JP2014019992A - Short fiber nonwoven fabric of high elongation - Google Patents

Short fiber nonwoven fabric of high elongation Download PDF

Info

Publication number
JP2014019992A
JP2014019992A JP2012162672A JP2012162672A JP2014019992A JP 2014019992 A JP2014019992 A JP 2014019992A JP 2012162672 A JP2012162672 A JP 2012162672A JP 2012162672 A JP2012162672 A JP 2012162672A JP 2014019992 A JP2014019992 A JP 2014019992A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
short fiber
elongation
polylactic acid
high elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012162672A
Other languages
Japanese (ja)
Other versions
JP2014019992A5 (en
Inventor
Tsukasa Miyata
司 宮田
Tsuneo Iizuka
恒夫 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2012162672A priority Critical patent/JP2014019992A/en
Publication of JP2014019992A publication Critical patent/JP2014019992A/en
Publication of JP2014019992A5 publication Critical patent/JP2014019992A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily provide a nonwoven fabric of high elongation and reduced in environmental load without increasing production cost.SOLUTION: A short fiber nonwoven fabric of high elongation is characterized by comprising polylactic acid short fiber with 300% or more of breaking elongation as a main fiber, the short fiber nonwoven fabric: being made by three-dimensionally interlacing and integrating constituent fibers by needle-punching treatment; and having 200% or more of elongation both in longitudinal and transverse directions. It is preferable that polylactate phthalate composing the polylactic acid short fiber with 300% or more of breaking elongation has 0.015 or less of birefringence.

Description

本発明は、高い伸長性をもち、機械的特性にも優れた短繊維不織布に関するものである。特に、土木用途、建築用途等に好適に用いられる短繊維不織布に関するものである。   The present invention relates to a short fiber nonwoven fabric having high extensibility and excellent mechanical properties. In particular, the present invention relates to a short fiber nonwoven fabric suitably used for civil engineering applications, architectural applications, and the like.

伸度の高い不織布としては、熱収縮性能の異なる複数の不織布を積層しニードルパンチで接合した後に熱処理を施し、各層の熱収縮差により積層不織布に凹凸皺を発生付与したものが挙げられる(例えば、特許文献1)。特許文献1の不織布によれば、引張応力が加わることにより不織布の有する凹凸皺が伸びることによって高伸度となる。すなわち、皺の大きさの分だけ、伸びを発現することとなる。   Examples of the nonwoven fabric having a high degree of elongation include those obtained by laminating a plurality of nonwoven fabrics having different heat shrink performances and joining them with a needle punch, followed by heat treatment, and generating and imparting uneven wrinkles to the laminated nonwoven fabric due to the difference in heat shrinkage of each layer (for example, Patent Document 1). According to the nonwoven fabric of patent document 1, it becomes high elongation by extending | stretching the uneven | corrugated ridge which a nonwoven fabric has, when tensile stress is added. That is, the elongation is expressed by the size of the wrinkles.

しかしながら、不織布に付与できる凹凸皺の大きさには限度があり、さらに高い伸び率、例えば300%付近の伸び率を凹凸皺により付与することは困難である。また、この方法では、凹凸皺を付与するためには、熱処理工程を必須としており、工数が増えることによる労力やエネルギー消費の大きいものである。さらには、積層不織布に凹凸皺が付与されているため必然的に嵩の高い不織布になり、保管や輸送効率においても不利である。   However, there is a limit to the size of the uneven ridge that can be imparted to the nonwoven fabric, and it is difficult to impart a higher elongation rate, for example, an elongation rate of around 300% with the uneven crease. Moreover, in this method, in order to give uneven | corrugated wrinkles, the heat processing process is essential, and the labor and energy consumption by an increase in a man-hour are large. Furthermore, since uneven ridges are imparted to the laminated nonwoven fabric, it is inevitably a bulky nonwoven fabric, which is disadvantageous in terms of storage and transportation efficiency.

一方、大半の不織布は石油系合成繊維を原料として製造されているが、近年、石油資源の枯渇や温暖化ガス(二酸化炭素)の増加など、資源環境問題が深刻化しており、環境負荷低減の対策が必要となり、石油資源への依存を低減し、温暖化ガスの増加を防ぐため植物由来の原料で製造された商品の普及推進が求められている。   On the other hand, most nonwoven fabrics are manufactured using petroleum-based synthetic fibers as raw materials. However, in recent years, resource environment problems such as depletion of petroleum resources and an increase in greenhouse gases (carbon dioxide) have become serious, reducing the environmental burden. Countermeasures are required, and there is a need to promote the spread of products made from plant-derived raw materials in order to reduce dependence on petroleum resources and prevent an increase in greenhouse gases.

特開2010−150737号公報JP 2010-150737 A

本発明は上記問題を解決するものであって、高い伸度を有し、かつ環境負荷低減を考慮してなる不織布を、製造コストをかけずに容易に提供することを課題とするものである。   This invention solves the said problem, and makes it a subject to provide easily the nonwoven fabric which has high elongation and considers environmental load reduction without manufacturing cost. .

本発明者は、上記の課題を達成するために検討した結果、本発明に到達した。   The present inventor has reached the present invention as a result of studies to achieve the above-mentioned problems.

すなわち、本発明は、破断伸び率が300%以上のポリ乳酸短繊維を主体繊維とし、構成繊維同士がニードルパンチ処理により三次元的に交絡して一体化してなる不織布であり、該不織布の伸び率が縦方向および横方向ともに200%以上であることを特徴とする高伸度短繊維不織布を要旨とするものである。   That is, the present invention is a nonwoven fabric in which polylactic acid short fibers having a breaking elongation of 300% or more are main fibers, and the constituent fibers are three-dimensionally entangled and integrated by needle punch processing, and the elongation of the nonwoven fabric A high elongation short fiber nonwoven fabric characterized in that the rate is 200% or more in both the longitudinal direction and the transverse direction.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の不織布は、破断伸び率が300%以上のポリ乳酸短繊維を主体繊維としている。このような破断伸び率が300%以上のポリ乳酸短繊維としては、短繊維を構成するポリ乳酸の複屈折率が0.015以下である短繊維を用いるとよい。好ましくは、ポリ乳酸の複屈折率が0.006以下である。ポリ乳酸短繊維において、ポリ乳酸の複屈折率が0.015以下のものは、繊維の配向結晶化がほとんど進んでいない。したがって、短繊維は、引張応力に対して300%以上の大きな伸度を発揮するものとなる。このようなポリ乳酸短繊維を構成繊維とする不織布に引張応力が付加されると、この引張応力によって該ポリ乳酸短繊維自身が容易に伸長する。その結果、不織布は、縦方向、横方向ともに、高い伸び率すなわち200%以上の破断伸び率を有するものとなる。短繊維を構成する重合体として、ポリ乳酸を選択する理由は、植物由来の原料であり、植物由来の原料は、燃やしても、もともと空気中にあった二酸化炭素を再び空気中に戻すだけである、いわゆるカーボンニュートラルであり、地球温暖化への影響はなく、このような植物由来の原料の利用を図ることは、石油由来のエネルギーや製品の代替につながり、化石資源由来の二酸化炭素の発生を抑制できることから、地球温暖化の防止の観点から好ましいためである。   The nonwoven fabric of the present invention uses polylactic acid short fibers having a breaking elongation of 300% or more as a main fiber. As such a polylactic acid short fiber having a breaking elongation of 300% or more, a short fiber having a birefringence of 0.015 or less of the polylactic acid constituting the short fiber may be used. Preferably, polylactic acid has a birefringence of 0.006 or less. In polylactic acid short fibers, when the polylactic acid has a birefringence of 0.015 or less, oriented crystallization of the fibers hardly progresses. Therefore, the short fiber exhibits a large elongation of 300% or more with respect to the tensile stress. When a tensile stress is applied to a nonwoven fabric having such a polylactic acid short fiber as a constituent fiber, the polylactic acid short fiber itself is easily stretched by the tensile stress. As a result, the nonwoven fabric has a high elongation rate, that is, a breaking elongation rate of 200% or more in both the longitudinal direction and the transverse direction. The reason why polylactic acid is selected as the polymer constituting the short fiber is a plant-derived raw material. Even if the plant-derived raw material is burned, the carbon dioxide originally in the air is simply returned to the air again. It is a so-called carbon neutral that has no impact on global warming, and the use of such plant-derived raw materials leads to the substitution of petroleum-derived energy and products, and the generation of carbon dioxide derived from fossil resources. This is because it is preferable from the viewpoint of prevention of global warming.

このように複屈折率が0.015以下のポリ乳酸によって構成される短繊維は、例えば、溶融紡糸における紡糸速度を低紡速(800〜1300m/分)で行って、紡糸段階においてもポリ乳酸の結晶配向化が促進しないようにし、その後、溶融紡糸により得られた繊維は、熱延伸を施さずに結晶配向を促進させないようにすることで得ることができる。   As described above, the short fiber composed of polylactic acid having a birefringence of 0.015 or less is obtained by, for example, performing spinning at a low spinning speed (800 to 1300 m / min) in melt spinning, and also at the spinning stage. It is possible to obtain a fiber obtained by melt spinning so that the crystal orientation is not promoted without being subjected to hot drawing.

本発明の不織布は、破断伸び率が300%以上のポリ乳酸短繊維を主体繊維としているが、本発明の効果を損なわない範囲であれば、破断伸び率が300%以上のポリ乳酸短繊維以外の短繊維(以下、「他の短繊維」という)を含有してもよい。ただし、他の短繊維を含む場合の含有率は多くとも20質量%未満とし、より好ましくは多くとも10質量%以下とする。なお、本発明の不織布においては、破断伸び率が300%以上のポリ乳酸短繊維のみを構成繊維とすることが最も好ましい。他の短繊維の含有率が多くなると得られる短繊維不織布の破断伸び率が小さくなる傾向となる。他の短繊維は、破断伸び率は50%以上の短繊維であることが好ましい。破断伸び率が50%以下の場合、得られる不織布の破断伸び率が低下する傾向となるためである。他の短繊維を構成するポリエステルとしては、ポリ乳酸、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられるが、環境配慮の観点からポリ乳酸が好ましい。   The non-woven fabric of the present invention is mainly composed of polylactic acid short fibers having a breaking elongation of 300% or more, but other than polylactic acid short fibers having a breaking elongation of 300% or more as long as the effects of the present invention are not impaired. Short fibers (hereinafter referred to as “other short fibers”). However, the content when other short fibers are included is at most 20% by mass, more preferably at most 10% by mass. In the nonwoven fabric of the present invention, it is most preferable to use only polylactic acid short fibers having a breaking elongation of 300% or more as constituent fibers. When the content of other short fibers increases, the elongation at break of the obtained short fiber nonwoven fabric tends to decrease. The other short fibers are preferably short fibers having an elongation at break of 50% or more. This is because when the breaking elongation is 50% or less, the breaking elongation of the resulting nonwoven fabric tends to decrease. Examples of the polyester constituting other short fibers include polylactic acid, polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Polylactic acid is preferable from the viewpoint of environmental considerations.

本発明において用いられるポリ乳酸としては、ポリD−乳酸、ポリL−乳酸、ポリD−乳酸とポリL−乳酸との共重合体であるポリDL−乳酸、ポリD−乳酸とポリL−乳酸との混合物(ステレオコンプレックス)、ポリD−乳酸とヒドロキシカルボン酸との共重合体、ポリL−乳酸とヒドロキシカルボン酸との共重合体、ポリD−乳酸またはポリL−乳酸と脂肪族ジカルボン酸および脂肪族ジオールとの共重合体、あるいはこれらのブレンド体とすることが好ましい。   Examples of the polylactic acid used in the present invention include poly D-lactic acid, poly L-lactic acid, poly DL-lactic acid that is a copolymer of poly D-lactic acid and poly L-lactic acid, poly D-lactic acid, and poly L-lactic acid. (Stereo complex), copolymer of poly D-lactic acid and hydroxycarboxylic acid, copolymer of poly L-lactic acid and hydroxycarboxylic acid, poly D-lactic acid or poly L-lactic acid and aliphatic dicarboxylic acid And a copolymer with an aliphatic diol or a blend thereof.

また、ポリ乳酸としては、なかでも融点が120℃以上で融解熱が10J/g以上のものを選択することが好ましい。ポリ乳酸のホモポリマーであるポリL−乳酸やポリD−乳酸の融点は約180℃であるが、D−乳酸とL−乳酸との共重合体の場合、いずれかの成分の割合を10モル%以上とすると、融点はおよそ130℃程度となり、さらに、いずれかの成分の割合を18モル%以上とすると、融点は120℃未満、融解熱は10J/g未満となって、ほぼ完全に非晶性の性質となる。このようなポリマーは、製造工程において特に熱延伸し難くなり、実用上問題のない強度を有する繊維が得られにくくなり、また、耐熱性、耐摩耗性に劣る傾向にある。   In addition, it is preferable to select polylactic acid having a melting point of 120 ° C. or higher and a heat of fusion of 10 J / g or higher. Poly L-lactic acid and poly D-lactic acid, which are homopolymers of polylactic acid, have a melting point of about 180 ° C., but in the case of a copolymer of D-lactic acid and L-lactic acid, the proportion of any component is 10 mol. % Or more, the melting point is about 130 ° C., and if the proportion of any of the components is 18 mol% or more, the melting point is less than 120 ° C. and the heat of fusion is less than 10 J / g. It becomes a crystalline property. Such a polymer is particularly difficult to be stretched in the production process, makes it difficult to obtain fibers having a practically satisfactory strength, and tends to be inferior in heat resistance and wear resistance.

そこで、ポリ乳酸としては、ラクチドを原料として重合するときのL−乳酸やD−乳酸の含有割合で示されるL−乳酸とD−乳酸の含有比(モル比)であるL/DまたはD/Lが、82/18以上のものが好ましく、なかでも90/10以上、さらには95/5以上とすることが好ましい。   Therefore, as polylactic acid, L / D or D / which is the content ratio (molar ratio) of L-lactic acid and D-lactic acid indicated by the content ratio of L-lactic acid or D-lactic acid when polymerizing using lactide as a raw material. L is preferably 82/18 or more, more preferably 90/10 or more, and further preferably 95/5 or more.

また、ポリ乳酸のなかでも、ポリD−乳酸とポリL−乳酸との混合物(ステレオコンプレックス)は、融点が200〜230℃と高いため、耐熱性を要する用途には好ましく用いることができる。   Among polylactic acids, a mixture (stereocomplex) of poly-D-lactic acid and poly-L-lactic acid has a high melting point of 200 to 230 ° C., and therefore can be preferably used for applications requiring heat resistance.

ポリ乳酸とヒドロキシカルボン酸の共重合体である場合は、ヒドロキシカルボン酸の具体例としてはグリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシペンタン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。なかでもヒドロキシカプロン酸またはグリコール酸を用いることがコスト面からも好ましい。   In the case of a copolymer of polylactic acid and hydroxycarboxylic acid, specific examples of hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypentanoic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, etc. Can be mentioned. Of these, use of hydroxycaproic acid or glycolic acid is preferable from the viewpoint of cost.

ポリ乳酸と脂肪族ジカルボン酸および脂肪族ジオールとの共重合体の場合は、脂肪族ジカルボン酸および脂肪族ジオールとしては、セバシン酸、アジピン酸、ドデカン二酸、トリメチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等が挙げられる。   In the case of a copolymer of polylactic acid and aliphatic dicarboxylic acid and aliphatic diol, the aliphatic dicarboxylic acid and aliphatic diol include sebacic acid, adipic acid, dodecanedioic acid, trimethylene glycol, 1,4-butane. Diol, 1,6-hexanediol, etc. are mentioned.

ポリ乳酸に他の成分を共重合させる場合は、ポリ乳酸を80モル%以上とすることが好ましい。80モル%未満であると、共重合体の結晶性が低くなり、融点120℃未満、融解熱10J/g未満となりやすい。   When polylactic acid is copolymerized with other components, the polylactic acid is preferably 80 mol% or more. If it is less than 80 mol%, the crystallinity of the copolymer tends to be low, and the melting point tends to be less than 120 ° C. and the heat of fusion less than 10 J / g.

ポリ乳酸の分子量としては、分子量の指標として用いられるASTM D−1238法に準じ、温度210℃、荷重2160gで測定したメルトフローレートが1〜100g/10分であることが好ましく、より好ましくは5〜50g/10分である。メルトフローレートをこの範囲にすることにより、強度、湿熱分解性、耐摩耗性が向上する。   The molecular weight of polylactic acid is preferably 1 to 100 g / 10 minutes, more preferably 5 in terms of the melt flow rate measured at a temperature of 210 ° C. and a load of 2160 g according to the ASTM D-1238 method used as an index of molecular weight. ~ 50 g / 10 min. By setting the melt flow rate within this range, strength, wet heat decomposability, and wear resistance are improved.

また、ポリ乳酸の耐久性を高める目的で、ポリ乳酸に脂肪族アルコール、カルボジイミド化合物、オキサゾリン化合物、オキサジン化合物、エポキシ化合物などの末端封鎖剤を添加してもよい。さらに、本発明の目的を損なわない範囲であれば、必要に応じて、ポリ乳酸中に熱安定剤、結晶核剤、艶消剤、顔料、耐光剤、耐候剤、滑剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、難燃剤、表面改質剤、各種無機および有機電解質、その他類似の添加剤を1種類または2種類以上添加してもよい。   For the purpose of enhancing the durability of polylactic acid, a terminal blocking agent such as an aliphatic alcohol, a carbodiimide compound, an oxazoline compound, an oxazine compound, or an epoxy compound may be added to polylactic acid. Furthermore, as long as it does not impair the purpose of the present invention, a heat stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light-proofing agent, a weathering agent, a lubricant, an antioxidant, an antibacterial agent are included in polylactic acid as necessary. One kind or two or more kinds of additives, fragrances, plasticizers, dyes, surfactants, flame retardants, surface modifiers, various inorganic and organic electrolytes, and other similar additives may be added.

本発明の不織布を構成する短繊維の単糸繊度は、特に限定するものではなく用途に応じて適宜選択すればよいが、1.3〜33dtexが好ましく、さらには2.2〜11dtexがより好ましい。単糸繊度が1.3dtex未満のものは、繊維自体の強力が劣る傾向にあり、用途が限定される傾向となる。一方、33dtexを超えると、同じ目付の不織布を得ようとしたときに、不織布を構成する短繊維の本数が相対的に少なくなり、不織布の強度が低くなる傾向にある。   The single yarn fineness of the short fibers constituting the nonwoven fabric of the present invention is not particularly limited and may be appropriately selected depending on the application, but is preferably 1.3 to 33 dtex, more preferably 2.2 to 11 dtex. . When the single yarn fineness is less than 1.3 dtex, the strength of the fiber itself tends to be inferior, and the application tends to be limited. On the other hand, when it exceeds 33 dtex, when trying to obtain a nonwoven fabric having the same basis weight, the number of short fibers constituting the nonwoven fabric is relatively reduced, and the strength of the nonwoven fabric tends to be lowered.

不織布を構成する短繊維の繊維長は、32〜100mmが好ましく、さらには38mm以上がより好ましい。繊維長を32mm以上とすることにより、破断伸び率のより高い不織布が得られ易い。また、製造工程におけるカード機での開繊時に、繊維の脱落が発生しにくく操業性が良好である。一方、繊維長を100mm以下とすることにより、得られる不織布の地合いが均一となり、また、カード機で良好に解繊できる。 本発明の不織布は、構成繊維同士がニードルパンチ処理により三次元的に交絡して一体化してなる。構成繊維同士がニードルパンチ処理により三次元的に交絡しているため、繊維の長手方向における繊維軸は不織布の面方向だけでなく不織布の厚み方向にも位置して三次元的に配置されることとなる。また、その三次元的な方向に位置した状態で交絡しているため、構成繊維はある程度の自由度を有するものとなり、引張応力に対して不織布としても伸びやすい形態となる。また、厚みが大きく嵩高の不織布となるため、土木用途や建築用途に好適に使用できる。   The fiber length of the short fibers constituting the nonwoven fabric is preferably 32 to 100 mm, and more preferably 38 mm or more. By setting the fiber length to 32 mm or more, it is easy to obtain a nonwoven fabric having a higher elongation at break. Further, when the fiber card is opened in the manufacturing process, the fibers are less likely to fall off and the operability is good. On the other hand, by setting the fiber length to 100 mm or less, the resulting nonwoven fabric has a uniform texture and can be satisfactorily defibrated with a card machine. The non-woven fabric of the present invention is formed by integrating the constituent fibers with each other three-dimensionally by needle punching. Since the constituent fibers are entangled three-dimensionally by the needle punching process, the fiber axis in the longitudinal direction of the fiber is positioned not only in the surface direction of the nonwoven fabric but also in the thickness direction of the nonwoven fabric, and is arranged three-dimensionally. It becomes. Moreover, since it is entangled in a state of being positioned in the three-dimensional direction, the constituent fibers have a certain degree of freedom and are easily stretched as a nonwoven fabric against tensile stress. Moreover, since it becomes a bulky nonwoven fabric with large thickness, it can be used suitably for civil engineering use and building use.

本発明の不織布の目付は、特に限定するものではなく用途に応じて適宜選択すればよいが、150〜2000g/m2程度が好ましい。 The basis weight of the nonwoven fabric of the present invention is not particularly limited and may be appropriately selected depending on the application, but is preferably about 150 to 2000 g / m 2 .

本発明の不織布の厚みは、特に限定するものではなく用途に応じて適宜選択すればよいが、保管や輸送等のコストあるいは敷設時の作業性を考慮すると、厚みが大き過ぎないものが好ましく、具体的には不織布の目付が150〜1000g/m2の範囲では2〜5mm程度が好ましい。 The thickness of the nonwoven fabric of the present invention is not particularly limited and may be appropriately selected according to the use, but considering the cost of storage and transportation or workability at the time of laying, it is preferable that the thickness is not too large, Specifically, when the basis weight of the nonwoven fabric is in the range of 150 to 1000 g / m 2 , about 2 to 5 mm is preferable.

本発明の高伸度短繊維不織布は、伸長性と機械的特性に優れているので、土木用途、建築用途等に好適に用いることができる。特に土木用として、地面その他の凸凹状の起伏を有する場所に不織布を敷設する場合に、敷設面への追従が容易で、作業性をはじめとする施工性を大巾に改善することができる。また、本発明の高伸度短繊維不織布は生分解性を有するポリ乳酸によって構成されているため、ポリ乳酸の生分解性を考慮し、敷設する環境を考慮して適用すれば、敷設してから数年後にポリ乳酸が除々に分解するため、用途としての役割が終わった際に回収が不要となるため省力化も図ることができる。   Since the high elongation short fiber nonwoven fabric of the present invention is excellent in extensibility and mechanical properties, it can be suitably used for civil engineering applications and architectural applications. Particularly for civil engineering, when a non-woven fabric is laid on the ground or other places having uneven undulations, it is easy to follow the laying surface and workability including workability can be greatly improved. In addition, since the high elongation short fiber nonwoven fabric of the present invention is composed of biodegradable polylactic acid, it is laid if applied in consideration of the laying environment in consideration of the biodegradability of polylactic acid. Since several years later, polylactic acid gradually decomposes, so that when the role as an application is over, no recovery is required, so that labor can be saved.

本発明の不織布を土木用途に用いる場合は、強度が200N/5cm程度以上であれば土木分野、例えば防砂シート等の用途に好適に用いることができ、より好ましくは強度が400N/5cm以上、さらに好ましくは強度が500N/5cm以上である。   When the non-woven fabric of the present invention is used for civil engineering, it can be suitably used for civil engineering, for example, sandproof sheets, etc., if the strength is about 200 N / 5 cm or more, more preferably the strength is 400 N / 5 cm or more. The strength is preferably 500 N / 5 cm or more.

本発明の高伸度短繊維不織布は、破断伸び率300%以上のポリ乳酸短繊維を主体繊維とするニードルパンチ短繊維不織布であり、該短繊維が容易に伸長しやすい性質を有することから、短繊維不織布の破断応力以下の応力で該短繊維が容易に伸長する。したがって、縦方向、横方向ともに200%以上の破断伸び率を有する高伸度であって、環境負荷低減が可能な短繊維不織布を提供することが可能になる。   The high elongation short fiber nonwoven fabric of the present invention is a needle punch short fiber nonwoven fabric mainly composed of polylactic acid short fibers having a breaking elongation of 300% or more, and the short fibers are easily stretched. The short fibers are easily stretched with a stress equal to or lower than the breaking stress of the short fiber nonwoven fabric. Therefore, it is possible to provide a short fiber nonwoven fabric having a high elongation having a breaking elongation of 200% or more in both the vertical direction and the horizontal direction and capable of reducing the environmental load.

次に、実施例を用いて本発明を具体的に説明する。実施例中の各種の特性値等の測定、評価方法は次の通りである。
(1)ポリ乳酸のメルトフローレート(g/10分)
ASTM D−1238に準じて温度210℃、荷重2160gで測定した。
(2)ポリ乳酸の相対粘度
フェノールと四塩化エタンとの等量混合物を溶媒として、温度20℃で測定した。
(3)不織布の目付
JIS L 1913 6.2に準じて測定した。
(4)不織布の厚み
JIS L 1913 6.1.2 A法に準じ、0.5KPaの荷重で測定した。
(5)不織布の引張強さ(強度)及び破断伸び率
JIS L 1913 6.3に準じ、5cm巾の試料をつかみ間隔10cm、引張速度10cm/minで測定した。
Next, the present invention will be specifically described using examples. The measurement and evaluation methods for various characteristic values in the examples are as follows.
(1) Melt flow rate of polylactic acid (g / 10 min)
Measurement was performed at a temperature of 210 ° C. and a load of 2160 g according to ASTM D-1238.
(2) Relative viscosity of polylactic acid It measured at the temperature of 20 degreeC by using the equivalent mixture of phenol and ethane tetrachloride as a solvent.
(3) Fabric weight of nonwoven fabric It was measured according to JIS L 1913 6.2.
(4) Thickness of non-woven fabric According to JIS L 1913 6.1.2 A method, it measured by the load of 0.5 KPa.
(5) Tensile strength (strength) and elongation at break of nonwoven fabric According to JIS L 1913 6.3, a 5 cm wide sample was measured at a gripping interval of 10 cm and a tensile speed of 10 cm / min.

実施例1
融点170℃、溶融融解熱38J/g、MFR(メルトフローレート)23g/10分、相対粘度1.85のポリDL−乳酸(L/D=98.5/1.5)を準備し、通常の紡糸装置を用いて、紡糸温度240℃、吐出量503g/分、紡糸速度1000m/分の条件で紡糸し、未延伸糸を得た。このとき、紡糸口金として、丸断面の0.20Φの吐出孔が1450個穿孔されたものを用いた。得られた未延伸糸を12.4ktexの繊維束に集束し延伸を行わず、クリンパーで機械捲縮を付与した。その後、ラウリルホスフェートカリ塩を主成分とする一般紡績用油剤を付着量が0.2質量%となるように付与した後、カットして単糸繊度3.3dtex、繊維長64mmの高伸度のポリ乳酸短繊維(以下、高伸度の短繊維という。)を得た。この高伸度の短繊維の複屈折率は、0.005、伸度330%であった。
Example 1
A poly DL-lactic acid (L / D = 98.5 / 1.5) having a melting point of 170 ° C., a melting and melting heat of 38 J / g, an MFR (melt flow rate) of 23 g / 10 minutes, and a relative viscosity of 1.85 was prepared. Was spun at a spinning temperature of 240 ° C., a discharge rate of 503 g / min, and a spinning speed of 1000 m / min to obtain an undrawn yarn. At this time, a spinneret having 1450 discharge holes of 0.20Φ having a round cross section was used. The obtained undrawn yarn was converged into a fiber bundle of 12.4 ktex and not stretched, and mechanical crimping was applied with a crimper. Thereafter, a general spinning oil mainly composed of lauryl phosphate potassium salt was applied so that the adhesion amount was 0.2% by mass, and then cut to obtain a single yarn fineness of 3.3 dtex and a high elongation of 64 mm. Polylactic acid short fibers (hereinafter referred to as high elongation short fibers) were obtained. The high elongation short fiber had a birefringence of 0.005 and an elongation of 330%.

得られた高伸度の短繊維をカード機で解繊した後、クロスレイアーで積層し乾式ウェブを作成し、その後バーブ付きニードルを有するニードルロッカーに通して、針密度60パンチ/cm2にてニードリングを行い800g/m2の短繊維不織布を得た。 The obtained high elongation short fibers were defibrated with a card machine, then laminated with a cross layer to create a dry web, and then passed through a needle rocker having a barbed needle at a needle density of 60 punch / cm 2 . Needling was performed to obtain an 800 g / m 2 short fiber nonwoven fabric.

実施例2〜5
短繊維不織布の目付を表1に示す値に変更した以外は、実施例1と同様にして短繊維不織布を得た。
Examples 2-5
A short fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the basis weight of the short fiber nonwoven fabric was changed to the values shown in Table 1.

実施例6、7
ニードリングの針密度を表1に示す数に変更した以外は、実施例1と同様にして短繊維不織布を得た。
Examples 6 and 7
A short fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the needle density of needling was changed to the numbers shown in Table 1.

実施例8
実施例1において、紡糸口金として、丸断面の0.28Φの吐出孔が518個穿孔されたものを用いたこと以外は実施例1と同様にして、単糸繊度7.7dtex、繊維長64mmの高伸度のポリ乳酸短繊維(高伸度の短繊維)を得た。この高伸度の短繊維の複屈折率は、0.004、伸度360%であった。
得られた高伸度の短繊維をカード機で解繊した後、クロスレイアーで積層し乾式ウェブを作成し、その後バーブ付きニードルを有するニードルロッカーに通して、針密度60パンチ/cm2にてニードリングを行い800g/m2の短繊維不織布を得た。
Example 8
In Example 1, a single yarn fineness of 7.7 dtex and a fiber length of 64 mm was used in the same manner as in Example 1 except that a spinneret was used in which 518 discharge holes having a round cross section of 0.28Φ were perforated. A high elongation polylactic acid short fiber (high elongation short fiber) was obtained. The birefringence of the high elongation short fiber was 0.004 and the elongation was 360%.
The obtained high elongation short fibers were defibrated with a card machine, then laminated with a cross layer to create a dry web, and then passed through a needle rocker having a barbed needle at a needle density of 60 punch / cm 2 . Needling was performed to obtain an 800 g / m 2 short fiber nonwoven fabric.

実施例9〜12
短繊維不織布の目付を表1に示す値に変更した以外は、実施例8と同様にして短繊維不織布を得た。
Examples 9-12
A short fiber nonwoven fabric was obtained in the same manner as in Example 8 except that the basis weight of the short fiber nonwoven fabric was changed to the values shown in Table 1.

実施例13〜14
ニードリングの針密度を表1に示す数に変更した以外は、実施例8と同様にして短繊維不織布を得た。
Examples 13-14
A short fiber nonwoven fabric was obtained in the same manner as in Example 8 except that the needle density of needling was changed to the numbers shown in Table 1.

実施例15
高伸度の短繊維として実施例1で得られた高伸度の短繊維を用い、高伸度の短繊維以外の他の短繊維としてユニチカ社製ポリ乳酸短繊維<PL01>4.4T51(破断伸び率60%)を用い、高伸度の短繊維と他の短繊維との質量比率を90/10(高伸度の短繊維/他の短繊維)とし、実施例1と同様にして短繊維不織布を得た。
Example 15
The high elongation short fiber obtained in Example 1 was used as the high elongation short fiber, and other short fibers other than the high elongation short fiber were polylactic acid short fibers <PL01> 4.4T51 (manufactured by Unitika). In the same manner as in Example 1, the mass ratio of high elongation short fibers to other short fibers was 90/10 (high elongation short fibers / other short fibers). A short fiber nonwoven fabric was obtained.

実施例16
高伸度の短繊維として実施例8で得られた高伸度の短繊維を用い、高伸度の短繊維以外の他の短繊維としてユニチカ社製ポリ乳酸短繊維<PL01>4.4T51(破断伸び率60%)を用い、高伸度の短繊維と他の短繊維との質量比率を90/10(高伸度の短繊維/他の短繊維)とし、実施例8と同様にして短繊維不織布を得た。
Example 16
The high elongation short fiber obtained in Example 8 was used as the high elongation short fiber, and the polylactic acid short fiber <PL01> 4.4T51 (manufactured by Unitika Ltd.) as other short fibers other than the high elongation short fiber ( In the same manner as in Example 8, the mass ratio of high elongation short fibers to other short fibers was 90/10 (high elongation short fibers / other short fibers). A short fiber nonwoven fabric was obtained.

比較例1
高伸度の短繊維として実施例1で得られた高伸度の短繊維を用い、高伸度の短繊維以外の他の短繊維としてユニチカ社製ポリ乳酸短繊維<PL01>4.4T51(破断伸び率60%)を用い、高伸度の短繊維と他の短繊維との質量比率を80/20(高伸度の短繊維/他の短繊維)とし、実施例1と同様にして短繊維不織布を得た。
Comparative Example 1
The high elongation short fiber obtained in Example 1 was used as the high elongation short fiber, and other short fibers other than the high elongation short fiber were polylactic acid short fibers <PL01> 4.4T51 (manufactured by Unitika). The elongation ratio was 60%), and the mass ratio of short fibers with high elongation to other short fibers was 80/20 (short fibers with high elongation / other short fibers). A short fiber nonwoven fabric was obtained.

比較例2
高伸度の短繊維として実施例8で得られた高伸度の短繊維を用い、高伸度の短繊維以外の他の短繊維としてユニチカ社製ポリ乳酸短繊維<PL01>4.4T51(破断伸び率60%)を用い、高伸度の短繊維と他の短繊維との質量比率を80/20(高伸度の短繊維/他の短繊維)とし、実施例8と同様にして短繊維不織布を得た。
Comparative Example 2
The high elongation short fiber obtained in Example 8 was used as the high elongation short fiber, and the polylactic acid short fiber <PL01> 4.4T51 (manufactured by Unitika Ltd.) as other short fibers other than the high elongation short fiber ( In the same manner as in Example 8, the mass ratio of high elongation short fibers to other short fibers was 80/20 (high elongation short fibers / other short fibers). A short fiber nonwoven fabric was obtained.

比較例3
短繊維としてユニチカ社製ポリ乳酸短繊維<PL01>4.4T51(破断伸び率60%)のみを用い、実施例1と同様にして短繊維不織布を得た。
Comparative Example 3
A short fiber nonwoven fabric was obtained in the same manner as in Example 1 by using only the polylactic acid short fiber <PL01> 4.4T51 (60% elongation at break) manufactured by Unitika Ltd. as the short fiber.

表1から明らかなように、実施例1〜16で得られた短繊維不織布は、破断伸び率が縦方向および横方向ともに200%以上の高い伸びを有する短繊維不織布であった。なかでも、実施例1〜14の短繊維不織布は、複屈折率が0.015以下、破断伸び率が300%以上の短繊維のみを用いたものであり、縦方向および横方向ともに250%以上の破断伸び率で非常によく伸び、かつ機械的特性に優れた短繊維不織布であった。 As is apparent from Table 1, the short fiber nonwoven fabrics obtained in Examples 1 to 16 were short fiber nonwoven fabrics having a high elongation of 200% or more in both the longitudinal and lateral directions. Among these, the short fiber nonwoven fabrics of Examples 1 to 14 use only short fibers having a birefringence of 0.015 or less and a breaking elongation of 300% or more, and 250% or more in both the vertical direction and the horizontal direction. It was a short fiber nonwoven fabric that stretched very well at an elongation at break and excellent mechanical properties.

一方、比較例1、2の短繊維不織布は破断伸び率の低い短繊維が20質量%含むものであったため、破断伸び率が実施例に比べて劣るものであった。比較例3の短繊維不織布は、破断伸び率の低い短繊維のみであったため、破断伸び率の低い短繊維不織布であった。   On the other hand, since the short fiber nonwoven fabrics of Comparative Examples 1 and 2 contained 20% by mass of short fibers having a low breaking elongation, the breaking elongation was inferior to that of the Examples. Since the short fiber nonwoven fabric of Comparative Example 3 was only short fibers having a low elongation at break, it was a short fiber nonwoven fabric having a low elongation at break.

Claims (5)

破断伸び率が300%以上のポリ乳酸短繊維を主体繊維とし、構成繊維同士がニードルパンチ処理により三次元的に交絡して一体化してなる不織布であり、該不織布の伸び率が縦方向および横方向ともに200%以上であることを特徴とする高伸度短繊維不織布。   A non-woven fabric in which polylactic acid short fibers having a breaking elongation of 300% or more are main fibers, and the constituent fibers are three-dimensionally entangled and integrated by needle punching, and the elongation of the non-woven fabric is in the vertical and horizontal directions. A high elongation short fiber nonwoven fabric characterized by being 200% or more in both directions. 破断伸び率が300%以上のポリ乳酸短繊維を構成するポリ乳酸の複屈折率が0.015以下であることを特徴とする請求項1記載の高伸度短繊維不織布。   The high elongation short fiber nonwoven fabric according to claim 1, wherein the polylactic acid constituting the polylactic acid short fiber having a breaking elongation of 300% or more has a birefringence of 0.015 or less. 不織布が、破断伸び率が300%以上のポリ乳酸短繊維のみから構成され、該不織布の伸び率が縦方向および横方向ともに250%以上であることを特徴とする請求項1または2記載の高伸度短繊維不織布。   3. The high nonwoven fabric according to claim 1, wherein the nonwoven fabric is composed of only polylactic acid short fibers having a breaking elongation of 300% or more, and the elongation of the nonwoven fabric is 250% or more in both the longitudinal direction and the transverse direction. Stretch short fiber nonwoven fabric. 請求項1〜3のいずれかに記載の高伸度短繊維不織布によって構成される土木用シート。   The sheet | seat for civil engineering comprised with the high elongation short fiber nonwoven fabric in any one of Claims 1-3. 請求項4記載の土木用シートによって構成される防砂シート。   A sandproof sheet constituted by the civil engineering sheet according to claim 4.
JP2012162672A 2012-07-23 2012-07-23 Short fiber nonwoven fabric of high elongation Pending JP2014019992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162672A JP2014019992A (en) 2012-07-23 2012-07-23 Short fiber nonwoven fabric of high elongation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162672A JP2014019992A (en) 2012-07-23 2012-07-23 Short fiber nonwoven fabric of high elongation

Publications (2)

Publication Number Publication Date
JP2014019992A true JP2014019992A (en) 2014-02-03
JP2014019992A5 JP2014019992A5 (en) 2015-09-03

Family

ID=50195225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162672A Pending JP2014019992A (en) 2012-07-23 2012-07-23 Short fiber nonwoven fabric of high elongation

Country Status (1)

Country Link
JP (1) JP2014019992A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921018A (en) * 1995-07-06 1997-01-21 Toyobo Co Ltd Biodegradable fiber and nonwoven fabric using the same
JP2000136479A (en) * 1998-10-27 2000-05-16 Unitika Ltd Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric
JP2002013060A (en) * 2000-06-26 2002-01-18 Unitika Ltd Nonwoven fabric for sand-protecting sheet and method for producing the same
JP2004036065A (en) * 2002-06-29 2004-02-05 Negoro Sangyo Co High elongation nonwovwn fabric and method for producing the same
JP2005154918A (en) * 2003-11-21 2005-06-16 Gifu Prefecture Nonwoven fabric and method for producing the same
JP2006193838A (en) * 2005-01-11 2006-07-27 Nippon Ester Co Ltd Staple fiber for nonwoven fabric and staple fiber nonwoven fabric
JP2008007889A (en) * 2006-06-29 2008-01-17 Nippon Ester Co Ltd Polyester staple fiber
JP2009256815A (en) * 2008-04-14 2009-11-05 Asahi Kasei Fibers Corp Anti-static filament nonwoven fabric
JP2010150737A (en) * 2008-11-28 2010-07-08 Toyobo Co Ltd High elongation nonwoven fabric sheet and method for producing the same
JP2011157660A (en) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp Biodegradable filament nonwoven fabric

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921018A (en) * 1995-07-06 1997-01-21 Toyobo Co Ltd Biodegradable fiber and nonwoven fabric using the same
JP2000136479A (en) * 1998-10-27 2000-05-16 Unitika Ltd Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric
JP2002013060A (en) * 2000-06-26 2002-01-18 Unitika Ltd Nonwoven fabric for sand-protecting sheet and method for producing the same
JP2004036065A (en) * 2002-06-29 2004-02-05 Negoro Sangyo Co High elongation nonwovwn fabric and method for producing the same
JP2005154918A (en) * 2003-11-21 2005-06-16 Gifu Prefecture Nonwoven fabric and method for producing the same
JP2006193838A (en) * 2005-01-11 2006-07-27 Nippon Ester Co Ltd Staple fiber for nonwoven fabric and staple fiber nonwoven fabric
JP2008007889A (en) * 2006-06-29 2008-01-17 Nippon Ester Co Ltd Polyester staple fiber
JP2009256815A (en) * 2008-04-14 2009-11-05 Asahi Kasei Fibers Corp Anti-static filament nonwoven fabric
JP2010150737A (en) * 2008-11-28 2010-07-08 Toyobo Co Ltd High elongation nonwoven fabric sheet and method for producing the same
JP2011157660A (en) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp Biodegradable filament nonwoven fabric

Similar Documents

Publication Publication Date Title
JP4498001B2 (en) Polyester composite fiber
JP4757040B2 (en) Nonwoven fabric made of fibers made of polylactic acid composition
JP2011514450A (en) Heteromorphic structural fibers, textile sheets and their use
JP2010037679A (en) Industrial belt
JP5421199B2 (en) Wet short fiber nonwoven fabric
JP7151816B2 (en) Method for producing laminated long-fiber nonwoven fabric and laminated long-fiber nonwoven fabric
Maity Jute needlepunched nonwovens: manufacturing, properties, and applications
JP2007284846A (en) Polyester conjugate fiber
JP2014019992A (en) Short fiber nonwoven fabric of high elongation
JP2007303012A (en) Ground fabric for tufted carpet and tufted carpet using the ground fabric
JP2011099193A (en) Short-cut conjugate fiber for wet-laid staple fiber nonwoven fabric
JP2007143945A (en) Primary ground fabric for tufted carpet
JP4608683B2 (en) Polyester composite fiber
JP4832347B2 (en) Molding surface member for automotive interior materials
JP2005281891A (en) Moquette pile fabric
JP4488835B2 (en) Polylactic acid nonwoven fabric
JP2007230284A (en) Surface member for interior material of automobile
JP2006030905A (en) Sound absorbing material
JP2008184694A (en) Fiber aggregate for civil engineering works and construction
JP2013151767A (en) High-elongation short-fiber nonwoven fabric
JP2008081904A (en) Primary base cloth for heat resistant polylactic acid-based tufted carpet
TW202136606A (en) Compostable multi-component constructions
JP2010204669A (en) Acoustic material
JP2009228377A (en) Civil engineering geogrid
JP2009084739A (en) Resin-finished fabric

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606