JP2006194292A - Thrust roller bearing - Google Patents

Thrust roller bearing Download PDF

Info

Publication number
JP2006194292A
JP2006194292A JP2005004733A JP2005004733A JP2006194292A JP 2006194292 A JP2006194292 A JP 2006194292A JP 2005004733 A JP2005004733 A JP 2005004733A JP 2005004733 A JP2005004733 A JP 2005004733A JP 2006194292 A JP2006194292 A JP 2006194292A
Authority
JP
Japan
Prior art keywords
rollers
radial direction
cage
wear
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005004733A
Other languages
Japanese (ja)
Inventor
Sachiko Noji
祥子 野地
Kenichi Shibazaki
健一 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005004733A priority Critical patent/JP2006194292A/en
Publication of JP2006194292A publication Critical patent/JP2006194292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce excessive wear caused by a centrifugal force acting on each of rollers 2a, 2b. <P>SOLUTION: At a plurality of positions in a circumferential direction, pockets 9a, 9b for holding the rollers 2a, 2b, respectively, are provided radially in a plurality of rows. Besides, the axial length a<SB>0</SB>of each of the outside rollers 2b, 2b in the axial direction of a retainer 3b is made shorter compared to axial lengths a<SB>i</SB>of the inside rollers 2a, 2a in the same direction of the retainer (a<SB>0</SB><a<SB>i</SB>). As a result, the centrifugal force acting on each of the rollers 2b, 2b positioned outside can be reduced and thereby the wear of sliding portions can be reduced between outside end faces of each of the rollers 2b, 2b positioned outside in the axial direction of a retainer 3b and inside faces of pockets 9b, 9b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明に係るスラストころ軸受(スラストニードル軸受を含む)は、例えば自動車のトランスミッションやトルクコンバータ等の回転部分に装着して、軸方向に対向する1対の部材同士の間に加わるスラスト荷重を支承しつつ、これら両部材の相対回転を自在とする為に利用する。   A thrust roller bearing (including a thrust needle bearing) according to the present invention is mounted on a rotating part of, for example, an automobile transmission or a torque converter, and supports a thrust load applied between a pair of members opposed in the axial direction. However, it is used to freely rotate these two members.

トランスミッションやトルクコンバータ、或いはカークーラ用コンプレッサ等の回転部分には、例えば図3に示す様なスラストころ軸受1を装着して、回転軸等に加わるスラスト荷重を支承している(例えば、特許文献1参照)。このスラストころ軸受1は、放射方向に配列された複数のころ2と、全体を円輪状に造られて、これら各ころ2を転動自在に保持する保持器3と、これら各ころ2を軸方向(図3の左右方向)両側から挟持する外輪4及び内輪5とから成る。それぞれが特許請求の範囲に記載した軌道輪部材に相当する、上記外輪4及び内輪5は、それぞれ上記各ころ2と転がり接触する円輪状のレース部6を備える。   For example, a thrust roller bearing 1 as shown in FIG. 3 is mounted on a rotating portion of a transmission, a torque converter, a car cooler compressor, or the like to support a thrust load applied to a rotating shaft or the like (for example, Patent Document 1). reference). The thrust roller bearing 1 includes a plurality of rollers 2 arranged in a radial direction, a cage 3 that is formed in an annular shape as a whole, and holds the rollers 2 in a freely rolling manner, and the rollers 2 are pivoted. It consists of an outer ring 4 and an inner ring 5 that are sandwiched from both sides in the direction (left-right direction in FIG. 3). The outer ring 4 and the inner ring 5, each corresponding to a bearing ring member described in the claims, are each provided with a ring-shaped race portion 6 that is in rolling contact with the rollers 2.

又、上記保持器3は、それぞれが金属板により断面コ字形で全体を円環状に造られた1対の素子7a、7bを、最中状に組み合わせて成る。これら各素子7a、7bの円輪部8、8にはそれぞれ、上記各ころ2と同数のポケット9を構成する為の窓孔10、10を放射方向に設けている。そして、この様な窓孔10、10を設けた各素子7a、7b同士を、これら各窓孔10、10の位相が一致する状態で組み合わせる事により、上記保持器3を構成している。尚、この様な1対の素子7a、7bを最中状に組み合わせて成る保持器3の他、例えば合成樹脂により造られた円輪状の主部に、軸方向両側面同士を貫通する状態でポケットを設けて成る保持器も、従来から知られている。   The cage 3 is formed by combining a pair of elements 7a and 7b, each of which is U-shaped in cross section with a metal plate, and is formed in an annular shape as a whole. The annular portions 8 and 8 of the elements 7a and 7b are respectively provided with window holes 10 and 10 in the radial direction for constituting the same number of pockets 9 as the rollers 2. And the said holder | retainer 3 is comprised by combining each element 7a, 7b which provided such window holes 10 and 10 in the state with which the phase of these each window holes 10 and 10 corresponds. In addition to the cage 3 formed by combining such a pair of elements 7a and 7b in the middle, an annular main portion made of, for example, a synthetic resin penetrates both axial sides. A cage having a pocket is also known in the art.

上述の様に構成するスラストころ軸受1の使用時には、上記外輪4を構成する外側フランジ11を、例えばケーシング12の保持部13に内嵌した状態で、上記外輪4のレース部6の軸方向他側面を、上記ケーシング12の段部14に当接させる。これと共に、上記内輪5のレース部6の軸方向他側面を、例えば軸15の段部16に当接させる。そして、この状態で、上記軸15を上記ケーシング12に対して回転自在に支持すると共に、これら軸15とケーシング12との間に作用するスラスト荷重を支承自在とする。   When the thrust roller bearing 1 configured as described above is used, the outer flange 11 configuring the outer ring 4 is fitted in the holding portion 13 of the casing 12, for example, in the axial direction of the race portion 6 of the outer ring 4. The side surface is brought into contact with the step portion 14 of the casing 12. At the same time, the other axial side surface of the race portion 6 of the inner ring 5 is brought into contact with, for example, a step portion 16 of the shaft 15. In this state, the shaft 15 is rotatably supported with respect to the casing 12, and a thrust load acting between the shaft 15 and the casing 12 can be supported.

ところで、上述の様なスラストころ軸受1の使用時、上記各ころ2には、図3に矢印αで示す様に、保持器3の径方向外側(図3の上側)に向けて遠心力が加わる。そして、この様な遠心力に基づき上記各ころ2は、軸方向(図3の上下方向)両端面のうちで上記保持器3の径方向に関し外側の端面(外端面)を、この外端面と対向(摺接)する上記ポケット9の内面(窓孔10、10の開口縁)に強く押し付けた状態で、自転しつつ公転する。この為、この様な押し付けに基づき、上記各ポケット9の内面のうちで上記各ころ2の外端面と摺接する部分が、過度に摩耗する可能性がある。   By the way, when the thrust roller bearing 1 as described above is used, each of the rollers 2 receives a centrifugal force toward the radially outer side (upper side in FIG. 3) of the cage 3 as indicated by an arrow α in FIG. Join. Based on such centrifugal force, each of the rollers 2 has an end face (outer end face) outside in the radial direction of the cage 3 among both end faces in the axial direction (vertical direction in FIG. 3). In a state where it is strongly pressed against the inner surface (opening edge of the window holes 10 and 10) of the pocket 9 facing (sliding contact), it revolves while rotating. For this reason, based on such pressing, the portion of the inner surface of each pocket 9 that is in sliding contact with the outer end surface of each roller 2 may be excessively worn.

この様な過度の摩耗を防止すべく、特許文献2には、各ころの端面と各ポケットとの内面との摺接部の摩擦抵抗を小さくする発明が記載されている。即ち、スラストころ軸受を構成する保持器の各ポケット内に、各ころを1乃至は(保持器の径方向に)複数個ずつ設けると共に、これら各ころの軸方向両端面の精度(表面粗さ)を規制する発明が記載されている。但し、この様に各ころの両端面の表面粗さを規制する事により、上記摺接部の摩擦抵抗を小さくしても、上記各ころに加わる遠心力を小さくする事はできない。この為、この様に表面粗さを規制(摩擦抵抗を小さく)しただけでは、前述の様な各ころに加わる遠心力に基づく過度の摩耗を防止する効果を十分には得られないと考えられる。   In order to prevent such excessive wear, Patent Document 2 describes an invention in which the frictional resistance of the sliding contact portion between the end surface of each roller and the inner surface of each pocket is reduced. That is, one or more rollers (in the radial direction of the cage) are provided in each pocket of the cage constituting the thrust roller bearing, and the accuracy (surface roughness) of both end surfaces in the axial direction of these rollers is provided. ) Is described. However, by regulating the surface roughness of both end faces of each roller in this way, the centrifugal force applied to each roller cannot be reduced even if the frictional resistance of the sliding contact portion is reduced. For this reason, it is considered that the effect of preventing excessive wear based on the centrifugal force applied to each roller as described above cannot be sufficiently obtained only by regulating the surface roughness (decreasing the frictional resistance). .

一方、特許文献3には、図4〜5に示す様に、各ころ2、2をそれぞれ保持する為のポケット9、9を、保持器3aの円周方向複数個所に、径方向に関し2列に設け、これら各ポケット9、9に上記各ころ2、2を1個ずつ設けたスラストころ軸受1aが記載されている。この様な従来構造の場合、例えば同径のスラストころ軸受で各ころを保持器の径方向に関し1列に設けたものに比べて、1個当たりのころ2、2の軸方向長さの短縮化、軽量化を図れる。但し、上記特許文献3に記載された構造の場合には、上記保持器3aの径方向に関し外側に位置するころ2、2の軸方向長さao を、同じく内側に位置するころ2、2の軸方向長さai 以上(ao ≧ai )とし、この様な構成を採用する事により、上記各ころ2、2の差動滑りの低減化を図っている。 On the other hand, in Patent Document 3, as shown in FIGS. 4 to 5, pockets 9 and 9 for holding the rollers 2 and 2 respectively are arranged in two rows in the radial direction at a plurality of locations in the circumferential direction of the cage 3a. And a thrust roller bearing 1a in which each of the rollers 9, 2 is provided in each of the pockets 9, 9. In the case of such a conventional structure, for example, the axial length of the rollers 2 and 2 per roller is shortened as compared with a thrust roller bearing having the same diameter, in which each roller is provided in a row in the radial direction of the cage. And weight reduction. However, in the case of the structure described in Patent Document 3, the axial length a o of the rollers 2 and 2 positioned outside in the radial direction of the cage 3a is set to the rollers 2 and 2 that are also positioned inside. The axial slip length a i is greater than or equal to (a o ≧ a i ), and by adopting such a configuration, the differential slip of the rollers 2 and 2 is reduced.

ところが、上記各ころ2、2に加わる遠心力は、これら各ころ2、2が重くなる程(材質並びに外径が同じであれば軸方向長さが大きくなる程)、更には公転中心からの距離が大きくなる程(保持器3aの径方向に関し外側に位置する程)大きくなる。この為、上述の様な特許文献3に記載された構造の場合は、差動滑りを小さくできても、上記保持器3aの径方向に関し外側に位置する各ころ2、2に加わる遠心力を十分に小さくはできない。そして、この様に外側のころ2、2に加わる遠心力を十分に小さくできないと、上記各ポケット9、9の内面のうちでこれら外側のころ2、2の外端面と摺接する部分が、同じく内側のころ2、2の外端面と摺接する部分に比べて過度に摩耗する可能性がある。   However, the centrifugal force applied to each of the rollers 2 and 2 increases as the rollers 2 and 2 become heavier (the longer the axial length is as long as the material and outer diameter are the same), and further from the center of revolution. The larger the distance is, the greater the distance is located on the outer side in the radial direction of the cage 3a. For this reason, in the case of the structure described in Patent Document 3 as described above, even if the differential slip can be reduced, the centrifugal force applied to the rollers 2 and 2 positioned on the outer side in the radial direction of the retainer 3a is reduced. It cannot be small enough. If the centrifugal force applied to the outer rollers 2 and 2 cannot be made sufficiently small in this way, the portions of the inner surfaces of the pockets 9 and 9 that are in sliding contact with the outer end surfaces of the outer rollers 2 and 2 are the same. The inner rollers 2 and 2 may be excessively worn as compared with the portion in sliding contact with the outer end surfaces.

特開2000−266043号公報JP 2000-266043 A 特開2004−156744号公報JP 2004-156744 A 特開2003−156050号公報JP 2003-156050 A

本発明のスラストころ軸受は、上述の様な事情に鑑み、各ころに加わる遠心力に基づく過度の摩耗を低減できる構造を実現すべく発明したものである。   The thrust roller bearing of the present invention has been invented to realize a structure capable of reducing excessive wear based on the centrifugal force applied to each roller in view of the above-described circumstances.

本発明のスラストころ軸受は、前述した従来のスラストころ軸受と同様に、軌道輪部材と、複数のころと、保持器とを備える。
このうちの軌道輪部材は、軸方向片側面を軌道とした円輪状のレース部を備えたものである。 又、上記各ころは、放射方向に配列された状態で、それぞれの転動面を上記軌道に転がり接触させている。
又、上記保持器は、円輪状のもので、上記各ころを転動自在に保持する。
そして、この保持器は、上記各ころをそれぞれ保持する為のポケットを、円周方向複数個所に、径方向に関し複列(2列以上)に設けている。
特に、本発明のスラストころ軸受に於いては、上記各ころの軸方向長さを、上記保持器の径方向に関し外側に位置するもの程、同じく内側に位置するものに比べて小さくしている。
The thrust roller bearing of the present invention includes a bearing ring member, a plurality of rollers, and a cage, like the conventional thrust roller bearing described above.
Of these, the race ring member includes an annular race portion having a raceway on one side in the axial direction. In addition, the respective rollers are in rolling contact with the raceways in the state of being arranged in the radial direction.
The retainer is in the shape of a ring and holds the rollers in a rollable manner.
This cage is provided with a plurality of pockets (two or more rows) in the radial direction at a plurality of locations in the circumferential direction for holding the rollers.
In particular, in the thrust roller bearing of the present invention, the axial length of each of the rollers is made smaller in the axial direction than in the inner side in the radial direction of the cage. .

上述の様に、本発明のスラストころ軸受の場合には、保持器の径方向に関し外側に位置する各ころ、即ち公転中心から遠い側の各ころの軸方向長さを、同じく内側に位置する各ころ、即ち公転中心に近い側の各ころの軸方向長さに比べて小さくしている。この為、上記外側に位置する各ころに加わる遠心力の低減を図れ、これら外側に位置する各ころの外端面(軸方向両端面のうちで保持器の径方向に関し外側の端面)とポケットの内面との摺接部の摩耗を低減できる。   As described above, in the case of the thrust roller bearing according to the present invention, the axial lengths of the rollers positioned on the outer side in the radial direction of the cage, that is, the rollers far from the revolution center, are also positioned on the inner side. Each roller, that is, the length in the axial direction of each roller closer to the center of revolution is made smaller. For this reason, it is possible to reduce the centrifugal force applied to each of the rollers positioned on the outside, and the outer end surfaces (the end surfaces on the outer side in the radial direction of the cage of the two axial end surfaces) and the pockets of the rollers positioned on the outside. Wear of the sliding contact portion with the inner surface can be reduced.

尚、上記各ころは、径方向に関し内側に位置するものと同じく外側に位置するものとを径方向に重畳させる(円周方向の位相を合わせる)他、円周方向にずらせる(円周方向の位相をずらせる)事もできる。又、径方向に重畳するものとずらせたものとを混在させる事もできる。何れの場合でも、各ころの軸方向長さを、公転中心(保持器の回転中心)から遠い側のもの程小さくすれば、この遠い側の各ころに加わる遠心力の低減を図れ、上述の様な摺接部の摩耗を低減できる。   In addition, the above rollers are shifted in the circumferential direction in addition to overlapping in the radial direction (the phases in the circumferential direction are matched) with those located on the outside as well as those located on the inside in the radial direction (circumferential direction Can be shifted). Moreover, what overlaps in the radial direction and what is shifted can be mixed. In any case, if the axial length of each roller is made smaller on the side farther from the revolution center (rotation center of the cage), the centrifugal force applied to each roller on this far side can be reduced, and the above-mentioned It is possible to reduce the wear of such sliding contact parts.

本発明を実施する場合に好ましくは、請求項2に記載した様に、保持器の径方向に関し内側に位置するころの密度をρi とし、同じく軸方向長さをai とし、同じく半径(外径の1/2)をri とし、同じく重心と公転中心との距離をRi とすると共に、上記保持器の径方向に関し外側に位置するころの密度をρo とし、同じく軸方向長さをao とし、同じく半径(外径の1/2)をro とし、同じく重心と公転中心との距離をRo とした場合に、0.9≦{ρii (rii2 }/{ρoo (roo2 }≦1.1とする。より好ましくは、0.95≦{ρii (rii2 }/{ρoo (roo2 }≦1.05とする。 Preferably, when carrying out the present invention, as described in claim 2, the density of the rollers positioned inside in the radial direction of the cage is ρ i , the axial length is also a i , and the radius ( ½ of the outer diameter is denoted by r i , the distance between the center of gravity and the center of revolution is denoted by R i, and the density of the rollers positioned outside in the radial direction of the cage is denoted by ρ o , and the axial length is also the same. It was a a o is likewise radius (half the outer diameter) and r o, also the distance between the center of gravity and the center of revolution in the case of the R o, 0.9 ≦ {ρ i a i (r i R i ) 2 } / {ρ o a o (r o R o ) 2 } ≦ 1.1. More preferably, 0.95 ≦ {ρ i a i (r i R i ) 2 } / {ρ o a o (r o R o ) 2 } ≦ 1.05.

この様に構成すれば、保持器の径方向に関し外側に位置するころの軸方向外端面(保持器の径方向に関し外側の端面)とポケットの内面との摺接部の摩耗量と、同じく内側に位置するころの外端面とポケットの内面との摺接部の摩耗量とを同程度に(両部の摩耗量に大きな差が生じない様に)できる。言い換えれば、外側に位置する上記摺接部の摩耗量が内側に位置する上記摺接部の摩耗量に比べて明らかに多くなる事、或いは逆に、内側に位置する上記摺接部の摩耗量が外側に位置する上記摺接部の摩耗量に比べて明らかに多くなる事を防止して、全体として摩耗を均一にできる。そして、寿命の最適化(長寿命化)を図れる。以下、この理由に就いて、本発明の実施例を示す図1〜2を参照しつつ説明する。   If comprised in this way, the amount of wear of the sliding contact part of the axial direction outer end surface (end surface outside on the radial direction of the cage) and the inner surface of the pocket located on the outer side with respect to the radial direction of the cage, The amount of wear at the sliding contact portion between the outer end surface of the roller positioned at the inner surface of the pocket and the inner surface of the pocket can be made the same level (so that there is no great difference in the amount of wear at both portions). In other words, the wear amount of the sliding contact portion located on the outer side is obviously larger than the wear amount of the sliding contact portion located on the inner side, or conversely, the wear amount of the sliding contact portion located on the inner side. It is possible to prevent the amount of wear from becoming significantly larger than the amount of wear of the sliding contact portion located on the outside, and to make wear uniform as a whole. In addition, the lifetime can be optimized (long life). Hereinafter, this reason will be described with reference to FIGS. 1 and 2 showing an embodiment of the present invention.

各ころ2a、2bの外端面(保持器3bの径方向に関し外側の端面)と各ポケット9a、9bの内面との摺接部の摩耗の程度(摩耗量)は、これら各摺接部に加わる力と滑り速度との積(所謂PV値)によって決まる。言い換えれば、上記各ころ2a、2bに加わる遠心力とこれら各ころ2a、2bの外端面の周速との積が、上記摺接部の摩耗量に影響する(遠心力と周速との積が大きい程摺接部の摩耗量が多くなる)。   The degree of wear (amount of wear) of the sliding contact portion between the outer end surface of each roller 2a, 2b (the outer end surface with respect to the radial direction of the cage 3b) and the inner surface of each pocket 9a, 9b is applied to each sliding contact portion. It is determined by the product of the force and the sliding speed (so-called PV value). In other words, the product of the centrifugal force applied to each of the rollers 2a and 2b and the peripheral speed of the outer end surface of each of the rollers 2a and 2b affects the amount of wear of the sliding contact portion (product of the centrifugal force and the peripheral speed). The larger the is, the greater the amount of wear of the sliding contact portion).

ここで、保持器3bの径方向に関し内側に位置する各ころ2a、2a(内側の各ころ2a、2aとする)の質量をmi 、同じく外側に位置する各ころ2b、2b(外側の各ころ2b、2bとする)の質量をmo 、これら内側、外側両ころ2a、2bの公転角速度をωとすると共に、前述の様に内側の各ころ2a、2aの重心Gi と公転中心Oとの距離をRi 、外側の各ころ2b、2bの重心Go と公転中心Oとの距離をRo とすれば、これら内側、外側各ころ2a、2bに加わる遠心力Fi 、Fo はそれぞれ、下記の(1)(2)式で表せる。
i =mii ω2 −−−(1)
o =moo ω2 −−−(2)
Here, the mass of each roller 2a, 2a (referred to as each inner roller 2a, 2a) located inside with respect to the radial direction of the cage 3b is m i , and each roller 2b, 2b located outside (each outside) The mass of the rollers 2b and 2b) is m o , the revolution angular velocity of both the inner and outer rollers 2a and 2b is ω, and the center of gravity G i and the center of revolution O of each of the inner rollers 2a and 2a as described above. distance R i and, if the outside of each roller 2b, the distance between the center of gravity G o and revolution center O of 2b and R o, these inner, a centrifugal force F i applied outside the rollers 2a, 2b, F o Can be expressed by the following equations (1) and (2).
F i = m i R i ω 2- (1)
F o = m o R o ω 2 --- (2)

又、前述の様に、内側の各ころ2a、2aの密度をρi 、同じく軸方向長さをai 、同じく半径をri とすると共に、外側の各ころ2b、2bの密度をρo 、同じく軸方向長さをao 、同じく半径をro とすれば、これら内側、外側各ころ2a、2bの質量mi 、mo はそれぞれ、下記の(3)(4)式で表せる。
i =ρii πri 2 −−−(3)
o =ρoo πro 2 −−−(4)
Further, as described above, the density of the inner rollers 2a, 2a is ρ i , the axial length is a i , the radius is r i, and the density of the outer rollers 2b, 2b is ρ o. likewise if the axial length a o, like the radius r o, these inner, outer the rollers 2a, the mass m i of 2b, m o respectively, expressed by (3) (4) below.
m i = ρ i a i πr i 2- (3)
m o = ρ o a o πr o 2 --- (4)

又、内側の各ころ2a、2aの自転角速度をωi とし、外側の各ころ2b、2bの自転角速度をωo とすると、これら内側、外側各ころ2a、2bの周速Vi 、Vo はそれぞれ、下記の(5)(6)式で表せる。
i =ri ωi −−−(5)
o =ro ωo −−−(6)
又、上記内側、外側各ころ2a、2bが滑る事なく自転しつつ公転していると考えた場合、上記(5)(6)式は、次の(7)(8)式で表せる。
i =ri ωi =Ri ω −−−(7)
o =ro ωo =Ro ω −−−(8)
Further, when the rotational angular velocity of the inner rollers 2a and 2a is ω i and the rotational angular velocity of the outer rollers 2b and 2b is ω o , the peripheral speeds V i and V o of the inner and outer rollers 2a and 2b are set. Can be expressed by the following equations (5) and (6).
V i = r i ω i --- (5)
V o = r o ω o --- (6)
Further, when it is considered that the inner and outer rollers 2a and 2b are revolving without rotating, the above equations (5) and (6) can be expressed by the following equations (7) and (8).
V i = r i ω i = R i ω −−− (7)
V o = r o ω o = R o ω −−− (8)

前述の様に摺接部の摩耗し易さは、各ころ2a、2bに加わる遠心力とこれら各ころ2a、2bの周速との積に影響される。従って、内側の各ころ2a、2aの外端面と各ポケット9a、9aの内面との摺接部の摩耗量と、外側の各ころ2b、2bの外端面と各ポケット9b、9bの内面との摺接部の摩耗量とを同程度にする為には、これら内側の各ころ2a、2aに関する上記積と、外側の各ころ2b、2bに関する上記積とを、同程度にすれば良い。言い換えれば、下記の(9)式に示す様に、上記内側の各ころ2a、2aに関する上記積と上記外側の各ころに関する上記積との比を、0.9〜1.1の範囲内(±10%の範囲内)、より好ましくは0.95〜1.05の範囲内(±5%の範囲内)に収まる様に規制すれば、上記各摺接部の摩耗量を同程度にできる。
0.9≦(Fii )/(Foo )≦1.1 −−−(9)
As described above, the ease of wear of the sliding contact portion is affected by the product of the centrifugal force applied to each roller 2a, 2b and the peripheral speed of each roller 2a, 2b. Therefore, the wear amount of the sliding contact portion between the outer end surfaces of the inner rollers 2a and 2a and the inner surfaces of the pockets 9a and 9a, and the outer end surfaces of the outer rollers 2b and 2b and the inner surfaces of the pockets 9b and 9b In order to make the wear amount of the sliding contact portion approximately the same, the above-described product relating to the inner rollers 2a, 2a and the above-described product relating to the outer rollers 2b, 2b may be set to the same degree. In other words, as shown in the following formula (9), the ratio of the product related to the inner rollers 2a, 2a and the product related to the outer rollers is within a range of 0.9 to 1.1 ( Within the range of ± 10%), more preferably within the range of 0.95 to 1.05 (within the range of ± 5%), the amount of wear at each sliding contact portion can be made comparable. .
0.9 ≦ (F i V i ) / (F o V o ) ≦ 1.1 (9)

尚、上記積の比が0.9(より好ましくは0.95)よりも小さくなる場合には、上記外側の各ころ2b、2bに関する摺接部の摩耗量が、上記内側のころ2a、2aに関する摺接部の摩耗量に比べて多くなり過ぎる可能性がある。これに対し、上記積の比が1.1(より好ましくは1.05)よりも大きくなる場合には、上記内側の各ころ2a、2aに関する摺接部の摩耗量が、上記外側の各ころ2b、2bに関する摺接部の摩耗量に比べて多くなり過ぎる可能性がある。この様な理由から、上述の(9)式に示す様に、上記積の比を規制する。   When the ratio of the products is smaller than 0.9 (more preferably 0.95), the amount of wear of the sliding contact portions related to the outer rollers 2b and 2b is set to the inner rollers 2a and 2a. There is a possibility that the amount of wear of the sliding contact portion will be too much. On the other hand, when the product ratio is larger than 1.1 (more preferably 1.05), the amount of wear of the sliding contact portion related to the inner rollers 2a and 2a is larger than the outer rollers. There is a possibility that the amount of wear of the sliding contact portion related to 2b and 2b becomes too much. For this reason, the product ratio is regulated as shown in the above equation (9).

そして、この様な(9)式を、上記(3)〜(8)式を使って解くと、下記の(10)式が得られる。
0.9≦{(mii ω2 )(ri ωi )}/{(moo ω2 )(ro ωo )}≦1.1
0.9≦{(mii ω2 )(Ri ω)}/{(moo ω2 )(Ro ω)}≦1.1 0.9≦(mii 2)/(moo 2)≦1.1
0.9≦{(ρii πri 2)Ri 2}/{(ρoo πro 2)Ro 2}≦1.1
0.9≦{ρii (rii2 }/{ρoo (roo2 }≦1.1 −−−(10)
Then, by solving such equation (9) using the above equations (3) to (8), the following equation (10) is obtained.
0.9 ≦ {(m i R i ω 2 ) (r i ω i )} / {(m o R o ω 2 ) (r o ω o )} ≦ 1.1
0.9 ≦ {(m i R i ω 2 ) (R i ω)} / {(m o R o ω 2 ) (R o ω)} ≦ 1.1 0.9 ≦ (m i R i 2 ) / (M o R o 2 ) ≦ 1.1
0.9 ≦ {(ρ i a i πr i 2) R i 2} / {(ρ o a o πr o 2) R o 2} ≦ 1.1
0.9 ≦ {ρ i a i (r i R i ) 2 } / {ρ o a o (r o R o ) 2 } ≦ 1.1 −−− (10)

ここで内側、外側各ころ2a、2bの材質が同じ、即ち密度が同じ(ρi =ρo )場合は、下記の(11)式が得られる。
0.9≦{ai (rii2 }/{ao (roo2 }≦1.1 −−−(11) この様な場合には、これら各ころ2a、2bの軸方向長さai 、ao と、これら各ころ2a、2aの半径ri 、ro と、公転中心Oからの距離Ri 、Ro との関係を、上記(11)式を満たす様に規制すれば、これら内側の各ころ2a、2aの外端面と各ポケット9a、9aの内面との摺接部の摩耗量と、外側の各ころ2b、2bの外端面と各ポケット9b、9bの内面との摺接部の摩耗量とを同程度にできる。そして、この様に摩耗量を同程度にできれば、外側に位置する上記摺接部の摩耗量が内側に位置する上記摺接部の摩耗量に比べて多くなる事、或いは逆に、内側に位置する上記摺接部の摩耗量が外側に位置する上記摺接部の摩耗量に比べて多くなる事を防止して、全体として摩耗を均一にできる事による寿命の最適化(長寿命化)を図れる。
Here, when the materials of the inner and outer rollers 2a and 2b are the same, that is, when the density is the same (ρ i = ρ o ), the following equation (11) is obtained.
0.9 ≦ {a i (r i R i ) 2 } / {a o (r o R o ) 2 } ≦ 1.1 (11) In such a case, these rollers 2a, 2b The relationship between the axial lengths a i and a o , the radii r i and r o of these rollers 2a and 2a, and the distances R i and R o from the revolution center O satisfies the above-mentioned formula (11). If it regulates like this, the wear amount of the sliding contact portion between the outer end surfaces of the inner rollers 2a, 2a and the inner surfaces of the pockets 9a, 9a, the outer end surfaces of the outer rollers 2b, 2b and the pockets 9b, The amount of wear of the sliding contact portion with the inner surface of 9b can be made comparable. If the wear amount can be made similar to the above, the wear amount of the sliding contact portion located on the outer side becomes larger than the wear amount of the sliding contact portion located on the inner side. This prevents the amount of wear of the sliding contact portion from increasing compared to the amount of wear of the sliding contact portion located outside, and optimizes the life (long life) by making the wear uniform as a whole. I can plan.

尚、上記内側、外側各ころ2a、2aの半径ri 、ro が同じ大きさ(ri =ro )の場合は、下記の(12)式が得られる。
0.9≦(aii 2)/(aoo 2)≦1.1 −−−(12)
この様な場合には、上記各ころ2a、2bの軸方向長さai 、ao と、上記公転中心Oからの距離Ri 、Ro とを、上記(12)式を満たす様に規制する。この場合、上記公転中心Oからの距離Ri 、Ro の関係はRi <Ro である為、上記(12)式を満たす為には、外側の各ころ2b、2bの軸方向長さao を、内側の各ころ2a、2aの軸方向長さai に比べて小さく(ai >ao に)する。
If the radii r i and r o of the inner and outer rollers 2a and 2a are the same (r i = r o ), the following equation (12) is obtained.
0.9 ≦ (a i R i 2 ) / (a o R o 2 ) ≦ 1.1 (12)
In such a case, the axial lengths a i and a o of the rollers 2a and 2b and the distances R i and R o from the revolution center O are regulated so as to satisfy the above expression (12). To do. In this case, since the relationship between the distances R i and R o from the revolution center O is R i <R o , the axial lengths of the outer rollers 2b and 2b in order to satisfy the above expression (12). a o is made smaller (a i > a o ) than the axial length a i of the inner rollers 2a, 2a.

又、上記内側、外側各ころ2a、2bの材質が異なる、即ち密度が異なる(ρi ≠ρo )場合も考えられる。具体的には、例えば、外側の各ころ2b、2bをセラミック製とすると共に、内側の各ころ2a、2aを鋼製とする事が考えられる。この様な場合、上記密度ρi 、ρo の大きさによっては、前記(10)式を満たす為に、外側の各ころ2b、2bの軸方向長さao が内側の各ころ2a、2aの軸方向長さai に比べて大きく(ai <ao に)なる可能性もある。但し、上記セラミック製のころは、鋼製のころに比べて高価になる事が避けられない。又、これと共に、セラミックと鋼との熱膨張率の差から、運転に伴う温度上昇時に、熱膨張量の大きい鋼製のころ(内側の各ころ2a、2a)と軌道輪部材との転がり接触部の接触圧が過度に高くなる可能性もある。この為、上述の様に、外側の各ころ2b、2bのみセラミック製とする事は、現実的ではない。 Moreover, the case where the materials of the inner and outer rollers 2a and 2b are different, that is, the densities are different (ρ i ≠ ρ o ) is also conceivable. Specifically, for example, the outer rollers 2b and 2b may be made of ceramic, and the inner rollers 2a and 2a may be made of steel. In such a case, depending on the density ρ i , ρ o , the axial length a o of the outer rollers 2b, 2b is set to the inner rollers 2a, 2a in order to satisfy the equation (10). May be larger (a i <a o ) than the axial length a i . However, it is inevitable that the ceramic roller is more expensive than the steel roller. At the same time, due to the difference in thermal expansion coefficient between ceramic and steel, rolling contact between the roller made of steel (inner rollers 2a, 2a) having a large thermal expansion amount and the bearing ring member when the temperature rises during operation. There is also a possibility that the contact pressure of the part becomes excessively high. For this reason, as described above, it is not realistic to make only the outer rollers 2b and 2b ceramic.

図1〜2は、本発明の実施例を示している。尚、本実施例の特徴は、各ころ2a、2bに加わる遠心力に基づく摩耗の低減を図るべく、これら各ころ2a、2bの寸法等を規制する点にある。その他の部分の構造及び作用は、前述の図3並びに図4〜5に示した従来構造と同様であるから、重複する図示並びに説明は省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   1 and 2 show an embodiment of the present invention. The feature of this embodiment is that the size and the like of each of the rollers 2a and 2b are restricted in order to reduce the wear based on the centrifugal force applied to each of the rollers 2a and 2b. Since the structure and operation of the other parts are the same as those of the conventional structure shown in FIG. 3 and FIGS. 4 to 5 described above, overlapping illustrations and explanations are omitted or simplified. Explained.

本実施例の場合には、上記各ころ2a、2bをそれぞれ保持する為の各ポケット9a、9bを、円周方向複数個所(12個所)に、径方向に関して複列(2列)に設けている。又、これと共に、保持器3bの径方向に関し外側の各ころ2b、2bの軸方向長さao を、同じく内側の各ころ2a、2aの軸方向長さai に比べて小さく(ao <ai に)している。更に、本実施例の場合には、上記内側、外側各ころ2a、2bの密度ρi 、ρo 並びに半径ri 、ro を同じ(ρi =ρo 、ri =ro )にすると共に、上記内側の各ころ2a、2aの重心Gi と公転中心Oとの距離をRi とし、上記外側に位置する各ころ2b、2bの重心Go と公転中心Oとの距離をRo とした場合に、0.9≦(aii 2)/(aoo 2)≦1.1、より好ましくは、0.95≦(aii 2)/(aoo 2)≦1.05を満たす様に、上記距離Ri 、Ro 並びに上記軸方向長さai 、ao を規制している。 In the case of the present embodiment, the pockets 9a and 9b for holding the rollers 2a and 2b are provided in a plurality of circumferential directions (12 locations) and in a double row (two rows) in the radial direction. Yes. At the same time, the axial length a o of the outer rollers 2b, 2b in the radial direction of the cage 3b is smaller than the axial length a i of the inner rollers 2a, 2a (a o <A i ). Furthermore, in the case of the present embodiment, the densities ρ i and ρ o and the radii r i and r o of the inner and outer rollers 2a and 2b are the same (ρ i = ρ o , r i = r o ). At the same time, the distance between the center of gravity G i of each of the inner rollers 2a, 2a and the revolution center O is R i , and the distance between the center of gravity G o of each of the rollers 2b, 2b located outside and the revolution center O is R o. In this case, 0.9 ≦ (a i R i 2 ) / (a o R o 2 ) ≦ 1.1, more preferably 0.95 ≦ (a i R i 2 ) / (a o R o 2 ) The distances R i and R o and the axial lengths a i and a o are regulated so as to satisfy ≦ 1.05.

上述の様に、本実施例の場合には、保持器3bの径方向に関し外側に位置する各ころ2b、2b、即ち、公転中心Oから遠い側の各ころ2b、2bの軸方向長さao が、同じく内側に位置する各ころ2a、2a、即ち、公転中心Oに近い側の各ころ2a、2aの軸方向長さai に比べて小さい。この為、上記外側に位置する各ころ2b、2bに加わる遠心力の低減を図れ、これら外側に位置する各ころ2b、2bの外端面(軸方向両端面のうちで保持器3bの径方向に関し外側の端面)とポケット9b、9bの内面との摺接部の摩耗を低減できる。 As described above, in the case of the present embodiment, the axial lengths a of the rollers 2b, 2b positioned on the outer side in the radial direction of the cage 3b, that is, the rollers 2b, 2b on the side far from the revolution center O. o is smaller than the axial length a i of the rollers 2a, 2a that are also located on the inner side, that is, the rollers 2a, 2a closer to the revolution center O. For this reason, it is possible to reduce the centrifugal force applied to each of the rollers 2b, 2b located on the outside, and the outer end surfaces of the rollers 2b, 2b located on the outside (with respect to the radial direction of the cage 3b among the axial end surfaces). The wear of the sliding contact portion between the outer end surface) and the inner surfaces of the pockets 9b and 9b can be reduced.

しかも、本実施例の場合には、上述の様に、ρi =ρo 、ri =ro とすると共に、0.9≦(aii 2)/(aoo 2)≦1.1となる様に、各部の寸法を規制している。この為、上記内側の各ころ2a、2aの外端面と各ポケット9a、9aの内面との摺接部の摩耗量と、上記外側の各ころ2b、2bの外端面と各ポケット9b、9bの内面との摺接部の摩耗量とを同程度にできる。尚、この様に摩耗量を同程度にできる理由は、前述の[発明を実施するための最良の形態]の項で説明した通りである。そして、この結果、外側に位置する上記各ころ2b、2bに関する摺接部の摩耗量が内側に位置する上記各ころ2a、2aに関する摺接部の摩耗量に比べて多くなる事、或いは逆に、内側に位置する上記各ころ2a、2aに関する摺接部の摩耗量が外側に位置する上記各ころ2b、2bに関する摺接部の摩耗量に比べて多くなる事を防止して、全体として摩耗を均一にできる事による寿命の最適化(長寿命化)を図れる。 Moreover, in this embodiment, as described above, ρ i = ρ o , r i = ro and 0.9 ≦ (a i R i 2 ) / (a o Ro 2 ) ≦ The size of each part is regulated so as to be 1.1. For this reason, the wear amount of the sliding contact portion between the outer end surfaces of the inner rollers 2a and 2a and the inner surfaces of the pockets 9a and 9a, the outer end surfaces of the outer rollers 2b and 2b, and the pockets 9b and 9b The amount of wear at the sliding contact portion with the inner surface can be made comparable. The reason why the wear amount can be made similar to this is as described in the above-mentioned section “Best Mode for Carrying Out the Invention”. As a result, the wear amount of the slidable contact portions related to the rollers 2b and 2b located on the outer side is larger than the wear amount of the slidable contact portions related to the rollers 2a and 2a located on the inner side, or conversely. The wear amount of the slidable contact portions related to the rollers 2a and 2a located on the inner side is prevented from being increased as compared with the wear amount of the slidable contact portions related to the rollers 2b and 2b located on the outer side. The life can be optimized (long life) by making it even.

尚、本実施例の場合は、上記各ころ2a、2bを、上記保持器3bの径方向に関し2列に設けているが、2列以上とする事もできる。又、本実施例の場合は、上記各ころ2a、2bを、上記保持器3bの径方向に関し内側に位置するものと外側に位置するものとで径方向に重畳させている(円周方向に関する位相を合わせている)。これに対して、図示は省略するが、径方向に関し内側に位置するものと外側に位置するものとで円周方向にずらせる(円周方向に関する位相をずらせる)事もできる。又、径方向に重畳するものとずらせるものとを混在させる事もできる。何れの場合でも、各ころの軸方向長さを、公転中心から遠い側のもの程小さくすれば、この遠い側の各ころに加わる遠心力の低減を図れ、上述の様な摺接部の過度の摩耗を低減できる。   In the present embodiment, the rollers 2a and 2b are provided in two rows in the radial direction of the cage 3b, but may be two or more rows. In the case of the present embodiment, the rollers 2a and 2b are overlapped in the radial direction between the one located on the inner side and the outer side on the radial direction of the cage 3b (in the circumferential direction). Are in phase). On the other hand, although illustration is omitted, it is possible to shift in the circumferential direction (shift in the phase in the circumferential direction) between the one located inside and the outside located in the radial direction. Moreover, what is superimposed in the radial direction and what is displaced can be mixed. In any case, if the axial length of each roller is made smaller on the side farther from the center of revolution, the centrifugal force applied to each roller on this far side can be reduced, and excessive sliding contact as described above can be achieved. Wear can be reduced.

本発明の実施例を、保持器と各ころとを取り出して示す、図5と同様の図。The figure similar to FIG. 5 which shows the Example of this invention and shows a holder and each roller. 図1のA−A断面図。AA sectional drawing of FIG. 従来のスラストころ軸受を使用個所に組み付けた状態で示す部分断面図。The fragmentary sectional view shown in the state which assembled | attached the conventional thrust roller bearing to the use location. 従来のスラストころ軸受の別例を示す断面図。Sectional drawing which shows another example of the conventional thrust roller bearing. 何れかの軌道輪部材を取り外し、この軌道輪部材を取り外した側から見た図。The figure seen from the side which removed any bearing ring member and removed this bearing ring member.

符号の説明Explanation of symbols

1、1a スラストころ軸受
2、2a、2b ころ
3、3a、3b 保持器
4 外輪
5 内輪
6 レース部
7a、7b 素子
8 円輪部
9、9a、9b ポケット
10 窓孔
11 外側フランジ
12 ケーシング
13 保持部
14 段部
15 軸
16 段部
DESCRIPTION OF SYMBOLS 1, 1a Thrust roller bearing 2, 2a, 2b Roller 3, 3a, 3b Cage 4 Outer ring 5 Inner ring 6 Race part 7a, 7b Element 8 Annulus part 9, 9a, 9b Pocket 10 Window hole 11 Outer flange 12 Casing 13 Holding Part 14 Step part 15 Axis 16 Step part

Claims (2)

軸方向片側面を軌道とした円輪状のレース部を備えた軌道輪部材と、放射方向に配列された状態でそれぞれの転動面を上記軌道に転がり接触させた複数のころと、これら各ころを転動自在に保持する円輪状の保持器とを備え、この保持器は、上記各ころをそれぞれ保持する為のポケットを、円周方向複数個所に、径方向に関し複列に設けたものであるスラストころ軸受に於いて、上記各ころの軸方向長さを、上記保持器の径方向に関し外側に位置するもの程、同じく内側に位置するものに比べて小さくした事を特徴とするスラストころ軸受。   A race ring member having a ring-shaped race portion having a raceway on one side in the axial direction, a plurality of rollers in which the respective rolling surfaces are brought into rolling contact with the raceway in a state of being arranged in a radial direction, and each of these rollers A ring-shaped cage that holds the roller in a freely rollable manner, and this cage is provided with pockets for holding each of the rollers in a plurality of rows in the circumferential direction in double rows in the radial direction. A thrust roller characterized in that, in a thrust roller bearing, the axial length of each of the rollers is smaller at the outer side in the radial direction of the cage than at the inner side. bearing. 保持器の径方向に関し内側に位置するころの密度をρi とし、同じく軸方向長さをai とし、同じく半径をri とし、同じく重心と公転中心との距離をRi とすると共に、上記保持器の径方向に関し外側に位置するころの密度をρo とし、同じく軸方向長さをao とし、同じく半径をro とし、同じく重心と公転中心との距離をRo とした場合に、0.9≦{ρii (rii2 }/{ρoo (roo2 }≦1.1とした、請求項1に記載したスラストころ軸受。 The density of the rollers located on the inner side with respect to the radial direction of the cage is ρ i , the axial length is also a i , the radius is also r i , and the distance between the center of gravity and the revolution center is R i , the density of the roller located outside with respect to the radial direction of the above retainer and [rho o, likewise the axial length and a o, same radius as r o, also if the distance between the center of gravity and the center of revolution was R o The thrust roller bearing according to claim 1, wherein 0.9 ≦ {ρ i a i (r i R i ) 2 } / {ρ o a o (r o R o ) 2 } ≦ 1.1.
JP2005004733A 2005-01-12 2005-01-12 Thrust roller bearing Pending JP2006194292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004733A JP2006194292A (en) 2005-01-12 2005-01-12 Thrust roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004733A JP2006194292A (en) 2005-01-12 2005-01-12 Thrust roller bearing

Publications (1)

Publication Number Publication Date
JP2006194292A true JP2006194292A (en) 2006-07-27

Family

ID=36800544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004733A Pending JP2006194292A (en) 2005-01-12 2005-01-12 Thrust roller bearing

Country Status (1)

Country Link
JP (1) JP2006194292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019218A2 (en) 2007-07-25 2009-01-28 JTEKT Corporation Double row thrust roller bearing
CN105972073A (en) * 2016-06-03 2016-09-28 江苏盈科汽车空调有限公司 Special pressure-bearing plane bearing of automobile air conditioner compressor swash plate assembly
JP2019120371A (en) * 2018-01-10 2019-07-22 Ntn株式会社 Thrust roller bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019218A2 (en) 2007-07-25 2009-01-28 JTEKT Corporation Double row thrust roller bearing
EP2019218A3 (en) * 2007-07-25 2012-05-09 JTEKT Corporation Double row thrust roller bearing
US8177438B2 (en) 2007-07-25 2012-05-15 Jtekt Corporation Double row thrust roller bearing
CN105972073A (en) * 2016-06-03 2016-09-28 江苏盈科汽车空调有限公司 Special pressure-bearing plane bearing of automobile air conditioner compressor swash plate assembly
JP2019120371A (en) * 2018-01-10 2019-07-22 Ntn株式会社 Thrust roller bearing

Similar Documents

Publication Publication Date Title
JPWO2009020087A1 (en) Double row roller bearing
JP2016109253A (en) Rolling bearing
JP2006194292A (en) Thrust roller bearing
JP2006266277A (en) Self-aligning roller bearing with cage
JP5782777B2 (en) Ball bearing cage and ball bearing
JP2018105500A (en) Thrust roller bearing and bearing ring for the same
US20060018582A1 (en) Bearing having thermal compensating capability
US10060477B2 (en) Tapered roller bearing and power transmission device
JP2000320558A (en) Synthetic resin made retainer for roller bearing
WO2006109353A1 (en) Thrust roller bearing
JP2005003198A (en) Rolling bearing and transmission for hybrid car or fuel cell car using the same
KR101404790B1 (en) A ball supporting structure and ball bearing using the same
JP6119372B2 (en) Loading cam device and friction roller reducer
JP2010025191A (en) Self-aligning roller bearing
JP2006214533A (en) Thrust cylindrical roller bearing
JP2017145843A (en) Thrust roller bearing
JP2009063095A (en) Rolling bearing
JP2009216112A (en) Radial needle roller bearing
JP2006258262A (en) Double-row rolling bearing
JP4710402B2 (en) Toroidal continuously variable transmission
JP2006077814A (en) Spindle rotation support device for machine tool
JP2020046008A (en) Cross roller bearing
JP2004084705A (en) Cylindrical roller bearing with synthetic resin retainer
JP2005164023A (en) Thrust roller bearing
JP2006125604A (en) Thrust roller bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070501