JP2006193835A - Conductive conjugated fiber - Google Patents

Conductive conjugated fiber Download PDF

Info

Publication number
JP2006193835A
JP2006193835A JP2005003636A JP2005003636A JP2006193835A JP 2006193835 A JP2006193835 A JP 2006193835A JP 2005003636 A JP2005003636 A JP 2005003636A JP 2005003636 A JP2005003636 A JP 2005003636A JP 2006193835 A JP2006193835 A JP 2006193835A
Authority
JP
Japan
Prior art keywords
conductive
fiber
cross
component
core component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005003636A
Other languages
Japanese (ja)
Inventor
Yoshiki Shirakawa
良喜 白川
Keiji Nagamune
恵示 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005003636A priority Critical patent/JP2006193835A/en
Publication of JP2006193835A publication Critical patent/JP2006193835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive conjugated fiber having excellent durability in repetitive use, substantially enhancing the fiber density at the tip of the conductive fiber at a brush end when used in an image-forming apparatus such as an electrophotographic copier or printer and slightly causing unevennesses. <P>SOLUTION: The conductive conjugated fiber comprises a core component composed of a thermoplastic polymer containing conductive fine particles and covered with a non-conductive sheath component composed of a thermoplastic polymer. In the cross-sectional shape of the conjugated fiber, the ratio of the maximum length (major axis) in the cross section/minimum length (minor axis) in the cross section is within the range of >(1/1) to ≤(5/1) and the core component has a cross-sectional shape having 2-8 sharp projections. The minimum thickness Vi of the non-conductive component formed with the outer peripheral part of the sheath component and the outer peripheral part of the core component is 0.5-20 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、繰り返し使用に対して優れた耐久性を有すると共に、電子写真方式の複写機、プリンターなどの画像形成装置に用いた場合に、ブラシ端部における導電性繊維先端部の繊維密度を実質的に高めることが可能で、斑の少ない導電性複合繊維に関するものである。   The present invention has excellent durability against repeated use, and when used in an image forming apparatus such as an electrophotographic copying machine or printer, the fiber density of the conductive fiber tip at the brush end is substantially reduced. The present invention relates to a conductive composite fiber that can be increased in number and has few spots.

ポリエチレン、ポリアミド、ポリエステル等の熱可塑性樹脂は、繊維製品として多くの用途に使用されているが、制電性に乏しいため帯電しやすいという欠点があり、そのため導電性繊維に関する多くの研究がなされてきた。   Thermoplastic resins such as polyethylene, polyamide, and polyester are used in many applications as fiber products, but they have the drawback of being easily charged due to their poor antistatic properties, and thus many studies on conductive fibers have been made. It was.

その一つの方法として、繊維表面に導電性物質をコーティングする方法があり、このようにして得られた導電性繊維は初期の導電性能は良好であるが、着用時の耐摩耗性、さらには耐洗濯性、耐薬品性が不充分であるため、防塵衣等に使用した場合に発塵源となってしまうという問題があった。   As one of the methods, there is a method of coating the surface of the fiber with a conductive substance. The conductive fiber thus obtained has good initial conductive performance, but wear resistance when worn, and further resistance to resistance. Since the washing and chemical resistance are insufficient, there is a problem that it becomes a source of dust generation when used in dust-proof clothing.

また、導電性物質の粉末を熱可塑性樹脂中に分散させて芯成分とし、繊維形成性の熱可塑性樹脂を鞘成分として被覆して芯鞘型複合繊維とした後、高電圧で放電加工する方法(例えば、特開昭63−219624号公報など)がある。該複合繊維においては、芯成分が鞘成分で覆われていない場合には、使用中に導電性物質が脱落して、機能が低下するなどのトラブル発生の原因となっている。   Also, a method in which a conductive material powder is dispersed in a thermoplastic resin to form a core component, and a fiber-forming thermoplastic resin is coated as a sheath component to form a core-sheath composite fiber, followed by electric discharge machining at a high voltage. (For example, JP-A-63-219624). In the composite fiber, when the core component is not covered with the sheath component, the conductive material falls off during use, causing trouble such as a decrease in function.

一方、芯成分が鞘成分で覆われていても、以下のような問題、即ち、繊維両端の芯部間の導電性は良好であるが、鞘成分は電気的には絶縁体となっており、繊維表面の電気抵抗値が極めて高く、導電性が不良であるという問題があった。   On the other hand, even if the core component is covered with the sheath component, the following problems, that is, the electrical conductivity between the core portions at both ends of the fiber is good, but the sheath component is electrically an insulator. There was a problem that the electrical resistance value of the fiber surface was extremely high and the conductivity was poor.

さらに、画像形成装置において、例えば帯電ドラムや除電気ドラムヘの通電媒体としては上記導電性繊維を含む導電ブラシが用いられ、この場合、ブラシの先端部がより均一な接触を行うようにすることが極めて重要となるが、これを実現する方法は未だ見出されていない。また、感光体上の残留トナーを除去するために設けられるクリーニングブラシ等にこれらの導電性繊維を使用した場合にも、感光体へのブラシの接触が均一ではないために残留トナーが残り、性能が悪化するという問題があった。
特開昭63−219624号公報
Further, in the image forming apparatus, for example, a conductive brush including the conductive fiber is used as a current-carrying medium to the charging drum or the discharging drum, and in this case, the tip of the brush may make more uniform contact. Although extremely important, no method has yet been found to achieve this. Also, when these conductive fibers are used for cleaning brushes provided to remove residual toner on the photoconductor, the residual toner remains because the brush contact with the photoconductor is not uniform. There was a problem of getting worse.
JP-A-63-219624

本発明の目的は、上記従来技術の有する問題点を解決し、繰り返し使用に対して優れた耐久性を有すると共に、電子写真方式の複写機、プリンターなどの画像形成装置に用いた場合に、ブラシ端部における導電性繊維先端部の繊維密度を実質的に高めることが可能で、斑の少ない導電性複合繊維を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, have excellent durability against repeated use, and use a brush when used in an image forming apparatus such as an electrophotographic copying machine or printer. An object of the present invention is to provide a conductive composite fiber that can substantially increase the fiber density at the tip of the conductive fiber at the end and has few spots.

本発明者等は上記目的を達成するため鋭意検討した結果、導電性物質の粉末を熱可塑性樹脂中に分散させて芯成分とし、繊維形成性の熱可塑性樹脂を鞘成分として被覆した芯鞘型複合繊維の断面形状を非円形として放電加工の効率を高めるとき、所望の導電性複合繊維が得られることを究明し、本発明に到達した。   As a result of diligent investigations to achieve the above object, the present inventors have found that a core-sheath type in which a powder of a conductive material is dispersed in a thermoplastic resin as a core component and a fiber-forming thermoplastic resin is coated as a sheath component When the cross-sectional shape of the composite fiber is made non-circular and the efficiency of electric discharge machining is increased, it has been found that a desired conductive composite fiber can be obtained, and the present invention has been achieved.

かくして本発明によれば、導電性微粒子を含有する熱可塑性重合体からなる芯成分が、熱可塑性重合体からなる非導電性の鞘成分によって被覆された導電性複合繊維であって、該複合繊維の断面形状が、断面における最長長さ(長軸)/断面における最少長さ(短軸)の比が1/1を越え5/1以下の範囲にあり、且つ芯成分が2〜8の鋭利な突起を有する断面形状を有していると共に、鞘成分外周部と芯成分外周部とにより形成される非導電性成分の最小厚さViが0.5〜20μmであることを特徴とする放電加工処理された導電性複合繊維が提供される。   Thus, according to the present invention, the core component made of a thermoplastic polymer containing conductive fine particles is a conductive conjugate fiber coated with a non-conductive sheath component made of a thermoplastic polymer, and the conjugate fiber The ratio of the longest length in the cross section (major axis) / the minimum length in the cross section (short axis) is in the range of more than 1/1 and less than 5/1, and the core component is sharp with 2-8 Discharge characterized by having a cross-sectional shape having various protrusions and a minimum thickness Vi of a non-conductive component formed by a sheath component outer peripheral portion and a core component outer peripheral portion being 0.5 to 20 μm A processed conductive conjugate fiber is provided.

本発明によれば、繰り返し使用に対して優れた耐久性を有すると共に、ブラシに用いられた場合、その端部における繊維密度を実質的に高めることが可能で、斑の少ない導電性複合繊維が得られるので、電子写真方式の複写機、プリンターなどの画像形成装置に好適に使用できる。   According to the present invention, it has excellent durability against repeated use, and when used in a brush, it is possible to substantially increase the fiber density at its end, and a conductive composite fiber with few spots is obtained. Therefore, it can be suitably used for an image forming apparatus such as an electrophotographic copying machine or a printer.

本発明の導電性繊維の芯成分は導電性物質を含有するものであるが、該導電性物質としては、導電性カーボンブラック、導電性金属化合物などの公知のものを使用することができる。導電性カーボンブラックの種類としては、例えばオイルファーネス系の“ケッチェンブラックEC"(日本EC社製)、“コンダクテックス975"、“コンダクテックスSC"(コロンビアン社製)やアセチレン系の“デンカブラック”(デンカ社製)等公知の導電性カーボンブラックの他、サーマルブラック、チャネルブラック、ケッチェンブラックなどが使用できる。   The core component of the conductive fiber of the present invention contains a conductive substance, and as the conductive substance, known substances such as conductive carbon black and conductive metal compounds can be used. Examples of conductive carbon black include oil furnace type “Ketjen Black EC” (manufactured by Japan EC), “Conductex 975”, “Conductex SC” (Colombian) and acetylene type “DENKA”. In addition to known conductive carbon black such as “Black” (manufactured by Denka), thermal black, channel black, ketjen black and the like can be used.

他方導電性金属化合物としては、金属粒子または金属酸化物もしくは金属化合物の粒子、あるいは、これらの皮膜を有する粒子を用いることができる。金属粒子としては、銀、ニッケル、銅、鉄、アルミニウムあるいはこれらの合金があげられる。金属酸化物や金属酸化物皮膜を有する粒子としては、アンチモン酸化物を第2成分として混合焼成した酸化錫、アルミニウム酸化物を第2成分とした酸化亜鉛、前記酸化錫や酸化亜鉛等の導電性酸化物の皮膜を有する酸化チタン、酸化マグネシウム、酸化ケイ素、酸化アルミニウム等の無機粒子が使用できる。金属酸化物としては、ヨウ化銅、硫化銅、硫化亜鉛、硫化カドミニウムなどを用いることができる。中でも、白色性に優れた酸化第二錫や酸化亜鉛が好ましく例示される。なおここでいう酸化第二錫には、少量のアンチモン化合物を含む酸化第二錫、酸化チタン粒子の表面に酸化第二錫をコーティングした導電性金属複合体も含まれる。また、酸化亜鉛には、少量の酸化アルミニウム、酸化リチウム、酸化インジウムなどを含む酸化亜鉛も含まれる。これらの導電性物質は、通常微粉末としてマトリックスポリマーに分散して用いられる。   On the other hand, as the conductive metal compound, metal particles, metal oxide or metal compound particles, or particles having these films can be used. Examples of the metal particles include silver, nickel, copper, iron, aluminum, and alloys thereof. Particles having a metal oxide or metal oxide film include tin oxide obtained by mixing and firing antimony oxide as a second component, zinc oxide containing aluminum oxide as a second component, and conductivity such as tin oxide and zinc oxide. Inorganic particles such as titanium oxide, magnesium oxide, silicon oxide, and aluminum oxide having an oxide film can be used. As the metal oxide, copper iodide, copper sulfide, zinc sulfide, cadmium sulfide, or the like can be used. Among these, stannic oxide and zinc oxide excellent in whiteness are preferably exemplified. The stannic oxide here includes stannic oxide containing a small amount of an antimony compound, and conductive metal composites in which the surface of titanium oxide particles is coated with stannic oxide. Zinc oxide also includes zinc oxide containing a small amount of aluminum oxide, lithium oxide, indium oxide, and the like. These conductive materials are usually used as fine powder dispersed in a matrix polymer.

これら導電性物質の配合率は、粒子の種類、粒子径、導電性およびマトリックスポリマーの性質や結晶性などによって変わるが、通常は40〜80重量%が好ましい。該配合量が少なすぎる場合は導電性が低下しがちであり、多すぎる場合はポリマー中への均一分散が困難となり製糸性も低下する傾向がある。   The blending ratio of these conductive substances varies depending on the kind of particles, the particle diameter, the conductivity, and the properties and crystallinity of the matrix polymer, but is usually preferably 40 to 80 wt%. If the blending amount is too small, the conductivity tends to decrease, and if it is too large, uniform dispersion in the polymer becomes difficult, and the yarn forming property tends to decrease.

芯成分を構成する熱可塑性重合体は任意に選択することができ、例えば、ポリアミド、ポリエステル、ポリオレフィン、ポリエーテルなどのポリマーをあげることができるが、延伸段階での導電性の低下防止および鞘成分との密着性を考慮するとナイロン6、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンまたはその共重合物が好ましい。   The thermoplastic polymer constituting the core component can be arbitrarily selected, and examples thereof include polymers such as polyamide, polyester, polyolefin, and polyether. Nylon 6, polyethylene terephthalate, polybutylene terephthalate, polyethylene or a copolymer thereof is preferable.

鞘成分として用いられる熱可塑性重合体としてはポリエステル、ポリオレフィン、またはその共重合物が好ましくポリエチレンテレフタレートが特に好ましい。また、芯鞘成分のポリマー中に有機スルホン酸、またはその金属塩、有機リン酸またはその金属塩などの界面活性剤を含むポリアルキレングリコール、ブロックポリエーテルエステル、ブロックポリエーテルアミドなどの有機制電性成分を5%以下分散させてもよい。   As the thermoplastic polymer used as the sheath component, polyester, polyolefin, or a copolymer thereof is preferable, and polyethylene terephthalate is particularly preferable. In addition, organic antistatics such as polyalkylene glycols, block polyether esters and block polyether amides containing surfactants such as organic sulfonic acids or their metal salts, organic phosphoric acids or their metal salts in the core-sheath component polymer. The sex component may be dispersed in an amount of 5% or less.

本発明の複合繊維は、その断面形状が、図1の(イ)に例示するように、断面における最長長さ(長軸)/断面における最少長さ(短軸)の比が1/1を越え5/1以下の範囲にある、異型断面であることを特徴とする。   In the conjugate fiber of the present invention, the cross-sectional shape has a ratio of the longest length in the cross section (long axis) / the minimum length in the cross section (short axis) of 1/1 as illustrated in FIG. It is an atypical cross section in the range of more than 5/1.

すなわち、本発明の複合繊維は、異型断面にすることによって、導電部を表層に近づけ、繊維の断面導電性および表面導電性を向上させると共に、繰り返し使用に対して優れた耐久性を有し、またブラシに用いられた場合、その端部における繊維密度を実質的に高めることが可能となる。   That is, the composite fiber of the present invention has an atypical cross section to bring the conductive portion closer to the surface layer, improve the cross-sectional conductivity and surface conductivity of the fiber, and has excellent durability for repeated use. When used in a brush, the fiber density at the end can be substantially increased.

また、本発明の導電性繊維の、繊維断面における芯成分の形状は特に限定する必要はないが、高電圧電極間で放電加工する際の効率および安定性の点から2〜8個の鋭利な突起を有する断面形状である必要がある。ここでいう鋭利な突起とは、例えば図1の(イ)〜(ニ)に例示するように、凸状ないしは突起状の凸部を有する断面形状をいう。   In addition, the shape of the core component of the conductive fiber of the present invention in the fiber cross section is not particularly limited, but 2 to 8 sharp points from the viewpoint of efficiency and stability during electric discharge machining between high-voltage electrodes. The cross-sectional shape must have a protrusion. Here, the sharp protrusion means a cross-sectional shape having a convex shape or a protrusion-shaped convex portion as exemplified in FIGS.

さらに、本発明においては、鋭利な突起により形成される芯成分外周部と鞘成分外周部とにより形成される非導電性成分の最小厚さViが0.5〜20μmである必要がある。   Furthermore, in the present invention, the minimum thickness Vi of the nonconductive component formed by the core component outer peripheral portion and the sheath component outer peripheral portion formed by the sharp protrusions needs to be 0.5 to 20 μm.

非導電性成分の最小厚さViが0.5μmより小さい場合には、芯と鞘が剥離したり、鞘成分が芯成分を被覆していない部分が生じて導電性物質が脱落し、導電性能が低下したり汚染の原因となるなどの問題が生じる。一方、非導電性成分の最小厚さViが20μmより大きい場合には、後述の放電処理の際の印加電圧を極端に大きくしなければならず、そのため鞘成分が損傷しやすくなり、また放電処理中に断糸するなどの問題が生じやすくなる。   When the minimum thickness Vi of the non-conductive component is smaller than 0.5 μm, the core and the sheath are peeled off, or a portion where the sheath component does not cover the core component is generated and the conductive material is dropped, and the conductive performance This causes problems such as lowering or causing contamination. On the other hand, when the minimum thickness Vi of the non-conductive component is larger than 20 μm, the applied voltage at the time of the discharge process described later must be extremely increased, so that the sheath component is easily damaged and the discharge process is performed. Problems such as thread breakage tend to occur.

上記複合繊維断面において、芯成分(A)の占める面積は5〜30%が好ましい。該面積が5%より小さいときは、制電性が劣る場合があり、一方、該面積が30%を超える場合と繊維の力学的特性、耐発塵性、耐久性が低下する場合がある。   In the composite fiber cross section, the area occupied by the core component (A) is preferably 5 to 30%. When the area is smaller than 5%, the antistatic property may be inferior. On the other hand, when the area exceeds 30%, the mechanical properties, dust resistance, and durability of the fiber may be deteriorated.

本発明においては、上記繊維形成性ポリマーで鞘成分が構成された複合繊維は、導電性物質を含有する芯成分がたとえ導電性を有していても、表面電気抵抗値が高く導電性不良となるので、依然として帯電しやすい性質を有する。   In the present invention, the composite fiber in which the sheath component is composed of the fiber-forming polymer has a high surface electric resistance value and poor conductivity even if the core component containing the conductive material has conductivity. Therefore, it still has the property of being easily charged.

このため、本発明の導電性繊維は、後述するような放電処理が施されている必要がある。かくすることにより、繊維表面の電気抵抗値が1011Ω/cmオーダー以下であり、
かつ、繊維断面間の内部電気抵抗値(Ω/cmで測定)と表面電気抵抗値(Ω/cm)との比が10以下といった、優れた導電性能を有するものが得られる。
For this reason, the conductive fiber of the present invention needs to be subjected to a discharge treatment as described later. Thus, the electrical resistance value of the fiber surface is 10 11 Ω / cm or less,
And what has the outstanding electroconductive performance that ratio of the internal electrical resistance value (measured in ohm / cm) between fiber cross sections and surface electrical resistance value (ohm / cm) is 10 < 3 > or less is obtained.

通常、繊維形成性ポリマーからなる繊維の表面抵抗値は、例えば1013Ω/cmオーダーというように非常に高く、仮に断面間内部抵抗値が10Ω/cmオーダーと低くても、表面の電気抵抗値と断面間の内部電気抵抗値との比はこの場合10程度と大であり、繊維の表面にはほとんど導電性の効果が発現しない。 Usually, the surface resistance value of a fiber made of a fiber-forming polymer is very high, for example, on the order of 10 13 Ω / cm, and even if the internal resistance value between cross sections is as low as 10 7 Ω / cm order, the ratio of the internal electric resistance between the resistance value and the cross section is in this case 106 degrees and larger, the effect of the most conductive not expressed on the surface of the fiber.

それに対して本発明の導電性繊維は、繊維形成性ポリマーから構成されていても前記のようにその表面の電気抵抗値は1011Ω/cmオーダー以下と低く、その導電性能は繊維の長さ方向に安定したものとなっている。 On the other hand, even if the conductive fiber of the present invention is composed of a fiber-forming polymer, the electrical resistance value on the surface is as low as 10 11 Ω / cm or less as described above, and the conductive performance is the length of the fiber. It is stable in direction.

放電処理法としては、前記の構成からなる芯鞘型複合繊維を高電圧電極に接触させて高電圧を印加する通電法、放電形状の異なるコロナ放電、花火放電、グロー放電、アーク放電等の高電圧放電処理法により処理することができる。印加電圧としては、1kVを越える高電圧であって、100kVまでの範囲のものが使用でき、好ましくは2〜50kVの範囲のものが好適に例示される。電極の極性はプラスでもマイナスでも(直流)、または交流であってもよい。電極間の距離は0〜10cmの範囲のものが使用でき、放電形態と処理速度、目標とする導電性により任意に決めることができる。また、導電性カーボンブラックを含有する芯成分を一方の極とし他方の極を別に設けて、該両極に高電圧を印加し、この高電圧電極下で放電処理することが最適に例示され、そのために本発明のように芯の形状は放電処理の施しやすい先細りの鋭利な突起部分を有することが必要となる。もっとも、別々に設けた二つの極に高電圧を印加して放電処理する方法であっても本発明の効果が損なわれるわけではない。   Examples of the discharge treatment method include an energization method in which a core-sheath composite fiber having the above-described configuration is brought into contact with a high-voltage electrode to apply a high voltage, a corona discharge having a different discharge shape, a fireworks discharge, a glow discharge, an arc discharge, and the like. It can be processed by a voltage discharge treatment method. As the applied voltage, a high voltage exceeding 1 kV and a voltage up to 100 kV can be used, and a voltage within a range of 2 to 50 kV is preferably exemplified. The polarity of the electrode may be positive, negative (direct current), or alternating current. The distance between the electrodes can be in the range of 0 to 10 cm, and can be arbitrarily determined depending on the discharge mode, processing speed, and target conductivity. Further, it is optimally exemplified that the core component containing conductive carbon black is one electrode and the other electrode is provided separately, a high voltage is applied to both electrodes, and discharge treatment is performed under the high voltage electrode. Furthermore, as in the present invention, the shape of the core needs to have a sharp and sharp projecting portion that can be easily subjected to discharge treatment. But even if it is the method of applying a high voltage to two poles provided separately and performing a discharge treatment, the effect of the present invention is not spoiled.

また、このような放電処理は糸の状態でも、織編物等の布帛、不織布の状態でも行うことができる。さらに糸の場合、延伸糸に施しても未延伸糸に施しても良い。かかる放電処理によって、表面電気抵抗値を1011Ω/cmオーダー以下とすることができるばかりでなく、表面電気抵抗値と断面間電気抵抗値との比を10以下とすることができ、好ましくは、この比を10以下、特に厳しい条件で使用する場合は10以下とすることもできる。 Further, such electric discharge treatment can be performed in the state of yarn, or in the state of a fabric such as a woven or knitted fabric or a nonwoven fabric. Further, in the case of yarn, it may be applied to drawn yarn or undrawn yarn. By such discharge treatment, not only the surface electrical resistance value can be reduced to the order of 10 11 Ω / cm or less, but also the ratio of the surface electrical resistance value to the cross-sectional electrical resistance value can be set to 10 3 or less. The ratio can be 10 2 or less, particularly 10 or less when used under severe conditions.

以下、実施例を挙げて本発明の構成および効果をさらに詳細に説明する。なお、実施例における物性は下記の方法で測定したものである。   Hereinafter, an example is given and the composition and effect of the present invention are explained in detail. In addition, the physical property in an Example is measured with the following method.

(イ)断面間内部電気抵抗値
繊維軸方向の長さが2.0cmとなるよう両端を横断面方向にカットした繊維の該両断面にAgドウタイト(銀粒子含有の導電性樹脂塗料、藤倉工業製)を付着させた試料を電気絶縁性ポリエチレンテレフタレートフイルム上で、温湿度20℃×30%RHの条件のもとに1kVの直流電圧を該Agドウタイト付着面を使って印加して両断面間に流れる電流値を求め、オームの法則により電気抵抗値Ω/cmを算出する。
(B) Cross section internal electrical resistance value Ag doutite (a conductive resin paint containing silver particles, Fujikura Kogyo Co., Ltd.) on both cross sections of the fiber having both ends cut in the cross section direction so that the length in the fiber axis direction is 2.0 cm. Sample is applied on an electrically insulating polyethylene terephthalate film under a condition of temperature and humidity of 20 ° C. × 30% RH, and a DC voltage of 1 kV is applied between the two cross sections. The electric resistance value Ω / cm is calculated according to Ohm's law.

(ロ)表面電気抵抗値
繊維軸方向の長さ約2.0cmにカットされた繊維の両端付近の表面(繊維側面)に前記のAgドウタイトを付着させたものを試料として、該試料を電気絶縁性ポリエチレンテレフタレートフイルム上で、温湿度20℃×30%RHの条件のもとに1kVの直流電圧を該Agドウタイト間に印加してAgドウタイト間に流れる電流値を求め、かつ、Agドウタイト間の距離を測定して、オームの法則により電気抵抗値Ω/cmを算出する。
(B) Surface electrical resistance value Using a sample in which the Ag doutite is adhered to the surface (fiber side surface) near both ends of the fiber cut to a length of about 2.0 cm in the fiber axis direction, the sample is electrically insulated. On a conductive polyethylene terephthalate film, a DC voltage of 1 kV was applied between the Ag doughites under the conditions of temperature and humidity of 20 ° C. × 30% RH to obtain a current value flowing between the Ag doughites, and between the Ag doutites The distance is measured, and the electrical resistance value Ω / cm is calculated according to Ohm's law.

(ハ)洗濯耐久性試験
経糸として84dtex/36フィラメントのポリエチレンテレフタレート延伸糸、緯糸として110dtex/48フィラメントのポリエチレンテレフタレート仮撚加工糸を使用し、3/2の逆ツイル組織に5mm間隔で導電性複合繊維を配した織物を得た。
次いで、該織物を60℃で36分間洗濯した後、30分間のすすぎを行い、タンブラーを用いて60℃で30分間乾燥し、これを1回の洗濯とした。
(C) Washing durability test Using 84 dtex / 36 filament polyethylene terephthalate drawn yarn as the warp and 110 dtex / 48 filament polyethylene terephthalate false twisted yarn as the weft, conductive composite with 5/2 intervals on 3/2 reverse twill structure A woven fabric with fibers was obtained.
Next, the fabric was washed at 60 ° C. for 36 minutes, then rinsed for 30 minutes, and dried using a tumbler at 60 ° C. for 30 minutes.

[実施例1]
導電性カーボンブラック30重量部、ポリエチレンテレフタレート70重量部からなる導電性樹脂組成物を芯成分とし、数平均分子量が1000のポリエチレングリコールを7重量%共重合したポリエチレンテレフタレートを鞘成分として用いて、図1の(イ)に示す、長軸/短軸の比が2.2である断面形状を有する芯鞘型複合繊維を溶融紡糸により紡出した後、3.1倍に延伸して28dtex/5フィラメントのマルチフィラメント糸条を得た。
次いで、該繊維を高電圧電極に接触させて50kVの高電圧を印加し、糸速度300m/分にて高電圧放電処理を行なった。
[Example 1]
A conductive resin composition comprising 30 parts by weight of conductive carbon black and 70 parts by weight of polyethylene terephthalate is used as a core component, and polyethylene terephthalate copolymerized with 7% by weight of polyethylene glycol having a number average molecular weight of 1000 is used as a sheath component. A core-sheath type composite fiber having a cross-sectional shape with a major axis / minor axis ratio of 2.2 shown in (a) of 1 was spun by melt spinning, and then stretched 3.1 times to 28 dtex / 5. A filament multifilament yarn was obtained.
Next, the fiber was brought into contact with a high voltage electrode, a high voltage of 50 kV was applied, and a high voltage discharge treatment was performed at a yarn speed of 300 m / min.

得られた導電性複合繊維の表面電気抵抗値は8.3×10Ω/cm、断面間内部電気抵抗値は7.2×10Ω/cmと良好であった。また、該導電性複合繊維を150回の洗濯耐久性試験に供したところ、導電性複合繊維の割れは発生せず、表面電気抵抗値は8.9×10Ω/cm、断面間内部電気抵抗値は7.6×10Ω/cmと劣化も無く十分満足できるものであった。 The surface electrical resistance value of the obtained conductive conjugate fiber was as good as 8.3 × 10 6 Ω / cm, and the internal electrical resistance value between the cross sections was 7.2 × 10 6 Ω / cm. Further, when the conductive conjugate fiber was subjected to a washing durability test for 150 times, the conductive conjugate fiber was not cracked, the surface electrical resistance value was 8.9 × 10 6 Ω / cm, and the internal electric power between the cross sections The resistance value was 7.6 × 10 6 Ω / cm and was sufficiently satisfactory with no deterioration.

[比較例1]
実施例1において、長軸/短軸の比を1とした以外は実施例1と同様に実施した。
得られた導電性複合繊維の表面電気抵抗値は7.6×10Ω/cm、断面間内部電気抵抗値は6.8×10Ω/cmと良好であったが、該導電性複合繊維を150回の洗濯耐久性試験に供したところ、導電性複合繊維の割れが一部に発生し、断面間内部電気抵抗値が10Ω/cmオーダーに低下する部分が存在した。
[Comparative Example 1]
In Example 1, it implemented like Example 1 except having set ratio of the major axis / minor axis to 1.
The obtained electrically conductive conjugate fiber had good surface electrical resistance value of 7.6 × 10 6 Ω / cm and inter-section internal electrical resistance value of 6.8 × 10 6 Ω / cm. When the fiber was subjected to a washing durability test for 150 times, cracks in the conductive composite fiber occurred in some portions, and there was a portion where the internal electrical resistance value between cross sections decreased to the order of 10 7 Ω / cm.

本発明によれば、繰り返し使用に対して優れた耐久性を有すると共に、ブラシに用いられた場合、その端部における繊維密度を実質的に高めることが可能で、斑の少ない導電性複合繊維が得られるので、電子写真方式の複写機、プリンターなどの画像形成装置に好適に使用できる。   According to the present invention, it has excellent durability against repeated use, and when used in a brush, it is possible to substantially increase the fiber density at its end, and a conductive composite fiber with few spots is obtained. Therefore, it can be suitably used for an image forming apparatus such as an electrophotographic copying machine or a printer.

本発明の導電性複合繊維の、繊維断面形状の例を説明するための断面図。Sectional drawing for demonstrating the example of the fiber cross-sectional shape of the electroconductive composite fiber of this invention.

符号の説明Explanation of symbols

Vi 非導電性成分の最小厚さ   Vi Minimum thickness of non-conductive component

Claims (3)

導電性微粒子を含有する熱可塑性重合体からなる芯成分が、熱可塑性重合体からなる非導電性の鞘成分によって被覆された導電性複合繊維であって、該複合繊維の断面形状が、断面における最長長さ(長軸)/断面における最少長さ(短軸)の比が1/1を越え5/1以下の範囲にあり、且つ芯成分が2〜8の鋭利な突起を有する断面形状を有していると共に、鞘成分外周部と芯成分外周部とにより形成される非導電性成分の最小厚さViが0.5〜20μmであることを特徴とする放電加工処理された導電性複合繊維。   A core component made of a thermoplastic polymer containing conductive fine particles is a conductive composite fiber covered with a non-conductive sheath component made of a thermoplastic polymer, and the cross-sectional shape of the composite fiber is The ratio of the longest length (major axis) / minimum length (minor axis) in the cross section is in the range of more than 1/1 and less than 5/1, and a cross-sectional shape having sharp protrusions with a core component of 2-8. And having a minimum thickness Vi of 0.5 to 20 μm of the non-conductive component formed by the outer periphery of the sheath component and the outer periphery of the core component. fiber. 繊維表面における比抵抗率が、繊維断面における比抵抗率の1〜104倍である請求項1記載の導電性複合繊維。   The conductive conjugate fiber according to claim 1, wherein the specific resistivity on the fiber surface is 1 to 104 times the specific resistivity on the fiber cross section. 請求項1又は2記載の導電性複合繊維を含むことを特徴とする電子写真式画像形成装置の導電性ブラシ。   A conductive brush for an electrophotographic image forming apparatus, comprising the conductive conjugate fiber according to claim 1.
JP2005003636A 2005-01-11 2005-01-11 Conductive conjugated fiber Pending JP2006193835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003636A JP2006193835A (en) 2005-01-11 2005-01-11 Conductive conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003636A JP2006193835A (en) 2005-01-11 2005-01-11 Conductive conjugated fiber

Publications (1)

Publication Number Publication Date
JP2006193835A true JP2006193835A (en) 2006-07-27

Family

ID=36800134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003636A Pending JP2006193835A (en) 2005-01-11 2005-01-11 Conductive conjugated fiber

Country Status (1)

Country Link
JP (1) JP2006193835A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187542A (en) * 1984-03-06 1985-09-25 カネボウ株式会社 Antistatic hairy product and manufacture thereof
JPS63219624A (en) * 1987-03-06 1988-09-13 Teijin Ltd Electrically conductive yarn and production thereof
JPH10212622A (en) * 1997-01-24 1998-08-11 Teijin Ltd Electroconductive fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187542A (en) * 1984-03-06 1985-09-25 カネボウ株式会社 Antistatic hairy product and manufacture thereof
JPS63219624A (en) * 1987-03-06 1988-09-13 Teijin Ltd Electrically conductive yarn and production thereof
JPH10212622A (en) * 1997-01-24 1998-08-11 Teijin Ltd Electroconductive fiber

Similar Documents

Publication Publication Date Title
KR930000241B1 (en) Electroconductive composite fiber and process for preparation thereof
JPH09213385A (en) Electric part having high performance electric contact
JPWO2007018000A1 (en) Conductive fibers and brushes
JPH01292116A (en) Electrically conductive fiber and production thereof
JPH10131035A (en) Production of electroconductive fiber
JP2006193835A (en) Conductive conjugated fiber
JPH10310974A (en) Production of electrically conductive fiber
JP4636983B2 (en) Conductive conjugate fiber and cleaning brush comprising the same
JPH01213411A (en) Electrically conductive yarn
JP4905373B2 (en) Conductive polyester fiber and brush product comprising the same
JPH01183520A (en) Electrically conductive fiber
JP2006336141A (en) Electrically conductive crimped yarn and method for producing the same
JPH0733605B2 (en) Conductive hollow composite fiber
JP2020165044A (en) Conductive composite fiber and method for producing the same
JPS63219624A (en) Electrically conductive yarn and production thereof
JP2009221632A (en) Sheath-core conjugate conductive acrylic filament
JP4261837B2 (en) Conductive synthetic fiber and method for producing the same
JP2005290630A (en) Conductive fiber
JPH10212622A (en) Electroconductive fiber
JP2010168696A (en) Conductive conjugated fiber
JP2009144265A (en) Conductive monofilament and industrial woven fabric
JP2006097146A (en) Conductive conjugate fiber and contact charging brush made thereof
JP2010168697A (en) Conductive conjugated fiber
JP3278137B2 (en) Conductive composite fiber and contact charging brush comprising the same
JP2011138085A (en) Conductive bicomponent fiber and conductive brush

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928