JP2006193838A - Staple fiber for nonwoven fabric and staple fiber nonwoven fabric - Google Patents

Staple fiber for nonwoven fabric and staple fiber nonwoven fabric Download PDF

Info

Publication number
JP2006193838A
JP2006193838A JP2005004253A JP2005004253A JP2006193838A JP 2006193838 A JP2006193838 A JP 2006193838A JP 2005004253 A JP2005004253 A JP 2005004253A JP 2005004253 A JP2005004253 A JP 2005004253A JP 2006193838 A JP2006193838 A JP 2006193838A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
fibers
short
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005004253A
Other languages
Japanese (ja)
Other versions
JP4831971B2 (en
Inventor
Tsuneo Iizuka
恒夫 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2005004253A priority Critical patent/JP4831971B2/en
Publication of JP2006193838A publication Critical patent/JP2006193838A/en
Application granted granted Critical
Publication of JP4831971B2 publication Critical patent/JP4831971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide staple fibers which are used for nonwoven fabric, can prevent the formation of fiber masses by the generation of static electricity by frictions between the fibers-fibers and between the fibers-machines especially in a process for producing a dry nonwoven fabric without imparting a special treating agent to the surfaces of the fibers, and can give the nonwoven fabric having excellent uniformity, high quality and sufficient bulkiness. <P>SOLUTION: The crimped staple fibers for the nonwoven fabric, comprising a polyester consisting mainly of alkylene terephthalate units, and having a fiber length of 1.0 to 30 mm, a single fiber fineness of 1.0 to 40 dtex, a birefringence of ≤0.0150, and an elongation of ≥250%, is characterized in that the height (H) to the bottom (L) (H/L) of a triangle formed by binding the mountain tip to two bottom points in the adjacent valleys at the largest mountain portion of a crimped portion in the crimped shape of a single fiber satisfies the following expression (1) : 0.01T+0.1≤H/L≤0.02T+0.25, wherein T is the decitex (dtex) of single fiber fineness. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、乾式不織布や湿式不織布等の不織布に用いられるポリエステル短繊維であって、不織布の製造工程における、空気流、カード機等による短繊維の送り込み、分散、解繊、積層工程等のウェブ形成工程において繊維塊が生成しない適度な捲縮形態を付与した不織布用短繊維及びこの短繊維を含有してなる短繊維不織布に関するものである。   The present invention is a polyester short fiber used for a nonwoven fabric such as a dry nonwoven fabric or a wet nonwoven fabric, and is a web for feeding, dispersing, defibrating, laminating process, etc. of a short fiber by an air flow, a card machine or the like in the nonwoven fabric manufacturing process. The present invention relates to a short fiber for a nonwoven fabric provided with an appropriate crimped form in which a fiber lump is not formed in the forming step, and a short fiber nonwoven fabric containing the short fiber.

衛生材料分野をはじめとして、様々な分野において、ポリエステル、ポリアミド、ポリオレフィン等の熱可塑性樹脂からなる短繊維を用い、均一に分散させて、バインダー樹脂による接着や熱風による接着、熱ロールによる圧着、高圧水流や金属針による交絡等により得られる乾式、湿式不織布が使用されている。   In various fields including the sanitary materials field, short fibers made of thermoplastic resin such as polyester, polyamide, polyolefin, etc. are used and dispersed uniformly. Adhesion with binder resin, adhesion with hot air, pressure bonding with hot roll, high pressure Dry and wet nonwoven fabrics obtained by water flow or entanglement with metal needles are used.

このような短繊維を用いて乾式不織布を得る場合、特にエアレイド法では、繊維を解繊して空気の流れにのせて搬送し、金網又は細孔を有するスクリーンを通過させた後、ワイヤーメッシュ上に落下堆積させる方法を採用するが、短繊維の解繊、搬送、分散、積層工程において、繊維−繊維間及び繊維−金属間の摩擦が大きく、静電気が発生しやすく、このため繊維塊が生成されるという問題が生じやすい。   In the case of obtaining a dry nonwoven fabric using such short fibers, especially in the airlaid method, the fibers are defibrated and transported in a flow of air, passed through a screen having a wire mesh or pores, and then on a wire mesh. However, in the process of defibrating, transporting, dispersing, and laminating short fibers, the friction between fibers and fibers and fibers and metals is large, and static electricity is easily generated. The problem of being apt to occur.

繊維塊が生じると、各工程での通過性が悪化し、操業性が低下することはもちろん、得られる不織布においても堆積した繊維が不均一となり、斑の生じた不織布となり製品品位が著しく低下する。   When a fiber lump is formed, the passability in each process deteriorates and the operability is deteriorated. In addition, even in the obtained non-woven fabric, the accumulated fibers become non-uniform, resulting in a non-uniform non-woven fabric, and the product quality is remarkably lowered. .

今日では製品の差別化、高級化及び高機能化等のために、機能性を有する熱可塑性樹脂が多く用いられ、中には低温加工を必要とするもの、高粘着性を有する熱可塑性樹脂等、従来の繊維に比べてさらに繊維−繊維間の摩擦及び繊維−金属間の摩擦が大きくなる繊維が使用されている。また、製造加工効率を向上させるために加工速度の高速化がはかられている。
これらの要因により、エアレイド法による製造工程における静電気の発生量は多くなり、繊維塊の発生も多くなっている。
Today, many functional thermoplastic resins are used for product differentiation, upgrading, and high functionality. Some of them require low-temperature processing, high-viscosity thermoplastic resins, etc. As compared with the conventional fiber, a fiber having a greater fiber-fiber friction and fiber-metal friction is used. In addition, in order to improve manufacturing processing efficiency, the processing speed is increased.
Due to these factors, the amount of static electricity generated in the manufacturing process by the airlaid method is increased, and the generation of fiber mass is also increased.

このような問題を解決するためには、制電性や平滑性を有する繊維処理剤を繊維表面に付与することが有効である。平滑性及び制電性を付与する仕上げ油剤としては、ワックスまたは脂肪酸を中心とする脂肪類、長鎖アルキル基を含有する第4級アンモニウム塩が広く使用されている。しかしながら、これらの脂肪類は制電性をある程度付与できるが、十分な平滑性は付与できなかった。   In order to solve such problems, it is effective to apply a fiber treatment agent having antistatic properties and smoothness to the fiber surface. As finishing oil agents that impart smoothness and antistatic properties, fats mainly composed of waxes or fatty acids, and quaternary ammonium salts containing long-chain alkyl groups are widely used. However, although these fats can impart antistatic properties to some extent, they cannot impart sufficient smoothness.

一方、優れた平滑性を有する繊維仕上げ油剤としてシリコーン系仕上げ油剤が知られており、例えばジメチルシロキサン乳化重合物、アミン変成シリコーン等が付与された繊維及び繊維コードが提案されている(例えば、特許文献1参照。)
しかしながら、上記ジメチルシロキサン乳化重合物、アミン変性シリコーン共に制電性が十分でなく、さらには親水性を阻害すると共に繊維及び得られた製品に黄変が発生するという問題があった。また、これらは短繊維ではなく長繊維(繊維コード)に関するものであり、不織布の製造工程における静電気の発生による問題点を解決できるものではなかった。
On the other hand, silicone finishing oils are known as fiber finishing oils having excellent smoothness. For example, fibers and fiber cords to which dimethylsiloxane emulsion polymer, amine-modified silicone and the like are added have been proposed (for example, patents). (See Reference 1.)
However, both the dimethylsiloxane emulsion polymer and the amine-modified silicone have insufficient antistatic properties, and further, there is a problem that the hydrophilicity is inhibited and the fiber and the obtained product are yellowed. Moreover, these are not short fibers but long fibers (fiber cords), and cannot solve the problems caused by the generation of static electricity in the manufacturing process of the nonwoven fabric.

また、平滑性と制電性及び親水性の付与された繊維として、アルキルホスフェート塩とアミド基含有ポリオキシアルキレン変性シリコーン組成物の混合物を付与した高平滑性繊維が提案されている。(例えば、特許文献2参照。)
しかしながら、この繊維においても特別な処理剤を付与することにより平滑性や制電性を有するものとするため、操業性やコスト的にも不利になるという問題があった。また、得られる不織布に対するニーズは様々であり、不織布に高機能性を持たせる目的で様々な処理を施すため、繊維に付与された処理剤により、得られた不織布に変色や着色が生じる等の問題もあり、品質面でも不十分であった。
特公昭48−1480号公報 特開平9−67772号公報
Further, as a fiber imparted with smoothness, antistatic property and hydrophilicity, a highly smooth fiber imparted with a mixture of an alkyl phosphate salt and an amide group-containing polyoxyalkylene-modified silicone composition has been proposed. (For example, see Patent Document 2.)
However, since this fiber also has smoothness and antistatic properties by applying a special treatment agent, there is a problem that it is disadvantageous in terms of operability and cost. In addition, there are various needs for the obtained nonwoven fabric, and various treatments are performed for the purpose of imparting high functionality to the nonwoven fabric, so that the resulting nonwoven fabric may be discolored or colored by the treatment agent applied to the fibers. There were problems and quality was insufficient.
Japanese Patent Publication No. 48-1480 Japanese Patent Laid-Open No. 9-67772

本発明は、上記のような問題点を解決し、特別な処理剤を繊維表面に付与することなく、特に乾式不織布の製造工程において、繊維−繊維間や繊維−機械間の摩擦による静電気の発生により繊維塊が発生することを防ぐことができ、均一性に優れ、品質が高く、かつ嵩高性も十分な不織布を得ることができる不織布用短繊維及びこの短繊維を含有してなる短繊維不織布を提供することを技術的な課題とするものである。   The present invention solves the above problems and generates static electricity due to friction between fibers and fibers or between fibers and machines, particularly in the production process of a dry nonwoven fabric, without applying a special treatment agent to the fiber surface. The short fiber for a nonwoven fabric and the short fiber nonwoven fabric containing the short fiber, which can prevent the generation of fiber mass due to the above, can obtain a nonwoven fabric excellent in uniformity, high quality and sufficient bulkiness It is a technical challenge to provide

本発明者らは、上記課題を解決すべく鋭意検討の結果、本発明に到達したものである。
すなわち、本発明は、次の(ア)、(イ)を要旨とするものである。
(ア)アルキレンテレフタレート単位を主体とするポリエステルからなり、繊維長が1.0〜30mm、単糸繊度が1.0〜40dtex、複屈折率が0.0150以下、伸度が250%以上、かつ捲縮が付与されている短繊維であって、単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足することを特徴とする不織布用短繊維。
(1)式:0.01T+0.1≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数
(イ)(ア)記載の不織布用短繊維を10質量%以上含有してなることを特徴とする短繊維不織布。
The present inventors have reached the present invention as a result of intensive studies to solve the above problems.
That is, the gist of the present invention is the following (a) and (b).
(A) Made of polyester mainly composed of alkylene terephthalate unit, fiber length is 1.0-30mm, single yarn fineness is 1.0-40dtex, birefringence is 0.0150 or less, elongation is 250% or more, and crimp is given The height of the triangles (H) and the bases of the short fibers that are connected to the peak of the peak and the bottom of the valley adjacent to the peak at the maximum peak of the crimp. A short fiber for nonwoven fabric, wherein the ratio (H / L) of L) satisfies the following formula (1):
(1) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.25
T is a short fiber nonwoven fabric characterized by containing 10% by mass or more of the short fibers for nonwoven fabric described in the number of detex (dtex) of single yarn fineness (a) (a).

本発明の不織布用短繊維は、特定の捲縮形態を満足しているため、特別な処理剤を繊維表面に付与することなく、繊維−繊維間や繊維−機械間の摩擦による静電気の発生により繊維塊が発生することを防ぐことができ、さらに、繊維間での静電気の保持(ため)、繊維の絡みを防ぐことができるので、均一性に優れ、品質が高く、かつ嵩高性、柔軟性も十分な不織布(乾式不織布及び湿式不織布)を得ることが可能となる。そして、本発明の不織布用短繊維は、特定の複屈折率と伸度を有していることによって、繊維を形成するポリエステルの融点よりも低い熱処理温度で、繊維の少なくとも一部が溶融する性能を有しており、低熱処理温度で溶融するバインダー繊維となるものである。このため、ポリマーの劣化や風合いの硬化が生じることなく、良好な風合いの不織布を得ることが可能となる。   Since the short fiber for nonwoven fabric of the present invention satisfies a specific crimped form, it does not give a special treatment agent to the fiber surface, and is caused by generation of static electricity due to friction between fibers and fibers and between fibers and machines. It is possible to prevent the generation of fiber clumps, and furthermore, it is possible to prevent the static electricity between the fibers (for) and to prevent the entanglement of the fibers. Therefore, it has excellent uniformity, high quality, bulkiness, and flexibility. It is possible to obtain a sufficient nonwoven fabric (dry nonwoven fabric and wet nonwoven fabric). The short fiber for nonwoven fabric according to the present invention has a specific birefringence and elongation, so that at least a part of the fiber melts at a heat treatment temperature lower than the melting point of the polyester forming the fiber. It becomes a binder fiber that melts at a low heat treatment temperature. For this reason, it becomes possible to obtain a non-woven fabric having a good texture without causing deterioration of the polymer or curing of the texture.

また、本発明の短繊維不織布は、本発明の不織布用短繊維を含有してなるものであるため、乾式不織布及び湿式不織布ともに、均一性に優れ、品質が高く、かつ嵩高性、柔軟性、風合いも十分な不織布であり、様々な用途に使用することが可能となる。   Moreover, since the short fiber nonwoven fabric of the present invention comprises the short fiber for nonwoven fabric of the present invention, both the dry nonwoven fabric and the wet nonwoven fabric have excellent uniformity, high quality, bulkiness, flexibility, The texture is also a non-woven fabric that can be used for various purposes.

以下、本発明を詳細に説明する。
乾式不織布を得る場合、特にエアレイド法で製造する場合には、静電気の発生が多くなる。このエアレイド法に用いられる装置としては、例えば特開平5−9813号公報に開示されているような、複数の回転シリンダーをハウジング内に収納し、これらシリンダーを高速回転させることによってシリンダーの周縁に積極的に空気流を発生させ、この空気流によって繊維成分を所定方向に吹き飛ばし得る装置が挙げられる。そして、このエアレイド法によるウエブ形成(短繊維の解繊、搬送、分散、積層工程の全て)においては、空気流を積極的に発生させているために、繊維同士が摺擦され、また繊維と装置(金属)との摩擦によっても静電気の発生が多くなる。
Hereinafter, the present invention will be described in detail.
When a dry nonwoven fabric is obtained, particularly when it is produced by the airlaid method, static electricity is generated more. As an apparatus used in this airlaid method, for example, as disclosed in Japanese Patent Laid-Open No. 5-9813, a plurality of rotating cylinders are housed in a housing, and these cylinders are rotated at a high speed to positively move to the periphery of the cylinder. An apparatus that can generate an air flow and blow the fiber component in a predetermined direction by the air flow can be mentioned. In the web formation by the airlaid method (short fiber defibration, transport, dispersion, and lamination processes), since an air flow is actively generated, the fibers are rubbed with each other. The generation of static electricity also increases due to friction with the device (metal).

本発明の短繊維は繊維構造を特定のものとすることで、ウエブ形成の全ての工程(解繊、搬送、分散、積層工程)において、繊維同士、繊維と金属間での摩擦によって静電気を発生しにくく、かつ発生した静電気をためにくいものとなり、短繊維同士が集合して繊維塊を生じることが格段に減少される。   The short fiber of the present invention generates static electricity by friction between fibers and between fiber and metal in all web forming processes (defibration, transport, dispersion, and lamination processes) by making the fiber structure specific. It is difficult to prevent static electricity generated and the short fibers gather to form a fiber lump.

上記のような静電気の問題を考慮する場合、捲縮が多く、大きく付与されているほど電気をためやすいものとなる。つまり、繊維に捲縮が付与されていると、3次元的な立体構造を呈するため、その立体的な空間部分が多くなるほど静電気がたまりやすくなる。一方、捲縮がないフラットな状態となるほど、平面的な構造となり、静電気をためにくくなるが、繊維同士、あるいは繊維と金属との接触点(面)が増え、摩擦による静電気の発生が多くなる。   When considering the problem of static electricity as described above, there are many crimps. That is, if the fiber is crimped, it exhibits a three-dimensional structure, so that static electricity is more likely to accumulate as the three-dimensional space portion increases. On the other hand, the flatter the state without crimps, the more planar the structure becomes, and the more difficult it is to accumulate static electricity. However, the number of contact points (surfaces) between fibers or fibers and metal increases, and the generation of static electricity due to friction increases. .

嵩高性を考慮する場合、捲縮がないフラットな状態とするほど得られる不織布の嵩高性は低下する。一方、捲縮が付与されているほど、得られる不織布の嵩高性は向上するが、繊維の嵩高性も高くなるため、ウエブ形成の工程中において、繊維同士が絡み合い、繊維塊を生じやすくなり、均一性に劣った不織布となりやすい。   When considering the bulkiness, the bulkiness of the nonwoven fabric obtained decreases as the flat state without crimping decreases. On the other hand, the more the crimp is applied, the higher the bulkiness of the resulting nonwoven fabric, but the higher the bulkiness of the fibers. It tends to be a nonwoven fabric with poor uniformity.

また、静電気や繊維の絡み合いの問題、得られる不織布の風合い(嵩高性や柔軟性)は、単糸繊度によっても影響を受けるものである。つまり、静電気の問題においては、繊維同士あるいは繊維と金属との接触により静電気は発生するものなので、接触点や接触面の大きさを左右する単糸繊度の要因は大きいものとなる。また、捲縮により3次元的な立体構造を形成するので、単糸繊度はその空間部分の大きさを左右する要因となり、静電気をためる程度や繊維の絡みあいの程度を左右する要因となる。   Moreover, the problem of static electricity and fiber entanglement, and the texture (bulkness and flexibility) of the resulting nonwoven fabric are also affected by the single yarn fineness. That is, in the problem of static electricity, static electricity is generated by contact between fibers or between a fiber and a metal, and thus the single yarn fineness factor that determines the size of the contact point and the contact surface is large. Further, since a three-dimensional structure is formed by crimping, the single yarn fineness is a factor that affects the size of the space portion, and is a factor that affects the degree of static electricity and the degree of fiber entanglement.

そこで、本発明者等は、これらの要因を考えあわせて検討し、単糸繊度を考慮した特定の捲縮が付与された立体形状のものとすることにより、特に上記の効果(静電気、繊維絡みの防止と不織布風合いの向上)が向上されることを見出した。   Therefore, the present inventors considered these factors in consideration and made the above-mentioned effect (static electricity, fiber entanglement) particularly by adopting a three-dimensional shape to which specific crimps were given in consideration of the single yarn fineness. And the improvement of the texture of the nonwoven fabric was found to be improved.

まず、本発明の不織布用短繊維は、図1に示すように、単糸の捲縮形態において、捲縮部の最大山部における山部の頂点Pと、隣接する谷部の底点Q、Rの2点を結んで三角形とし、この三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足するものである。特に乾式不織布をエアレイド法で得る際には、H/Lを(4)式とすることが好ましい。   First, the short fiber for nonwoven fabric of the present invention, as shown in FIG. 1, in the crimped form of a single yarn, the apex P of the peak in the maximum peak of the crimped part, and the bottom point Q of the adjacent valley, A triangle is formed by connecting two points R, and the ratio (H / L) of the height (H) to the base (L) of the triangle satisfies the following expression (1). In particular, when a dry nonwoven fabric is obtained by the air laid method, it is preferable that H / L is represented by the formula (4).

ここで、最大山部とは、本発明の短繊維の繊維長において複数の山部がある場合、山部の高さ(H)が最大のものをいう。
(1)式:0.01T+0.1≦H/L≦0.02T+0.25
(4)式:0.01T+0.1≦H/L≦0.02T+0.20
Here, when there are a plurality of peak portions in the fiber length of the short fiber of the present invention, the maximum peak portion means the one having the highest peak height (H).
(1) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.25
(4) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.20

捲縮の度合いを表すためには、一般的に捲縮率が用いられるが、捲縮率の測定方法は、荷重をかけたときと無荷重状態での長さの差から求めるものであり、本発明においては、後述する捲縮率を規定した(3)式を満足していたとしても、繊維中の一部の捲縮部に捲縮が大きくかかった部分があると、立体構造の空間部分が大きくなり、静電気をためやすく、繊維同士の絡み合いが生じやすくなる。そこで(1)式に規定するように、捲縮形態として最大山部における形態を特定のものとすることで、より静電気や繊維の絡みによる繊維塊の発生を防ぐことが可能となる。   In order to express the degree of crimp, the crimp rate is generally used, but the method for measuring the crimp rate is obtained from the difference in length between when a load is applied and when there is no load. In the present invention, even if the expression (3) that defines the crimping rate described later is satisfied, if there is a part where the crimping is greatly applied to some of the crimped parts in the fiber, the space of the three-dimensional structure A part becomes large, it is easy to accumulate static electricity, and it becomes easy to produce the entanglement of fibers. Therefore, as specified in the formula (1), by making the form at the maximum peak part specific as the crimped form, it becomes possible to prevent the generation of fiber mass due to static electricity or fiber entanglement.

H/Lが大きすぎると、立体構造の空間部分が大きくなり、静電気をためやすく、繊維の絡みが生じやすくなる。一方、H/Lが小さすぎると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気が発生しやすく、繊維塊が生成して好ましくない。また、得られる不織布は嵩高性に乏しいものとなりやすい。   When H / L is too large, the space portion of the three-dimensional structure becomes large, static electricity is easily accumulated, and fiber entanglement tends to occur. On the other hand, if H / L is too small, the shape of the fiber is almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases. It is not preferable. Moreover, the obtained nonwoven fabric tends to be poor in bulkiness.

なお、H/Lの測定は、短繊維1gを採取し、ここから任意に20本の単繊維を取り出す。そして、取り出した単繊維について拡大写真(約10倍)を撮り、その写真から上記したように、最大山部における、山部の頂点Pと隣接する谷部の底点Q、Rの2点を結んで三角形とし、三角形の高さ(H)と底辺(L)の長さを測定し、その比(H/L)を算出するものである。このようにして20本分の単繊維の測定を行い、その平均値をとる。   For the measurement of H / L, 1 g of short fibers are collected, and 20 single fibers are arbitrarily taken out therefrom. Then, an enlarged photograph (about 10 times) is taken with respect to the taken out single fiber, and as described above from the photograph, two points of bottom points Q and R of the valley portion adjacent to the vertex P of the mountain portion at the maximum mountain portion are obtained. A triangle is formed, and the height (H) and the base (L) of the triangle are measured, and the ratio (H / L) is calculated. In this way, 20 single fibers are measured and the average value is taken.

次に、本発明の短繊維は、(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3 〔Tは単糸繊度のデシテックス(dtex)数〕を満足することが好ましい。この捲縮数とは、JIS L1015 8.12.1に基づき測定、算出したものである。なお、捲縮数の測定において繊維長が短くて測定が困難となる場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。   Next, the short fiber of the present invention preferably satisfies the following formula (2): 0.1T + 3.8 ≦ crimp number ≦ 0.3T + 7.3 [T is the number of dtex of the single yarn fineness]. The number of crimps is measured and calculated based on JIS L1015 8.12.1. In addition, in the measurement of the number of crimps, when the fiber length is short and measurement is difficult, the measurement is performed on the fibers before the crimping and before the cut, and converted into the number per 25 mm fiber length.

捲縮数が(2)式より高くなると、3次元的な立体構造による空間部分となる捲縮部が多くなり、空気流での短繊維の送り込み、分散、解繊、積層工程において繊維間で発生した静電気をためやすくなり、また、繊維同士が絡みやすくなるため玉状の繊維塊が生成して好ましくない。一方、(2)式より低くなると、捲縮部が少なくなることから繊維の形態がフラットに近くなり、繊維同士あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、糸状の繊維塊が生成して好ましくない。また、得られる不織布は嵩高性に乏しいものとなりやすい。   If the number of crimps is higher than the formula (2), the number of crimped portions that become space portions due to a three-dimensional structure increases, and the short fibers are fed, dispersed, defibrated, and laminated between the fibers in the air flow. The generated static electricity is easily accumulated, and the fibers are easily entangled with each other. On the other hand, when the value is lower than the expression (2), the crimped portion is reduced, so that the shape of the fiber is almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases, so that static electricity is easily generated. This is not preferable because a fiber-like fiber lump is formed. Moreover, the obtained nonwoven fabric tends to be poor in bulkiness.

さらに、本発明の不織布用短繊維は、(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9〔Tは単糸繊度(dtex)〕を満足することが好ましい。この捲縮率とは、JIS L1015 8.12.2に基づき測定、算出したものである。なお、捲縮数の測定において繊維長が短くて測定が困難となる場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。   Furthermore, the short fiber for nonwoven fabric of the present invention preferably satisfies the following formula (3): 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9 [T is the single yarn fineness (dtex)]. This crimp rate is measured and calculated based on JIS L1015 8.12.2. In addition, in the measurement of the number of crimps, when the fiber length is short and measurement is difficult, the measurement is performed on the fibers before the crimping and before the cut, and converted into the number per 25 mm fiber length.

捲縮率が(3)式より高くなると、3次元的な立体構造による空間部分が大きくなり、空気流での短繊維の送り込み、分散、解繊、積層工程において繊維間で発生した静電気をためやすくなり、また、繊維同士が交絡しやすくなるため、玉状の繊維塊が生成して好ましくない。一方、(3)式より低くなると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、玉状の繊維塊が生成して好ましくない。また、得られる不織布は嵩高性に乏しいものとなりやすい。   When the crimping rate is higher than that of equation (3), the space part due to the three-dimensional structure increases, and the static electricity generated between the fibers is reduced during the feeding, dispersion, defibration, and lamination processes of the short fibers in the air flow. Since it becomes easy and the fibers are easily entangled, a ball-shaped fiber lump is generated, which is not preferable. On the other hand, when the value is lower than the expression (3), the shape of the fiber becomes almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases. Is not preferable. Moreover, the obtained nonwoven fabric tends to be poor in bulkiness.

捲縮数と捲縮率においても、特に乾式不織布をエアレイド法で得る際には、捲縮数を(5)式、捲縮率を(6)式を満足するものとすることが好ましい。
(5)式:0.1T+4.8≦捲縮数≦0.2T+6.6
(6)式:0.8T+1.2≦捲縮率≦1.0T+2.8
In terms of the number of crimps and the crimp rate, it is preferable that the crimp number satisfies the formula (5) and the crimp rate satisfies the formula (6), particularly when a dry nonwoven fabric is obtained by the airlaid method.
(5) Formula: 0.1T + 4.8 ≦ crimp number ≦ 0.2T + 6.6
(6) Formula: 0.8T + 1.2 ≦ crimp rate ≦ 1.0T + 2.8

そして、本発明の短繊維は、繊維長が1.0〜30mm、単糸繊度が1.0〜40dtexであり、さらに好ましい繊維長は、2〜25mm、より好ましくは5〜15mmである。また、単糸繊度は、中でも1.3〜33dtexが好ましく、より好ましくは1.5〜25dtexである。なお、繊維長はJIS L1015 8.4.1A法に基づき測定したものであり、繊度はJIS L1015 8.5.1B法に基づき測定したものである。   The short fiber of the present invention has a fiber length of 1.0 to 30 mm and a single yarn fineness of 1.0 to 40 dtex, and a more preferable fiber length is 2 to 25 mm, more preferably 5 to 15 mm. The single yarn fineness is preferably 1.3 to 33 dtex, more preferably 1.5 to 25 dtex. The fiber length was measured based on the JIS L1015 8.4.1A method, and the fineness was measured based on the JIS L1015 8.5.1B method.

本発明の短繊維は、アルキレンテレフタレート単位を主体とするポリエステルからなるものである。繊維を安定して製糸するためには、中でも融点が220℃以上のアルキレンテレフタレート単位主体のポリエステルからなるものが好ましい。具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられ、中でもPETが好ましい。また、これらのポリエステルは、必要に応じて以下に示す共重合成分を1種類または複数種類共重合した共重合ポリエステルとしてもよい。   The short fiber of the present invention is made of polyester mainly composed of an alkylene terephthalate unit. In order to stably produce a fiber, among these, a polyester composed mainly of an alkylene terephthalate unit having a melting point of 220 ° C. or higher is preferable. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Among these, PET is preferable. Moreover, these polyesters are good also as the copolymer polyester which copolymerized the copolymerization component shown below as needed one type or multiple types.

なお、融点の上限としては、特に限定するものではないが、上記のようなポリエステルとする場合は、220〜280℃とすることが好ましい。   In addition, although it does not specifically limit as an upper limit of melting | fusing point, When setting it as the above polyesters, it is preferable to set it as 220-280 degreeC.

共重合成分としては、例えば、テレフタル酸、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、ビスフェノールS、ビスフェノールA、シクロヘキサンジメタノール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール等が挙げられる。   Examples of the copolymer component include terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, bisphenol S, bisphenol A, cyclohexanedimethanol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, Examples include polyethylene glycol.

さらに、ポリエステル中には、その効果を損なわない範囲で、酸化チタン等の艶消し剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌剤、導電性付与剤、親水剤、吸水剤等が配合されていてもよい。   Furthermore, in the polyester, in a range not impairing its effect, matting agents such as titanium oxide, antioxidants such as hindered phenol compounds, ultraviolet absorbers, light stabilizers, pigments, flame retardants, antibacterial agents, A conductivity-imparting agent, a hydrophilic agent, a water-absorbing agent and the like may be blended.

そして、本発明の短繊維は、複屈折率が0.0150以下、伸度が250%以上である。本発明の短繊維はこのような特性を有することで、主としてバインダー繊維として使用されるものである。つまり、複屈折率が0.0150以下、伸度が250%以上であることで、ポリマーの分子配向度が十分でなく、結晶性が低いものとなる。このため、ポリエステルの融点よりも低い温度で熱処理することにより繊維の少なくとも一部が溶融し、バインダー繊維としての役割を果たすものとなる。   The short fiber of the present invention has a birefringence of 0.0150 or less and an elongation of 250% or more. The short fiber of the present invention has such characteristics and is mainly used as a binder fiber. That is, when the birefringence is 0.0150 or less and the elongation is 250% or more, the degree of molecular orientation of the polymer is not sufficient, and the crystallinity is low. For this reason, by heat-treating at a temperature lower than the melting point of the polyester, at least a part of the fibers is melted and serves as a binder fiber.

中でも、本発明の短繊維は、ポリエステルの融点よりも50℃低い温度で熱処理すると、繊維の少なくとも一部が溶融するものであることが好ましく、さらには、ポリエステルの融点よりも100℃低い温度で熱処理すると、繊維の少なくとも一部が溶融するものであることが好ましい。   Among them, the short fiber of the present invention is preferably one in which at least a part of the fiber melts when heat-treated at a temperature lower by 50 ° C. than the melting point of the polyester, and further, at a temperature lower by 100 ° C. than the melting point of the polyester. It is preferable that at least a part of the fibers melt when heat-treated.

つまり、本発明の短繊維は、ポリエステルの融点が220℃の場合、170℃(220−50)の温度で熱処理すると、繊維の少なくとも一部が溶融するものであることが好ましく、さらには、120℃(220−100)の温度で熱処理すると、繊維の少なくとも一部が溶融するものであることが好ましい。   That is, when the melting point of the polyester is 220 ° C., the short fiber of the present invention is preferably one in which at least a part of the fiber melts when heat-treated at a temperature of 170 ° C. (220-50). It is preferable that at least a part of the fiber is melted when heat-treated at a temperature of 220C.

なお、本発明におけるこのときの熱処理は、本発明の短繊維を1g採取し、ステンレス製の金網の上に広げ、箱型の熱風乾燥機にて10分間熱処理することをいい、溶融状態は目視にて確認するものである。   The heat treatment at this time in the present invention means that 1 g of the short fiber of the present invention is collected, spread on a stainless steel wire net, and heat-treated for 10 minutes with a box-type hot air drier. It is to confirm with.

本発明の短繊維の複屈折率は、0.0150以下、中でも0.0120〜0.0050とすることが好ましい。複屈折率は分子配向の度合いを示すものであるが、これが0.0150を超えると、分子配向が進んだものなり、また、伸度も低くなり、ポリエステルの融点より低い温度で熱処理を施しても、繊維の一部が溶融しないので、バインダー繊維として使用できないものとなる。   The birefringence of the short fiber of the present invention is preferably 0.0150 or less, more preferably 0.0120 to 0.0050. The birefringence indicates the degree of molecular orientation, but if this exceeds 0.0150, the molecular orientation has progressed, the elongation has become low, and even if heat treatment is performed at a temperature lower than the melting point of the polyester, Since some of the fibers do not melt, they cannot be used as binder fibers.

また、本発明の短繊維の伸度は、伸度が250%以上、中でも300〜530%とすることが好ましい。伸度が250%未満であると、延伸によりポリマーの分子配向が進んだものとなり、また、複屈折率も高くなり、ポリエステルの融点より低い温度で熱処理を施しても、繊維の一部が溶融しないので、バインダー繊維として使用できないものとなる。   The elongation of the short fiber of the present invention is preferably 250% or more, and more preferably 300 to 530%. If the elongation is less than 250%, the molecular orientation of the polymer is advanced by stretching, the birefringence increases, and even if heat treatment is performed at a temperature lower than the melting point of the polyester, a part of the fiber is melted. Therefore, it cannot be used as a binder fiber.

なお、本発明における複屈折率は、偏光顕微鏡とコンペンセーターの組合わせによる干渉縞計測法で測定するものである。また、伸度は、JIS L1015 8.7引張強さ及び伸び率の方法に準じて測定するものである。なお、繊維が短くて測定できない場合は、カット前の繊維において20mmもしくは10mmの繊維を得て測定を行うものである。   The birefringence in the present invention is measured by an interference fringe measurement method using a combination of a polarizing microscope and a compensator. The elongation is measured according to the method of JIS L1015 8.7 tensile strength and elongation. In addition, when a fiber is short and cannot be measured, it measures by obtaining 20 mm or 10 mm fiber in the fiber before cutting.

このように、本発明の短繊維は、融点の低い特殊なポリマーを用いて得られるものではないので、溶融紡糸が容易に行え、操業性よく繊維を得ることができる。   Thus, since the short fiber of the present invention is not obtained using a special polymer having a low melting point, melt spinning can be easily performed and the fiber can be obtained with good operability.

そして、ポリマーの融点よりも低い温度で繊維の一部が溶融するため、バインダー繊維として使用できる。さらには、熱処理温度を適正に選択することにより、本発明の短繊維のみからなる不織布とし、繊維の一部のみを溶融させて、本発明の短繊維を主体繊維とバインダー繊維の両者として使用することもできる。   And since a part of fiber melts at temperature lower than melting | fusing point of a polymer, it can be used as a binder fiber. Furthermore, by appropriately selecting the heat treatment temperature, the nonwoven fabric is made of only the short fibers of the present invention, only a part of the fibers is melted, and the short fibers of the present invention are used as both the main fiber and the binder fiber. You can also.

本発明の短繊維において、上記したような単糸の捲縮形態と複屈折率、伸度を満足するためには、溶融紡糸後、実質的に延伸することなく、未延伸糸に捲縮を付与することにより得られたものであることが好ましい。すなわち、溶融紡糸後、実質的に延伸することなく得られた未延伸糸に、押込み式クリンパー等の捲縮付与装置を用いて捲縮付与条件(ニップ圧力、スタフィング圧力)を適切な値に調整することによって機械捲縮を付与することが好ましい。   In the short fiber of the present invention, in order to satisfy the above-described crimped form, birefringence, and elongation of the single yarn, after the melt spinning, the undrawn yarn is not substantially stretched. It is preferable that it is what was obtained by providing. That is, after melt spinning, the crimping conditions (nip pressure, stuffing pressure) are adjusted to an appropriate value using a crimping device such as an indentation type crimper for the undrawn yarn obtained without substantially drawing. It is preferable to impart mechanical crimping.

本発明の短繊維は、乾式不織布、湿式不織布用の短繊維として好適なものであり、乾式不織布としては、特にエアレイド法により製造する不織布用の短繊維として好適なものである。エアレイド法によると、熱風による接着のみで容易に不織布を得ることが可能で、一般的に行われているバインダー樹脂による接着あるいは熱ロールによる圧着工程の省略が可能でコスト的に優位である。   The short fibers of the present invention are suitable as short fibers for dry nonwoven fabrics and wet nonwoven fabrics, and the dry fibers are particularly suitable as short fibers for nonwoven fabrics manufactured by the airlaid method. According to the airlaid method, it is possible to easily obtain a non-woven fabric only by bonding with hot air, and it is possible to omit a bonding process using a binder resin or a pressure bonding process using a hot roll, which is advantageous in terms of cost.

さらに、本発明の短繊維は、湿式不織布の製造にも好適に用いることができる。上述したように、本発明の短繊維は特に乾式不織布の製造工程において、繊維−繊維間や繊維−機械間の摩擦による静電気の発生により繊維塊が発生することを防ぐことができるものであるが、湿式不織布においても単繊維のばらけがよく、単繊維同士の接触点(面)が少ないので、繊維の集束が生じ難くなり、均一性に優れ、かつ嵩高性も十分な湿式不織布を得ることができる。   Furthermore, the short fiber of this invention can be used suitably also for manufacture of a wet nonwoven fabric. As described above, the short fiber of the present invention can prevent the generation of fiber mass due to the generation of static electricity due to the friction between fiber and fiber or between fiber and machine, particularly in the production process of dry nonwoven fabric. Even in wet nonwoven fabrics, the dispersion of single fibers is good, and since there are few contact points (surfaces) between single fibers, it is difficult for fibers to converge, and it is possible to obtain wet nonwoven fabrics with excellent uniformity and sufficient bulkiness it can.

また、本発明の短繊維の断面形状は特に限定されるものではなく、丸型のみならず扁平型、トリローバル型、ヘキサローバル型、W型、H型等の異形断面や四角形や三角形等の多角形状、中空形状のものでもよい。   In addition, the cross-sectional shape of the short fiber of the present invention is not particularly limited, and is not limited to a round shape, but is a flat shape, a trilobal shape, a hexaloval shape, a W shape, an H shape, or other irregular cross sections, or a polygon such as a rectangle or a triangle. A shape or a hollow shape may be used.

次に、本発明の短繊維不織布について説明する。本発明の短繊維不織布は、上記のような本発明の不織布用短繊維を10質量%以上含有するものである。そして、本発明の短繊維を上記したようにバインダー繊維として用いることが好ましい。具体的には本発明の短繊維は、ポリエステルの融点よりも低い温度で、繊維の少なくとも一部が溶融するので、バインダー繊維になるとともに、繊維の全部が溶融せずに一部が残った場合は、不織布を構成する主体繊維となる。
これにより、均一性、嵩高性および柔軟性に優れた独特の風合いを有する不織布を得ることができる。
Next, the short fiber nonwoven fabric of the present invention will be described. The short fiber nonwoven fabric of the present invention contains 10% by mass or more of the short fiber for nonwoven fabric of the present invention as described above. And it is preferable to use the short fiber of this invention as a binder fiber as above-mentioned. Specifically, the short fiber of the present invention melts at least a part of the fiber at a temperature lower than the melting point of the polyester, so that it becomes a binder fiber, and the part of the fiber remains without being melted. Becomes a main fiber constituting the nonwoven fabric.
Thereby, the nonwoven fabric which has the unique texture excellent in uniformity, bulkiness, and a softness | flexibility can be obtained.

つまり、本発明の不織布用短繊維は、上記したような捲縮形状を有することで、不織布の製造工程において、繊維同士の絡みを防ぎ、均一かつ嵩高なウェブとすることができる。そして、バインダー繊維の場合、熱処理により繊維の少なくとも一部が溶融するが、ウェブの段階で主体繊維と本発明の短繊維とにより均一かつ嵩高なものとなっているため、本発明の短繊維の一部が溶融したとしても、不織布は均一性と嵩高性を満足するものとなる。そして、本発明の短繊維が全て溶融する際には、繊維としての残存部分がなく、不織布の均一性、嵩高性を保ったまま、溶融した成分による主体繊維同士の点接着が可能となり、柔軟性も向上することとなる。   That is, the short fiber for nonwoven fabric of the present invention has a crimped shape as described above, thereby preventing the fibers from being entangled and producing a uniform and bulky web in the nonwoven fabric manufacturing process. In the case of the binder fiber, at least a part of the fiber is melted by the heat treatment, but since the main fiber and the short fiber of the present invention are uniform and bulky at the stage of the web, the short fiber of the present invention Even if a part of them melts, the nonwoven fabric satisfies the uniformity and bulkiness. And when all the short fibers of the present invention are melted, there is no remaining portion as the fibers, and it becomes possible to bond the main fibers with the melted components while maintaining the uniformity and bulkiness of the non-woven fabric. This will also improve the performance.

本発明の不織布において、本発明の短繊維の割合が10質量%未満であると、短繊維が溶融する成分の量が少なくなりすぎることから、接着成分が少なく、主体繊維の接着点が少なくなり、不織布とすることが困難となりやすい。たとえ得られたとしても機械的特性に乏しい不織布となる。   In the nonwoven fabric of the present invention, when the proportion of the short fiber of the present invention is less than 10% by mass, the amount of the component that the short fiber melts becomes too small, so that the adhesive component is small and the bonding point of the main fiber is small. It tends to be difficult to make a nonwoven fabric. Even if it is obtained, it becomes a nonwoven fabric with poor mechanical properties.

一方、前述したように、熱処理温度を選択することによって本発明の短繊維の一部のみを溶融させ、本発明の短繊維をバインダー繊維と主体繊維の両者とする際には、本発明の不織布は、本発明の短繊維の割合が100質量%であってもよい。ただし、本発明の短繊維の全てを溶融させて全融バインダー繊維として使用する際には、本発明の短繊維の割合を60質量%以下とすることが好ましい。本発明の短繊維の割合が60質量%を超えると、主体繊維の割合が少なくなり、嵩高性が乏しくなるとともに、本発明の短繊維が溶融する成分の量が多くなりすぎることから柔軟性にも乏しい不織布となりやすい。   On the other hand, as described above, by selecting the heat treatment temperature, only a part of the short fiber of the present invention is melted, and when the short fiber of the present invention is used as both the binder fiber and the main fiber, the nonwoven fabric of the present invention is used. The ratio of the short fibers of the present invention may be 100% by mass. However, when all of the short fibers of the present invention are melted and used as a total melt binder fiber, the proportion of the short fibers of the present invention is preferably 60% by mass or less. When the ratio of the short fiber of the present invention exceeds 60% by mass, the ratio of the main fiber decreases, the bulkiness becomes poor, and the amount of the component in which the short fiber of the present invention melts increases so that the flexibility is increased. It tends to be a poor nonwoven fabric.

なお、本発明の不織布に用いる本発明の短繊維以外の主体繊維としては、得られる不織布の均一性、嵩高性等の風合いを考慮すると、単糸の形状が本発明の短繊維と同様のものであり、本発明における(1)〜(3)式の形状、捲縮数、捲縮率を満足する短繊維とすることが好ましい。   The main fibers other than the short fibers of the present invention used in the nonwoven fabric of the present invention are the same as the short fibers of the present invention in view of the texture such as uniformity and bulkiness of the obtained nonwoven fabric. Therefore, it is preferable to use a short fiber that satisfies the shape, the number of crimps, and the crimp rate of the formulas (1) to (3) in the present invention.

このような主体繊維しては、ポリエステルやポリアミド等からなる熱可塑性樹脂からなる合成繊維等を用いることができるが、中でもアルキレンテレフタレート単位を主体とするポリエステルであって、ポリエステルの融点が220〜280℃のものが好ましい。具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられ、中でもPETが好ましい。また、これらのポリエステルは、必要に応じて以下に示す共重合成分を1種類又は複数種類共重合した共重合ポリエステルであってもよい。   As such a main fiber, a synthetic fiber made of a thermoplastic resin made of polyester, polyamide, or the like can be used. Among them, a polyester mainly having an alkylene terephthalate unit, and the melting point of the polyester is 220 to 280. C. is preferred. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Among these, PET is preferable. Further, these polyesters may be copolymer polyesters obtained by copolymerizing one or more of the following copolymer components as required.

共重合成分としては、例えば、テレフタル酸、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、ビスフェノールS、ビスフェノールA、シクロヘキサンジメタノール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール等が挙げられる。   Examples of copolymer components include terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, bisphenol S, bisphenol A, cyclohexanedimethanol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, Examples include polyethylene glycol.

そして、本発明の短繊維不織布は、前記したように乾式不織布、湿式不織布のいずれでもよい。また、本発明の短繊維を10質量%以上含有していれば、目付け等も特に限定するものではない。   The short fiber nonwoven fabric of the present invention may be either a dry nonwoven fabric or a wet nonwoven fabric as described above. Moreover, if the short fiber of this invention is contained 10 mass% or more, a fabric weight etc. will not be specifically limited.

本発明の短繊維は、ポリエステルの融点よりも低い温度で繊維の少なくとも一部が溶融するので、本発明の短繊維不織布を得る際には、目的や用途、本発明の短繊維の全部を溶融させるか、一部のみを溶融させるか等に応じて、熱処理温度を適宜選択すればよい。
また、熱処理時間も適宜選択すればよく、熱処理時に圧力を加えることも好ましい。
Since the short fiber of the present invention melts at least a part of the fiber at a temperature lower than the melting point of the polyester, when obtaining the short fiber nonwoven fabric of the present invention, all the short fibers of the present invention are melted. The heat treatment temperature may be appropriately selected according to whether or not only a part is melted.
Further, the heat treatment time may be appropriately selected, and it is also preferable to apply pressure during the heat treatment.

なお、熱処理温度が高かったり、熱処理時間が長いと得られる不織布の風合いが堅くなりやすく、またポリマーも劣化しやすくなるので、本発明の短繊維がポリエステルの融点よりも100℃低い温度で繊維の少なくとも一部が溶融する場合、ポリエステルの融点よりも100℃以上低い温度で熱処理することが好ましい。   Note that if the heat treatment temperature is high or the heat treatment time is long, the texture of the resulting nonwoven fabric tends to become stiff and the polymer tends to deteriorate, so the short fiber of the present invention is 100 ° C. lower than the melting point of the polyester. When at least a part is melted, it is preferable to perform heat treatment at a temperature lower by 100 ° C. or more than the melting point of the polyester.

次に、本発明の不織布用短繊維の製造方法について、一例を用いて説明する。ポリエステルを通常用いられる紡糸装置を用いて溶融紡糸し、延伸することなく、一旦巻き取る。得られた未延伸糸を集束して1〜100ktex程度のトウとし、そして、延伸することなくそのまま押し込み式クリンパーで捲縮を付与した後、必要に応じて仕上げ油剤を付与し、所望の繊維長にカットして本発明の短繊維を得る。   Next, the manufacturing method of the short fiber for nonwoven fabrics of this invention is demonstrated using an example. Polyester is melt-spun using a commonly used spinning apparatus and wound up without stretching. The obtained undrawn yarn is converged to make a tow of about 1 to 100 ktex, and after being crimped with an indentation type crimper without drawing, a finishing oil is given if necessary, and a desired fiber length To obtain the short fiber of the present invention.

このとき、本発明で規定する捲縮形態を満足するものとするため、押込み式クリンパー等の捲縮付与装置での捲縮付与条件(ニップ圧力、スタフィング圧力)を適切に調整して行う。   At this time, in order to satisfy the crimping form defined in the present invention, crimping conditions (nip pressure, stuffing pressure) in a crimping apparatus such as a push-in crimper are appropriately adjusted.

また、本発明の短繊維は、溶融紡糸後、実質的に延伸することなく、未延伸糸に捲縮を付与することにより得られたものが好ましいが、複屈折率や伸度を適宜調整するには、紡糸速度や紡糸温度を調整することにより可能である。   Further, the short fiber of the present invention is preferably obtained by imparting crimp to an undrawn yarn without substantially drawing after melt spinning, but the birefringence and elongation are adjusted appropriately. It is possible to adjust the spinning speed and spinning temperature.

次に、本発明の短繊維不織布の製造方法について、乾式不織布、湿式不織布のそれぞれについて一例を用いて説明する。なお、乾式不織布、湿式不織布ともに本発明の短繊維の主体繊維として他の繊維を使用した例について説明する。   Next, about the manufacturing method of the short fiber nonwoven fabric of this invention, each of a dry-type nonwoven fabric and a wet nonwoven fabric is demonstrated using an example. An example in which another fiber is used as the main fiber of the short fiber of the present invention for both the dry nonwoven fabric and the wet nonwoven fabric will be described.

まず、乾式不織布(エアレイド法)の場合、図3に示す簡易エアレイド試験機を用い、試料投入ブロア13より、本発明の短繊維(バインダー繊維)と主体繊維として他の短繊維を投入し、解繊翼回転モータ15により解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊し、飛散落下させる。落下する短繊維を、下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウェブを作成し、下流にある熱処理機18にて熱処理を施し(本発明の短繊維の少なくとも一部を溶融させて)、乾式不織布を得る。不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行う。   First, in the case of a dry type non-woven fabric (airlaid method), the short fiber (binder fiber) of the present invention and other short fibers as main fibers are input from the sample input blower 13 using the simple airlaid tester shown in FIG. A set of five first defibrating blades 11 and a second defibrating wing 12 which are rotated by a rotating motor 15 via a defibrating blade rotating sprocket 16 are defibrated and scattered and dropped. While dropping the short fibers are sucked by the suction box 14 at the lower part, they are deposited on the cotton collecting conveyor 17 that moves in the direction of the arrow to create a web, and heat treatment is performed by the heat treatment machine 18 downstream (the present invention). At least some of the short fibers are melted) to obtain a dry nonwoven fabric. The basis weight adjustment of the nonwoven fabric is performed by changing the moving speed of the cotton collection conveyor 17.

また、湿式不織布の場合、本発明の短繊維(バインダー繊維)と主体繊維として他の短繊維をパルプ離解機に投入し攪拌する。その後、得られた試料を抄紙機に移し、アルキルホスフェート金属塩を主成分とする分散油剤を添加した後、付帯の撹拌羽根にて撹拌を行い抄紙し、湿式不織布ウェブとする。この抄紙した湿式不織布ウェブに熱風乾燥機で熱処理を行い(本発明の短繊維の少なくとも一部を溶融させて)、湿式不織布を得る。   In the case of a wet nonwoven fabric, the short fibers (binder fibers) of the present invention and other short fibers as main fibers are put into a pulp disintegrator and stirred. Thereafter, the obtained sample is transferred to a paper machine, and after adding a dispersion oil mainly composed of an alkyl phosphate metal salt, stirring is performed with an accompanying stirring blade to make a paper, thereby obtaining a wet nonwoven web. The paper-made wet nonwoven web is heat-treated with a hot air dryer (at least a part of the short fibers of the present invention is melted) to obtain a wet nonwoven fabric.

次に、本発明を実施例によって具体的に説明する。なお、実施例における各特性値の測定方法は以下の通りである。
(1)融点
示差走査型熱量計(パーキンエルマー社製DSC7)を用い、昇温速度20℃/分で測定した融解吸収曲線の極値を与える温度を融点とした。
(2)極限粘度
フェノールと四塩化エタンとの等質量混合物を溶媒として、温度20℃で測定した。
(3)繊度、繊維長、捲縮部のH/L、捲縮数、捲縮率
前記の方法で測定、算出した。
(4)複屈折率、伸度
前記の方法で測定した。
(5)繊維塊の生成
得られた短繊維を図2の簡易空気流撹拌試験機を用い繊維塊の生成を評価した。100gの短繊維を解綿機で予備解繊した後、サンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌する。攪拌後の繊維をサンプリング口4より0.1g採取し、黒色紙の上に広げ、独立した繊維塊の有無を目視にて評価した。
○:繊維塊が発生していない
△:繊維塊が少量発生している
×:繊維塊が大量発生している
(6)繊維の溶融状態
得られた繊維1gを採取し、以下の1)〜2)の温度で〔0035〕項と同様の熱処理を行い、熱処理後の繊維の状態を目視にて判断し、次の3段階評価とした。
◎ 繊維のほぼ全てが溶融している。
○ 繊維の一部が溶融している。
× ほぼ全ての繊維が溶融していない。
1)ポリマーの融点−50℃
2)ポリマーの融点−100℃
(7)不織布の均一性、嵩高性
〈乾式不織布〉
−均一性−
得られた乾式不織布の均一性の状態を目視にて観察し、以下のように3段階評価とした。
○:十分に解繊されて均一である
△:部分的に未解繊な部分がある
×:解繊が不十分で不均一である
−嵩高性−
得られた乾式不織布を20cm×20cmに切り出してサンプルとし、そのサンプル10枚を重ねた上に25cm×25cm×5mmのアクリル板(370g)を載せ、その上に1Kgの錘を載せてアクリル板の下面の4辺のそれぞれの辺の中央の高さを測定し、4点の平均値により以下のように3段階評価とした。
○:高さが9.0mm以上である
△:高さが8.0mm以上、9.0mm未満である
×:高さが8.0mm未満である
−柔軟性−
得られた乾式不織布を20cm×20cmに切り出してサンプルとし、パネラーによる触感で柔軟性を以下のように3段階評価とした。
○:柔軟性良好
△:柔軟性やや不良
×:柔軟性不良
〈湿式不織布〉
−均一性−
得られた湿式不織布の均一性の状態を目視にて観察し以下のように3段階評価とした。
○:十分に分散しており均一である
△:部分的に分散の悪い部分がある
×:分散が不十分で不均一である
−嵩高性−
得られた湿式不織布を20cm×20cmに切り出してサンプルとし、そのサンプルを10枚重ねた上に25cm×25cm×5mmのアクリル板(370g)を載せ、その上に1kgの錘を載せてアクリル板の下面の4辺のそれぞれの辺の中央の高さを測定し、4点の平均値により以下のように3段階評価とした。
○:高さが8.0mm以上である
△:高さが7.0mm以上、8.0mm未満である
×:高さが7.0mm未満である
−柔軟性−
得られた湿式不織布を20cm×20cmに切り出してサンプルとし、パネラーによる触感で柔軟性を以下のように3段階評価とした。
○:柔軟性良好
△:柔軟性やや不良
×:柔軟性不良
Next, the present invention will be specifically described with reference to examples. In addition, the measuring method of each characteristic value in an Example is as follows.
(1) Melting point The temperature which gives the extreme value of the melting absorption curve measured with a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer Co., Ltd.) at a temperature rising rate of 20 ° C./min was defined as the melting point.
(2) Intrinsic viscosity Measured at a temperature of 20 ° C. using a mixture of equal mass of phenol and ethane tetrachloride as a solvent.
(3) Fineness, fiber length, H / L of crimped portion, number of crimps, crimp rate Measured and calculated by the above method.
(4) Birefringence and elongation Measured by the above method.
(5) Formation of fiber masses The short fibers obtained were evaluated for the production of fiber masses using the simple air flow agitator of FIG. 100 g of short fibers are pre-defibrated with a cotton dissipator and then fed into the stirring tank 1 by air flow from the sample feeding blower 3, and an air flow of 20 m / second is blown from the stirring blower 2 to the inside of the stirring tank 1. For 1 minute. 0.1 g of the fiber after stirring was sampled from the sampling port 4 and spread on black paper, and the presence or absence of an independent fiber mass was visually evaluated.
○: Fiber mass is not generated
Δ: A small amount of fiber lump is generated. ×: A large amount of fiber lump is generated. (6) Melted state of fiber 1 g of the obtained fiber is sampled at the temperature of the following 1) to 2) [0035] The same heat treatment was carried out, the state of the fiber after the heat treatment was judged visually, and the following three-stage evaluation was made.
◎ Almost all fibers are melted.
○ Some of the fibers are melted.
X Almost all fibers are not melted.
1) Melting point of polymer-50 ° C
2) Melting point of polymer-100 ° C
(7) Uniformity and bulkiness of non-woven fabric <dry type non-woven fabric>
-Uniformity-
The uniformity state of the obtained dry nonwoven fabric was observed visually, and was evaluated in three stages as follows.
○: Fully defibrated and uniform △: Partially undefibrated part ×: Incomplete defibration and non-uniformity-Bulkiness-
The obtained dry nonwoven fabric was cut into 20 cm × 20 cm to make a sample, and 10 cm of the samples were stacked, and an acrylic plate (370 g) of 25 cm × 25 cm × 5 mm was placed thereon, and a 1 kg weight was placed on the acrylic plate. The height of the center of each of the four sides of the lower surface was measured, and the three-level evaluation was performed as follows based on the average value of the four points.
○: Height is 9.0 mm or more
Δ: Height is 8.0 mm or more and less than 9.0 mm
X: Height is less than 8.0 mm -Flexibility-
The obtained dry nonwoven fabric was cut into 20 cm × 20 cm to make a sample, and the softness was evaluated by a three-stage evaluation as follows according to the touch feeling of the panel.
○: Good flexibility
Δ: Somewhat poor flexibility ×: Poor flexibility <wet nonwoven fabric>
-Uniformity-
The uniformity state of the obtained wet nonwoven fabric was observed with the naked eye, and was evaluated in three stages as follows.
○: Sufficiently dispersed and uniform Δ: Partially poorly dispersed portion ×: Insufficient dispersion and non-uniformity-bulkyness-
The obtained wet nonwoven fabric was cut into 20 cm × 20 cm to make a sample, and 10 samples were stacked on top of each other, and a 25 cm × 25 cm × 5 mm acrylic plate (370 g) was placed thereon. The height of the center of each of the four sides of the lower surface was measured, and the three-level evaluation was performed as follows based on the average value of the four points.
○: Height is 8.0 mm or more
Δ: Height is 7.0 mm or more and less than 8.0 mm
X: Height is less than 7.0 mm
-Flexibility-
The obtained wet nonwoven fabric was cut out into 20 cm × 20 cm to make a sample, and the softness was evaluated by a three-stage evaluation as follows according to the touch feeling of the panel.
○: Good flexibility
△: Somewhat poor flexibility ×: Poor flexibility

実施例1
ポリエステルとして、融点が256℃、極限粘度0.61のPETを、通常の紡糸装置を用い、紡糸温度285℃、吐出量190g/min、紡糸速度1200m/minの条件で、ホール数720の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を13.3ktexのトウに集束した後、延伸を行わずそのまま押し込み式クリンパーで捲縮付与条件をニップ圧0.40MPa、スタフィング圧0.08MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする通常用いられる紡績用油剤を0.2質量%の付着量となるように付与した後、トウをカットして単糸繊度2.2dtex、繊維長5mmの短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表1に示すものであった。
次に、図3に示す簡易エアレイド試験機を用い、以下のようにして目付50g/m2の乾式不織布を得た。バインダー繊維として得られた短繊維を用い、主体繊維としては参考例1に示すものを用い、バインダー繊維と主体繊維の質量比(バインダー繊維/主体繊維)40/60とした。
まず、試料投入ブロア13より投入された短繊維は、解繊翼回転モータ15より解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊され飛散落下させた。落下する短繊維を、下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウェブを作成し、下流にある熱処理機18にて熱処理を施し(熱処理温度:160℃)、乾式不織布を得た。このとき、不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行った。
Example 1
As a polyester, a PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is a round shape having a hole number of 720, using a normal spinning device, at a spinning temperature of 285 ° C., a discharge rate of 190 g / min, and a spinning speed of 1200 m / min. Spinning was performed with a nozzle having a cross section to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 13.3 ktex tow, and then stretched without being drawn, and then crimped with a crimping condition as a crimping condition with a nip pressure of 0.40 MPa and a stuffing pressure of 0.08 MPa. Then, after applying a commonly used spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, the tow is cut to obtain a single yarn fineness of 2.2 dtex, A short fiber having a fiber length of 5 mm was obtained.
Table 1 shows the crimped form, number of crimps, crimp rate, birefringence, and elongation of the obtained short fiber.
Next, using a simple air laid tester shown in FIG. 3, a dry nonwoven fabric having a basis weight of 50 g / m 2 was obtained as follows. The short fiber obtained as the binder fiber was used, the main fiber shown in Reference Example 1 was used, and the mass ratio of the binder fiber to the main fiber (binder fiber / main fiber) was 40/60.
First, the short fibers fed from the sample feeding blower 13 are defibrated and scattered by a set of five first defibrating blades 11 and second defibrating blades 12 which are rotated by a defibrating blade rotating motor 15 via a defibrating blade rotating sprocket 16. I dropped it. Falling short fibers are sucked by the suction box 14 at the lower part and deposited on a cotton collecting conveyor 17 that moves in the direction of the arrow to create a web, which is then heat treated by a heat treatment machine 18 downstream (heat treatment temperature). : 160 ° C.) to obtain a dry nonwoven fabric. At this time, the basis weight adjustment of the nonwoven fabric was performed by changing the moving speed of the cotton collecting conveyor 17.

実施例2〜7、比較例1〜4
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1、2に示すように種々変更し、表1、2に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例1と同様に行って短繊維を得た。
得られた短繊維を用いて、実施例1と同様にして乾式不織布を得た。
Examples 2-7, Comparative Examples 1-4
Various conditions (nip pressure, stuffing pressure) for applying crimping with an indentation type crimper are changed as shown in Tables 1 and 2, and the crimping forms, the number of crimps and the crimping rate shown in Tables 1 and 2 are used. Except that, short fibers were obtained in the same manner as in Example 1.
Using the obtained short fibers, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例8
ポリエステルとして、融点が256℃、極限粘度0.61のPETを、通常の紡糸装置を用い、紡糸温度285℃、吐出量400g/min、紡糸速度700m/minの条件で、ホール数518の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を13.7ktexのトウに集束した後、延伸を行わずそのまま押し込み式クリンパーで捲縮付与条件をニップ圧0.32MPa、スタフィング圧0.36MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする通常用いられる紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度11dtex、繊維長5mmの短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表1に示すものであった。
バインダー繊維として得られた短繊維を用い、主体繊維としては参考例2に示すものを用いた以外は実施例1と同様にして乾式不織布を得た。
Example 8
A polyester having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is used as a polyester, and is a round shape having a hole number of 518 using a normal spinning device at a spinning temperature of 285 ° C., a discharge rate of 400 g / min, and a spinning speed of 700 m / min. Spinning was performed with a nozzle having a cross section to obtain an undrawn yarn. The obtained undrawn yarn was converged on a 13.7 ktex tow, and was not stretched, and was applied as it was by using a push-in type crimper with a nip pressure of 0.32 MPa and a stuffing pressure of 0.36 MPa. Then, after applying a commonly used spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it was cut to obtain a single yarn fineness of 11 dtex and a fiber length of 5 mm. Short fibers were obtained.
Table 1 shows the crimped form, number of crimps, crimp rate, birefringence, and elongation of the obtained short fiber.
A dry nonwoven fabric was obtained in the same manner as in Example 1 except that the short fiber obtained as the binder fiber was used and the main fiber shown in Reference Example 2 was used.

実施例9〜13、比較例5〜8
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1、2に示すように種々変更し、表1、2に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例8と同様に行って短繊維を得た。
得られた短繊維を用いて、実施例8と同様にして乾式不織布を得た。
Examples 9-13, Comparative Examples 5-8
Various conditions (nip pressure, stuffing pressure) for applying crimping with an indentation type crimper are changed as shown in Tables 1 and 2, and the crimping forms, the number of crimps and the crimping rate shown in Tables 1 and 2 are used. Except that, short fibers were obtained in the same manner as in Example 8.
Using the obtained short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 8.

実施例14
ポリエステルとして、融点が256℃、極限粘度0.61のPETを、通常の紡糸装置を用い、紡糸温度285℃、吐出量211g/min、紡糸速度800m/minの条件で、ホール数120の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を12.7ktexのトウに集束した後、延伸を行わずそのまま押し込み式クリンパーで捲縮付与条件をニップ圧0.44MPa、スタフィング圧0.43MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする通常用いられる紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度22dtex、繊維長5mmの短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表1に示すものであった。
バインダー繊維として得られた短繊維を用い、主体繊維としては参考例3に示すものを用いた以外は実施例1と同様にして乾式不織布を得た。
Example 14
As a polyester, a PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is a round shape having 120 holes under the conditions of a spinning temperature of 285 ° C., a discharge rate of 211 g / min, and a spinning speed of 800 m / min using an ordinary spinning device. Spinning was performed with a nozzle having a cross section to obtain an undrawn yarn. After the obtained undrawn yarn was focused on a 12.7 ktex tow, it was stretched without being drawn, and a crimping condition was applied with a crimping condition of a nip pressure of 0.44 MPa and a stuffing pressure of 0.43 MPa. Then, after applying a commonly used spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it was cut to obtain a single yarn fineness of 22 dtex and a fiber length of 5 mm. Short fibers were obtained.
Table 1 shows the crimped form, number of crimps, crimp rate, birefringence, and elongation of the obtained short fiber.
A dry nonwoven fabric was obtained in the same manner as in Example 1 except that the short fibers obtained as the binder fibers were used, and the main fibers were those shown in Reference Example 3.

実施例15〜19、比較例9〜12
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1、2に示すように種々変更し、表1、2に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例14と同様に行って短繊維を得た。
得られた短繊維を用いて、実施例14と同様にして乾式不織布を得た。
Examples 15-19, Comparative Examples 9-12
Various conditions (nip pressure, stuffing pressure) for applying crimping with an indentation type crimper are changed as shown in Tables 1 and 2, and the crimping forms, the number of crimps and the crimping rate shown in Tables 1 and 2 are used. Except that, short fibers were obtained in the same manner as in Example 14.
A dry nonwoven fabric was obtained in the same manner as in Example 14 using the obtained short fibers.

実施例20〜21、比較例13〜14
トウをカットする際の繊維長を変更し、表1、2に示す繊維長とした以外は、実施例1と同様に行い、短繊維を得た。
得られた短繊維を用いて、実施例1と同様にして乾式不織布を得た。
Examples 20-21, Comparative Examples 13-14
Short fibers were obtained in the same manner as in Example 1 except that the fiber length when cutting the tow was changed to the fiber lengths shown in Tables 1 and 2.
Using the obtained short fibers, a dry nonwoven fabric was obtained in the same manner as in Example 1.

比較例15
吐出量272g/min、紡糸速度1200m/minの条件で、ホール数720の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を13.6ktexのトウに集束した後、延伸倍率、延伸温度を表2に示す値として延伸を行った以外は、実施例1と同様に行い、短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表2に示すものであった。
さらに、得られた短繊維を用いて、実施例1と同様にして乾式不織布を得た。
Comparative Example 15
Spinning was performed with a nozzle having a round cross section of 720 holes under the conditions of a discharge amount of 272 g / min and a spinning speed of 1200 m / min to obtain an undrawn yarn. Short fibers were obtained in the same manner as in Example 1 except that the obtained undrawn yarn was focused on a 13.6 ktex tow and then drawn with the draw ratio and draw temperature shown in Table 2.
Table 2 shows the crimped form, number of crimps, crimp ratio, birefringence, and elongation of the obtained short fiber.
Furthermore, a dry nonwoven fabric was obtained in the same manner as in Example 1 using the obtained short fibers.

比較例16
吐出量345g/min、紡糸速度1200m/minの条件で、ホール数720の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.3ktexのトウに集束した後、延伸倍率、延伸温度を表2に示す値として延伸を行った以外は、実施例1と同様に行い、短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表2に示すものであった。
さらに、得られた短繊維を用いて、実施例1と同様にして乾式不織布を得た。
Comparative Example 16
Spinning was performed with a nozzle having a round cross section with 720 holes under the conditions of a discharge amount of 345 g / min and a spinning speed of 1200 m / min to obtain an undrawn yarn. Short fibers were obtained in the same manner as in Example 1 except that the obtained undrawn yarn was focused on a 14.3 ktex tow and then drawn with the draw ratio and draw temperature shown in Table 2.
Table 2 shows the crimped form, number of crimps, crimp ratio, birefringence, and elongation of the obtained short fiber.
Furthermore, a dry nonwoven fabric was obtained in the same manner as in Example 1 using the obtained short fibers.

比較例17
吐出量840g/min、紡糸速度700m/minの条件で、ホール数518の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.4ktexのトウに集束した後、延伸倍率、延伸温度を表2に示す値として延伸を行った以外は、実施例8と同様に行い、短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表2に示すものであった。
さらに、得られた短繊維を用いて、実施例8と同様にして乾式不織布を得た。
Comparative Example 17
Spinning was performed with a nozzle having a round cross section with 518 holes under the conditions of a discharge rate of 840 g / min and a spinning speed of 700 m / min, to obtain an undrawn yarn. Short fibers were obtained in the same manner as in Example 8 except that the obtained undrawn yarn was focused on a 14.4 ktex tow and then drawn with the draw ratio and the draw temperature shown in Table 2.
Table 2 shows the crimped form, number of crimps, crimp ratio, birefringence, and elongation of the obtained short fiber.
Further, using the obtained short fibers, a dry nonwoven fabric was obtained in the same manner as in Example 8.

比較例18
吐出量1056g/min、紡糸速度700m/minの条件で、ホール数518の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を13.6ktexのトウに集束した後、延伸倍率、延伸温度を表2に示す値として延伸を行った以外は、実施例8と同様に行い、短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表2に示すものであった。
さらに、得られた短繊維を用いて、実施例8と同様にして乾式不織布を得た。
Comparative Example 18
Spinning was performed with a nozzle having a round cross section of 518 holes under the conditions of a discharge amount of 1056 g / min and a spinning speed of 700 m / min, to obtain an undrawn yarn. Short fibers were obtained in the same manner as in Example 8 except that the obtained undrawn yarn was focused on a 13.6 ktex tow and then drawn with the draw ratio and draw temperature as shown in Table 2.
Table 2 shows the crimped form, number of crimps, crimp ratio, birefringence, and elongation of the obtained short fiber.
Further, using the obtained short fibers, a dry nonwoven fabric was obtained in the same manner as in Example 8.

比較例19
吐出量458g/min、紡糸速度800m/minの条件で、ホール数120の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を13.7ktexのトウに集束した後、延伸倍率、延伸温度を表2に示す値として延伸を行った以外は、実施例14と同様に行い、短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表2に示すものであった。
さらに、得られた短繊維を用いて、実施例14と同様にして乾式不織布を得た。
Comparative Example 19
Spinning was performed with a nozzle having a round cross section with 120 holes, under the conditions of a discharge rate of 458 g / min and a spinning speed of 800 m / min, to obtain an undrawn yarn. Short fibers were obtained in the same manner as in Example 14 except that the obtained undrawn yarn was focused on a 13.7 ktex tow and then drawn with the draw ratio and draw temperature as shown in Table 2.
Table 2 shows the crimped form, number of crimps, crimp ratio, birefringence, and elongation of the obtained short fiber.
Furthermore, using the obtained short fibers, a dry nonwoven fabric was obtained in the same manner as in Example 14.

比較例20
吐出量574g/min、紡糸速度800m/minの条件で、ホール数120の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.4ktexのトウに集束した後、延伸倍率、延伸温度を表2に示す値として延伸を行った以外は、実施例14と同様に行い、短繊維を得た。
得られた短繊維の捲縮形態、捲縮数、捲縮率、複屈折率、伸度は表2に示すものであった。
さらに、得られた短繊維を用いて、実施例14と同様にして乾式不織布を得た。
Comparative Example 20
Spinning was performed with a nozzle having a round cross section with 120 holes under the conditions of a discharge rate of 574 g / min and a spinning speed of 800 m / min to obtain an undrawn yarn. Short fibers were obtained in the same manner as in Example 14 except that the obtained undrawn yarn was focused on a 14.4 ktex tow and then drawn with the draw ratio and draw temperature shown in Table 2.
Table 2 shows the crimped form, number of crimps, crimp ratio, birefringence, and elongation of the obtained short fiber.
Furthermore, using the obtained short fibers, a dry nonwoven fabric was obtained in the same manner as in Example 14.

参考例1
ポリエステルとして、融点が256℃、極限粘度0.61のPETを、通常の溶融紡糸装置を用い、紡糸温度285℃、吐出量344g/min、紡糸速度950m/minの条件で、ホール数518の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を12.3ktexのトウに集束した後、延伸倍率3.18倍、延伸温度70℃で延伸を行い、押し込み式クリンパーで捲縮付与条件をニップ圧0.32MPa、スタフィング圧0.09MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの短繊維を得た。
Reference example 1
As polyester, a PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is formed using a normal melt spinning apparatus, with a spinning temperature of 285 ° C., a discharge rate of 344 g / min, and a spinning speed of 950 m / min. Spinning was performed with a nozzle having a mold section to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.3 ktex tow, then drawn at a draw ratio of 3.18 times and a draw temperature of 70 ° C., and a crimping condition was applied by a push-in crimper with a nip pressure of 0.32 MPa and a stuffing pressure. Crimping was given as 0.09 MPa. Thereafter, a spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil was applied so as to have an adhesion amount of 0.2% by mass, and then cut to a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Fiber was obtained.

参考例2
ポリエステルとして、融点が256℃、極限粘度0.61のPETを、通常の溶融紡糸装置を用い、紡糸温度285℃、吐出量328g/min、紡糸速度600m/minの条件で、ホール数120の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.2ktexのトウに集束した後、延伸倍率4.14倍、延伸温度75℃で延伸を行い、押し込み式クリンパーで捲縮付与条件をニップ圧0.35MPa、スタフィング圧0.30MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度11dtex、繊維長5mmの短繊維を得た。
Reference example 2
Polyester having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is used as a polyester, using a normal melt spinning apparatus, spinning temperature of 285 ° C., discharge amount of 328 g / min, spinning speed of 600 m / min, and round of 120 holes. Spinning was performed with a nozzle having a mold section to obtain an undrawn yarn. The resulting undrawn yarn was focused on a toe of 14.2 ktex, then drawn at a draw ratio of 4.14 times and a draw temperature of 75 ° C., and a crimping condition was applied by a push-in crimper with a nip pressure of 0.35 MPa and a stuffing pressure. Crimping was given as 0.30 MPa. Then, after applying a spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it is cut to obtain a short fiber having a single yarn fineness of 11 dtex and a fiber length of 5 mm. Obtained.

参考例3
ポリエステルとして、融点が256℃、極限粘度0.61のPETを、通常の溶融紡糸装置を用い、紡糸温度285℃、吐出量283g/min、紡糸速度900m/minの条件で、ホール数40の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.0ktexのトウに集束した後、延伸倍率3.57倍、延伸温度80℃で延伸を行い、押し込み式クリンパーで捲縮付与条件をニップ圧0.45MPa、スタフィング圧0.35MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度22dtex、繊維長5mmの短繊維を得た。
Reference example 3
As polyester, a PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is obtained by using a normal melt spinning apparatus, spinning conditions of 285 ° C., discharge amount of 283 g / min, spinning speed of 900 m / min, and round of 40 holes. Spinning was performed with a nozzle having a mold section to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 14.0 ktex tow, then drawn at a draw ratio of 3.57 times and a draw temperature of 80 ° C., and a crimping condition was applied by a push-in crimper with a nip pressure of 0.45 MPa and a stuffing pressure. Crimping was given as 0.35 MPa. Then, after applying a spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it is cut to obtain a short fiber having a single yarn fineness of 22 dtex and a fiber length of 5 mm. Obtained.

実施例1〜21、比較例1〜23、参考例1〜3で得られた短繊維の測定値及び評価結果を表1、2に示す。また、これらの短繊維を用いて乾式不織布を作成した際の均一性、嵩高性、柔軟性の評価結果を表1、2に示す。   Tables 1 and 2 show measured values and evaluation results of the short fibers obtained in Examples 1 to 21, Comparative Examples 1 to 23, and Reference Examples 1 to 3. Tables 1 and 2 show the evaluation results of uniformity, bulkiness, and flexibility when a dry nonwoven fabric is prepared using these short fibers.

表1、2から明らかなように、実施例1〜21の短繊維は、(1)式を満足するものであったため、特に、実施例1〜5、8〜11、14〜17、20〜21の短繊維は、(1)〜(3)式を満足するものであったため、静電気の発生や静電気をためることがなく、繊維塊の発生がないものであった。また、複屈折率、伸度も本発明の範囲を満足するものであったので、ポリエステルの融点よりも低い熱処理温度により溶融する性能を有しており、得られた乾式不織布は、本発明の短繊維が熱処理によりほぼ全てが溶融し(全融バインダー繊維となり)、主体繊維が良好に接着されていた。さらに、得られた乾式不織布は均一性、嵩高性、柔軟性に優れたものであった。   As apparent from Tables 1 and 2, since the short fibers of Examples 1 to 21 satisfied the formula (1), in particular, Examples 1 to 5, 8 to 11, 14 to 17, 20 to 20 Since the short fiber No. 21 satisfied the formulas (1) to (3), no static electricity was generated or static electricity was accumulated, and no fiber lump was generated. In addition, since the birefringence and the elongation satisfy the scope of the present invention, they have the ability to melt at a heat treatment temperature lower than the melting point of the polyester, and the obtained dry nonwoven fabric is The short fibers were almost completely melted by heat treatment (to become all-fused binder fibers), and the main fibers were well bonded. Furthermore, the obtained dry nonwoven fabric was excellent in uniformity, bulkiness and flexibility.

一方、比較例1、3、5、7、9、11の短繊維は、H/L比が(1)式の範囲より大きいため、いずれも静電気をためやすく、また、繊維の絡みも生じ、玉状の繊維塊が生じた。したがって、得られた乾式不織布は不均一で品位の劣るものであり、柔軟性も乏しいものとなった。   On the other hand, since the H / L ratio of the short fibers of Comparative Examples 1, 3, 5, 7, 9, and 11 is larger than the range of the formula (1), all of them easily accumulate static electricity, and the fibers are entangled. A ball-shaped fiber mass was formed. Therefore, the obtained dry nonwoven fabric was non-uniform and inferior in quality and poor in flexibility.

また、比較例2、4、6、8、10、12の短繊維は、H/L比が(1)式の範囲より小さいため、いずれも繊維同士の及び繊維と機械間の接触点(面)が多くなり、静電気の発生が多くなり玉状の繊維塊が生成した。このため、得られた乾式不織布は不均一で品位にも劣るものであり、柔軟性も乏しいものとなった。また、比較例13の短繊維は、繊維長が短すぎたため、繊維切断時の摩擦熱で繊維の密着が発生し、不織布を得ることができなかった。比較例14の短繊維は、繊維長が長すぎたため静電気をためやすく、また、繊維の絡みも生じ、玉状の繊維塊が生じたため、得られた乾式不織布は不均一で品位の劣るものであり、柔軟性も乏しいものであった。   Moreover, since the H / L ratio of the short fibers of Comparative Examples 2, 4, 6, 8, 10, and 12 is smaller than the range of the formula (1), the contact points (surfaces) between the fibers and between the fibers and the machine. ), The generation of static electricity increased, and a ball-like fiber lump was formed. For this reason, the obtained dry nonwoven fabric is non-uniform and inferior in quality, and has poor flexibility. Moreover, since the short fiber of the comparative example 13 had too short fiber length, the close_contact | adherence of the fiber generate | occur | produced with the frictional heat at the time of fiber cutting, and the nonwoven fabric was not able to be obtained. Since the short fiber of Comparative Example 14 was too long, it was easy to accumulate static electricity, and entanglement of the fiber also occurred, resulting in a ball-like fiber lump. Thus, the obtained dry nonwoven fabric was uneven and inferior in quality. There was a lack of flexibility.

比較例15〜20の短繊維は、未延伸糸に延伸を施して得たものであり、複屈折率、伸度が本発明の範囲を満足しないものであったため、ポリエステルの融点より低い熱処理温度で溶融する性能を有しておらず、乾式不織布を得る際の熱処理により繊維が溶融せず、バインダー繊維とならなかったため、主体繊維が接着されず、不織布を得ることができなかった。   The short fibers of Comparative Examples 15 to 20 were obtained by drawing undrawn yarn, and the birefringence and elongation did not satisfy the scope of the present invention, so the heat treatment temperature lower than the melting point of the polyester. The fiber was not melted by heat treatment when obtaining a dry nonwoven fabric, and did not become a binder fiber, so that the main fiber was not adhered and the nonwoven fabric could not be obtained.

実施例22〜26、比較例21〜25
それぞれ実施例1〜5、比較例1〜4、比較例15の短繊維をバインダー繊維とし、主体繊維として参考例1に示すものを用い、以下のようにして湿式不織布を作成した。
バインダー繊維と主体繊維を質量比(バインダー繊維/主体繊維)30/70とし、パルプ離解機(熊谷理機工業製)に投入し、3000rpmにて1分間攪拌した。その後、得られた試料を抄紙機(熊谷理機工業製角型シートマシン)に移し、アルキルホスフェート金属塩を主成分とする分散油剤を添加した後、付帯の撹拌羽根にて撹拌を行い抄紙をし、湿式不織布ウェブとした。抄紙した25×25cmの湿式不織布ウェブを、温度150℃、時間10分の熱処理を箱型熱風乾燥機で行い、目付50g/m2の湿式不織布を得た。
得られた湿式不織布の均一性、嵩高性、柔軟性の評価結果を表3に示す。
Examples 22-26, Comparative Examples 21-25
The short fibers of Examples 1 to 5, Comparative Examples 1 to 4 and Comparative Example 15 were used as binder fibers, and the main fibers shown in Reference Example 1 were used to prepare wet nonwoven fabrics as follows.
The binder fiber and the main fiber were made into a mass ratio (binder fiber / main fiber) of 30/70, charged into a pulp disintegrator (manufactured by Kumagaya Riken Kogyo), and stirred at 3000 rpm for 1 minute. After that, the obtained sample was transferred to a paper machine (Kumagaya Riki Kogyo's square sheet machine), and after adding a dispersion oil mainly composed of an alkyl phosphate metal salt, stirring was performed with an accompanying stirring blade to make the paper. And it was set as the wet nonwoven fabric web. The paper-made 25 × 25 cm wet nonwoven web was heat-treated at 150 ° C. for 10 minutes with a box-type hot air dryer to obtain a wet nonwoven fabric having a basis weight of 50 g / m 2 .
Table 3 shows the evaluation results of uniformity, bulkiness and flexibility of the obtained wet nonwoven fabric.

表3から明らかなように、実施例22〜26の短繊維は、(1)〜(3)式を満足するものであったため、水中分散性がよく繊維の集束がないものであった。このため、得られた湿式不織布は均一性に優れ、かつ嵩高性、柔軟性も十分なものであった。   As is apparent from Table 3, the short fibers of Examples 22 to 26 satisfied the formulas (1) to (3), and therefore had good dispersibility in water and no fiber convergence. For this reason, the obtained wet nonwoven fabric was excellent in uniformity, bulky and flexible.

一方、比較例21の短繊維はH/L比が(1)式の範囲より大きかったため、さらに捲縮数、捲縮率が(2)、(3)式の範囲より大きいため、比較例23の短繊維はH/L比が(1)式の範囲より大きいため、さらに捲縮率が(3)式の範囲より大きいため、いずれも水中分散性が悪く大きな繊維の集束が発生した。したがって、得られた湿式不織布は不均一で品位にも劣るものであり、柔軟性も乏しかった。また、比較例22の短繊維はH/L比が(1)式の範囲より小さいため、さらに捲縮数、捲縮率が(2)、(3)式の範囲より小さいため、比較例24の短繊維はH/L比が(1)式の範囲より小さいため、さらに捲縮率が(3)式の範囲より小さいため、いずれも水中分散性が良好でなく、得られた湿式不織布ウェブは均一性、嵩高性が不十分であったため、得られた不織布も均一性、嵩高性に劣るものであり、柔軟性にも乏しかった。また、比較例25の短繊維は、複屈折率、伸度が本発明の範囲を満足しないものであったため、湿式不織布を得る際の熱処理により繊維が溶融せず、バインダー繊維とならなかったため、主体繊維が接着されず、不織布を得ることができなかった。   On the other hand, since the short fiber of Comparative Example 21 had an H / L ratio larger than the range of the formula (1), the number of crimps and the crimp rate were larger than the ranges of the formulas (2) and (3). These short fibers had an H / L ratio larger than the range of the formula (1) and further had a crimping ratio larger than the range of the formula (3). Therefore, the obtained wet nonwoven fabric was non-uniform, inferior in quality, and poor in flexibility. Further, since the short fiber of Comparative Example 22 has an H / L ratio smaller than the range of the formula (1), the crimp number and the crimp rate are smaller than the ranges of the formulas (2) and (3). These short fibers have an H / L ratio smaller than the range of the formula (1), and further, the crimp ratio is smaller than the range of the formula (3). Since the uniformity and bulkiness were insufficient, the obtained non-woven fabric was also inferior in uniformity and bulkiness and had poor flexibility. Moreover, since the short fiber of Comparative Example 25 did not satisfy the scope of the present invention in terms of birefringence and elongation, the fiber was not melted by heat treatment when obtaining a wet nonwoven fabric, and thus did not become a binder fiber. The main fiber was not adhered, and a nonwoven fabric could not be obtained.

実施例27〜31、比較例26
バインダー繊維として実施例1の短繊維を用い、主体繊維(他の繊維)として参考例1の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表4に示すように種々変更した以外は実施例1と同様にして乾式不織布を得た。なお、このとき、本発明の短繊維は、熱処理によりほぼ全てが溶融し、全融バインダー繊維となった。
得られた乾式不織布の均一性、嵩高性、柔軟性の評価結果を表4に示す。
Examples 27-31, Comparative Example 26
As shown in Table 4, the short fibers of Example 1 are used as the binder fibers, the short fibers of Reference Example 1 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 4. A dry nonwoven fabric was obtained in the same manner as in Example 1 except that various changes were made. At this time, almost all of the short fibers of the present invention were melted by the heat treatment, and became all-fused binder fibers.
Table 4 shows the evaluation results of uniformity, bulkiness and flexibility of the obtained dry nonwoven fabric.

表4から明らかなように、実施例27〜31の乾式不織布は、本発明の短繊維を10質量%以上含有しているため、均一性、嵩高性、柔軟性ともに優れたものであった。実施例31の乾式不織布は、本発明の短繊維が全融バインダー繊維となり、本発明の短繊維を80質量%含有していたため、均一性には優れていたが、嵩高性、柔軟性は不十分であった。   As apparent from Table 4, the dry nonwoven fabrics of Examples 27 to 31 were excellent in uniformity, bulkiness, and flexibility because they contained 10% by mass or more of the short fibers of the present invention. The dry nonwoven fabric of Example 31 was excellent in uniformity because the short fibers of the present invention were all-melted binder fibers and contained 80% by mass of the short fibers of the present invention, but bulkiness and flexibility were not good. It was enough.

一方、比較例26の乾式不織布は、本発明の短繊維を10質量%以上含有していないため、主体繊維同士が接着せず、不織布とすることができなかった。   On the other hand, the dry nonwoven fabric of Comparative Example 26 did not contain 10% by mass or more of the short fibers of the present invention, so the main fibers did not adhere to each other and could not be made into a nonwoven fabric.

実施例32〜36、比較例27
バインダー繊維として実施例1の短繊維を用い、主体繊維(他の繊維)として参考例1の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表4に示すように種々変更した以外は実施例22と同様にして湿式不織布を得た。
得られた湿式不織布の均一性、嵩高性、柔軟性の評価結果を表5に示す。
Examples 32-36, Comparative Example 27
As shown in Table 4, the short fibers of Example 1 are used as the binder fibers, the short fibers of Reference Example 1 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 4. A wet nonwoven fabric was obtained in the same manner as in Example 22 except that various changes were made.
Table 5 shows the evaluation results of uniformity, bulkiness and flexibility of the obtained wet nonwoven fabric.

表5から明らかなように、実施例32〜36の乾式不織布は、本発明の短繊維を10質量%以上含有しているため、均一性、嵩高性、柔軟性ともに優れたものであった。実施例36の乾式不織布は、本発明の短繊維が全融バインダー繊維となり、本発明の短繊維を80質量%含有していたため、均一性には優れていたが、嵩高性、柔軟性は不十分であった。   As is apparent from Table 5, the dry nonwoven fabrics of Examples 32-36 contained 10% by mass or more of the short fibers of the present invention, and thus were excellent in uniformity, bulkiness and flexibility. The dry nonwoven fabric of Example 36 was excellent in uniformity because the short fibers of the present invention were all-melted binder fibers and contained 80% by mass of the short fibers of the present invention, but was not bulky and flexible. It was enough.

一方、比較例27の乾式不織布は、本発明の短繊維を10質量%以上含有していないため、主体繊維同士が接着せず、不織布とすることができなかった。   On the other hand, since the dry nonwoven fabric of Comparative Example 27 did not contain 10 mass% or more of the short fibers of the present invention, the main fibers did not adhere to each other and could not be made into a nonwoven fabric.

本発明の不織布用短繊維の捲縮形態を示す拡大説明図である。It is an expanded explanatory view which shows the crimped form of the short fiber for nonwoven fabrics of this invention. 実施例における繊維塊の生成を評価するための簡易空気流撹拌試験機を示す説明図である。It is explanatory drawing which shows the simple airflow stirring test machine for evaluating the production | generation of the fiber lump in an Example. 実施例において乾式不織布を製造した簡易エアレイド試験機を示す説明図である。It is explanatory drawing which shows the simple airlaid tester which manufactured the dry-type nonwoven fabric in the Example.

Claims (6)

アルキレンテレフタレート単位を主体とするポリエステルからなり、繊維長が1.0〜30mm、単糸繊度が1.0〜40dtex、複屈折率が0.0150以下、伸度が250%以上、かつ捲縮が付与されている短繊維であって、単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足することを特徴とする不織布用短繊維。
(1)式:0.01T+0.1≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数
A short fiber made of polyester mainly composed of an alkylene terephthalate unit, having a fiber length of 1.0 to 30 mm, a single yarn fineness of 1.0 to 40 dtex, a birefringence of 0.0150 or less, an elongation of 250% or more, and a crimp. In the maximum peak portion of the crimped portion where the crimped form of the single yarn is the height (H) and the bottom side (L) of the triangle connecting the two vertexes of the valleys adjacent to the peak of the peaks A short fiber for nonwoven fabric, characterized in that the ratio (H / L) satisfies the following formula (1):
(1) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.25
T is the number of decitex (dtex) of single yarn fineness
捲縮数と捲縮率が下記(2)及び(3)式を同時に満足する請求項1記載の不織布用短繊維。
(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3
(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9
ただし、捲縮数は繊維長25mm当たりの数 Tは単糸繊度のデシテックス(dtex)数
The short fiber for nonwoven fabric according to claim 1, wherein the number of crimps and the crimp rate satisfy the following expressions (2) and (3) simultaneously.
(2) Formula: 0.1T + 3.8 ≦ crimp number ≦ 0.3T + 7.3
(3) Formula: 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9
However, the number of crimps is the number per 25 mm of fiber length. T is the number of decitex (dtex) of single yarn fineness.
アルキレンテレフタレート単位を主体とするポリエステルの融点が220℃以上である請求項1又は2記載の不織布用短繊維。 The short fiber for nonwoven fabric according to claim 1 or 2, wherein the melting point of the polyester mainly composed of an alkylene terephthalate unit is 220 ° C or higher. アルキレンテレフタレート単位を主体とするポリエステルの融点より50℃低い温度で熱処理すると、繊維の少なくとも一部が溶融する請求項1〜3いずれかに記載の不織布用短繊維。 The short fiber for nonwoven fabric according to any one of claims 1 to 3, wherein at least a part of the fiber melts when heat-treated at a temperature lower by 50 ° C than the melting point of the polyester mainly composed of an alkylene terephthalate unit. 溶融紡糸後、実質的に延伸することなく、未延伸糸に捲縮を付与することにより得られた請求項1〜4のいずれかに記載の不織布用短繊維。 The short fiber for nonwoven fabric according to any one of claims 1 to 4, which is obtained by imparting crimp to an undrawn yarn without substantially drawing after melt spinning. 請求項1〜5のいずれかに記載の不織布用短繊維を10質量%以上含有してなることを特徴とする短繊維不織布。
A short fiber nonwoven fabric comprising 10% by mass or more of the short fiber for nonwoven fabric according to any one of claims 1 to 5.
JP2005004253A 2005-01-11 2005-01-11 Short fiber for nonwoven fabric and short fiber nonwoven fabric Active JP4831971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004253A JP4831971B2 (en) 2005-01-11 2005-01-11 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004253A JP4831971B2 (en) 2005-01-11 2005-01-11 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2006193838A true JP2006193838A (en) 2006-07-27
JP4831971B2 JP4831971B2 (en) 2011-12-07

Family

ID=36800137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004253A Active JP4831971B2 (en) 2005-01-11 2005-01-11 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4831971B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086779A (en) * 2006-10-04 2008-04-17 Riri Group Sa Fluid-tight slide fastener
JP2010156073A (en) * 2008-12-26 2010-07-15 Es Fibervisions Co Ltd Fiber bundle
JP2012031525A (en) * 2010-07-28 2012-02-16 Nippon Ester Co Ltd Wet short fiber nonwoven fabric
JP2012511108A (en) * 2008-12-04 2012-05-17 イーマン8 ピーティワイ リミテッド Nonwoven textile made from short fibers
JP2013151767A (en) * 2012-01-25 2013-08-08 Nippon Ester Co Ltd High-elongation short-fiber nonwoven fabric
JP2014019992A (en) * 2012-07-23 2014-02-03 Nippon Ester Co Ltd Short fiber nonwoven fabric of high elongation
US9546439B2 (en) 2014-05-15 2017-01-17 Zephyros, Inc. Process of making short fiber nonwoven molded articles
US10113322B2 (en) 2014-12-08 2018-10-30 Zephyros, Inc. Vertically lapped fibrous flooring
US10460715B2 (en) 2015-01-12 2019-10-29 Zephyros, Inc. Acoustic floor underlay system
US10755686B2 (en) 2015-01-20 2020-08-25 Zephyros, Inc. Aluminized faced nonwoven materials
US11541626B2 (en) 2015-05-20 2023-01-03 Zephyros, Inc. Multi-impedance composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329438A (en) * 2000-03-15 2001-11-27 Toray Ind Inc Polyester fiber and method for producing the same
JP2003171860A (en) * 2001-12-03 2003-06-20 Teijin Ltd Fiber for air laid nonwoven fabric
JP2004027377A (en) * 2002-06-21 2004-01-29 Teijin Fibers Ltd Polyester staple fiber and nonwoven fabric composed thereof
JP2005042289A (en) * 2003-07-10 2005-02-17 Nippon Ester Co Ltd Staple fiber for nonwoven fabric and staple fiber nonwoven fabric
JP2005113320A (en) * 2003-10-08 2005-04-28 Nippon Ester Co Ltd Short fiber for nonwoven fabric, and short fiber nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329438A (en) * 2000-03-15 2001-11-27 Toray Ind Inc Polyester fiber and method for producing the same
JP2003171860A (en) * 2001-12-03 2003-06-20 Teijin Ltd Fiber for air laid nonwoven fabric
JP2004027377A (en) * 2002-06-21 2004-01-29 Teijin Fibers Ltd Polyester staple fiber and nonwoven fabric composed thereof
JP2005042289A (en) * 2003-07-10 2005-02-17 Nippon Ester Co Ltd Staple fiber for nonwoven fabric and staple fiber nonwoven fabric
JP2005113320A (en) * 2003-10-08 2005-04-28 Nippon Ester Co Ltd Short fiber for nonwoven fabric, and short fiber nonwoven fabric

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086779A (en) * 2006-10-04 2008-04-17 Riri Group Sa Fluid-tight slide fastener
US9315930B2 (en) 2008-12-04 2016-04-19 Zephyros, Inc. Nonwoven textile made from short fibers
JP2012511108A (en) * 2008-12-04 2012-05-17 イーマン8 ピーティワイ リミテッド Nonwoven textile made from short fibers
JP2010156073A (en) * 2008-12-26 2010-07-15 Es Fibervisions Co Ltd Fiber bundle
JP2012031525A (en) * 2010-07-28 2012-02-16 Nippon Ester Co Ltd Wet short fiber nonwoven fabric
JP2013151767A (en) * 2012-01-25 2013-08-08 Nippon Ester Co Ltd High-elongation short-fiber nonwoven fabric
JP2014019992A (en) * 2012-07-23 2014-02-03 Nippon Ester Co Ltd Short fiber nonwoven fabric of high elongation
US9546439B2 (en) 2014-05-15 2017-01-17 Zephyros, Inc. Process of making short fiber nonwoven molded articles
US10329701B2 (en) 2014-05-15 2019-06-25 Zephyros, Inc. Method of forming a nonwoven molded article
US10113322B2 (en) 2014-12-08 2018-10-30 Zephyros, Inc. Vertically lapped fibrous flooring
US11542714B2 (en) 2014-12-08 2023-01-03 Zephyros, Inc. Vertically lapped fibrous flooring
US10460715B2 (en) 2015-01-12 2019-10-29 Zephyros, Inc. Acoustic floor underlay system
US10755686B2 (en) 2015-01-20 2020-08-25 Zephyros, Inc. Aluminized faced nonwoven materials
US11541626B2 (en) 2015-05-20 2023-01-03 Zephyros, Inc. Multi-impedance composite

Also Published As

Publication number Publication date
JP4831971B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4831971B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP5233053B2 (en) Composite fiber for producing air laid nonwoven fabric and method for producing high density air laid nonwoven fabric
TWI686520B (en) Polyester binder fiber
JP4485860B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4357255B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
US20220325453A1 (en) Non-Woven Fabric
JP4351100B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4455180B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4537701B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JPH09273096A (en) Polyester-based wet nonwoven fabric
JP4633452B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4455181B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4791212B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP2013133571A (en) Thermally adhesive conjugated fiber having high mechanical crimping performance and method for producing the same
JP4791156B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4783176B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4783175B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4791173B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4783162B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4704216B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4787621B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP2555177B2 (en) Bulky paper and manufacturing method thereof
JPH0327195A (en) Bulky paper having water-dispersing and dissolving performance and preparation thereof
JP6475033B2 (en) Polyester fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Ref document number: 4831971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3