JP2006194883A - 基板上を走査するためのプローブおよびデータ・ストレージ・デバイス - Google Patents

基板上を走査するためのプローブおよびデータ・ストレージ・デバイス Download PDF

Info

Publication number
JP2006194883A
JP2006194883A JP2006004967A JP2006004967A JP2006194883A JP 2006194883 A JP2006194883 A JP 2006194883A JP 2006004967 A JP2006004967 A JP 2006004967A JP 2006004967 A JP2006004967 A JP 2006004967A JP 2006194883 A JP2006194883 A JP 2006194883A
Authority
JP
Japan
Prior art keywords
probe
beam structure
heating resistor
probe according
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004967A
Other languages
English (en)
Inventor
Thomas Albrecht
アルブレヒト・トーマス
Michel Despont
デスポント・ミシェル
Urs T Duerig
デューリグ、ウルス、ティー
Mark A Lantz
ランツ、マーク、エイ
Hugo E Rothuizen
ロットーゼン、ヒューゴ、イー
Rothuizen Dorothea W Wiesmann
ヴィースマン、ロットーゼン、ドロテーア、ダブリュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2006194883A publication Critical patent/JP2006194883A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/14Particular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/002Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by perturbation of the physical or electrical structure
    • G11B11/007Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by perturbation of the physical or electrical structure with reproducing by means directly associated with the tip of a microscopic electrical probe as defined in G11B9/14
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques

Abstract

【課題】 電力消費の小さいプローブおよびストレージ・デバイスを提供する。
【解決手段】 データ・ストレージ・デバイスは、マークの形態でデータを格納するためのストレージ媒体、および、このストレージ媒体を走査するための少なくとも1つのプローブを含む。ストレージ媒体は、基板に含ませることができる。プローブは、端子を含むカンチレバーを含み、この端子が、電気的接点として機能し、プローブの動作中に、データ・ストレージ・デバイスの共通フレームとすることができるプローブ保持構造に機械的に固定される。プローブは、更に、支持構造を含み、これに対して端子を機械的に直接、またはヒンジを介して結合する。この支持構造は、端子から離れるように延在する。ナノスケールの頂点を有する先端部を設ける。ビーム構造は、加熱抵抗器を含み、端部において支持構造に取り付ける。ビーム構造は、少なくとも先端部の軸に平行な方向において、ビーム構造に当接する支持構造の領域に比べて細くなっている。
【選択図】 図1

Description

本発明は、基板上を走査するためのプローブおよびデータ・ストレージ・デバイスに関する。
本発明の分野において、原子規模まで縮小した材料の構造を撮像し調査するために、ナノメートルの鋭い先端部(tip)を用いる技法が知られている。かかる技法には、原子間力顕微鏡(AFM:atomic force microscopy)および走査トンネル顕微鏡(STM:scanning tunneling microscopy)が含まれる。これらは、特許文献1および特許文献2に開示されている。
走査トンネル顕微鏡および原子間力顕微鏡の開発に基づいて、これらの技術を利用して、新しいストレージの概念が過去数年間に導入されている。ナノスケールの頂点を持つ先端部を有するプローブを用いて、トポグラフィー(topography)を変更し、適切なストレージ媒体を走査する。くぼみ(indentation)マークおよび非くぼみ(non-indentation)マーク等、トポグラフィック・マーク(topographic mark)によって表されるビット列として、データが書き込まれる。先端部は、小さいナノメートル範囲の半径を有する頂点を含み、くぼみマークは、例えば20から40nmの範囲の直径を有する。従って、これらのデータ・ストレージ概念では、超高記憶領域密度が期待される。
AFM原理に基づいたデータ・ストレージ・デバイスが、P. Vettiger等による非特許文献1に開示されている。このストレージ・デバイスが有する読み取りおよび書き込み機能は、各々が先端部を有するプローブのアレイによってストレージ媒体を機械的にx、y走査することに基づいている。プローブは平行に動作し、各プローブが、動作中に、ストレージ媒体の対応するフィールドを走査する。このようにして、高いデータ・レートを達成することができる。ストレージ媒体は、薄いポリメチルメタクリレート(PMMA:polymethylmethacrylate)層を含む。先端部は、接触モードにおいて、ポリマ層の表面上を横断するように動く。接触モードを達成するには、プローブに小さい力を加えて、プローブの先端部がストレージ媒体の表面に接触可能であるようにする。この目的のため、プローブはカンチレバーを含み、その端部に鋭い先端部を保持する。ビットは、ポリマ層におけるくぼみマークまたは非くぼみマークによって表される。カンチレバーは、表面上を横断するように動きながら、表面のこれらのトポグラフィックな変化に対して反応する。くぼみマークは、熱機械的記録によってポリマ表面上に形成される。これを行うには、接触モード中に電流または電圧パルスによって各プローブを加熱して、先端部がポリマ層に接触する箇所で局所的にポリマ層が軟化するようにする。この結果、ナノスケールの直径を有する小さいくぼみが層上に形成される。
また、読み取りも熱機械的な概念によって達成される。加熱器カンチレバーに、ある量の電気的エネルギを供給し、これによってプローブをある温度まで加熱するが、これは、書き込みのために必要であるようなポリマ層を軟化させるほどの高さではない。熱検知は、プローブがくぼみ内を動いている場合には熱輸送の効率が高いので、プローブとストレージ媒体、特にストレージ媒体上の基板との間の熱伝導が変化するという事実に基づいている。この結果、カンチレバーの温度が低下し、従って、その電気抵抗も変化する。そして、この電気抵抗の変化を測定し、これが測定信号として機能する。
STMにおいては、鋭い先端部を表面に接近させて走査し、先端部と表面との間に印加された電圧が、先端部−表面間の分離距離に依存するトンネル電流を生成する。データ・ストレージの観点から考えると、かかる技法を用いて、論理「0」および「1」の格納情報を表す平坦な媒体上のトポグラフィックな変化を撮像または検知することができる。適度な安定した電流を達成するため、先端部−サンプル間の分離距離は、非常に小さく、極めて一定に維持しなければならない。STMでは、走査対象の表面は導電性の材料とする必要がある。
特許文献3は、先端部によって表面上の複数位置にデータを書き込む、あるいは表面上の複数位置からデータを読み取る、またはその両方のための方法および装置を開示する。この装置は、表面上の複数位置の間で先端部を移動させるように設計されている。各位置において、先端部を介して表面に選択的にエネルギを印加し、先端部および表面を選択的にエネルギの選択的印加と同期させる。先端部を移動させて表面と接触させることおよび接触を断つことは、電界を含む力場の選択的な発生によって達成される。
特許文献4は、AFMに基づいたデータ・ストレージ・デバイスのための読み取り/書き込みコンポーネントを開示する。この読み取り/書き込みコンポーネントは、レバー手段および支持構造を含む。レバー手段は、支持構造に接続されて、実質的な旋回移動を行う。レバー手段は、支持構造上の1対の電気供給線間に第1および第2の電流経路を提供し、これを介して、レバー手段は、書き込みモードおよび読み取りモードで動作可能な電力供給手段に使用中に接続することができる。第1の電流経路において、レバー手段上に書き込みモード・ヒータが設けられ、この書き込みモード・ヒータ上に読み取り/書き込み先端部が設けられている。第2の電流経路において、レバー手段上に読み取りモード・ヒータが設けられている。
EP0223918B1号 US4,343,993号 WO02/077988A2号 WO02/37488A1号 P. Vettiger等による「The millipede-more than 1,000 tips forfuture AFM data storage」(IBM Journal ResearchDevelopment、Vol.44、No.3、2000年3月)
かかるストレージ・デバイスが、ハード・ディスク・ドライブのような他の周知のストレージ・デバイス技術と適合するためには、電力消費が小さくなければならない。更に、プローブの電力消費も小さくなければならない。
本発明の1態様によれば、基板上を走査するためのプローブが提供される。このプローブは、端子およびこの端子に機械的に結合した支持構造を含む。支持構造は、例えば、機械的に直接、またはヒンジを介して、端子に結合することができる。支持構造は、端子から離れるように延出する。プローブは、更に、ナノスケールの頂点を有するチップおよびビーム構造を含む。ビーム構造は、加熱抵抗器を含み、その端部で支持構造に取り付けられ、少なくとも先端部の軸に平行な方向(先端部の一端から頂点を貫く方向、後述のz方向)において、ビーム構造に当接する支持構造の領域に比べて細く(薄く)なっている。ビーム構造は、支持構造と共に作用して、プローブの信頼性の高い動作を可能とし、加熱するサイズを小さくすることができる。これによって、支持構造に奪われる熱量を低減することが容易に可能となり、このため、低い消費電力でプローブを動作させることができる。
好適な実施形態では、端子は電気的接点として機能し、プローブの動作中に、プローブ保持構造に機械的に固定される。しかしながら、端子は、プローブの支持構造をプローブ保持構造に固定するための機械的な端子として、または、プローブ保持構造に対する電気的および機械的接点として機能することも可能である。好ましくは、プローブは、少なくともプローブの動作中に、プローブ保持構造によって保持される。支持構造は、プローブ保持構造に永久的に固定することができ、好ましくは、プローブ保持構造と1つの部分を形成することも可能である。何らかのAFM用途等、用途によっては、プローブを、プローブ保持構造から着脱可能とし、これによって、少なくともプローブの動作中はプローブ保持構造に固定することができる。
プローブの好適な実施形態において、加熱抵抗器から支持構造の各端部までのビーム構造内の有効加熱抵抗器距離は、有効温度減衰長の半分以上である。有効加熱抵抗器距離は、各加熱抵抗器からビーム構造の各端部までに渡って、ビーム構造の材料において測定され、従って、各加熱抵抗器とビーム構造の各端部との間の幾何学的な距離を必ずしも表すわけではない。
有効温度減衰長は、ビーム構造の熱伝導率に依存し、ビーム構造と基板との間の媒体の熱伝導率、および、ビーム構造と基板との間の間隔、および、先端部の軸に平行な方向で測定したビーム構造の厚さに依存する。有効加熱抵抗器距離は、一例として、ビーム構造の熱伝導率およびビーム構造と基板との間の媒体の熱伝導率の比にビーム構造の高さおよびビーム構造と基板との間の間隔を乗算したものの平方根によって表すことができる。有効加熱抵抗器距離においてビーム構造に残される熱量は、有効温度減衰長と共に指数的に減少することがわかっている。
この有効加熱抵抗器距離を有効温度減衰長の半分以上に選択することによって、相当な熱量が基板に奪われることが確実となるが、これは望ましいことであり、ビーム構造の機械的特性を考慮するために大きな設計の自由度を有する。
更に好適な実施形態では、有効加熱抵抗器距離は有効温度減衰長以上である。これによって、加熱抵抗器において発生した熱の高い割合が基板に奪われ、支持構造における熱放散は極めて小さいことが保証される。
プローブの更に別の好適な実施形態によれば、有効加熱抵抗器距離は有効温度減衰長の2倍以上である。これによって、加熱抵抗器において発生した熱のほとんど全てが基板に奪われ、支持構造に奪われる熱量は無視できる程度であることが確実となる。
プローブの更に別の好適な実施形態によれば、加熱抵抗器は、ビーム構造の2つの当接するリード間に延在する抵抗器長を有し、これは有効温度減衰長以下である。このため、加熱抵抗器内で特定の所与の温度を達成するために必要な熱量は極めて小さく保たれ、同時に、かかる短い加熱抵抗器を有することによって、ビーム構造の望ましい機械的特性を得ることができる。
更に別の好適な実施形態において、加熱抵抗器長は、有効温度減衰長の半分以下である。このように加熱抵抗器の長さを選択することによって、特定の所与の温度を達成するために必要な熱量が最小限に抑えられる。
プローブの更に別の好適な実施形態では、加熱抵抗器長は、有効温度減衰長の4分の1以下である。これによって、ビーム構造を機械的に安定した方法で設計することが可能となる。
プローブの更に別の実施形態では、ビーム構造のビームは、ビーム構造の厚さよりも大きい幅を有する。これは、ビーム構造の熱感度を高く保つのが容易であるという利点を有する。これは、ビーム構造のビームがビーム構造の厚さよりも小さい幅を有する場合にビーム構造の熱感度が低下し、同時に、特定の所与の温度を達成するために必要な電力消費が小さくならないという所見に基づいている。
プローブの更に別の好適な実施形態では、加熱抵抗器におけるキャリア濃度および加熱抵抗器の体積の選択が、フリッカ雑音が熱雑音よりも1桁小さい、すなわち対象の周波数範囲において約10分の1になるように行われる。これによって、加熱抵抗器から得られた信号の品質を犠牲にすることなく、所望の低い電力消費レベルを達成するために、加熱抵抗器の体積を最小限に抑えることができる。
ジョンソン雑音は、ある温度Tおよび所与の損失電力Pにおいて所与の抵抗Rの抵抗器について、最低の到達可能な電気的雑音レベルを表す。スペクトル抵抗雑音について、1Hz帯域幅当たりの密度は、ジョンソン雑音の場合、以下のように表される。
Figure 2006194883
ここで、kはボルツマン定数である。この他に、全ての抵抗器はフリッカ雑音を伴う。これは1/f雑音とも呼ばれ、低周波数において電気的雑音の中心となる。シリコン・カンチレバーの場合、一般的に、以下のスペクトル抵抗雑音密度が観察される。
Figure 2006194883
ここで、fは周波数であり、αは材料の品質に依存するフーゲ・ファクタ(Hooge factor)であり、Nは抵抗器におけるキャリア数であり、これはキャリア濃度nおよび体積Vの積である。フーゲ・ファクタは、単結晶シリコン・オン・インシュレータについて、3×10-6および3×10-5の間で変動する。しかしながら、これは、ドーパントを組み込み活性化するための異なる方法に依存する。特定のプローブ処理では、これがシリコンから製造される場合、フーゲ・ファクタは一定であると想定され、フリッカ雑音を予測するために使用可能である。フリッカ雑音がジョンソン雑音よりも最大で1桁大きいことを許容することによって、この結果、以下のキャリア数が得られる。これは、補償が存在しない場合にドーパントと等しく、加熱抵抗器の下限として、以下の数式によって表される。
Figure 2006194883
しかしながら、関連周波数範囲の下限において、フリッカ雑音は、ジョンソン雑音の2分の1を超えないようにができることが好ましく、この結果、下限における加熱抵抗器でのキャリア数は、以下のように表される。
Figure 2006194883
プローブの更に別の好適な実施形態では、ビーム構造は、絶縁性を有すると共に断熱性を有する少なくとも1つの補強要素によって機械的に補強される。補強要素をビーム構造に対して適切に配置することによって、プローブの動作中に、ビーム構造が基板上に崩れること、または他の望ましくない過剰な変形を防ぐことができる。このため、ビーム構造の物理的設計において適切な選択を行うことによって、熱の損失およびビーム構造の全体的な電力消費を低く抑えることができ、一方で、少なくとも1つの補強要素を用いることによって、必要な機械的剛性を維持することができる。この点で、補強要素は、誘電特性を有し、更にシリコンの少なくとも3分の1未満の熱伝導性を有し、シリコンの弾性係数の少なくとも5分の1の弾性係数を有することが好ましい。このように、補強要素は、その目的に充分に適切であることが示されている。
プローブの更に別の好適な実施形態では、補強要素は窒化シリコンを含む。特にプローブのほとんどをシリコンから製造する場合に、窒化シリコンは、プローブの製造プロセス中に堆積することが容易であるという利点を有する。
プローブの更に別の好適な実施形態では、補強要素は、二酸化ケイ素を含む。二酸化ケイ素は、機械的剛性が高く、熱伝導率が比較的低く、従って、補強要素として充分に適している。これは、補強要素がセラミックまたはポリマを含む場合、更に有利である。
プローブの更に別の好適な実施形態では、補強要素は補強ブリッジであり、ビーム構造および支持構造に取り付けられる。補強ブリッジは、設計および製造が極めて単純であるという利点を有する。
プローブの更に別の好適な実施形態では、補強要素は補強ビームであり、ビーム構造の延長部の少なくとも一部においてビーム構造に取り付けられている。このため、ビーム構造のために必要な電力消費を著しく損なうことなく、簡単な方法で、ビーム構造の高い剛性を得ることができる。
この点に関して、補強ビームが全体的にビーム構造に沿って延在すると有利である。このため、極めて高い剛性を得ることができる。この点に関して、補強ビームが、ビーム構造の端部の1つから加熱抵抗器へと延在し、加熱抵抗器の前で終端する場合、更に有利である。これによって、ビーム構造の極めて高い合成を保証することができ、同時に、加熱抵抗器から基板への熱伝導の割合を確実に大きくすることができる。
プローブの更に別の好適な実施形態では、補強ビームは、挟むようにビーム構造に取り付けられている。すなわち、ビーム構造は補強ビーム間に挟まれている。これによって、極めて高い剛性を得ることができる。
更に別の好適な実施形態では、補強ビームはU字形の断面に形成されている。このため、補強ビームの高い曲げ剛性を得ることができる。この点に関して、U字形の断面がその末端に向かって先細になっていると、更に好ましい。これによって、更に向上した高い曲げ剛性を得ることができる。
プローブの別の好適な実施形態では、ビーム構造はU字形の断面に形成されている。すなわち、ビーム構造のビームがU字形の断面を有する。また、これによって、ビーム構造の曲げ剛性を大きく向上させることができる。この点に関して、U字形の断面がその末端に向かって先細になっていると、更に有利である。
プローブの更に別の好適な実施形態では、加熱抵抗器は、加熱抵抗器および加熱抵抗器の両端における隣接するリードを含むビーム構造のビームに形成されている。リードは、支持構造に取り付けられている。支持構造は、支持構造の部分を機械的に結合し電気的に分離する少なくとも1つのブリッジ要素を含む。このため、特定の所与の温度に到達するために必要な電力消費に関して、ビーム構造を最適化することができるが、その機械的特性は支持構造によって調節可能である。支持構造の部分を機械的に結合し電気的に分離する少なくとも1つのブリッジ要素を有することによって、確実に各加熱抵抗器の短絡を防ぐことができる。支持構造は、加熱抵抗器に向けて、または加熱抵抗器から離れるように電流を伝えるように機能することができるからである。
また、少なくとも1つのブリッジ要素による電気的分離は、充分に小さい断面を有するブリッジ要素として誘電材料を介在させることによって達成可能である。この結果、静電容量は無視できる程度となる。
プローブの更に別の好適な実施形態では、ブリッジ要素はダイオードである。このため、単にドーピングを行うことによって、ブリッジ要素を得ることができ、ほとんどの関連する場合において、加熱抵抗器の電気的短絡を防ぐことができる。
更に別の好適な実施形態では、ブリッジ要素は2つの逆バイアスをかけたダイオードである。このため、高い信頼性で、加熱抵抗器の短絡を防ぐことができる。
この点に関して、ブリッジ要素が、高濃度にn−ドーピングした領域、低濃度にn−ドーピングした領域、高濃度にp−ドーピングした領域、および高濃度にn−ドーピングした領域の配列を有する横断面を含むと有利である。このため、リードのためのドーピング濃度を、高濃度にn−ドーピングした領域のために選択することができ、一方で、低濃度でn−ドーピングした領域のための別のドーピング濃度を、加熱抵抗器のためのものと同じに選択することができる。この結果、高濃度にp−ドーピングした領域のために、1つのみの追加のドーピング製造ステップが行われる。
本発明の別の態様によれば、マークの形態でデータを格納するためのストレージ媒体および本発明の第1の態様に従った少なくとも1つのプローブを含むデータ・ストレージ・デバイスが提供される。実現可能な好適な実施形態および利点は、本発明の第1の態様のものに対応する。
本発明およびその実施形態は、本発明に従った現在好適であるが例示的なものに過ぎない実施形態の以下の詳細な説明を参照し、添付図面に関連付けて検討することによって、より充分に認められよう。
異なる図面が、同様または一様な内容を有する要素を表す同一の参照を含む場合がある。
図1は、データを格納するために用いるデータ・ストレージ・デバイスの斜視図を示す。このデータ・ストレージ・デバイスは基板2を含み、これは、ベース基板4(図2)および表面基板6から成るものとすることができる。ベース基板4は、シリコンで製造することが好ましい。表面基板6は、薄いポリメチルメタクリレート(PMMA)層で形成することができる。しかしながら、表面基板6は、導電性材料またはパターニングした磁気材料のような異なる材料から成る場合もある。また、表面基板6をストレージ媒体と称することがある。
共通フレーム10の上に、プローブ・アレイ8が搭載されている。図1にはプローブ8を数個のみ示す。しかしながら、データ・ストレージ・デバイスは、1024個またはこれよりはるかに多い数のプローブ8等、多数のプローブを含む場合がある。しかしながら、データ・ストレージ・デバイスは、プローブ8を1つのみ含むこともある。これに加えて、プローブ8は、データを格納すること以外の目的に用いることができる。このため、プローブ8は、例えばプローブ顕微鏡検査の分野にも使用可能である。各プローブ8は、好ましくは第1、第2、および第3の端子11、12、14(図3を参照)の端子を含む。これらは、導電配線を介して制御および情報処理ユニット20に電気的に接続されている。
各プローブ8の端子11、12、14は、全て、制御および情報処理ユニット20に個別に直接接続することができる。しかしながら、配線の複雑さを軽減するため、端子11、12、14は、行配線16および列配線18を介して、更に、場合によっては図示しないマルチプレクサも介して、制御および情報処理ユニット20に接続することができる。
制御および情報処理ユニット20は、端子11、12、14を介してプローブ8に印加する制御パラメータを作成するように、または、端子11から14上に存在する電流もしくは電位差等のパラメータを検知するように設計されている。制御および情報処理ユニット20は、更に、フレーム10に対する基板2の移動を、xおよびy方向、更に、場合によってはz方向に制御するように設計されている。このための作動は、スキャナ22によって達成される。
従って、基板2およびプローブ8を含むフレーム10は、相互に移動可能である。また、z方向における相対的な移動も、プローブ8上にそれぞれ静電力を印加することによって達成することができる。
表面基板6には、論理情報を表すマーク26から30が存在する。好ましくは、それらはトポグラフィック・マークを形成し、くぼみマークとして論理「1」を表し、くぼみマークが存在しない場合は論理「0」を表すことができる。マーク26から30は、ナノスケールの直径のものである。図1ではマーク26から30を数個のみ示すが、これらは実際の物理的特性を表すわけではない。数個のマーク26から30は、一例として図示するに過ぎない。
プローブ8は、ばねカンチレバーであり、端子11、12、14がフレーム10に機械的に固定されている。プローブは、ナノスケールの頂点34を有する先端部32を含む。頂点34は、好ましくは小さいナノメートル範囲の半径を有し、好ましくは100nm以下の範囲であり、別の好適な実施形態では50nm以下の範囲であり、更に別の好適な実施形態では10nm以下の範囲であり、別の好適な実施形態によれば20から40nmの範囲である。先端部34は表面基板6に対向している。くぼみ(マーク)26から30は、プローブ8によってベース基板6に力および熱の組み合わせを加えることによって作成される。マーク26から30を検出するには、先端部32がくぼみ(マーク)26から30の1つの中へと移動したか否かを検知する。プローブ8のための好適な熱機械的概念では、各プローブ8は、書き込みのための第1の加熱抵抗器66および読み取りのための第2の加熱抵抗器68を含む。プローブ8の書き込みモードの間、プローブ8は基板2を横断するように走査され、マーク26から30が生成される場合はいつでも第1の加熱抵抗器66が所与の温度まで加熱され、この結果、先端部32を介して表面基板6へと熱が伝導する。このようにして、表面基板6は局所的に軟化し、これが、先端部32を介してベース基板6に加えられている力と組み合わさって、くぼみマーク26から30の1つが生成される。
読み取りモードにおいては、第2の加熱抵抗器68が、別の所与の温度まで永久的または間欠的に加熱され、先端部32がマーク26から30の1つ内に移動した場合に先端部の軸に平行な距離の変化によって生じる熱放散の変化を検知し、これによってマーク26から30を検出する。
プローブ8は、ヒンジ42、44、46、48(図12)とも称する結合要素を含み、これらは第1から第3の端子11、12、14に当接する。ヒンジ42から48は、支持構造を端子11、12、14に機械的に結合し、従ってフレーム10に結合する。支持構造は、ヒンジから離れるように延出し、脚部36、38を含み、容量性の基台40を含む場合がある。また、支持構造は、端子11、12、14に直接当接する場合もある。ヒンジ42、44、46、48は、ばねカンチレバーのためのばね定数を設定する目的に供される。プローブは、更に、ビーム構造50を含み、これが第1および第2の加熱抵抗器66、68を含む。もっと単純な実施形態では、プローブ8は、加熱抵抗器を1つのみ含む場合があり、これを書き込みモードおよび読み取りモードのために用いる。図3によるプローブ8の第1の実施形態では、ビーム構造50は、第1から第3のビーム52、54、56を含む。ビームは、矢のような形状に配置され、端部で支持構造に取り付けられている。ビーム構造50、つまりビーム52、54、56は、ビーム構造50に当接している支持構造の領域に比べ、少なくとも先端部32の軸に平行な方向において先細になっている。これが意味するのは、ビーム52、54、56の厚さが、支持構造の対応する厚さよりも著しく小さいということである。
図3によるプローブの実施形態では、先端部32は、第1から第3のビーム52、54、56の交差点上に位置する。ビーム52、54、56は、第1から第4のリード(lead)58、60、62、64を含み、これらは、各加熱抵抗器66、68の支持構造への電気的接続点として機能する。
支持構造は、様々な構造部分から成ることができ、これらは、導電率の目的のために設ける場合があるが、必ずしも導電率の目的のために設ける必要はない。むしろ、様々な部分のうちいくつかを、純粋な機械的安定性の理由のためにのみ設けることも可能である。プローブ8の第1の実施形態では、支持構造は、脚部36、38および容量性の基台40を含む。脚部38は、第1の端子11を第3のリード62に電気的に接続する。脚部36は、第3の端子14を第2のリード60に電気的に接続する。容量性の基台40は、第2の端子12を第1のリード58に電気的に接続すること、および、キャパシタの第1の電極を設けるという二重の目的に供する。このキャパシタは、その第1の電極、第2の電極、ならびに第1および第2の電極間の媒体によって形成される。第2の電極は、基板2に形成されることが好ましい。この場合、第1および第2の電極間の媒体は、プローブ8と基板2との間の媒体35である。しかしながら、第2の電極は、第2の電極と基板との間にプローブ8を配置するように位置付けることができる。重要なのは、第2の電極が基板2に対して固定した位置に配置されることである。
第1および第2の電極に、適切に選択した電位差を与えることによって、プローブ8と基板2との間に静電力が作用する。このようにして、プローブ8のz位置が制御され、また、先端部32によって表面基板6上に加えられる力を設定することができる。
しかしながら、第2のビーム54は、必ずしも容量性の基台40を介して第2の端子12に電気的に結合する必要はなく、これは、別の脚部を介して第2の端子12に結合することも可能である。
プローブ8は、好ましくは、全体的にシリコンから製造すると良い。この場合、端子11、12、14、ヒンジ42、44、46、48、脚部36、38、および容量性の基台40は、電気抵抗を低くするために、高濃度でn−ドーピングすることが好ましい。また、リード58、60、62、64も、電気抵抗を低くするために、高濃度でn−ドーピングすると好ましい。製造の目的のため、支持構造およびリード58、64は、同一のドーピング濃度を有することが好ましい。これによって、1つの製造ステップでそれらをドーピングすることができるからである。好ましくは、第1および第2の加熱抵抗器66、68を形成するには、ビーム構造50の各領域を、ビーム構造50の残り部分よりも大幅に低いドーピング濃度でドーピングする。加熱抵抗器66、68は、例えば、プローブ8の動作範囲内の所与の温度について、約11kΩの電気抵抗を有することができる。
ビーム構造50のビーム52、54、56の厚さは、支持構造の各厚さよりも大幅に小さく(薄く)、これは、図12におけるプローブの第3の実施形態の図によって見ることができるが、プローブの他の実施形態にも当てはまる。ビーム構造の厚さは、例えば、支持構造の各厚さの5分の1未満とすることができる。
各加熱抵抗器66、68からのビーム構造内の有効加熱抵抗器距離は、ビーム構造50の各端部へと向かうビーム構造50の材料の延在により得られる距離によって与えられる。この有効加熱抵抗器距離は、支持構造内に伝えることができる熱量についての特徴である。支持構造内への熱の損失を最小限に抑えるために、有効加熱抵抗器距離は、有効温度減衰長λの半分以上または有効温度減衰長λ以上または有効温度減衰長の2倍を超えるように選択し、機械的安定性の制約も考慮する。プローブ8の第1の実施形態では、ビーム構造の有効加熱抵抗器距離は、好ましくは1有効温度減衰長λ以上に選択する。
有効温度減衰長は、以下の式によって表すことができる。
Figure 2006194883
ここで、XSiはシリコンの熱伝導率を表し、約50μW/K*μmであり、XAIRは空気の熱伝導率であり、ここでの対象となる寸法の条件では約25nW/K*μmである。hは、各ビーム52、54、56および表面基板6間の間隔である。間隔hは、プローブ8の動作中、特に先端部32がくぼみ内に移動した場合に変化し得るので、この目的のために所与の公称間隔を考慮することができる。これは、先端部32がくぼみマーク内に位置しない場合の間隔とすることができる。tは、先端部32の軸に平行なビーム52、5456の厚さを示す。好ましくは、ビーム52、54、56の間隔hおよび厚さtは、有効温度減衰長λを最小限に抑えるように選択するが、ビーム構造50の必要な機械的特性および製造上の制約を考慮に入れる。
加熱抵抗器66、68の長さは、有効温度減衰長λ未満または有効温度減衰長λの半分未満または有効温度減衰長の4分の1以下に選択する。プローブの第1の実施形態では、加熱抵抗器の長さは、好ましくは、有効温度減衰長λの半分の範囲で選択する。加熱抵抗器66、68およびリード58、60、62、64の幅は、各厚さtよりも大きく選択する。加熱抵抗器66、68の長さが有効温度減衰長の半分以下に選択される場合、各加熱抵抗器66、68を所与の温度まで加熱するのに必要な電気エネルギ量は、同一のままであり、何ら低減しない。その幅が各厚さよりも小さい場合、例えば電力消費は小さくならないが、加熱抵抗器およびビーム構造全体のz方向を変化させるための感度が低くなる。
加熱抵抗器66およびリード58、60、62、64は、同じ幅および同じ厚さtを有する必要はなく、そのため、表面基板6に対して異なる距離hで離間することができる。この場合、数式F5は、これらの異なる寸法を考慮する必要がある。最大データ転送レートを制限するプローブ8の熱時定数は、表面基板6からの各ビーム52、54、56の間隔hおよびビームの厚さtにも依存することに留意すべきである。熱時定数は、これらの2つのパラメータの積に依存し、従って、この積を最小限に抑えることによってプローブの熱時定数を著しく小さくすることができ、これによって最大データ転送レートを増大させることが可能であることは明らかである。
加熱抵抗器66、68におけるドーピング濃度は、各加熱抵抗器66、68の体積と組み合わせて選択し、対象の周波数範囲の下限において、フリッカ雑音がジョンソン雑音(Johnson noise)よりも1桁小さい、好ましくは2分の1を超えないようにする。対象の周波数範囲は、各電気信号が加熱抵抗器66、68に供給される周波数を含む。
ビーム構造50は、部分的に、または完全に、少なくとも1つの補強要素によって補強することができる。その例を以下の図4から10に示す。補強要素は、絶縁特性を有すると共に断熱特性を有する。この目的のため、補強要素は、図5から8の場合には補強ビームとして形成され、誘電特性を有し、シリコンの少なくとも3分の1の熱伝導性を有し、シリコンの弾性係数の少なくとも5分の1の弾性係数を有しなければならない。好適な材料選択は窒化シリコンであり、これはプローブ8の製造プロセス中に単に堆積すれば良い。機械的特性のためには二酸化ケイ素が好ましいが、プローブの動作温度範囲に適切なセラミックまたはポリマも好適な選択である場合がある。
図4は、一例として、ビーム構造50の第1のビーム52を示す。図5は、第1のビーム52を示し、その全長に渡って補強ビーム72が隣接している。
図6は、補強ビーム72と74との間に挟まれて配置された第1のビーム52を示す。補強ビーム72および74は、ビーム52の全長に渡って延在することができるが、ビーム52の長さに沿って部分的にのみ延在することも可能である。図7は、補強ビーム76、78を配置する更に別の可能な例を示す。図8は、U字形の断面を有する補強ビーム79を示し、これによって補強の剛性を大きく高める。また、補強ビーム79が有するU字形の断面は、Uの自由端を各自由端に向かって先細にすることも可能である。
また、他のビーム54および56も、各補強ビーム72、74、76、78、79によって補強することができる。
図9および10は、ビーム52ならびに第2および第3のビーム54、56が矩形でない断面を有し得る2つの異なる方法を示す。図9において、各ビーム52の断面はU字形である。図10において、第1のビーム52の断面はU字形であり、第1のビーム52はその自由端に向けて先細になっている。このため、第1のビームの剛性が増すが、書き込みモードまたは読み取りモード中に所与の温度に達するための電気的加熱力が著しく増大することはない。また、補強ビーム72、74、76、78、79は、窒化シリコンのプラズマ・エンハンス化学気相付着によって得ることができる。
プローブ8の第2の実施形態(図11)では、ビーム構造50は、ビーム構造50および支持構造に取り付けた補強ブリッジ82、84、86によって機械的に補強されている。補強ブリッジ82は、その端部の一方において第3のリード62に取り付けられ、その他方の端部において容量性の基台40に取り付けられている。補強ブリッジ84は3つの端部を有する。その2つは容量性の基台40に取り付けられ、真ん中の1つの端部は第2のビーム54に取り付けられている。補強ブリッジ82、84、86は、各加熱抵抗器66、68の短絡を防ぐために、絶縁性の材料で形成しなければならない。しかしながら、各補強ブリッジを取り付ける場所によっては、これは必要な特性でない場合があり、このことは補強ブリッジ84に当てはまる。しかしながら、補強ブリッジ82、84、86は、断熱性としなければならない。
図12は、プローブ8の第3の実施形態を示す。ビーム構造は、第1および第2のビーム52、54を含む。第1および第2のビーム52、54は、各々、各端部の双方において、支持構造に取り付けられている。第1のビーム52は、その端部の一方において脚部36に取り付けられ、その他方の端部において容量性の基台40に取り付けられている。第2のビーム54は、その端部の一方において脚部38に、他方の端部において容量性の基台40に取り付けられている。
第1のビーム52は、第1および第2のリード58、60ならびに第1の加熱抵抗器66を含む。それに加えて、第1のビーム52上に、第1の加熱抵抗器66から突出するように先端部32が配置されている。第2のビーム54は、第3および第4のリードならびに第2の加熱抵抗器68を含む。
脚部36、38は、ブリッジ要素88、90、92、94を介して、容量性の基台40に機械的に接続されている。ブリッジ要素は、脚部を容量性の基台40から電気的に分離させるが、それらを機械的に結合する。ビーム52、54を、各端部の双方において支持構造によって保持し、支持構造がビーム52、54をぴんと張るように作用することによって、ビーム52、54は、それら自身で必要な大きさとなり、電力消費を最小限に抑え、プローブ8の熱時定数を小さくし、ビーム52、54の機械的特性に関する制約をごく小さくすることができる。
ブリッジ要素88、90、92、94は、誘電材料の最も単純な実施形態において形成することができる。これは、生成される静電容量を無視できる程度の値とするために、極めて小さい断面を有しなければならない。
しかしながら、これらのブリッジ要素88、90、92、94は、ダイオードとして形成することが好適である。この場合、各脚部36、38の一部として、または容量性プラットフォーム40として、n−ドーピングした領域nを得ることができる。ブリッジ要素88、90、92、94の各領域を反対のドーパントでドーピングすることによって、p−ドーピングした領域を得ることができる。しかしながら、ブリッジ要素88から94は、2つの逆バイアスをかけたダイオードとして具現化して、絶縁効果が極性に依存しないようにすることが好適である。
図13は、2つの逆バイアスをかけたダイオードに基づいたブリッジ要素88から94に好適な実施形態を示す。この実施形態において、ブリッジ要素88から94は、第1の高濃度にn−ドーピングした領域n++、低濃度にn−ドーピングした領域n、高濃度にp−ドーピングした領域p++、および高濃度にn−ドーピングした領域n++の配列を含む。高濃度のn++ドーピング領域は、脚部36、38および容量性基台のドーピング濃度に等しいドーピング濃度を有することができる。低濃度のn−ドーピング領域は、第1および第2の加熱抵抗器66、68内のドーピング濃度に等しいドーピング濃度を有することができる。p++高濃度p−ドーピング領域におけるp注入は、ブリッジ要素の厚さ全体においてp−ドーパント・タイプが支配的となるのに充分な高濃度および充分な深さを有しなければならない。横方向のドーピング・プロファイルを見ると、これは、実際、2つのダイオードが対向していることになる。まず、n++p++ダイオードは、双方のドーパント・タイプが高濃度でドーピングされているので破壊電圧が低い。更に、p++nn++ダイオードである。この濃度は、非対称の電流/電圧特徴を有し、これは、電気的絶縁のため、接合部p++nに逆バイアスがかかっている場合には、もっと高い破壊電圧を有する。ドーピング配列の方向は、これを考慮に入れて選択しなければならず、プローブ8の動作中に第1から第3の端子11、12、14において支配的である典型的な信号特性に依存する。ドーピング領域長は、パンチスルーによる破壊を回避するように計算しなければならないが、異なる注入物間のアラインメント許容度に対応しなければならない。逆バイアス・ダイオードの漏れ電流を最小限に抑えるために、ブリッジ要素の断面は、相当に小さく選択しなければならず、支持構造の異なる構造部分間に輪郭線のようなトレンチを得ることができる。この場合、狭いブリッジ要素88から94のみを設けることができる。
上述の説明から、記載したプローブの様々な実施形態の異なる特徴を組み合わせることが可能であることは明らかである。例えば、図12による第3の実施形態のビーム52、54は、補強ビーム72、74、76、78、79あるいは補強ブリッジ82、84、86またはそれら全て等の補強要素によって補強することができる。
プローブを含むデータ・ストレージ・デバイスの斜視図である。 図1によるストレージ・デバイスの一部の断面図である。 プローブの第1の実施形態の上面図である。 プローブのビーム構造のビームの実施形態を示す。 プローブのビーム構造のビームの実施形態を示す。 プローブのビーム構造のビームの実施形態を示す。 プローブのビーム構造のビームの実施形態を示す。 プローブのビーム構造のビームの実施形態を示す。 ビームの断面の実施形態を示す。 ビームの断面の実施形態を示す。 プローブの第2の実施形態の上面図である。 ブリッジ要素を含むプローブの第3の実施形態の斜視図である。 図12によるブリッジ要素の実施形態の断面図である。
符号の説明
2 基板
4 ベース基板
6 表面基板
8 プローブ
10 フレーム
11、12、14 第1から第3の端子
16 行配線
18 列配線
20 制御および情報処理ユニット
22 スキャナ
x x方向
y y方向
z z方向
26、28、30 マーク
32 先端部
34 頂点
42、44、46、48 ヒンジ
36、38 脚部
40 容量性の基台
50 ビーム構造
52、54、56 第1から第3のビーム
58、60、62、64 第1から第4のリード
66 第1の書き込み用加熱抵抗器
68 第2の書き込み用加熱抵抗器
72、74、76、78 補強ビーム
82、84、86 補強ブリッジ
88、90、92、94 ブリッジ要素
n++ 高濃度にn−ドーピングした領域
n 低濃度にn−ドーピングした領域
p++ 高濃度にp−ドーピングした領域
n++ 高濃度にn−ドーピングした領域

Claims (30)

  1. 基板上を走査するためのプローブであって、
    端子と、
    前記端子に機械的に結合され、前記端子から離れるように伸びる支持構造と、
    ナノスケールの頂点を有する先端部と、
    ビーム構造であって、加熱抵抗器を含み、その端部で前記支持構造に機械的に取り付けられ、少なくとも前記先端部の軸に平行な方向の厚みが、前記ビーム構造に当接する前記支持構造の領域の厚みに比べて薄くなっている、ビーム構造と、
    を含む、プローブ。
  2. 前記加熱抵抗器から前記ビーム構造の各端部までの前記ビーム構造内の有効加熱抵抗器距離が、有効温度減衰長の半分以上であり、前記有効温度減衰長が、前記ビーム構造の熱伝導率に依存し、前記ビーム構造と前記基板との間の媒体の熱伝導率、および、前記ビーム構造と前記基板との間の間隔、および、前記先端部の前記軸に平行な方向で測定した前記ビーム構造の厚さに依存する、請求項1に記載のプローブ。
  3. 前記有効加熱抵抗器距離が前記有効温度減衰長以上である、請求項2に記載のプローブ。
  4. 前記有効加熱抵抗器距離が前記有効温度減衰長の2倍以上である、請求項3に記載のプローブ。
  5. 前記加熱抵抗器が、前記ビーム構造の2つの当接するリード間に延在する抵抗器長を有し、前記抵抗器長が前記有効温度減衰長以下である、請求項1から4のいずれかの項に記載のプローブ。
  6. 前記加熱抵抗器長が前記有効温度減衰長の半分以下である、請求項5に記載のプローブ。
  7. 前記加熱抵抗器長が前記有効温度減衰長の4分の1以下である、請求項6に記載のプローブ。
  8. 前記ビーム構造のビームの幅は前記ビームの厚みよりも大きい、請求項1から7のいずれかの項に記載のプローブ。
  9. 前記加熱抵抗器におけるキャリア濃度および前記加熱抵抗器の体積が、フリッカ雑音が熱雑音よりも1桁小さいようにそれぞれ選択される、請求項1から8のいずれかの項に記載のプローブ。
  10. 前記ビーム構造が、絶縁特性を有すると共に断熱特性を有する少なくとも1つの補強要素によって機械的に補強される、請求項1から9のいずれかの項に記載のプローブ。
  11. 前記補強要素が誘電特性を有し、シリコンの少なくとも3分の1の熱伝導性を有し、シリコンの弾性係数の少なくとも5分の1の弾性係数を有する、請求項10に記載のプローブ。
  12. 前記補強要素が窒化シリコンを含む、請求項11に記載のプローブ。
  13. 前記補強要素が二酸化ケイ素を含む、請求項11または12に記載のプローブ。
  14. 前記補強要素がセラミックを含む、請求項11から13のいずれかの項に記載のプローブ。
  15. 前記補強要素がポリマを含む、請求項11から14のいずれかの項に記載のプローブ。
  16. 前記補強要素が、前記ビーム構造および前記支持構造に取り付けられた補強ブリッジである、請求項10から15のいずれかの項に記載のプローブ。
  17. 前記補強要素が、前記ビーム構造の延長部の少なくとも一部において前記ビーム構造に取り付けられた補強ビームである、請求項10から16のいずれかの項に記載のプローブ。
  18. 前記補強ビームが全体的に前記ビーム構造に沿って伸びる、請求項17に記載のプローブ。
  19. 前記補強ビームが、前記ビーム構造の前記端部の1つから前記加熱抵抗器へと伸び、前記加熱抵抗器の前で終端している、請求項17に記載のプローブ。
  20. 前記補強ビームが挟むように前記ビーム構造に取り付けられている、請求項17から19のいずれかの項に記載のプローブ。
  21. 前記補強ビームがU字形の断面に形成されている、請求項17から20のいずれかの項に記載のプローブ。
  22. 前記U字形の断面がその両末端に向かって薄くになっている、請求項21に記載のプローブ。
  23. 前記ビーム構造がU字形の断面に形成されている、請求項1から22のいずれかの項に記載のプローブ。
  24. 前記U字形の断面がその両末端に向かって薄くなっている、請求項1から23のいずれかの項に記載のプローブ。
  25. 前記加熱抵抗器が、前記加熱抵抗器および前記加熱抵抗器の両端における隣接するリードを含む前記ビーム構造のビームに形成され、前記リードが前記支持構造に取り付けられ、前記支持構造が、前記支持構造の部分を機械的に結合し電気的に分離する少なくとも1つのブリッジ要素を含む、請求項1から24のいずれかの項に記載のプローブ。
  26. 前記ブリッジ要素がダイオードである、請求項25に記載のプローブ。
  27. 前記ブリッジ要素が2つの逆バイアスをかけたダイオードである、請求項25に記載のプローブ。
  28. 前記ブリッジ要素が、高濃度にn−ドーピングした領域、それよりも低濃度にn−ドーピングした領域、p−ドーピングした領域、および高濃度にn−ドーピングした領域の配列を有する横断面を含む、請求項27に記載のプローブ。
  29. 前記端子が、電気的接点として機能し、前記プローブの動作中に、プローブ保持構造に機械的に固定される、請求項1から28のいずれかの項に記載のプローブ。
  30. マークの形態でデータを格納するためのストレージ媒体、および、前記ストレージ媒体を走査するための、請求項1から29のいずれかの項に記載のプローブを少なくとも1つ含む、データ・ストレージ・デバイス。
JP2006004967A 2005-01-13 2006-01-12 基板上を走査するためのプローブおよびデータ・ストレージ・デバイス Pending JP2006194883A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05405018 2005-01-13

Publications (1)

Publication Number Publication Date
JP2006194883A true JP2006194883A (ja) 2006-07-27

Family

ID=36801050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004967A Pending JP2006194883A (ja) 2005-01-13 2006-01-12 基板上を走査するためのプローブおよびデータ・ストレージ・デバイス

Country Status (4)

Country Link
US (1) US7482826B2 (ja)
JP (1) JP2006194883A (ja)
KR (1) KR100724513B1 (ja)
TW (1) TWI372868B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558186B2 (en) 2007-01-02 2009-07-07 International Business Machines Corporation High density data storage medium, method and device
US7723458B2 (en) 2006-06-26 2010-05-25 International Business Machines Corporation Method for high density data storage and read-back
US7749915B2 (en) 2007-03-06 2010-07-06 International Business Machines Corporation Protection of polymer surfaces during micro-fabrication
KR101535519B1 (ko) * 2011-02-10 2015-07-09 하이지트론, 인코포레이티드 나노기계 테스트 시스템
JP7442609B2 (ja) 2017-11-15 2024-03-04 カプレス・アクティーゼルスカブ 熱検出器の計測値を正規化する方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260051B1 (en) * 1998-12-18 2007-08-21 Nanochip, Inc. Molecular memory medium and molecular memory integrated circuit
US7233517B2 (en) * 2002-10-15 2007-06-19 Nanochip, Inc. Atomic probes and media for high density data storage
US20050243592A1 (en) * 2004-04-16 2005-11-03 Rust Thomas F High density data storage device having eraseable bit cells
US20050243660A1 (en) * 2004-04-16 2005-11-03 Rust Thomas F Methods for erasing bit cells in a high density data storage device
US7463573B2 (en) * 2005-06-24 2008-12-09 Nanochip, Inc. Patterned media for a high density data storage device
US20070008866A1 (en) * 2005-07-08 2007-01-11 Nanochip, Inc. Methods for writing and reading in a polarity-dependent memory switch media
US20070008865A1 (en) * 2005-07-08 2007-01-11 Nanochip, Inc. High density data storage devices with polarity-dependent memory switching media
US20070008867A1 (en) * 2005-07-08 2007-01-11 Nanochip, Inc. High density data storage devices with a lubricant layer comprised of a field of polymer chains
US20080001075A1 (en) * 2006-06-15 2008-01-03 Nanochip, Inc. Memory stage for a probe storage device
GB2436412A (en) * 2006-11-27 2007-09-26 Cvon Innovations Ltd Authentication of network usage for use with message modifying apparatus
US20080159114A1 (en) 2007-01-02 2008-07-03 Dipietro Richard Anthony High density data storage medium, method and device
US20080174918A1 (en) * 2007-01-19 2008-07-24 Nanochip, Inc. Method and system for writing and reading a charge-trap media with a probe tip
US8012541B2 (en) 2007-01-24 2011-09-06 International Business Machines Corporation Thermally reversible cross-linked poly (aryl ether ketone) media and method for high density data storage
US20080227478A1 (en) * 2007-03-15 2008-09-18 Greene Charles E Multiple frequency transmitter, receiver, and systems thereof
US20090129246A1 (en) * 2007-11-21 2009-05-21 Nanochip, Inc. Environmental management of a probe storage device
US20090294028A1 (en) * 2008-06-03 2009-12-03 Nanochip, Inc. Process for fabricating high density storage device with high-temperature media
US20100039729A1 (en) * 2008-08-14 2010-02-18 Nanochip, Inc. Package with integrated magnets for electromagnetically-actuated probe-storage device
US20100039919A1 (en) * 2008-08-15 2010-02-18 Nanochip, Inc. Cantilever Structure for Use in Seek-and-Scan Probe Storage
US11973441B2 (en) * 2020-12-18 2024-04-30 Board Of Regents, The University Of Texas System MEMS nanopositioner and method of fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327634A (ja) * 1995-03-30 1996-12-13 Nikon Corp カンチレバー及びこれを用いた加熱装置、並びにこれを用いた加熱・形状計測装置
JP2002154100A (ja) * 2000-11-20 2002-05-28 Canon Inc 微細加工装置及び微細加工方法
JP2004513466A (ja) * 2000-11-03 2004-04-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Afmベースのデータストレージおよび顕微鏡
JP2004521435A (ja) * 2001-03-23 2004-07-15 インターナショナル・ビジネス・マシーンズ・コーポレーション データ読出し/書込みシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197866A (en) * 1977-09-19 1980-04-15 Neal Jerry D Soil moisture sampler and controller
DE69522934T2 (de) * 1995-02-07 2002-04-04 Ibm Messung der AFM Hebelarmauslenkung mit Hochfrequenzstrahlung und Dotierungsprofilometer
JP3785018B2 (ja) * 2000-03-13 2006-06-14 エスアイアイ・ナノテクノロジー株式会社 マイクロプローブおよびそれを用いた走査型プローブ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327634A (ja) * 1995-03-30 1996-12-13 Nikon Corp カンチレバー及びこれを用いた加熱装置、並びにこれを用いた加熱・形状計測装置
JP2004513466A (ja) * 2000-11-03 2004-04-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Afmベースのデータストレージおよび顕微鏡
JP2002154100A (ja) * 2000-11-20 2002-05-28 Canon Inc 微細加工装置及び微細加工方法
JP2004521435A (ja) * 2001-03-23 2004-07-15 インターナショナル・ビジネス・マシーンズ・コーポレーション データ読出し/書込みシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011066279; Vettiger, P et al.: 'The "Millipede"-More than thousand tips for future AFM storage' IBM Journal of Research and Development Volume: 44 Issue: 3, 200005, On page(s): 323 - 340 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723458B2 (en) 2006-06-26 2010-05-25 International Business Machines Corporation Method for high density data storage and read-back
US7558186B2 (en) 2007-01-02 2009-07-07 International Business Machines Corporation High density data storage medium, method and device
US7939620B2 (en) 2007-01-02 2011-05-10 International Business Machines Corporation High density data storage medium, method and device
US8125882B2 (en) 2007-01-02 2012-02-28 International Business Machines Corporation High density data storage medium, method and device
US7749915B2 (en) 2007-03-06 2010-07-06 International Business Machines Corporation Protection of polymer surfaces during micro-fabrication
KR101535519B1 (ko) * 2011-02-10 2015-07-09 하이지트론, 인코포레이티드 나노기계 테스트 시스템
JP7442609B2 (ja) 2017-11-15 2024-03-04 カプレス・アクティーゼルスカブ 熱検出器の計測値を正規化する方法

Also Published As

Publication number Publication date
TW200643977A (en) 2006-12-16
TWI372868B (en) 2012-09-21
KR100724513B1 (ko) 2007-06-07
KR20060082796A (ko) 2006-07-19
US7482826B2 (en) 2009-01-27
US20080013437A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP2006194883A (ja) 基板上を走査するためのプローブおよびデータ・ストレージ・デバイス
US7391707B2 (en) Devices and methods of detecting movement between media and probe tip in a probe data storage system
US5856672A (en) Single-crystal silicon cantilever with integral in-plane tip for use in atomic force microscope system
US6252226B1 (en) Nanometer scale data storage device and associated positioning system
US7787350B2 (en) Data storage device
JP4171304B2 (ja) 分子メモリシステムおよび方法
US7268348B2 (en) Scanning probe for data storage and microscopy
US6507553B2 (en) Nanometer scale data storage device and associated positioning system
KR20020043119A (ko) 접촉 저항 측정을 이용한 정보 저장 장치 및 그 기록과재생 방법
WO1997004449A1 (en) Nanometer scale data storage device and associated positioning system
US6665258B1 (en) Method and apparatus for recording, storing and reproducing information
US5729026A (en) Atomic force microscope system with angled cantilever having integral in-plane tip
JP4979229B2 (ja) 基板に亘って走査するプローブ
KR100690415B1 (ko) Afm 기반의 데이터 저장 장치 및 원자 현미경
US7054257B2 (en) AFM-based data storage and microscopy
US8373431B2 (en) Probe for scanning over a substrate and data storage device
US7885168B2 (en) Read/write device for a mass storage device, and read/write method thereof
KR100634552B1 (ko) 분리된 센서를 구비한 전계감지 프로브 및 그를 구비한정보 저장장치
KR100519221B1 (ko) 나노 정보 저장 장치용 전도도 변화형 캔틸레버 및 그의제조 방법
KR100682921B1 (ko) 수직 pn접합구조의 압전저항센서를 구비한 반도체 탐침
TWI267627B (en) Scanning probe data storage and microscopy
KR20080098143A (ko) 탐침형 원자현미경 기반 나노정보저장장치의 헤드, 그 제조방법 및 나노저장장치
KR20070108026A (ko) 스캐닝 프로브 마이크로스코프 정보 저장장치 및 그의제조방법
KR20050020503A (ko) 에스피엠 나노 정보 저장 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20120830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121114

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20121129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507