている他は調合Bと同様である。 Next, a description will be given of the results of experiments performed by variously changing the composition of the via conductor paste used in the via filling printing step S1. Table 1 below summarizes the paste formulation specifications when evaluated. In Table 1, Formulation A is a composition that does not contain silicon nitride, that is, a paste in the case of a paste composed of silver powder, an inorganic binder, and a vehicle, similar to those generally used conventionally. Formulation B is a composition in which silicon nitride is added to Formulation A at a weight percentage of 2.50 (%), and the total amount is adjusted by reducing the proportion of silver powder by 2.50 (%), and an inorganic binder and The amount of vehicle was the same as Formulation A with no silicon nitride added. Formulations C to E are the same as Formulation B except that the amount of silicon nitride added is different in the range of 5.00 (%) to 10.00 (%).
また、上記の銀粉末は、例えば、日本アトマイズ加工(株)製アトマイズ銀粉体を用いた。また、窒化珪素は、宇部興産(株)製SN-ESPを用いた。この窒化珪素は、イミド分解法で合成されたもので、比表面積は6〜8(m2/g)である。 Further, as the silver powder, for example, atomized silver powder manufactured by Nippon Atomizing Co., Ltd. was used. In addition, SN-ESP manufactured by Ube Industries, Ltd. was used as silicon nitride. This silicon nitride is synthesized by an imide decomposition method and has a specific surface area of 6 to 8 (m 2 / g).
下記の表2は、上記表1に示す調合仕様で、1.5(μm)〜10(μm)の範囲の平均粒径を備えた銀粉体を用いた場合の試験結果をまとめたものである。用いた銀粉体は、全てアトマイズ法によって製造された日本アトマイズ加工(株)製の球状粉末で、平均粒径のみが互いに異なるものである。また、No.13の従来品は、サーマルビア用途に市販されているAg/Pdペーストで、田中貴金属工業(株)製のTR-6906である。また、表2において、導体抵抗値は、焼成後の抵抗値を4端子法にて測定したシート抵抗値である。焼成収縮率は、2mm□パッドのパターンで印刷し、焼成前後の膜厚を測定して膜厚の変化割合で求めた。 Table 2 below summarizes the test results when using silver powder having an average particle diameter in the range of 1.5 (μm) to 10 (μm) with the formulation specifications shown in Table 1 above. The silver powder used is a spherical powder manufactured by Nippon Atomizing Co., Ltd., all manufactured by the atomizing method, and only the average particle diameter is different from each other. The No. 13 conventional product is an Ag / Pd paste that is commercially available for thermal vias, and is TR-6906 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. In Table 2, the conductor resistance value is a sheet resistance value obtained by measuring the resistance value after firing by a four-terminal method. The firing shrinkage was obtained by printing with a 2 mm square pad pattern, measuring the film thickness before and after firing, and determining the change rate of the film thickness.
上記表2において、従来品は、焼成収縮が-2(%)程度すなわち僅かに膨張する特性を有しているもので、サーマルビア用途としては優れているが、導体抵抗値が13.4(mΩ/□)と高く、配線用途には不適当である。 In Table 2 above, the conventional product has the characteristic that the firing shrinkage is about -2 (%), that is, slightly expands, and is excellent for thermal via applications, but the conductor resistance value is 13.4 (mΩ / □), which is not suitable for wiring applications.
No.1〜4は、平均粒径が10(μm)の銀粉末を用い、窒化珪素の添加量を1.0〜5.0(%)の範囲としたものである。上記結果に示すように、窒化珪素の添加量を多くするほど、抵抗値が上昇すると共に、収縮率が小さくなる傾向がある。収縮率が概ね10(%)以下であれば、貫通導体10のビア14からの剥離が認められず、表面18からの凹みが特に問題にならない。すなわち、No.3、4のように窒化珪素の添加量が4(%)以上であれば、収縮率の点では十分な特性を有する。一方、抵抗値が概ね10(mΩ/□)以下であれば、従来品に比較して高い導電性を有するので、No.1〜4は、導電性の点では何れも従来品よりも十分に優れている。但し、配線用途では導電性は高いほど好ましく、従来のスルーホール用導体の導電性が2〜3(mΩ/□)であることを考慮すると、6(mΩ/□)程度以下であることが好ましい。すなわち、導電性の点では、No.1〜3が好ましい。以上から、平均粒径が10(μm)の銀粉末の場合には、窒化珪素の添加量を4〜5(%)程度とすることが好ましく、4(%)程度が最も好ましい。
Nos. 1 to 4 use silver powder having an average particle size of 10 (μm), and the amount of silicon nitride added is in the range of 1.0 to 5.0 (%). As shown in the above results, the resistance value increases and the shrinkage rate tends to decrease as the amount of silicon nitride added increases. If the shrinkage rate is approximately 10 (%) or less, peeling of the through
No.5は、平均粒径が5(μm)の銀粉末を用い、窒化珪素の添加量を5.0(%)としたものである。この平均粒径のものは他の添加量で評価を行っていないが、収縮率が6.5(%)、抵抗値が6.2(mΩ/□)と、何れも満足できる値である。なお、抵抗値のばらつきは、6.1〜6.4(mΩ/□)程度で、安定して十分な導電性を得ることができた。 No. 5 uses silver powder having an average particle diameter of 5 (μm), and the addition amount of silicon nitride is 5.0 (%). The average particle size is not evaluated with other addition amounts, but the shrinkage rate is 6.5 (%) and the resistance value is 6.2 (mΩ / □), both of which are satisfactory values. The variation in resistance value was about 6.1 to 6.4 (mΩ / □), and sufficient conductivity could be obtained stably.
No.6〜10は、平均粒径が2.5(μm)の銀粉末を用い、窒化珪素の添加量を0〜10(%)の範囲で種々変更して評価したものである。表2に示されるように、窒化珪素を添加しないNo.6は、収縮率が30(%)と極めて大きいため、ビア用導体ペーストとしては不適当である。窒化珪素の添加量が2.5(%)以上の他のサンプルでは、収縮率が6.7(%)以下、抵抗値が7.1(mΩ/□)以下で、何れも概ね満足できる範囲にある。但し、No.10のように添加量が10(%)の場合には、抵抗値が7.1(mΩ/□)とやや大きいので、可及的に高い導電性を得るためには、No.9等のように7.5(%)以下の添加量に留めることが好ましい。 Nos. 6 to 10 were evaluated by using silver powder having an average particle diameter of 2.5 (μm) and variously changing the addition amount of silicon nitride within a range of 0 to 10 (%). As shown in Table 2, No. 6 to which no silicon nitride is added has an extremely large shrinkage rate of 30 (%), and is not suitable as a conductor paste for vias. In other samples in which the amount of silicon nitride added is 2.5 (%) or more, the shrinkage rate is 6.7 (%) or less and the resistance value is 7.1 (mΩ / □) or less. However, when the addition amount is 10 (%) as in No. 10, the resistance value is a little as 7.1 (mΩ / □), so in order to obtain the highest possible conductivity, No. 9 Thus, it is preferable to keep the addition amount to 7.5 (%) or less.
No.11、12は、平均粒径が1.5(μm)の銀粉末を用いて、窒化珪素の添加量を0または5(%)としたものである。この平均粒径の場合にも、窒化珪素を添加しないNo.11では収縮率が32.9(%)と大きく、ビア用導体ペーストとして用い得ない。しかしながら、5(%)添加したNo.12では、収縮率を10.7(%)まで低下させることができ、抵抗値も7.3(mΩ/□)程度(ばらつきで6.9〜7.8程度)に留まるから、この組合せでも収縮を抑制しつつ高い導電性を得ることができる。 Nos. 11 and 12 are silver powder having an average particle diameter of 1.5 (μm) and the addition amount of silicon nitride is 0 or 5 (%). Even in the case of this average particle size, No. 11 to which no silicon nitride is added has a large shrinkage rate of 32.9 (%) and cannot be used as a via conductor paste. However, with No. 12 with 5% added, the shrinkage rate can be reduced to 10.7%, and the resistance value is only about 7.3 (mΩ / □) (variation is about 6.9 to 7.8). Even in combination, high conductivity can be obtained while suppressing shrinkage.
以上、説明したように、本実施例によれば、貫通導体10を形成するための導電ペーストは、焼成収縮率が35(%)以下と小さい銀粉末が用いられると共に、これに窒化珪素粉末が添加されていることから、高い導電性を確保しつつ焼成収縮が抑制される。そのため、酸化雰囲気中で焼成処理が施されることにより、サーマルビアとしても配線接続用としても用い得る貫通導体10が得られる。
As described above, according to the present embodiment, the conductive paste for forming the through
下記の表3は、窒化珪素に代えてアルミニウム粉末を添加した場合の試験結果をまとめたものである。他の条件は表2に示したものと同一とした。表3の評価結果から明らかなように、アルミニウム粉末を添加することによっても、導体ペーストの収縮率を小さくすることができ、収縮抑制の面では有効である。しかしながら、アルミニウム粉末を添加した場合には、1(%)添加しただけでも、抵抗値が13.4(mΩ/□)まで高くなり、導電性が不十分となる。表3に示すように、平均粒径が2.5(μm)、5.0(μm)、10(μm)の各銀粉末について確認したが、何れも大差ない結果であった。 Table 3 below summarizes the test results when aluminum powder is added instead of silicon nitride. Other conditions were the same as those shown in Table 2. As is apparent from the evaluation results in Table 3, the addition of aluminum powder can reduce the shrinkage rate of the conductor paste, which is effective in terms of suppressing shrinkage. However, when aluminum powder is added, even if 1 (%) is added, the resistance value increases to 13.4 (mΩ / □), and the conductivity becomes insufficient. As shown in Table 3, each silver powder having an average particle size of 2.5 (μm), 5.0 (μm), and 10 (μm) was confirmed.
したがって、上記表3に示される試験結果と前記表2に示される試験結果とを対比すれば、収縮を抑制しつつ導電性を確保するためには添加物として窒化珪素粉末を用いる必要があり、アルミニウム粉末等の他の粉末は不適当であることが判る。 Therefore, if the test results shown in Table 3 are compared with the test results shown in Table 2, it is necessary to use silicon nitride powder as an additive in order to ensure conductivity while suppressing shrinkage. It turns out that other powders such as aluminum powder are unsuitable.
以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。 As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.
10:貫通導体、12:厚膜回路基板、14:ビア、16:基板、18:表面、20:IC、22:裏面、24:ヒートシンク、26:半田、28:導体配線、30:ワイヤ、32:導体配線、34:厚膜抵抗体、36:保護層、38:接着剤層 10: Through conductor, 12: Thick film circuit board, 14: Via, 16: Board, 18: Front surface, 20: IC, 22: Back surface, 24: Heat sink, 26: Solder, 28: Conductor wiring, 30: Wire, 32 : Conductor wiring, 34: Thick film resistor, 36: Protective layer, 38: Adhesive layer
Claims (5)
アトマイズ法で製造した銀粉末と、
窒化珪素粉末と
を、含むことを特徴とする導体ペースト。 A conductive paste for filling and firing through holes provided in a ceramic substrate,
Silver powder produced by the atomizing method ,
A conductor paste comprising silicon nitride powder.
前記貫通孔内に充填された前記請求項1乃至請求項4の何れか1項に記載の導体ペーストから酸化雰囲気で焼成されることによって生成された貫通導体と
を、含むことを特徴とする厚膜回路用基板。 A ceramic substrate having a through hole;
The through-hole produced | generated by baking by the oxidizing atmosphere from the conductor paste of any one of the said Claim 1 thru | or 4 with which it filled in the said through-hole was characterized by the above-mentioned. Membrane circuit board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007255652A JP4933998B2 (en) | 2007-09-28 | 2007-09-28 | Conductor paste and thick film circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007255652A JP4933998B2 (en) | 2007-09-28 | 2007-09-28 | Conductor paste and thick film circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009087712A JP2009087712A (en) | 2009-04-23 |
JP4933998B2 true JP4933998B2 (en) | 2012-05-16 |
Family
ID=40660875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007255652A Expired - Fee Related JP4933998B2 (en) | 2007-09-28 | 2007-09-28 | Conductor paste and thick film circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4933998B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5617244B2 (en) * | 2010-01-06 | 2014-11-05 | ダイキン工業株式会社 | Power module, power conversion device, and refrigeration device |
JP2011192762A (en) * | 2010-03-15 | 2011-09-29 | Daikin Industries Ltd | Power module |
US20130251447A1 (en) * | 2010-10-20 | 2013-09-26 | Robert Bosch Gmbh | Starting material and process for producing a sintered join |
KR20130017327A (en) * | 2011-08-10 | 2013-02-20 | 삼성전기주식회사 | Conductive paste for internal electrode of multilayer ceramic electronic components and multilayer ceramic electronic components using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10135630A (en) * | 1996-10-31 | 1998-05-22 | Sumitomo Kinzoku Electro Device:Kk | Method for filling through hole with paste in thick film wiring substrate |
JP3150932B2 (en) * | 1997-12-02 | 2001-03-26 | 第一工業製薬株式会社 | Conductive paste for ceramic multilayer circuit board |
-
2007
- 2007-09-28 JP JP2007255652A patent/JP4933998B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009087712A (en) | 2009-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7458150B2 (en) | Method of producing circuit board | |
JPH06224560A (en) | Ceramic multilayer interconnecting board | |
JP4933998B2 (en) | Conductor paste and thick film circuit board | |
JP2001307547A (en) | Conductive composition and printed circuit board using the same | |
JP2007018884A (en) | Conductive paste | |
US8704105B2 (en) | Mixed-metal system conductors for LTCC (low-temperature co-fired ceramic) | |
JP7132591B2 (en) | Conductive paste and sintered body | |
KR100261793B1 (en) | Circuit board with high strength and high reliability and process for preparing the same | |
JP4544837B2 (en) | Copper paste for ceramic wiring board, ceramic wiring board, and method for manufacturing ceramic wiring board | |
JP2003324268A (en) | Conductor paste, printing method, and method of manufacturing ceramic multilayer circuit board | |
JP2009218287A (en) | Through-hole filled substrate, and method of manufacturing the same | |
JP5265256B2 (en) | Ceramic wiring board | |
JP5248941B2 (en) | Ceramic parts and manufacturing method thereof | |
JP2006108399A (en) | Conductive paste for forming conductive section for ferrite multilayer circuit board and ferrite multilayer circuit board using conductive paste | |
JP4352311B2 (en) | Thick film circuit board | |
JP2015141952A (en) | semiconductor power module | |
JP2674523B2 (en) | Ceramic wiring board and manufacturing method thereof | |
JP2019102238A (en) | Conductive paste, and multilayer substrate formed using the same | |
JP7332128B2 (en) | Electronic parts and manufacturing methods thereof | |
KR101501488B1 (en) | Paste for Thick-film Resistor and Method thereof | |
JPH1064332A (en) | Paste for filling through hole, circuit board, and manufacture thereof | |
JPH09260544A (en) | Ceramic circuit board and manufacture therefor | |
JP3554166B2 (en) | Electronic circuit board | |
JP3071514B2 (en) | Multilayer circuit board | |
JP2004022948A (en) | Thick film circuit board and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120217 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |