JP2004084705A - Cylindrical roller bearing with synthetic resin retainer - Google Patents

Cylindrical roller bearing with synthetic resin retainer Download PDF

Info

Publication number
JP2004084705A
JP2004084705A JP2002243002A JP2002243002A JP2004084705A JP 2004084705 A JP2004084705 A JP 2004084705A JP 2002243002 A JP2002243002 A JP 2002243002A JP 2002243002 A JP2002243002 A JP 2002243002A JP 2004084705 A JP2004084705 A JP 2004084705A
Authority
JP
Japan
Prior art keywords
retainer
cylindrical rollers
peripheral surface
cage
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243002A
Other languages
Japanese (ja)
Inventor
Manriyou Kiyo
許 万領
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002243002A priority Critical patent/JP2004084705A/en
Publication of JP2004084705A publication Critical patent/JP2004084705A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • F16C43/06Placing rolling bodies in cages or bearings

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the handling during assembly and disassembly, and to improve the reliability of a cylindrical roller bearing 3a which is operated at a high speed under high and oscillating loads. <P>SOLUTION: A retainer 9a is formed of a synthetic resin. The distance in the radial direction of an inside diameter side half part out of inner surfaces of pockets 10 and 10 of the retainer 9a is gradually reduced inwardly in the radial direction. Cylindrical rollers 4 and 4 and the retainer 9a are attachably/detachably fitted to an outer ring 1 while the cylindrical rollers 4 and 4 are retained by the retainer 9a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明に係る合成樹脂製保持器付円筒ころ軸受は、例えば鉄道車両の車軸等の回転軸を、ハウジング等の固定部分に回転自在に支持する為に利用する。特に本発明は、高速回転で、高荷重、振動荷重、衝撃荷重が加わる条件で使用した場合でも、耐衝撃性、耐摩耗性、耐高速性、耐熱性、耐焼き付き性を十分に確保でき、しかも組立や点検、保守(メンテナンス)の際の取り扱いを容易に行なえる合成樹脂製保持器付円筒ころ軸受の実現を図るものである。
【0002】
【従来の技術】
上述の様な鉄道車両の車軸等の回転軸を、ハウジング等の固定部分に対し回転自在に支持する為の転がり軸受としては、大きなラジアル荷重を支承すべく、円筒ころ軸受を使用する。そして、この円筒ころ軸受を構成する複数の円筒ころの軸方向変位を抑え、この円筒ころ軸受の構成各部材、即ち、外輪と内輪と複数の円筒ころとが軸方向にずれるのを防止できる構造として、鍔付きの円筒ころ軸受を使用している。
【0003】
図15〜16は、この様な鍔付きの円筒ころ軸受の1例として、外輪1の軸方向両端部並びに内輪2の軸方向一端部(図15の左端部)にそれぞれ鍔部6a、6b、8を設けた(NJ型の)鍔付きの円筒ころ軸受3を示している。この鍔付きの円筒ころ軸受3は、上記外輪1と上記内輪2と複数の円筒ころ4、4とを備える。このうちの外輪1は、内周面の中間部に円筒状の外輪軌道5を、同じく両端部に、請求項に記載した第一、第二の鍔部に相当する上記1対の内向鍔部6a、6bを、それぞれ設けている。又、上記内輪2は、外周面の中間部に円筒状の内輪軌道7を、同じく一端部に、請求項に記載した第三の鍔部に相当する上記外向鍔部8を、それぞれ設けている。
【0004】
更に、上記複数の円筒ころ4、4は、黄銅等の自己潤滑性を有し軟質な金属により造られた、円環状の保持器9により、転動自在に保持された状態で、上記外輪軌道5と上記内輪軌道7との間に設けている。この状態で、上記各円筒ころ4、4の転動面がこれら外輪軌道5及び内輪軌道7に転がり接触する。これに対して、上記各円筒ころ4、4の軸方向両端面の外径寄り部分は、上記各内向鍔部6a、6bの内側面と、上記外向鍔部8の内側面とに、近接対向若しくは滑り接触する。又、この状態で、上記保持器9の両端部外周面を、上記外輪1の両端部に設けた上記各内向鍔部6a、6bの内周面に近接対向させる事により、この保持器9の直径方向位置をこの外輪1により規制する、外輪案内としている。
【0005】
上述の様な鍔付きの円筒ころ軸受3は、大きなラジアル荷重を支承できるだけでなく、上記各円筒ころ4、4の軸方向両端面と、上記各内向鍔部6a、6bのうちの一方(図15の右方)の内向鍔部6b、並びに、上記外向鍔部8との係合により、アキシアル荷重を支承できる。即ち、図15で内輪2に右方向のアキシアル荷重が加わった場合に、上記外向鍔部8の内側面と上記各円筒ころ4、4の軸方向他端面(図15の左端面)外径寄り部分とが摺接すると同時に、上記一方の内向鍔部6bの内側面と上記各円筒ころ4、4の軸方向一端面(図15の右端面)外径寄り部分とが摺接して、上記アキシアル荷重を支承する。従って、使用時や組み付け前等に加わるアキシアル荷重に拘らず、上記鍔付円筒ころ軸受3の構成部品、即ち、外輪1、内輪2、各円筒ころ4、4が分離する事はない。
【0006】
【発明が解決しようとする課題】
上述の様な鉄道車両の車軸等を支承する従来の鍔付きの円筒ころ軸受3の場合、使用時に線路等から振動荷重や衝撃荷重が常に加わる。この為、各円筒ころ4、4を転動自在に保持する保持器9として、耐振動性や耐衝撃性、耐高速性(高速回転に耐えられる程度)、低発熱性、耐摩耗性の優れた、黄銅製で籠型若しくはもみ抜き型の保持器9、或は軟鋼製のプレス型保持器(図示省略)を使用している。ところが、実際の使用状況や耐久試験の結果等から、この様な黄銅や軟鋼により造られた金属製の保持器9の場合、所望の耐衝撃性や耐摩耗性を十分に確保できない可能性がある事が分かってきた。
【0007】
即ち、上記金属製の保持器9の場合、弾性変形可能な変形量が小さく、しかも自重も重くなる為、振動荷重や衝撃荷重に対する耐久性を十分に確保できず、割れ等の損傷が早期に生じる可能性がある。又、上記保持器9の位置決めを良好に保つべく、被案内面であるこの保持器9の外周面の軸方向両端部と、案内面である外輪1の軸方向両端部に設けた内向鍔部6a、6bの内周面との隙間を、小さくする必要がある。
【0008】
この為、これら被案内面と案内面との間の隙間や、各円筒ころ4、4と外輪軌道5及び内輪軌道7との転がり接触部、更にはこれら各円筒ころ4、4の側面と上記内向、外向各鍔部6a、6b、8の内側面との滑り接触部等に、グリース等の潤滑剤を取り込みにくくなって、摩耗や発熱等が増大し易くなる可能性がある。又、金属製の保持器9の場合、材料コストや加工コストが嵩み、これに基づいて製造コストが増大する可能性もある。
本発明の合成樹脂製保持器付円筒ころ軸受は、この様な事情に鑑みて発明したものである。
【0009】
【課題を解決するための手段】
本発明の合成樹脂製保持器付円筒ころ軸受は、前述した従来から知られている円筒ころ軸受と同様に、外輪と、内輪と、複数の円筒ころと、保持器と、第一、第二、第三の鍔部とを備える。
このうちの外輪は、内周面に円筒状の外輪軌道を設けている。
又、上記内輪は、外周面に円筒状の内輪軌道を設けている。
又、上記各円筒ころは、上記内輪軌道と上記外輪軌道との間に転動自在に設けられている。
又、上記保持器は、円環状のもので、上記各円筒ころを転動自在に保持している。
又、上記第一、第二の鍔部は、上記外輪と上記内輪とのうちの一方の軌道輪の周面の軸方向両端部に、他方の軌道輪に向け径方向に突出する状態で全周に設けられている。
更に、上記第三の鍔部は、上記他方の軌道輪の周面の少なくとも軸方向一端部に、上記一方の軌道輪に向け径方向に突出する状態で全周に設けられている。
そして、上記保持器の内周面と外周面とのうちの何れか一方の周面を上記第一、第二の鍔部の周面に近接対向させる事により、この保持器の一方の周面をこの保持器の径方向に関する位置決めを行なう為の被案内面としている。
【0010】
特に、本発明の合成樹脂製保持器付円筒ころ軸受に於いては、上記保持器は合成樹脂により造られたものである。
又、この保持器の円周方向等間隔複数個所に内外両周面を貫通する状態で、上記各円筒ころを転動自在に保持するポケットを設けている。
そして、これら各ポケットの開口縁のうちの上記保持器の径方向に関して上記被案内面と反対側の開口縁部の少なくとも一部の円周方向に関する距離を、上記各円筒ころのころ径(直径)よりも小さくする事により、これら各円筒ころを上記各ポケットに、これら各開口縁側を通過不能に保持自在としている。
又、これら各円筒ころを上記保持器に保持した状態で、これら各円筒ころ並びに保持器を上記一方の軌道輪に着脱すべく、これら各円筒ころを上記各ポケット内で上記被案内面と反対側の各開口縁に位置させた状態でのこれら各円筒ころのピッチ円半径と、同じくこれら各円筒ころを上記一方の軌道輪の軌道に当接させた状態でのこれら各円筒ころのピッチ円半径との差を、上記一方の軌道輪の軌道面の半径と上記第一、第二の鍔部の周面の半径との差であるこの一方の軌道輪の鍔高さ以上としている。
【0011】
又、より好ましくは、上記保持器の内周面と外周面とのうちの上記被案内面となる一方の周面で、各ポケット同士の間部分のうちの少なくとも何れかの間部分(柱部)、並びに、この被案内面のうちのこの間部分と軸方向に整合する部分に、これら間部分の周面並びに被案内面から凹入する状態で断面円弧状の凹溝を、この保持器の軸方向に亙って設ける。
【0012】
【作用】
上述の様に構成する本発明の合成樹脂製保持器付円筒ころ軸受によれば、使用時に振動荷重や衝撃荷重が常に加わる様な条件で使用する場合でも、保持器の耐久性を十分に確保できる。即ち、この保持器を合成樹脂により造っている為、弾性変形可能な変形量が大きくなり、しかも自重が小さい事による軽量化並びに慣性質量の低減を図れ、振動荷重や衝撃荷重に対する耐久性を十分に確保できる。この為、上記保持器が早期に破損に至る事を防止できると共に材料コストの低減も図れる。更には、上記保持器の各ポケット内に各円筒ころを保持した状態で、これら保持器並びに各円筒ころを第一、第二の鍔部を設けた一方の軌道輪に着脱できる為、製造作業や保守、点検作業(メンテナンス作業)の際の取り扱いを容易にできる。又、上記保持器の所定の部分に凹溝を設けた場合には、グリース等の潤滑剤を転がり接触部や滑り接触部に取り込み易くでき、これら各接触部の潤滑を十分に確保できる結果、摩耗や温度上昇の低減を図れる。
【0013】
【発明の実施の形態】
図1〜7は、本発明の実施の形態の第1例を示している。本例の鍔付きの円筒ころ軸受3aは、外輪1と、内輪2と、複数の円筒ころ4、4と、保持器9aとを備える。このうちの外輪1は、内周面の中間部に円筒状の外輪軌道5を、同じく両端部に、請求項に記載した第一、第二の鍔部に相当する1対の内向鍔部6a、6bを、それぞれ設けている。又、上記内輪2は、外周面の中間部に円筒状の内輪軌道7を、同じく一端部(図1の左端部)に、請求項に記載した第三の鍔部に相当する外向鍔部8を、それぞれ設けている。
【0014】
更に、上記複数の円筒ころ4、4は、次述する保持器9aにより保持された状態で、上記外輪軌道5と上記内輪軌道7との間に転動自在に設けられている。又、上記保持器9aは、合成樹脂により円環状に造られた、所謂籠型保持器と呼ばれるもので、円周方向等間隔複数個所に内外両周面を径方向に貫通する状態でポケット10、10を設けている。そして、これら各ポケット10、10に上記各円筒ころ4、4を、転動自在に保持している。又、上記保持器9aの外周面のうち軸方向両端部を、上記内向鍔部6a、6bの内周面に近接対向させる事により、この保持器9aの両端部外周面をこの保持器9aの直径方向位置決めを行なう被案内面としている。
【0015】
又、上記各ポケット10、10の開口縁のうちの上記保持器9aの径方向に関して上記被案内面と反対側(内径側)の開口縁の一部(軸方向中間部)の円周方向に関する距離d(図3、4参照)を、上記各円筒ころ4、4の外径D(図2、3参照)よりも小さく(d<D)している。即ち、本例の場合には、上記各ポケット10、10の内面のうちの内径側半部の円周方向に関する距離dを、径方向内方に向かうに従って漸減させている。言い換えれば、これら各ポケット10、10の内面の内径側半部を、内径側に向かう程狭くなる様に傾斜(並びに湾曲)させている。この様な構成により、上記各ポケット10、10に上記各円筒ころ4、4を、上記保持器9aの径方向外方からのみ挿入自在とし、且つ、上記内径側の各開口縁を通過不能に保持自在としている。尚、本例の場合、上記各ポケット10、10の内面の中間部の距離dを内径側に向かうに従って漸減させているが、これら各ポケット10、10の開口縁部の中央部のみの距離dを、上記各円筒ころ4、4の外径(直径)Dよりも小さくするのみでも良い。要は、これら各開口縁を上記各円筒ころ4、4が通過不能にできれば良い。
【0016】
又、本例の場合、図6〜7に示す様に、上記各円筒ころ4、4を上記保持器9aに保持した状態で、これら各円筒ころ4、4並びにこの保持器9aを、上記外輪1に着脱(取り付け、取り外し)自在としている。この為に、上記各円筒ころ4、4を上記各ポケット10、10内の上記内径側の各開口縁に位置させた状態でのこれら各円筒ころ4、4のピッチ円半径R と、同じくこれら各円筒ころ4、4を上記外輪軌道5に当接させた状態でのこれら各円筒ころ4、4のピッチ円半径R との差S(=R −R =各状態での各円筒ころ4、4の内接円の半径の差:図3参照)を、上記外輪軌道5の半径と上記各内向鍔部6a、6bの内周面の半径との差である、これら各内向鍔部6a、6bの鍔高さH(図1、7参照)以上(S≧H)としている。
【0017】
更に本例の場合は、上記保持器9aの外周面で、上記各ポケット10、10同士の各間部分(柱部)、並びに、この外周面の軸方向両端部の被案内面のうちでこの間部分と軸方向に整合する部分に、凹溝11、11を設けている。これら各凹溝11、11はそれぞれ、曲率半径r(図3参照)の断面円弧状で、上記各間部分の外周面並びに被案内面から凹入する状態で、上記保持器9aの軸方向に亙り設けている。又、これら各凹溝11、11の深さF(図1参照)は、上記被案内面と上記間部分の外周面とが径方向に関して差を有する場合には、この差よりも大きくする。従って、上記各凹溝11、11の底面は、上記被案内面よりも径方向内方に位置する。又、これと共に、これら各凹溝11、11の円周方向に関する幅wを、上記各間部分の円周方向に関する幅W(図5参照)よりも小さく(w<W)している。
【0018】
上述の様に構成する本例の合成樹脂製保持器付きで鍔付きの円筒ころ軸受3aによれば、使用時に振動荷重や衝撃荷重が線路等から常に加わる様な条件で使用する場合でも、保持器9aの耐久性を十分に確保できる。即ち、この保持器9aを合成樹脂により造っている為、弾性変形可能な変形量が大きくなり、しかも自重が小さい事による軽量化並びに慣性質量の低減を図れ、振動荷重や衝撃荷重に対する耐久性を十分に確保できる。この為、上記保持器9aが早期に破損に至る事を防止できると共に材料コストの低減も図れる。更には、上記保持器9aの各ポケット10、10内に各円筒ころ4、4を保持した状態で、これら保持器9a並びに各円筒ころ4、4を、内向鍔部6a、6bを設けた外輪1に着脱できる為、製造作業や保守、点検作業(メンテナンス作業)の際の取り扱いを容易にできる。又、上記保持器9aの所定の部分に凹溝11、11を設けた場合には、グリース等の潤滑剤を転がり接触部や滑り接触部に取り込み易くでき、これら各接触部の潤滑を十分に確保できる結果、摩耗や温度上昇の低減を図れる。
【0019】
次に、図8〜14は、本発明の実施の形態の第2例を示している。本例の合成樹脂製保持器付きで鍔付きの円筒ころ軸受3bの場合は、内輪2aの両端部外周面に、請求項に記載した第一、第二の鍔部に相当する1対の外向鍔部8a、8bを形成すると共に、外輪1aの一端部(図8の左端部)内周面に、請求項に記載した第三の鍔部に相当する内向鍔部6を、それぞれ形成している。そして、保持器9bの内周面のうちの軸方向両端部を、上記各外向鍔部8a、8bの外周面に近接対向させる事により、この保持器9bの両端部内周面を、この保持器9bの直径方向に関する位置決めを行なう為の被案内面としている。
【0020】
又、上記保持器9bは、合成樹脂により円環状に造られた、所謂籠型保持器と呼ばれるもので、円周方向等間隔複数個所に内外両周面を径方向に貫通する状態でポケット10、10を設けている。又、これら各ポケット10、10の内面の外径側半部を、外径側に向かう程これら各ポケット10、10の円周方向に関する幅が狭くなる様に傾斜(並びに湾曲)させる事により、これら各ポケット10、10に各円筒ころ4、4を、上記保持器9bの径方向内方からのみ挿入自在とし、且つ、上記外径側の各開口縁を通過不能に保持自在としている。
【0021】
又、本例の場合、図13〜14に示す様に、上記各円筒ころ4、4を上記保持器9bに保持した状態で、これら各円筒ころ4、4並びにこの保持器9bを、上記内輪2aに着脱(取り付け、取り外し)自在としている。この為に、上記各円筒ころ4、4を上記各ポケット10、10内の上記外径側の各開口縁に位置させた状態でのこれら各円筒ころ4、4のピッチ円半径R と、同じくこれら各円筒ころ4、4を内輪軌道7に当接させた状態でのこれら各円筒ころ4、4のピッチ円半径R との差S(=R −R =各状態での各円筒ころ14、14の外接円の半径の差:図10参照)を、上記内輪軌道7の半径と上記各外向鍔部8a、8bの内周面の半径との差であるこれら各外向鍔部8a、8bの鍔高さH(図8、14参照)よりも、大きくしている。
【0022】
更に本例の場合は、上記保持器9bの内周面で、上記各ポケット10、10同士の各間部分(柱部)、並びに、この内周面の軸方向両端部の被案内面のうちでこの間部分と軸方向に整合する部分に、凹溝11、11を設けている。これら各凹溝11、11はそれぞれ、曲率半径r(図10参照)の断面円弧状で、上記各間部分の内周面並びに被案内面から凹入する状態で、上記保持器9aの軸方向に亙り設けている。又、これら各凹溝11、11の深さF(図8参照)は、上記被案内面と上記間部分の内周面とが径方向に関して差を有する場合には、この差よりも大きくする。又、これと共に、これら各凹溝11、11の円周方向に関する幅wを、上記各間部分の円周方向に関する幅W(図11参照)よりも小さく(w<W)している。その他の構成及び作用は、前述した第1例と同様である。
【0023】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、組立や分解時の取り扱いの容易化を図りつつ、高荷重、振動荷重を受けつつ高速で運転される合成樹脂製保持器付円筒ころ軸受の信頼性の向上を図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す断面図。
【図2】上半部を切断して示す、図1の右方から見た図。
【図3】保持器を取り出して示す、図2と同様の図。
【図4】図3のイ−イ断面図。
【図5】図3の右方から見た図
【図6】内輪に保持器及び各円筒ころを着脱する状態を示す、図2と同様の図。
【図7】図6のロ−ロ断面図。
【図8】本発明の実施の形態の第2例を示す断面図。
【図9】下半部を切断して示す、図8の右方から見た図。
【図10】保持器を取り出して示す、図9と同様の図。
【図11】図10のハ−ハ断面図。
【図12】図10の右方から見た図
【図13】外輪に保持器及び各円筒ころを着脱する状態を、上半部を切断して示す図。
【図14】図13のニ−ニ断面図。
【図15】従来の円筒ころ軸受の1例を示す断面図。
【図16】上半部を切断して示す、図15の右方から見た図。
【符号の説明】
1、1a 外輪
2、2a 内輪
3、3a、3b 円筒ころ軸受
4  円筒ころ
5  外輪軌道
6、6a、6b 内向鍔部
7  内輪軌道
8、8a、8b 外向鍔部
9、9a、9b 保持器
10  ポケット
11  凹溝
[0001]
TECHNICAL FIELD OF THE INVENTION
A cylindrical roller bearing with a retainer made of a synthetic resin according to the present invention is used for rotatably supporting a rotating shaft such as an axle of a railway vehicle on a fixed portion such as a housing. In particular, the present invention is a high-speed rotation, high load, vibration load, even when used under conditions where impact load is applied, impact resistance, abrasion resistance, high-speed resistance, heat resistance, seizure resistance can be sufficiently secured, Moreover, the present invention aims to realize a cylindrical roller bearing with a cage made of a synthetic resin, which can be easily handled during assembly, inspection, and maintenance.
[0002]
[Prior art]
As a rolling bearing for rotatably supporting a rotating shaft such as an axle of a railway vehicle as described above with respect to a fixed portion such as a housing, a cylindrical roller bearing is used to support a large radial load. Then, the axial displacement of the plurality of cylindrical rollers constituting the cylindrical roller bearing is suppressed, and the components of the cylindrical roller bearing, that is, the structure capable of preventing the outer ring, the inner ring, and the plurality of cylindrical rollers from shifting in the axial direction. , A flanged cylindrical roller bearing is used.
[0003]
FIGS. 15 and 16 show, as an example of such a flanged cylindrical roller bearing, flange portions 6a, 6b, which are provided at both axial ends of an outer race 1 and at one axial end (a left end in FIG. 15) of an inner race 2, respectively. 8 shows a flanged (NJ-type) flanged cylindrical roller bearing 3 provided with 8. The flanged cylindrical roller bearing 3 includes the outer ring 1, the inner ring 2, and a plurality of cylindrical rollers 4. The outer race 1 has a cylindrical outer raceway 5 at an intermediate portion of the inner peripheral surface, and the pair of inward flanges corresponding to the first and second flanges described in the claims. 6a and 6b are provided respectively. The inner race 2 has a cylindrical inner raceway 7 at an intermediate portion of the outer peripheral surface, and the outward flange 8 corresponding to the third flange described in the claims at one end. .
[0004]
Further, the plurality of cylindrical rollers 4, 4 are rotatably held by an annular retainer 9 made of a soft metal having self-lubricating property such as brass, and the outer ring raceway is provided. 5 and the inner raceway 7. In this state, the rolling surfaces of the cylindrical rollers 4 and 4 come into rolling contact with the outer raceway 5 and the inner raceway 7. On the other hand, the portions of the cylindrical rollers 4, 4 close to the outer diameter at both axial end surfaces thereof are in close proximity to the inner surfaces of the inward flanges 6 a, 6 b and the inner surface of the outward flange 8. Or make sliding contact. Further, in this state, the outer peripheral surfaces of both ends of the retainer 9 are brought into close proximity to the inner peripheral surfaces of the inward flanges 6a and 6b provided at both ends of the outer race 1, whereby the retainer 9 The outer ring guide is used to regulate the diametric position by the outer ring 1.
[0005]
The above-described flanged cylindrical roller bearing 3 can not only support a large radial load, but also provide both axial end faces of the cylindrical rollers 4, 4 and one of the inward flange portions 6a, 6b (FIG. The axial load can be supported by the engagement with the inward flange portion 6b (to the right of 15) and the outward flange portion 8 described above. That is, when a right axial load is applied to the inner ring 2 in FIG. 15, the inner diameter of the outward flange 8 and the other axial end surfaces (the left end surfaces in FIG. 15) of the cylindrical rollers 4, 4 are closer to the outer diameter. At the same time, the inner surface of the one inward flange portion 6b and the one end surface in the axial direction (right end surface in FIG. 15) of each of the cylindrical rollers 4, 4 are in sliding contact with each other, so that the axial direction is reduced. Support the load. Accordingly, the components of the flanged cylindrical roller bearing 3, that is, the outer ring 1, the inner ring 2, and the cylindrical rollers 4, 4 are not separated regardless of the axial load applied during use or before assembly.
[0006]
[Problems to be solved by the invention]
In the case of the conventional flanged cylindrical roller bearing 3 that supports the axle or the like of a railway vehicle as described above, a vibration load or an impact load is constantly applied from a line or the like during use. For this reason, the cage 9 for rotatably holding the cylindrical rollers 4, 4 is excellent in vibration resistance, shock resistance, high-speed resistance (to withstand high-speed rotation), low heat generation, and abrasion resistance. In addition, a cage 9 or an extruded cage made of brass or a press-type cage (not shown) made of mild steel is used. However, from the actual use conditions and the results of endurance tests, in the case of such a metal cage 9 made of brass or mild steel, there is a possibility that the desired impact resistance and wear resistance cannot be sufficiently secured. I realized something.
[0007]
That is, in the case of the above-mentioned metal cage 9, since the amount of elastically deformable deformation is small and its own weight is heavy, the durability against vibration load and impact load cannot be sufficiently ensured, and damage such as cracking occurs early. Can occur. Further, in order to maintain the positioning of the cage 9 in good condition, both ends in the axial direction of the outer peripheral surface of the cage 9 as the guided surfaces, and inward flanges provided at both axial ends of the outer ring 1 as the guide surfaces. It is necessary to reduce the gap between the inner peripheral surfaces of 6a and 6b.
[0008]
For this reason, the gap between the guided surface and the guide surface, the rolling contact portion between each cylindrical roller 4, 4 and the outer ring raceway 5 and the inner ring raceway 7, and the side surface of each cylindrical roller 4, 4 and the above Lubricants such as grease may not be easily taken into the sliding contact portions between the inward and outward flange portions 6a, 6b, 8 with the inner side surfaces, and wear and heat generation may be likely to increase. Further, in the case of the metal cage 9, the material cost and the processing cost are increased, and the manufacturing cost may be increased based on this.
The cylindrical roller bearing with a cage made of a synthetic resin of the present invention was invented in view of such circumstances.
[0009]
[Means for Solving the Problems]
The cylindrical roller bearing with a synthetic resin cage of the present invention has an outer ring, an inner ring, a plurality of cylindrical rollers, a cage, a first and a second, similarly to the above-described conventionally known cylindrical roller bearing. , A third flange.
The outer race has a cylindrical outer raceway on its inner peripheral surface.
The inner race has a cylindrical inner raceway on its outer peripheral surface.
Further, each of the cylindrical rollers is rotatably provided between the inner raceway and the outer raceway.
Further, the retainer is of an annular shape and holds each of the cylindrical rollers in a freely rolling manner.
Further, the first and second flanges are formed at both ends in the axial direction of the circumferential surface of one of the outer races and the inner race in a state of projecting radially toward the other race. It is provided on the circumference.
Further, the third flange portion is provided on at least one end in the axial direction of the peripheral surface of the other bearing ring so as to protrude radially toward the one bearing ring on the entire circumference.
Then, one of the inner peripheral surface and the outer peripheral surface of the retainer is brought into close proximity to the peripheral surfaces of the first and second flange portions, thereby forming one of the peripheral surfaces of the retainer. Is a guided surface for positioning the retainer in the radial direction.
[0010]
In particular, in the cylindrical roller bearing with a synthetic resin cage of the present invention, the retainer is made of synthetic resin.
Further, pockets are provided at a plurality of circumferentially equidistant locations of the retainer so as to freely roll the cylindrical rollers so as to penetrate the inner and outer peripheral surfaces.
The distance in the circumferential direction of at least a part of the opening edge of the opening edge of each of the pockets opposite to the guided surface in the radial direction of the cage is determined by the roller diameter (diameter) of each of the cylindrical rollers. ), The cylindrical rollers can be held in the pockets so that they cannot pass through the opening edges.
Further, in a state where each of these cylindrical rollers is held in the above-mentioned cage, each of these cylindrical rollers is opposed to the above-mentioned guided surface in each of the above-mentioned pockets in order to attach and detach these cylindrical rollers and the cage to the above-mentioned one race. The pitch circle radius of each of these cylindrical rollers in a state where they are located at the respective opening edges of the side, and the pitch circle of each of these cylindrical rollers in a state where each of these cylindrical rollers is also in contact with the track of the one orbital ring. The difference between the radius and the radius of the raceway surface of the one orbital ring and the radius of the peripheral surface of the first and second flanges is equal to or greater than the flange height of the one orbital ring.
[0011]
More preferably, on one of the inner peripheral surface and the outer peripheral surface of the retainer, which is the guided surface, at least one of the portions (post portions) between the pockets. ), And a concave groove having an arc-shaped cross section in a state of being recessed from the peripheral surface and the guided surface of the interposed portion in a portion of the guided surface which is axially aligned with the intervening portion. Provided in the axial direction.
[0012]
[Action]
According to the cylindrical roller bearing with a retainer made of synthetic resin of the present invention configured as described above, the durability of the retainer is sufficiently ensured even when used under conditions where a vibration load or an impact load is always applied during use. it can. In other words, since this cage is made of synthetic resin, the amount of elastically deformable deformation is large, and the weight is small due to its small weight, the inertial mass is reduced, and the durability against vibration load and impact load is sufficient. Can be secured. Therefore, the cage can be prevented from being damaged at an early stage, and the material cost can be reduced. Further, in a state where each cylindrical roller is held in each pocket of the retainer, the retainer and each cylindrical roller can be attached to and detached from one of the bearing rings provided with the first and second flanges, so that the manufacturing operation can be performed. And easy handling during maintenance and inspection work (maintenance work). Further, when a concave groove is provided in a predetermined portion of the retainer, a lubricant such as grease can be easily taken into a rolling contact portion or a sliding contact portion, and as a result, lubrication of each of these contact portions can be sufficiently ensured. Wear and temperature rise can be reduced.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 7 show a first example of an embodiment of the present invention. The flanged cylindrical roller bearing 3a of the present example includes an outer ring 1, an inner ring 2, a plurality of cylindrical rollers 4, 4, and a retainer 9a. The outer race 1 includes a cylindrical outer raceway 5 at an intermediate portion of the inner peripheral surface, and a pair of inward flanges 6a corresponding to the first and second flanges described in the claims. , 6b are provided respectively. The inner race 2 has a cylindrical inner raceway 7 at an intermediate portion of an outer peripheral surface, and an outward flange 8 corresponding to a third flange described in the claims at one end (the left end in FIG. 1). Are provided respectively.
[0014]
Further, the plurality of cylindrical rollers 4, 4 are rotatably provided between the outer raceway 5 and the inner raceway 7 while being held by a cage 9a described below. The cage 9a is a so-called cage-shaped cage made of a synthetic resin in an annular shape. The cage 10a has a plurality of pockets 10 radially penetrating the inner and outer peripheral surfaces at a plurality of circumferentially equally spaced locations. , 10 are provided. The cylindrical rollers 4 are held in these pockets 10 so as to freely roll. Also, by making both ends in the axial direction of the outer peripheral surface of the retainer 9a close to and facing the inner peripheral surfaces of the inward flanges 6a and 6b, the outer peripheral surfaces of both ends of the retainer 9a are fixed to the retainer 9a. It is a guided surface for positioning in the diameter direction.
[0015]
In addition, with respect to the circumferential direction of a part (the middle part in the axial direction) of the opening edge on the opposite side (inner diameter side) to the guided surface in the radial direction of the retainer 9a among the opening edges of the pockets 10 and 10. The distance d (see FIGS. 3 and 4) is smaller than the outer diameter D (see FIGS. 2 and 3) of each of the cylindrical rollers 4 and 4 (d <D). That is, in the case of this example, the distance d in the circumferential direction of the inner half of the inner surface of each of the pockets 10 and 10 is gradually reduced toward the radially inward side. In other words, the inner diameter half of the inner surface of each of the pockets 10 and 10 is inclined (and curved) so as to become narrower toward the inner diameter. With such a configuration, the cylindrical rollers 4, 4 can be inserted into the pockets 10, 10 only from the radial outside of the retainer 9a, and cannot pass through the opening edges on the inner diameter side. It can be held freely. In the case of this example, the distance d of the intermediate portion between the inner surfaces of the pockets 10 and 10 is gradually reduced toward the inner diameter side. May be smaller than the outer diameter (diameter) D of each of the cylindrical rollers 4, 4. In short, it is only necessary that the cylindrical rollers 4, 4 cannot pass through these opening edges.
[0016]
In the case of the present example, as shown in FIGS. 6 and 7, in a state where the cylindrical rollers 4, 4 are held in the retainer 9a, the cylindrical rollers 4, 4 and the retainer 9a are connected to the outer ring. 1 is detachable (attached, detached). For this purpose, the pitch circle radius R i of the cylindrical roller 4 and 4 in a state in which the 4,4 each cylindrical roller is positioned in the opening edge of the inner diameter side in the pockets 10, 10, also each of the respective cylindrical rollers 4 and 4 with the difference S (= R o -R i = the state of the pitch circle radius R o of the cylindrical rollers 4, 4 being in contact with the outer ring raceway 5 The difference between the radii of the inscribed circles of the cylindrical rollers 4, 4: see FIG. 3) is the difference between the radius of the outer raceway 5 and the radius of the inner peripheral surface of each of the inward flanges 6 a, 6 b. The flange heights of the flange portions 6a and 6b are H (see FIGS. 1 and 7) or more (S ≧ H).
[0017]
Further, in the case of this example, on the outer peripheral surface of the retainer 9a, between the pockets 10, 10 between the respective pockets (columns) and the guided surfaces at both ends in the axial direction of the outer peripheral surface. Concave grooves 11 and 11 are provided in a portion axially aligned with the portion. Each of the concave grooves 11 has an arc-shaped cross section with a radius of curvature r (see FIG. 3), and is recessed from the outer peripheral surface and the guided surface of each of the intervening portions in the axial direction of the retainer 9a. It is provided over. The depth F (see FIG. 1) of each of the concave grooves 11, 11 is set to be larger than the difference between the guided surface and the outer peripheral surface of the intermediate portion in the case where there is a difference in the radial direction. Accordingly, the bottom surface of each of the grooves 11, 11 is located radially inward of the guided surface. At the same time, the width w of each of the grooves 11 in the circumferential direction is made smaller (w <W) than the width W of each of the intervening portions in the circumferential direction (see FIG. 5).
[0018]
According to the cylindrical roller bearing 3a with the synthetic resin cage and the flange configured as described above, even if the vibration load or the impact load is always used from the line or the like during use, the holding is possible. The durability of the container 9a can be sufficiently ensured. That is, since the retainer 9a is made of synthetic resin, the amount of elastically deformable deformation is increased, and the weight is reduced due to its small weight, the inertial mass is reduced, and the durability against vibration load and impact load is improved. We can secure enough. For this reason, the cage 9a can be prevented from being damaged at an early stage, and the material cost can be reduced. Further, in a state where the cylindrical rollers 4 and 4 are held in the pockets 10 and 10 of the cage 9a, the cage 9a and the cylindrical rollers 4 and 4 are connected to the outer ring provided with the inward flange portions 6a and 6b. Since it can be attached to and detached from the device 1, handling during manufacturing work, maintenance, and inspection work (maintenance work) can be facilitated. Further, when the grooves 11 are provided in predetermined portions of the retainer 9a, a lubricant such as grease can be easily taken into the rolling contact portion or the sliding contact portion, and the lubrication of each contact portion can be sufficiently performed. As a result, wear and temperature rise can be reduced.
[0019]
Next, FIGS. 8 to 14 show a second example of the embodiment of the present invention. In the case of the cylindrical roller bearing 3b with a synthetic resin cage and a flange of the present example, a pair of outwards corresponding to the first and second flanges described in the claims are provided on the outer peripheral surfaces of both ends of the inner ring 2a. In addition to forming the flanges 8a and 8b, an inward flange 6 corresponding to the third flange described in the claims is formed on the inner peripheral surface of one end (the left end in FIG. 8) of the outer race 1a. I have. By making both ends in the axial direction of the inner peripheral surface of the retainer 9b close to and facing the outer peripheral surfaces of the outward flanges 8a and 8b, the inner peripheral surfaces of both ends of the retainer 9b are brought into contact with the retainer 9b. 9b serves as a guided surface for positioning in the diameter direction.
[0020]
The cage 9b is a so-called cage-shaped cage made of a synthetic resin in an annular shape. The cage 10b has a plurality of pockets 10 that are radially penetrated through the inner and outer circumferential surfaces at a plurality of circumferentially equal intervals. , 10 are provided. Further, the outer half of the inner surface of each of the pockets 10 and 10 is inclined (and curved) so that the width of each of the pockets 10 and 10 in the circumferential direction becomes narrower toward the outer diameter side. The cylindrical rollers 4, 4 can be inserted into the pockets 10, 10 only from the radially inner side of the retainer 9b, and can be held in such a manner as to impede the respective opening edges on the outer diameter side.
[0021]
In the case of this example, as shown in FIGS. 13 and 14, the cylindrical rollers 4, 4 and the retainer 9b are attached to the inner ring while the cylindrical rollers 4, 4 are held in the retainer 9b. 2a is detachable (attached and detached). For this purpose, the pitch circle radius R o of the cylindrical rollers 4, 4 in a state of being positioned in the opening edge of the outer diameter side of each cylindrical roller in the 4,4 the pockets 10, 10, also each of the difference S (= R o -R i = each state of these pitch circle radius R i of each cylindrical roller 4, 4 in these conditions the respective cylindrical rollers 4, 4 is brought into contact with the inner ring raceway 7 The difference between the radii of the circumscribed circles of the cylindrical rollers 14, 14: refer to FIG. 10), and the difference between the radius of the inner raceway 7 and the radius of the inner peripheral surface of each of the outward flanges 8 a, 8 b. The flange heights 8a and 8b are larger than the flange height H (see FIGS. 8 and 14).
[0022]
Further, in the case of this example, on the inner peripheral surface of the retainer 9b, among the inter-portions (posts) between the pockets 10, 10 and the guided surfaces at both ends in the axial direction of the inner peripheral surface. The recessed grooves 11 and 11 are provided in a portion which is aligned in the axial direction with the portion therebetween. Each of the concave grooves 11 has an arc-shaped cross section with a radius of curvature r (see FIG. 10), and is recessed from the inner peripheral surface and the guided surface of each of the intervening portions, in the axial direction of the retainer 9a. Are provided. The depth F (see FIG. 8) of each of the concave grooves 11, 11 is made larger than the difference when the guided surface and the inner peripheral surface of the intermediate portion have a difference in the radial direction. . At the same time, the width w of each of the grooves 11 in the circumferential direction is made smaller (w <W) than the width W of each of the intervening portions in the circumferential direction (see FIG. 11). Other configurations and operations are the same as those of the above-described first example.
[0023]
【The invention's effect】
Since the present invention is configured and operates as described above, a cylindrical roller bearing with a synthetic resin cage that is operated at high speed while receiving a high load and a vibration load while facilitating handling during assembly and disassembly. Reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first example of an embodiment of the present invention.
FIG. 2 is a cutaway view of the upper half, viewed from the right in FIG.
FIG. 3 is a view similar to FIG. 2, showing the retainer taken out.
FIG. 4 is a sectional view taken along a line II in FIG. 3;
FIG. 5 is a view from the right side of FIG. 3; FIG. 6 is a view similar to FIG. 2, showing a state in which a retainer and each cylindrical roller are attached to and detached from an inner race.
FIG. 7 is a sectional view taken along a roller in FIG. 6;
FIG. 8 is a sectional view showing a second example of the embodiment of the present invention.
FIG. 9 is a view of the right half of FIG. 8, with the lower half cut away.
FIG. 10 is a view similar to FIG. 9, with the retainer taken out and shown.
FIG. 11 is a sectional view taken along the line c-c in FIG. 10;
FIG. 12 is a view from the right side of FIG. 10; FIG. 13 is a diagram showing a state in which a retainer and each cylindrical roller are attached to and detached from an outer race by cutting an upper half portion;
FIG. 14 is a cross-sectional view taken along a line II-II in FIG. 13;
FIG. 15 is a sectional view showing an example of a conventional cylindrical roller bearing.
FIG. 16 is a cutaway view of the upper half, viewed from the right in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1a Outer ring 2, 2a Inner ring 3, 3a, 3b Cylindrical roller bearing 4 Cylindrical roller 5 Outer ring raceway 6, 6a, 6b Inward flange portion 7 Inner ring raceway 8, 8a, 8b Outward flange portion 9, 9a, 9b Cage 10 Pocket 11 Groove

Claims (2)

内周面に円筒状の外輪軌道を設けた外輪と、外周面に円筒状の内輪軌道を設けた内輪と、これら内輪軌道と外輪軌道との間に転動自在に設けられた複数の円筒ころと、これら各円筒ころを転動自在に保持する円環状の保持器と、上記外輪と上記内輪とのうちの一方の軌道輪の周面の軸方向両端部に、他方の軌道輪に向け径方向に突出する状態で全周に設けられた第一、第二の鍔部と、この他方の軌道輪の周面の少なくとも軸方向一端部に、上記一方の軌道輪に向け径方向に突出する状態で全周に設けられた第三の鍔部とを備え、上記保持器の内周面と外周面とのうちの何れか一方の周面を上記第一、第二の鍔部の周面に近接対向させる事により、この保持器の一方の周面をこの保持器の径方向に関する位置決めを行なう為の被案内面とした円筒ころ軸受に於いて、
上記保持器は合成樹脂により造られたものであり、
この保持器の円周方向等間隔複数個所に内外両周面を貫通する状態で、上記各円筒ころを転動自在に保持するポケットを設けており、
これら各ポケットの開口縁のうちの上記保持器の径方向に関して上記被案内面と反対側の開口縁部の少なくとも一部の円周方向に関する距離を、上記各円筒ころの外径よりも小さくする事により、これら各円筒ころを上記各ポケットに、これら各開口縁側を通過不能に保持自在としており、
これら各円筒ころを上記保持器に保持した状態で、これら各円筒ころ並びに保持器を上記一方の軌道輪に着脱すべく、これら各円筒ころを上記各ポケット内で上記被案内面と反対側の各開口縁に位置させた状態でのこれら各円筒ころのピッチ円半径と、同じくこれら各円筒ころを上記一方の軌道輪の軌道に当接させた状態でのこれら各円筒ころのピッチ円半径との差を、上記一方の軌道輪の軌道面の半径と上記第一、第二の鍔部の周面の半径との差であるこの一方の軌道輪の鍔高さ以上とした事を特徴とする合成樹脂製保持器付円筒ころ軸受。
An outer ring having a cylindrical outer raceway on its inner peripheral surface; an inner race having a cylindrical inner raceway on its outer peripheral surface; and a plurality of cylindrical rollers rotatably provided between the inner raceway and the outer raceway. An annular retainer that rotatably retains each of these cylindrical rollers; and an axially opposite end of a peripheral surface of one of the outer races and the inner race, and a diameter directed toward the other race. The first and second flanges provided on the entire circumference in a state protruding in the direction, and at least one end in the axial direction of the peripheral surface of the other race, radially project toward the one race. A third flange portion provided on the entire circumference in a state, wherein any one of the inner peripheral surface and the outer peripheral surface of the retainer is the peripheral surface of the first and second flange portions. By making the one peripheral surface of this cage a guided surface for positioning the cage in the radial direction. Time at the bearing,
The retainer is made of a synthetic resin,
In a state where the inner and outer peripheral surfaces are penetrated at a plurality of positions at equal intervals in the circumferential direction of the retainer, pockets are provided for rollingly retaining the cylindrical rollers,
A distance in a circumferential direction of at least a part of an opening edge portion of the opening edge of each of the pockets opposite to the guided surface in a radial direction of the retainer is smaller than an outer diameter of the cylindrical roller. As a result, each of these cylindrical rollers can be held in the above-mentioned pockets so that they cannot pass through these opening edges,
In a state where these cylindrical rollers are held in the cage, in order to attach and detach these cylindrical rollers and the cage to and from the one orbit ring, these cylindrical rollers are placed in the pockets on the opposite side to the guided surface in the pockets. The pitch circle radius of each of these cylindrical rollers in a state positioned at each opening edge, and the pitch circle radius of each of these cylindrical rollers in a state in which each of these cylindrical rollers abuts on the track of the one orbital ring. The difference between the radius of the raceway surface of the one orbital ring and the radius of the circumferential surface of the first and second flanges, which is characterized by being equal to or greater than the flange height of the one orbital ring. Roller bearing with cage made of synthetic resin.
保持器の内周面と外周面とのうちの被案内面となる一方の周面で、各ポケット同士の間部分のうちの少なくとも何れかの間部分、並びに、この被案内面のうちでこの間部分と軸方向に整合する部分に、これら間部分の周面並びに被案内面から凹入する状態で断面円弧状の凹溝を、この保持器の軸方向に亙って設けた、請求項1に記載した合成樹脂製保持器付円筒ころ軸受。On one of the inner peripheral surfaces and the outer peripheral surface of the cage, which is the guided surface, at least one of the portions between the pockets, and between the pockets. 2. A groove which has an arcuate cross section in a state where it is recessed from a peripheral surface and a guided surface of the intervening portion in a portion axially aligned with the portion. 2. A cylindrical roller bearing with a cage made of a synthetic resin described in 1.
JP2002243002A 2002-08-23 2002-08-23 Cylindrical roller bearing with synthetic resin retainer Pending JP2004084705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243002A JP2004084705A (en) 2002-08-23 2002-08-23 Cylindrical roller bearing with synthetic resin retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243002A JP2004084705A (en) 2002-08-23 2002-08-23 Cylindrical roller bearing with synthetic resin retainer

Publications (1)

Publication Number Publication Date
JP2004084705A true JP2004084705A (en) 2004-03-18

Family

ID=32051877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243002A Pending JP2004084705A (en) 2002-08-23 2002-08-23 Cylindrical roller bearing with synthetic resin retainer

Country Status (1)

Country Link
JP (1) JP2004084705A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132622A (en) * 2004-11-04 2006-05-25 Jtekt Corp Roller bearing
WO2007069620A1 (en) * 2005-12-16 2007-06-21 Ntn Corporation Bearing device for wheel
DE102006033777A1 (en) * 2006-07-21 2008-01-24 Schaeffler Kg Bearing set a rolling bearing mounted in a housing with front play rotor and method for its assembly
JP2008025608A (en) * 2006-07-18 2008-02-07 Jtekt Corp Cage for roller bearing
DE102020103621B4 (en) 2020-02-12 2021-09-02 Schaeffler Technologies AG & Co. KG Segment bearing device with offset assembly rolling body and pivot lever arrangement with the segment bearing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132622A (en) * 2004-11-04 2006-05-25 Jtekt Corp Roller bearing
WO2007069620A1 (en) * 2005-12-16 2007-06-21 Ntn Corporation Bearing device for wheel
US8157453B2 (en) 2005-12-16 2012-04-17 Ntn Corporation Bearing device for wheel
JP2008025608A (en) * 2006-07-18 2008-02-07 Jtekt Corp Cage for roller bearing
US7832943B2 (en) 2006-07-18 2010-11-16 Jtekt Corporation Cage for roller bearing
DE102006033777A1 (en) * 2006-07-21 2008-01-24 Schaeffler Kg Bearing set a rolling bearing mounted in a housing with front play rotor and method for its assembly
DE102006033777B4 (en) * 2006-07-21 2014-10-23 Schaeffler Technologies Gmbh & Co. Kg Method for mounting a bearing set of a roller bearing
DE102020103621B4 (en) 2020-02-12 2021-09-02 Schaeffler Technologies AG & Co. KG Segment bearing device with offset assembly rolling body and pivot lever arrangement with the segment bearing device

Similar Documents

Publication Publication Date Title
JP3744663B2 (en) Radial ball bearing cage and radial ball bearing
US6367982B1 (en) Cylindrical roller bearing
JP2004084705A (en) Cylindrical roller bearing with synthetic resin retainer
JP2008267400A (en) Ball bearing
JP2000320558A (en) Synthetic resin made retainer for roller bearing
JP2006112555A (en) Roller bearing with aligning ring
WO2020196172A1 (en) Self-aligning roller bearing
JP2018066416A (en) Cylinder roller bearing
US7712968B2 (en) Compound roller bearing
JP2003120683A (en) Thrust roller bearing
JPH11132244A (en) Cylindrical roller bearing device provided with lubricating device
JP2009092162A (en) Roller bearing
JPH10318264A (en) Holder made of synthetic resin for rolling bearing
CN112594284A (en) Roller set retention arrangement
JP2006125604A (en) Thrust roller bearing
JP5012383B2 (en) Radial roller bearing with cage
JP2009180239A (en) Radial rolling bearing
JP2019173918A (en) Four-point contact ball bearing and cage for ball bearing using the same
US11708858B2 (en) Cage segment and associated rolling bearing
JP2006077905A (en) Rolling bearing
JP2009041642A (en) Cylindrical roller bearing
US11725692B2 (en) Cage segment and associated rolling bearing
JP2011220454A (en) Cage of grease lubrication type ball bearing
JP2008111505A (en) Thrust needle roller bearing
WO2023063043A1 (en) Cylindrical roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812