JP2006097146A - Conductive conjugate fiber and contact charging brush made thereof - Google Patents

Conductive conjugate fiber and contact charging brush made thereof Download PDF

Info

Publication number
JP2006097146A
JP2006097146A JP2004281295A JP2004281295A JP2006097146A JP 2006097146 A JP2006097146 A JP 2006097146A JP 2004281295 A JP2004281295 A JP 2004281295A JP 2004281295 A JP2004281295 A JP 2004281295A JP 2006097146 A JP2006097146 A JP 2006097146A
Authority
JP
Japan
Prior art keywords
conductive
conductive layer
fiber
brush
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004281295A
Other languages
Japanese (ja)
Other versions
JP2006097146A5 (en
Inventor
Tetsushi Kishi
哲史 岸
Toshihiro Ikuro
敏裕 伊黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2004281295A priority Critical patent/JP2006097146A/en
Publication of JP2006097146A publication Critical patent/JP2006097146A/en
Publication of JP2006097146A5 publication Critical patent/JP2006097146A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Brushes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fiber for a charging brush to apply electric charge to a photoreceptor of an electrophotographic device and capable of more uniformly charging the photoreceptor to get improved picture quality. <P>SOLUTION: The conductive conjugate fiber is used in a contact brush placed in contact with a charging object and contacting with the object by the application of voltage. The conductive conjugate fiber and the contact charging brush of an electrophotographic device composed of the fiber are characterized that a conductive layer made of a thermoplastic polymer containing conductive particles and a non-conductive layer bonded to the conductive layer and made of a thermoplastic polymer compatible with the thermoplastic polymer of the conductive layer. The conductive layer is divided into a plurality of regions by a continuing non-conductive layer, the fineness of each conductive layer is ≤1.5 dtex and at least a part of all conducive layer is exposed on the fiber surface. The invention further provides a contact charging brush of an electrophotographic device composed of the fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真装置(コピー、プリンタ、ファクシミリ)に設置される接触帯電ブラシ、クリーニングブラシ、除電ブラシに適する導電性複合繊維に関するものである。   The present invention relates to a conductive composite fiber suitable for a contact charging brush, a cleaning brush, and a static elimination brush installed in an electrophotographic apparatus (copy, printer, facsimile).

一般に電子写真装置(コピー、プリンタ、ファクシミリ)では、光導電性の感光体表面を一様に帯電し、露光によって静電潜像を形成し、この静電潜像にトナーを静電的に付着させて現像し、得られたトナー像を記録用紙に転写、定着させて像を可視化させる。転写後は感光体上に未転写のトナーが残存しているため、クリーニング装置により、清掃、除去を行う。これらの操作を繰り返し行い、連続的に画像を形成している。   In general, in an electrophotographic apparatus (copy, printer, facsimile), the surface of a photoconductive photosensitive member is uniformly charged, an electrostatic latent image is formed by exposure, and toner is electrostatically attached to the electrostatic latent image. The developed toner image is transferred and fixed on a recording sheet to visualize the image. After transfer, untransferred toner remains on the photoreceptor, and cleaning and removal are performed by a cleaning device. These operations are repeated to continuously form images.

従来、感光体などの被帯電体を帯電させる装置として、コロナ帯電装置及び接触帯電装置が採用されている。コロナ放電装置は金属ワイヤーとシールド電極からなっているが、高価な数千ボルト(5kV〜8kV程度)の高電圧電源を必要とし、また、コロナ放電時に人体に有害なオゾンが発生するなどの問題点がある。それらのことから、最近では導電性ゴムローラーや導電性繊維を植毛したブラシ或いは導電性のブレードなどの導電体に比較的低電圧(1kV〜2kV程度)を印可し、該導電体を感光体に接触させて直接帯電させる接触帯電方式の帯電装置が提案され、実用化されるようになってきた。接触帯電ブラシは米国特許第4371252号明細書及び特開平6−274009号公報には、導電性繊維からなる帯電ブラシが開示されている。   Conventionally, a corona charging device and a contact charging device have been adopted as devices for charging a charged body such as a photoconductor. The corona discharge device consists of a metal wire and a shield electrode, but it requires an expensive high-voltage power supply of several thousand volts (about 5 kV to 8 kV), and ozone is harmful to the human body during corona discharge. There is a point. Therefore, recently, a relatively low voltage (about 1 kV to 2 kV) is applied to a conductive material such as a conductive rubber roller, a brush in which conductive fibers are implanted, or a conductive blade, and the conductive material is used as a photosensitive material. Contact charging type charging devices that are directly charged by contact have been proposed and put into practical use. As for the contact charging brush, US Pat. No. 4,371,252 and JP-A-6-274209 disclose charging brushes made of conductive fibers.

コロナ放電装置と比べて、印加電圧が低電圧で済むことが特徴である接触帯電方式であるが、従来の帯電ブラシの場合、使用される導電性繊維の繊維径の大きさから感光体表面を均一に帯電させることができず、帯電ブラシ使用の画像形成装置で得られる画像の画質はムラ等が生じる場合がある。   Compared to corona discharge devices, this is a contact charging method characterized by a low applied voltage. In the case of conventional charging brushes, the surface of the photoconductor is determined by the size of the diameter of the conductive fibers used. The image cannot be uniformly charged, and the image quality obtained by the image forming apparatus using the charging brush may be uneven.

従って、本発明の目的は、被帯電体を均一に帯電することができる帯電ブラシ及び帯電ブラシを構成する機械的物性に優れた導電性複合繊維を提供することにある。   Accordingly, an object of the present invention is to provide a charging brush capable of uniformly charging an object to be charged and a conductive conjugate fiber having excellent mechanical properties constituting the charging brush.

米国特許第4371252号U.S. Pat. No. 4,371,252 特開平6−274009号公報JP-A-6-274209

更に詳しく、本発明の課題を見る。電子写真装置の感光体を帯電させるための帯電ブラシはある一定の導電性を持つ導電性繊維で構成されることは必要不可欠である。さらに良好な画像を得るためには感光体表面を均一に帯電させることが必要で、均一に帯電させるためには、一般に、より繊度の低い導電性繊維が求められている。しかしながら、感光体を十分に帯電させることのできる導電性を持つ程度の導電性粒子の含有率を有する導電性繊維及び導電性複合繊維の繊度を低くすることは繊維形成の紡糸工程、延撚工程において困難であり、改善が求められてきた。さらに、導電層のみで形成される繊維は強度、伸度が低く、さらに繊度を低くすると、ブラシ化する際のパイル織が困難であること、また、ブラシにした場合に毛倒れ、あるいはへたりが生じ、ブラシとしての耐久性に問題が生じる。   In more detail, the subject of the present invention is seen. It is indispensable that the charging brush for charging the photoreceptor of the electrophotographic apparatus is composed of conductive fibers having a certain conductivity. In order to obtain a better image, it is necessary to uniformly charge the surface of the photoreceptor, and in order to uniformly charge, generally a conductive fiber having a lower fineness is required. However, reducing the fineness of the conductive fiber and conductive composite fiber having a conductive particle content sufficient to sufficiently charge the photosensitive member is a fiber forming spinning process and a twisting process. However, improvement has been demanded. Furthermore, the fiber formed only by the conductive layer has low strength and elongation, and if the fineness is further reduced, pile weaving when making a brush is difficult, and when it is made into a brush, it falls down or sags. This causes a problem in durability as a brush.

したがって、本発明の課題は、電子写真装置の感光体を帯電させる帯電ブラシに使用される導電性繊維において、より良好な画質を得るために、感光体をより均一に帯電させることのできる帯電ブラシに使用されるような導電性複合繊維の発明にある。   Accordingly, an object of the present invention is to provide a charging brush capable of charging a photoconductor more uniformly in order to obtain better image quality in a conductive fiber used for a charging brush for charging a photoconductor of an electrophotographic apparatus. In the invention of the conductive composite fiber as used in the present invention.

即ち、本発明は、被帯電体に接触配置され、電圧を印加することにより該被帯電体に接触するブラシ接触子に用いられる導電性複合繊維であって、該複合繊維が導電性粒子を含有する熱可塑性重合体からなる導電層と該導電層の熱可塑性重合体と相溶性のある熱可塑性重合体からなる非導電層が接合されてなり、導電層が連続した非導電層により複数の領域に分離され、各導電層の繊度が1.5dtex以下となるようにし、かつ全ての導電層の少なくとも一部が繊維表面に露出するように配されることを特徴とする導電性複合繊維及びその繊維からなる電子写真装置の接触帯電ブラシである。   That is, the present invention is a conductive conjugate fiber used for a brush contact that is placed in contact with a member to be charged and contacts the member to be charged by applying a voltage, and the conjugate fiber contains conductive particles. A conductive layer made of a thermoplastic polymer and a non-conductive layer made of a thermoplastic polymer compatible with the thermoplastic polymer of the conductive layer are joined together, and the conductive layer is formed into a plurality of regions by a continuous non-conductive layer. A conductive composite fiber, wherein the conductive layers are arranged so that each conductive layer has a fineness of 1.5 dtex or less and at least a part of all the conductive layers are exposed on the fiber surface, and It is a contact charging brush of an electrophotographic apparatus made of fiber.

本発明により、繊維形成、ブラシ化におけるパイル織も容易で、かつ、電子写真装置の帯電ブラシとして使用した際にへたり等もなく、感光体表面を均一に帯電させることができ、良好な画質を得ることが可能となる。   According to the present invention, pile weaving in fiber formation and brushing is easy, and there is no sag when used as a charging brush for an electrophotographic apparatus, and the surface of the photoconductor can be uniformly charged, resulting in good image quality. Can be obtained.

本発明の導電性複合繊維の導電層に使用される導電性粒子としては、カーボンブラック、導電性酸化チタンが知られている。カーボンブラックにはファーネスブラック、アセチレンブラック、ケッチェンブラックなどが知られているが、繊維形成時の帯電ブラシ用途での導電性能を満たすならばこれに限らない。導電性皮膜を有する酸化チタンの導電性皮膜には酸化錫をドーピングしたアンチモンが知られている。   Carbon black and conductive titanium oxide are known as conductive particles used in the conductive layer of the conductive composite fiber of the present invention. As carbon black, furnace black, acetylene black, ketjen black, and the like are known. Antimony doped with tin oxide is known as a conductive film of titanium oxide having a conductive film.

導電性粒子を含有する導電層に使用される熱可塑性重合体と非導電層を構成する熱可塑性重合体は相溶性があることが必要である。導電層と非導電層の組み合わせの一例として、導電層、非導電層を形成する重合体がともにポリアミド、もしくは、導電層、非導電層を形成する重合体がともにポリエステルとなる組み合わせがあるが、両ポリマーが相溶性であればこれに限らない。導電層がポリアミド、非導電層がポリエステルでは相溶性がなく、繊維を延伸する際、または、繊維に物理的な負荷をかけた際に導電層が脱落し、感光体を均一に帯電させる機能が低下する。   The thermoplastic polymer used in the conductive layer containing conductive particles and the thermoplastic polymer constituting the non-conductive layer must be compatible. As an example of the combination of the conductive layer and the nonconductive layer, there is a combination in which the polymer forming the conductive layer and the nonconductive layer is both polyamide, or the polymer forming the conductive layer and the nonconductive layer is both polyester. If both polymers are compatible, it will not be restricted to this. When the conductive layer is polyamide and the non-conductive layer is polyester, they are not compatible, and when the fiber is stretched or when a physical load is applied to the fiber, the conductive layer falls off, and the photoreceptor is charged uniformly. descend.

導電層、非導電層に使用されるポリアミドは、ナイロン6、ナイロン66、ナイロン11、ナイロン12及びこれらを主成分とする共重合体が知られているが、これらだけでなく、繊維形成能を持つポリアミドであればよい。導電層、非導電層に使用されるポリエステルは、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート及びこれらを主成分とする共重合体が知られているが、これらだけでなく、繊維形成能を持つポリエステルであればよい。   As the polyamide used for the conductive layer and the non-conductive layer, nylon 6, nylon 66, nylon 11, nylon 12 and copolymers based on these are known, but not only these but also fiber forming ability. Any polyamide may be used. Polyesters used for the conductive layer and the non-conductive layer are known as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and copolymers based on these, but also have fiber-forming ability. Any polyester may be used.

導電性粒子の重量含有率は、帯電ブラシの要求性能により、10wt%〜80wt%であることが必要であり、15〜70%であればより好ましい。10wt%未満であると導電性が発現しにくく、80wt%であると、繊維形成が困難となる。例えば、導電性粒子が30wt%前後含有した導電層部を繊維質量に対し30wt%〜60wt%配することで、比抵抗が1×10Ω・cm程度の導電性を示す導電性繊維を得ることができる。 The weight content of the conductive particles needs to be 10 wt% to 80 wt%, more preferably 15 to 70%, depending on the required performance of the charging brush. If it is less than 10 wt%, the conductivity is hardly expressed, and if it is 80 wt%, fiber formation becomes difficult. For example, conductive fibers having a specific resistance of about 1 × 10 5 Ω · cm can be obtained by arranging conductive layer portions containing about 30 wt% of conductive particles in an amount of 30 wt% to 60 wt% with respect to the fiber mass. be able to.

本発明の導電性複合繊維は図1から図3に示した代表例のように、導電性粒子を含有した導電層が非導電層によって複数の領域に分離し、かつ、各導電層の一部が繊維表面に露出し、さらには、導電層:非導電層の断面積比が3:2〜10:1で、該導電性複合繊維の単糸繊度が7.5dtex以下、導電層の繊度が1.5dtex以下となる繊維断面を
持つ。
In the conductive conjugate fiber of the present invention, as in the representative examples shown in FIGS. 1 to 3, the conductive layer containing conductive particles is separated into a plurality of regions by the non-conductive layer, and a part of each conductive layer Is exposed to the fiber surface, and the cross-sectional area ratio of the conductive layer: non-conductive layer is 3: 2 to 10: 1, the single yarn fineness of the conductive conjugate fiber is 7.5 dtex or less, and the fineness of the conductive layer is It has a fiber cross section of 1.5 dtex or less.

導電性粒子を含有した導電層が繊維断面において非導電層によって複数の領域に分離され、各導電層の繊度が1.5dtex以下となることが必要であり、0.1dtex〜1.0dtexであるとより好ましい。各導電層の繊度が1.5dtexを超えると感光体を均一に帯電させることができない。   The conductive layer containing the conductive particles is separated into a plurality of regions by the non-conductive layer in the fiber cross section, and the fineness of each conductive layer is required to be 1.5 dtex or less, and is 0.1 dtex to 1.0 dtex. And more preferred. If the fineness of each conductive layer exceeds 1.5 dtex, the photoreceptor cannot be charged uniformly.

導電層:非導電層の断面積比は3:2〜10:1であることが必要であり、2:1〜8:1であるとより好ましい。導電層:非導電層の断面積比が3:2よりも非導電層が大きくなると、感光体に接触する導電層が少なくなり、感光体を均一に帯電することができない。導電層:非導電層の断面積比が10:1よりも導電層が大きくなると、繊維形成が困難となる。   The cross-sectional area ratio of the conductive layer: non-conductive layer needs to be 3: 2 to 10: 1, and more preferably 2: 1 to 8: 1. If the cross-sectional area ratio of the conductive layer: non-conductive layer is larger than 3: 2, the conductive layer in contact with the photoconductor is reduced and the photoconductor cannot be uniformly charged. If the conductive layer: non-conductive layer cross-sectional area ratio is larger than 10: 1, fiber formation becomes difficult.

各導電層の一部が繊維表面に露出していることが必要である。導電層が露出していないと、ブラシの繊維先端が感光体に斜めから接触するために、導電層が感光体に接触することが難しくなり、感光体を十分に帯電させることができない。   It is necessary that a part of each conductive layer is exposed on the fiber surface. If the conductive layer is not exposed, the fiber tip of the brush comes into contact with the photoreceptor at an angle, so that it becomes difficult for the conductive layer to contact the photoreceptor, and the photoreceptor cannot be charged sufficiently.

導電層の比抵抗は帯電ブラシの要求性能により、1×10Ω・cm〜1×1012Ω・cmであることが望ましく、この範囲であれば、この導電性繊維を用いて作製されたブラシを帯電ブラシとして用いた場合、良好な画質を得ることができる。 The specific resistance of the conductive layer is preferably 1 × 10 1 Ω · cm to 1 × 10 12 Ω · cm, depending on the required performance of the charging brush. When the brush is used as a charging brush, good image quality can be obtained.

該導電性複合繊維の導電層に使用される樹脂と導電性粒子の混合は二軸混練機などの公知の方法にて混練することができる。得られた導電性樹脂と非導電層に使用される樹脂をそれぞれ溶融し、例えば図1に示す断面形状になるような紡糸口金より吐出する。吐出した導電性複合繊維を冷風にて冷却後、適当な油剤を付与し、公知の巻き取り機にて巻き取り、マルチフィラメントの未延伸糸を得る。巻き取り速度は導電層、非導電層の組み合わせ、比率等により適正なスピードであれば良いが、繊維物性、巻き取り易さ等により、600m/min〜1200m/minが望ましい。得られた未延伸糸を70℃〜120℃の熱をかけながら延伸して、延伸糸を得る。延伸後の繊維全繊度は後の織機の能力、糸密度にもよるが、50dtex〜500dtexが望ましい。得られた導電性複合繊維をパイル織等で例えば12.4kf/cm〜31.0kf/cmの帯電ブラシ容基布とし、該基布の裏面に導電性のバックコート剤を塗布し、金属の芯材に両面テープ等で貼り付けブラシを得る。ブラシ状にした後、起毛処理、シャーリング処理を行い、帯電ブラシを得る。 The resin used for the conductive layer of the conductive conjugate fiber and the conductive particles can be mixed by a known method such as a biaxial kneader. The obtained conductive resin and the resin used for the non-conductive layer are respectively melted and discharged from a spinneret having a cross-sectional shape shown in FIG. After cooling the discharged conductive conjugate fiber with cold air, an appropriate oil agent is applied, and it is wound up by a known winder to obtain a multifilament undrawn yarn. The winding speed may be an appropriate speed depending on the combination and ratio of the conductive layer and the non-conductive layer, but is preferably 600 m / min to 1200 m / min depending on the fiber properties and the ease of winding. The obtained undrawn yarn is drawn while applying heat at 70 ° C. to 120 ° C. to obtain a drawn yarn. The total fineness of the fiber after drawing depends on the ability of the subsequent loom and the yarn density, but is preferably 50 dtex to 500 dtex. The obtained conductive conjugate fiber is made into, for example, a 12.4 kf / cm 2 to 31.0 kf / cm 2 charged brush base fabric with pile weave, and a conductive back coat agent is applied to the back surface of the base fabric, A brush is affixed to a metal core with double-sided tape or the like. After making into a brush shape, brushing and shearing are performed to obtain a charged brush.

以上のように構成される導電性複合繊維は、電子写真装置の感光体表面を均一に帯電させることが可能で、かつ、繊維形成、ブラシ化のパイル織も容易となり、帯電ブラシとして適する。また、本ブラシは感光体のクリーニングブラシ及び中間転写ブラシ等の電子写真装置に用いられるあらゆるブラシに使用することができる。   The conductive conjugate fiber configured as described above can uniformly charge the surface of the photoreceptor of the electrophotographic apparatus, and can be easily formed into a fiber and formed into a pile, and is suitable as a charging brush. Further, this brush can be used for all brushes used in electrophotographic apparatuses such as a photoconductor cleaning brush and an intermediate transfer brush.

次に、実施例において、本発明の詳細を説明する。なお、実施例における比抵抗は導電性繊維全フィラメントを11cm採取してその両端0.5cmに導電性ペーストを塗布しアルミ箔に接着させ、アルミ箔を電極として測定した電気抵抗値より換算した。   Next, details of the present invention will be described in Examples. In addition, the specific resistance in an Example was converted from the electrical resistance value which measured 11cm of conductive fiber all filaments, apply | coated the conductive paste to the both ends 0.5cm, and was made to adhere to aluminum foil, and measured aluminum foil as an electrode.

電気抵抗測定機は、ヒューレットパッカード社製ハイレジスタンスメーター4339Bを使用した。   A high resistance meter 4339B manufactured by Hewlett-Packard Company was used as the electrical resistance measuring machine.

また、紡糸性の評価は未延伸糸採取時の1ボビンの巻き取り時間を1時間とし、10ボビン巻き取りのうち何ボビン糸切れを起こすか(ボビン率)で判断し、ボビン率が80%
以上であれば紡糸性良好とした。
The evaluation of the spinnability is based on the bobbin winding time of 1 bob when collecting undrawn yarn, and judging by how many bobbin yarn breaks out of 10 bobbin windings (bobbin rate). The bobbin rate is 80%.
If it was above, it was set as the spinning property favorable.

ブラシ作製時の毛倒れ、へたりについては目視にて評価した。毛倒れ、へたりがなければ○、あれば×とした。   The hair collapse and sag during brush production were evaluated visually. If there was no hair fall and sag, it was rated as ○, and if it was not, it was rated as ×.

帯電ブラシとしての評価は、一般に感光体を均一に帯電させることができれば画質が良好となるため、下記実施例、及び比較例の方法にて作製したブラシを電子写真装置に組み込み、テスト画像を印刷して、目視にて評価した。評価結果は良好であれば○、不良であれば×とした。   Evaluation as a charging brush generally improves the image quality if the photosensitive member can be uniformly charged. Therefore, a test image is printed by incorporating the brushes produced by the methods of the following examples and comparative examples into an electrophotographic apparatus. And visually evaluated. The evaluation result was “good” if it was good, and “poor” if it was bad.

[実施例1]
ナイロン12にカーボンブラック(ファーネスブラック)を全重量の27wt%となるように、二軸混練機にて溶融混練し、定法によりチップ化し、導電性複合繊維の導電層として使用する導電性ナイロン12チップを得た。得られた導電性ナイロン12チップと非導電層として使用されるナイロン12チップをそれぞれ270℃にて溶融し、図2に示す繊維断面形状で、導電性粒子を含有する導電層と非導電層の繊維断面積比率が2:1となるように紡糸口金から吐出する。吐出した導電性複合繊維を室温の冷却風にて冷却後、油剤を付与し、700m/minで巻き取り機にて巻き取り、273.0dtex/28fの未延伸糸を得る。得られた未延伸糸を80℃の熱をかけながら延伸し、100℃でセットし、最終的に130.0dtex/28fの延伸糸を得る。得られた導電性複合繊維の比抵抗は3×10Ω・cmであった。得られた導電性複合繊維をパイル長3mm、幅14mmのパイル織として、パイル密度21.7kf/cmのブラシ用基布を得た。該基布に、導電性バックコート剤を塗布し、金属の芯材に両面テープで貼り付け、その後、起毛処理、シャーリング処理を行って、帯電ブラシとした。本帯電ブラシを電子写真装置に組み込み、テスト印刷し、画質を評価した。評価結果を表1の実施例1に示した。
[Example 1]
Conductive nylon 12 chip used as a conductive layer of conductive composite fiber by melting and kneading carbon black (furnace black) to nylon 12 in a biaxial kneader so as to be 27 wt% of the total weight, and forming a chip by a conventional method. Got. The obtained conductive nylon 12 chip and the nylon 12 chip used as the non-conductive layer were melted at 270 ° C., and the conductive cross-section shape shown in FIG. It discharges from a spinneret so that a fiber cross-sectional area ratio may be 2: 1. The discharged conductive conjugate fiber is cooled with room-temperature cooling air, and then an oil agent is applied, and it is wound up by a winder at 700 m / min to obtain an undrawn yarn of 273.0 dtex / 28f. The obtained undrawn yarn is drawn while applying heat at 80 ° C. and set at 100 ° C., and finally a drawn yarn of 130.0 dtex / 28f is obtained. The specific resistance of the obtained conductive conjugate fiber was 3 × 10 7 Ω · cm. The obtained conductive conjugate fiber was made into a pile weave having a pile length of 3 mm and a width of 14 mm to obtain a brush base fabric having a pile density of 21.7 kf / cm 2 . A conductive back coat agent was applied to the base fabric, adhered to a metal core with a double-sided tape, and then brushed and sheared to give a charging brush. The charging brush was incorporated into an electrophotographic apparatus, test printed, and the image quality was evaluated. The evaluation results are shown in Example 1 of Table 1.

[実施例2]
実施例1と同様な方法の混練法により導電性チップを作製した。実施例1における導電性複合繊維の断面形状が図2となるような紡糸口金を使用する代わりに、図3に示す如き形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率を2:1となるように吐出した。吐出後の冷却、巻き取り条件は実施例1と同様とし、546.1dtex/50fの未延伸糸を得た。延伸の条件は実施例1と同様とし、260.0dtex/50fの延伸糸を得た。得られた導電性複合繊維の比抵抗は3×10Ω・cmであった。実施例1と同様の方法にて帯電ブラシを作製し、電子写真装置に組み込み、画質を評価した。評価結果を実施例2に示した。
[Example 2]
A conductive chip was produced by the same kneading method as in Example 1. Instead of using the spinneret having the cross-sectional shape of the conductive conjugate fiber in Example 1 as shown in FIG. 2, a spinneret having the shape as shown in FIG. 3 is used to cut off the conductive layer and the nonconductive layer. It discharged so that an area ratio might be set to 2: 1. The cooling and winding conditions after discharge were the same as in Example 1, and an undrawn yarn of 546.1 dtex / 50f was obtained. The drawing conditions were the same as in Example 1, and a drawn yarn of 260.0 dtex / 50f was obtained. The specific resistance of the obtained conductive conjugate fiber was 3 × 10 7 Ω · cm. A charging brush was produced in the same manner as in Example 1, and incorporated in an electrophotographic apparatus, and the image quality was evaluated. The evaluation results are shown in Example 2.

[実施例3]
ポリエチレンテレフタレートにカーボンブラック(ファーネスブラック)を全重量の26wt%となるように、二軸混練機にて溶融混練し、定法によりチップ化し、導電性複合繊維の導電層として使用する導電性ポリエチレンテレフタレートチップを得た。導電性複合繊維の導電層に使用される導電性ポリエチレンテレフタレートチップと非導電層に使用されるポリエチレンテレフタレートを溶融する温度をそれぞれ290℃としたことと、巻き取り速度を1000m/minとしたこと以外は全て実施例1と同様として、未延伸糸を得た。得られた未延伸糸は390.1dtex/28fであった。得られた未延伸糸を100℃の熱をかけながら延伸し、140℃でセットし、導電性複合繊維の延伸糸を得た。得られた導電性複合繊維は130.2dtex/28fで、比抵抗は5×10Ω・cmであった。実施例1と同様の方法で帯電ブラシを作製し、電子写真装置に組み込み、画質を評価した。評価結果を表1の実施例3に示した。
[Example 3]
Conductive polyethylene terephthalate chip used as a conductive layer for conductive composite fibers by melting and kneading carbon black (furnace black) into polyethylene terephthalate in a biaxial kneader so that the total weight is 26 wt% Got. Except that the temperature for melting the conductive polyethylene terephthalate chip used for the conductive layer of the conductive composite fiber and the polyethylene terephthalate used for the non-conductive layer was 290 ° C. and the winding speed was 1000 m / min. Were all the same as in Example 1, and an undrawn yarn was obtained. The undrawn yarn obtained was 390.1 dtex / 28f. The obtained undrawn yarn was drawn while applying heat at 100 ° C. and set at 140 ° C. to obtain a drawn yarn of conductive composite fiber. The obtained conductive conjugate fiber was 130.2 dtex / 28f, and the specific resistance was 5 × 10 5 Ω · cm. A charging brush was produced in the same manner as in Example 1, incorporated in an electrophotographic apparatus, and the image quality was evaluated. The evaluation results are shown in Example 3 of Table 1.

[実施例4]
実施例3と同様のチップを用いて図2に示す繊維断面形状になるような紡糸口金を使用する代わりに、図3に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率が2:1となるように吐出した。得られた導電性複合繊維は260dtex/50fで、比抵抗は4×10Ω・cmであった。紡糸、延撚条件、及び、ブラシ作製条件は実施例3と同様とし、得られた帯電ブラシを電子写真装置に組み込み、画質評価行った。評価結果を表1の実施例4に示した。
[Example 4]
Instead of using the spinneret having the fiber cross-sectional shape shown in FIG. 2 using the same chip as in Example 3, the spinneret having the fiber cross-sectional shape shown in FIG. The conductive layer was discharged so that the cross-sectional area ratio was 2: 1. The obtained conductive conjugate fiber was 260 dtex / 50 f, and the specific resistance was 4 × 10 5 Ω · cm. Spinning, rolling and brush preparation conditions were the same as in Example 3, and the obtained charging brush was incorporated into an electrophotographic apparatus for image quality evaluation. The evaluation results are shown in Example 4 of Table 1.

[実施例5]
ナイロン6にカーボンブラック(ファーネスブラック)を全重量の26wt%となるように、二軸混練機にて溶融混練し、定法によりチップ化し、導電性複合繊維の導電層として使用する導電性ナイロン6チップを得た。導電性複合繊維の導電層に使用される導電性ナイロン6と非導電層に使用されるナイロン6を溶融する温度をそれぞれ265℃としたことと、巻き取り速度を800m/minとしたこと以外は全て実施例1と同様とし、未延伸糸を得た。得られた未延伸糸は325.0dtex/28fであった。得られた未延伸糸を90℃の熱をかけながら延伸し、120℃でセットし、導電性複合繊維の延伸糸を得た。得られた導電性複合繊維は130.0dtex/28fで、比抵抗は2×10Ω・cmであった。実施例1と同様の方法で帯電ブラシを作製し、電子写真装置に組み込み、画質を評価した。評価結果を表1の実施例5に示した。
[Example 5]
Conductive nylon 6 chip used as a conductive layer of conductive composite fiber by melting and kneading carbon black (furnace black) to nylon 6 in a biaxial kneader so as to be 26 wt% of the total weight. Got. Except that the temperature at which the conductive nylon 6 used in the conductive layer of the conductive composite fiber and the nylon 6 used in the non-conductive layer are melted is 265 ° C. and the winding speed is 800 m / min. All were made the same as Example 1, and the undrawn yarn was obtained. The undrawn yarn obtained was 325.0 dtex / 28f. The obtained undrawn yarn was drawn while applying heat at 90 ° C. and set at 120 ° C. to obtain a drawn yarn of conductive composite fiber. The obtained conductive conjugate fiber was 130.0 dtex / 28f, and the specific resistance was 2 × 10 6 Ω · cm. A charging brush was produced in the same manner as in Example 1, incorporated in an electrophotographic apparatus, and the image quality was evaluated. The evaluation results are shown in Example 5 of Table 1.

[実施例6]
実施例5と同様のチップを用いて図2に示す繊維断面形状になるような紡糸口金を使用する代わりに、図3に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率が2:1となるように吐出した。紡糸、延撚条件、及び、ブラシ作製条件は実施例5と同様とし、得られた帯電ブラシを電子写真装置に組み込み、画質評価行った。評価結果を表1の実施例6に示した。
[Example 6]
Instead of using the spinneret having the fiber cross-sectional shape shown in FIG. 2 using the same tip as in Example 5, a spinneret having the fiber cross-sectional shape shown in FIG. The conductive layer was discharged so that the cross-sectional area ratio was 2: 1. Spinning, rolling and brush production conditions were the same as in Example 5, and the obtained charging brush was incorporated into an electrophotographic apparatus to evaluate image quality. The evaluation results are shown in Example 6 in Table 1.

[比較例1]
ナイロン12にカーボンブラック(ファーネスブラック)を全重量の9wt%となるように、二軸混練機にて溶融混練し、定法によりチップ化し、導電性複合繊維の導電層として使用する導電性ナイロン12チップを得た。得られた導電性ナイロン12チップと非導電層として使用されるナイロン12チップをそれぞれ270℃にて溶融し、図2に示す繊維断面形状で、導電性粒子を含有する導電層と非導電層の繊維断面積比率が2:1となるように紡糸口金から吐出する。吐出した導電性複合繊維を室温の冷却風にて冷却後、油剤を付与し、700m/minで巻き取り機にて巻き取り、273.0dtex/28fの未延伸糸を得る。得られた未延伸糸を80℃の熱をかけながら延伸し、100℃でセットし、最終的に130.0dtex/28fの延伸糸を得る。得られた導電性複合繊維の比抵抗は3×1013Ω・cmであった。得られた導電性複合繊維をパイル長3mm、幅14mmのパイル織として、パイル密度21.7kf/cmのブラシ用基布を得た。該基布に、導電性バックコート剤を塗布し、金属の芯材に両面テープで貼り付け、その後、起毛処理、シャーリング処理を行って、帯電ブラシとした。本帯電ブラシを電子写真装置に組み込み、テスト印刷し、画質を評価した。評価結果を表1の比較例1に示したように、導電性粒子含有率が少ないことから、比抵抗が高くなり、この導電性繊維から作られるブラシを用いては均一な帯電ができないため、帯電ブラシ用途には適さない。
[Comparative Example 1]
Conductive nylon 12 chip used as a conductive layer of conductive composite fiber by melting and kneading carbon black (furnace black) to nylon 12 in a biaxial kneader so as to be 9 wt% of the total weight. Got. The obtained conductive nylon 12 chip and the nylon 12 chip used as the non-conductive layer were melted at 270 ° C., and the conductive cross-section shape shown in FIG. It discharges from a spinneret so that a fiber cross-sectional area ratio may be 2: 1. The discharged conductive conjugate fiber is cooled with room-temperature cooling air, and then an oil agent is applied, and it is wound up by a winder at 700 m / min to obtain an undrawn yarn of 273.0 dtex / 28f. The obtained undrawn yarn is drawn while applying heat at 80 ° C. and set at 100 ° C., and finally a drawn yarn of 130.0 dtex / 28f is obtained. The specific resistance of the obtained conductive conjugate fiber was 3 × 10 13 Ω · cm. The obtained conductive conjugate fiber was made into a pile weave having a pile length of 3 mm and a width of 14 mm to obtain a brush base fabric having a pile density of 21.7 kf / cm 2 . A conductive back coat agent was applied to the base fabric, adhered to a metal core with a double-sided tape, and then brushed and sheared to give a charging brush. The charging brush was incorporated into an electrophotographic apparatus, test printed, and the image quality was evaluated. As shown in Comparative Example 1 of Table 1, since the conductive particle content is low, the specific resistance is high, and uniform charging cannot be performed using a brush made from this conductive fiber. Not suitable for charging brush applications.

[比較例2]
ナイロン12にカーボンブラック(ファーネスブラック)を全重量の85wt%となるように、二軸混練機にて溶融混練し、定法によりチップ化し、導電性複合繊維の導電層として使用する導電性ナイロン12チップを得た。非導電層としてナイロン12チップを用いて、実施例1と同様の方法にて紡糸を行った。表1の比較例2に示すように、数回の糸切れがあったものの、273.0dtex/28fの未延伸糸を得る。実施例1と同様の
方法にて延伸し、130.0dtex/28fの延伸糸を得る。得られた導電性複合繊維の比抵抗は5×10Ω・cmであった。得られた導電性複合繊維をパイル長3mm、幅14mmのパイル織として、パイル密度21.7kf/cmのブラシ用基布を得た。該基布に、導電性バックコート剤を塗布し、金属の芯材に両面テープで貼り付け、その後、起毛処理、シャーリング処理を行って、帯電ブラシとした。本帯電ブラシを電子写真装置に組み込み、テスト印刷し、画質を評価した。評価結果を表1の比較例2に示したように、導電性粒子含有率が高いことからボビン率が低く、紡糸操業性が著しく悪いため、実用に適さない。
[Comparative Example 2]
Conductive nylon 12 chips used as a conductive layer for conductive composite fibers by melting and kneading carbon black (furnace black) into nylon 12 in a biaxial kneader so as to be 85 wt% of the total weight and forming chips by a conventional method. Got. Spinning was performed in the same manner as in Example 1 using a nylon 12 chip as the nonconductive layer. As shown in Comparative Example 2 in Table 1, an undrawn yarn of 273.0 dtex / 28f was obtained although there were several yarn breaks. Drawing is performed in the same manner as in Example 1 to obtain a 130.0 dtex / 28f drawn yarn. The specific resistance of the obtained conductive conjugate fiber was 5 × 10 3 Ω · cm. The obtained conductive conjugate fiber was made into a pile weave having a pile length of 3 mm and a width of 14 mm to obtain a brush base fabric having a pile density of 21.7 kf / cm 2 . A conductive back coat agent was applied to the base fabric, adhered to a metal core with a double-sided tape, and then brushed and sheared to give a charging brush. The charging brush was incorporated into an electrophotographic apparatus, test printed, and the image quality was evaluated. As shown in Comparative Example 2 in Table 1, since the conductive particle content is high, the bobbin rate is low and the spinning operability is remarkably poor, so that it is not suitable for practical use.

[比較例3]
導電層に実施例1と同様に作製された導電性ナイロン12チップを用い、非導電層にポリエチレンテレフタレートチップを用いて、図1に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率を2:1となるように吐出した。巻き取り速度を1000m/minとし、得られた未延伸糸は273.0dtex/28fであった。得られた未延伸糸を80℃の熱をかけながら延伸し、100℃でセットした。得られた導電性複合繊維は130.0dtex/28fで、比抵抗は3×10Ω・cmであった。ブラシ作製条件は実施例1と同様とし、得られた帯電ブラシを電子写真装置に組み込んで、画質評価を行った。評価結果を表1の比較例3に示したように、非相溶性のチップを用いたことによるブラシ化の際の脱落からブラシ化した際に毛倒れが生じ、均一な帯電ができないため、帯電ブラシには適さない。
[Comparative Example 3]
Using a conductive nylon 12 chip produced in the same manner as in Example 1 for the conductive layer, a polyethylene terephthalate chip for the non-conductive layer, and using a spinneret having the fiber cross-sectional shape shown in FIG. The non-conductive layer was discharged so that the cross-sectional area ratio was 2: 1. The winding speed was 1000 m / min, and the resulting undrawn yarn was 273.0 dtex / 28f. The obtained undrawn yarn was drawn while applying heat at 80 ° C. and set at 100 ° C. The obtained conductive conjugate fiber was 130.0 dtex / 28f, and the specific resistance was 3 × 10 7 Ω · cm. The conditions for producing the brush were the same as in Example 1. The obtained charging brush was incorporated into an electrophotographic apparatus, and the image quality was evaluated. As shown in Comparative Example 3 of Table 1, the evaluation results are shown in Comparative Example 3 in that the use of an incompatible tip causes the hair to fall down when the brush is removed from the brush, and uniform charging cannot be performed. Not suitable for brushes.

[比較例4]
実施例1と同様のチップを用いて、図2に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率を15:1となるように吐出した。巻き取り条件は実施例1と同様とし、表1の比較例4に示すように数回の糸切れはあったものの未延伸糸を得た。得られた導電性複合繊維の未延伸糸は200.4dtex/28fであった。延伸条件も実施例1と同様に延伸を行い、得られた延伸糸は96.1dtex/28fで比抵抗は2×10Ω・cmであった。実施例1と同様の条件にてブラシ化を行い、得られた帯電ブラシを電子写真装置に組み込んで画質評価を行った。評価結果を表1の比較例4に示したように、導電性粒子を含有した導電層が繊維断面のほとんどを占めることから、ボビン率が低くなり、紡糸操業性が悪く、実用に適さない。
[Comparative Example 4]
Using the same tip as in Example 1, a spinneret having a fiber cross-sectional shape shown in FIG. 2 was used, and the conductive layer and the non-conductive layer were discharged so that the cross-sectional area ratio was 15: 1. The winding conditions were the same as in Example 1. As shown in Comparative Example 4 in Table 1, undrawn yarn was obtained although there were several yarn breaks. The undrawn yarn of the obtained conductive conjugate fiber was 200.4 dtex / 28f. The drawing conditions were also drawn in the same manner as in Example 1. The drawn yarn obtained had 96.1 dtex / 28f and the specific resistance was 2 × 10 7 Ω · cm. Brushing was performed under the same conditions as in Example 1, and the obtained charging brush was incorporated into an electrophotographic apparatus for image quality evaluation. As shown in Comparative Example 4 in Table 1, since the conductive layer containing the conductive particles occupies most of the fiber cross section, the bobbin rate is low, the spinning operability is poor, and it is not suitable for practical use.

[比較例5]
実施例1と同様のチップを用いて、図2に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率を1:2となるように吐出した。巻き取り条件は実施例1と同様とし、得られた導電性複合繊維の未延伸糸は420.0dtex/28fであった。延伸条件も実施例1と同様に延伸を行い、得られた延伸糸は200.0dtex/28fで比抵抗は3×10Ω・cmであった。実施例1と同様の条件にてブラシ化を行い、得られた帯電ブラシを電子写真装置に組み込んで画質評価を行った。評価結果を表1の比較例5に示したように、導電性粒子を含有しない非導電層が繊維断面の多くを占めることから、この導電性繊維を用いたブラシでは感光体を均一に帯電できないため、帯電ブラシには適さない。
[Comparative Example 5]
Using the same tip as in Example 1, a spinneret having a fiber cross-sectional shape shown in FIG. 2 was used, and the conductive layer and the non-conductive layer were discharged so that the cross-sectional area ratio was 1: 2. The winding condition was the same as in Example 1, and the undrawn yarn of the obtained conductive conjugate fiber was 420.0 dtex / 28f. The drawing conditions were also drawn in the same manner as in Example 1, and the obtained drawn yarn was 200.0 dtex / 28f and the specific resistance was 3 × 10 7 Ω · cm. Brushing was performed under the same conditions as in Example 1, and the obtained charging brush was incorporated into an electrophotographic apparatus for image quality evaluation. As shown in Comparative Example 5 in Table 1, since the non-conductive layer containing no conductive particles occupies most of the fiber cross section, the brush using this conductive fiber cannot uniformly charge the photoreceptor. Therefore, it is not suitable for a charging brush.

[比較例6]
実施例1と同様のチップを用いて、図2に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率を2:1となるように吐出した。巻き取り条件は実施例1と同様とし、得られた導電性複合繊維の未延伸糸は470.0dtex/28fとなるように吐出量を調整した。延伸条件も実施例1と同様に延伸を行い、得られた延伸糸は224.2dtex/28fで比抵抗は3×10Ω・cmであった。実施例1と同様の条件にてブラシ化を行い、得られた帯電ブラシを電子写真装置に組み込んで画質評価を
行った。評価結果を表1の比較例6に示したように、繊度が高いことによって、この導電性繊維を用いて作られるブラシでは感光体を均一に帯電できないために、帯電ブラシ用途には適さない。
[Comparative Example 6]
Using the same tip as in Example 1, a spinneret having a fiber cross-sectional shape shown in FIG. 2 was used, and the cross-sectional area ratio of the conductive layer and the non-conductive layer was discharged to 2: 1. The winding conditions were the same as in Example 1, and the discharge rate was adjusted so that the undrawn yarn of the obtained conductive conjugate fiber was 470.0 dtex / 28f. The drawing conditions were also drawn in the same manner as in Example 1. The obtained drawn yarn had 224.2 dtex / 28f and the specific resistance was 3 × 10 7 Ω · cm. Brushing was performed under the same conditions as in Example 1, and the obtained charging brush was incorporated into an electrophotographic apparatus for image quality evaluation. As shown in Comparative Example 6 in Table 1, since the fineness is high, a brush made using this conductive fiber cannot uniformly charge the photoconductor, so that it is not suitable for a charging brush application.

[比較例7]
実施例1と同様のチップを用いて、図2に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率を8:1となるように吐出した。巻き取り条件は実施例1と同様とし、得られた導電性複合繊維の未延伸糸は423.0dtex/28fとなるように吐出量を調整した。延伸条件も実施例1と同様に延伸を行い、得られた延伸糸は202.1detex/28fで比抵抗は2×10Ω・cmであった。実施例1と同様の条件にてブラシ化を行い、得られた帯電ブラシを電子写真装置に組み込んで画質評価を行った。評価結果を表1の比較例7に示したように、各導電層の繊度が高いことによって、この導電性繊維を用いて作られるブラシでは感光体を均一に帯電できないために、帯電ブラシ用途には適さない。
[Comparative Example 7]
Using the same tip as in Example 1, a spinneret having a fiber cross-sectional shape shown in FIG. 2 was used, and the cross-sectional area ratio of the conductive layer and the non-conductive layer was discharged to 8: 1. The winding conditions were the same as in Example 1, and the discharge rate was adjusted so that the undrawn yarn of the obtained conductive conjugate fiber was 423.0 dtex / 28f. The drawing conditions were also drawn in the same manner as in Example 1. The obtained drawn yarn had 202.1 detex / 28f and the specific resistance was 2 × 10 7 Ω · cm. Brushing was performed under the same conditions as in Example 1, and the obtained charging brush was incorporated into an electrophotographic apparatus for image quality evaluation. As shown in Comparative Example 7 in Table 1, because the fineness of each conductive layer is high, a brush made using this conductive fiber cannot uniformly charge the photosensitive member. Is not suitable.

[比較例8]
実施例1と同様のチップを用いて、図2に示す繊維断面形状になるような紡糸口金を使用する代わりに、図4に示す繊維断面形状になるような紡糸口金を使用し、導電層と非導電層の断面積比率が2:1となるように吐出した。巻き取り条件は実施例1と同様とし、得られた導電性複合繊維の未延伸糸は410.0dtex/28fであった。延伸条件は実施例1と同様とし、得られた延伸糸は195.2dtex/28fであり、比抵抗は5×10Ω・cmであった。ブラシ作製条件は実施例1と同様とし、得られた帯電ブラシを電子写真装置に組み込んで、画質評価を行った。評価結果を表1の比較例8に示したように、導電性粒子を含有する導電層が繊維表面に露出していないために、この導電性繊維を用いて作られるブラシでは感光体を均一に帯電できず、帯電ブラシ用途には適さない。
[Comparative Example 8]
Instead of using the spinneret having the fiber cross-sectional shape shown in FIG. 2 using the same chip as in Example 1, a spinneret having the fiber cross-sectional shape shown in FIG. It discharged so that the cross-sectional area ratio of a nonelectroconductive layer might be set to 2: 1. The winding condition was the same as in Example 1, and the undrawn yarn of the obtained conductive conjugate fiber was 410.0 dtex / 28f. The drawing conditions were the same as in Example 1. The obtained drawn yarn was 195.2 dtex / 28f, and the specific resistance was 5 × 10 7 Ω · cm. The conditions for producing the brush were the same as in Example 1. The obtained charging brush was incorporated into an electrophotographic apparatus, and the image quality was evaluated. As shown in Comparative Example 8 in Table 1, since the conductive layer containing conductive particles is not exposed on the fiber surface, the brush made using this conductive fiber makes the photoreceptor uniform. It cannot be charged and is not suitable for charging brush applications.

現在、IT産業の一部である電子写真装置の画質向上を目的として数多くの製品、製法が生み出されてきている。本発明はそれら電子写真装置の心臓部である感光体を均一に帯電させることのできる帯電ブラシ、または該帯電ブラシに使用される導電性複合繊維であって、帯電ブラシだけにとどまらず、クリーニングブラシ、中間転写ブラシ等、電子写真装置に内蔵されているあらゆるブラシに適用が可能である。   Currently, a number of products and manufacturing methods have been created for the purpose of improving the image quality of electrophotographic apparatuses that are part of the IT industry. The present invention is a charging brush capable of uniformly charging a photosensitive member, which is the heart of these electrophotographic apparatuses, or a conductive composite fiber used for the charging brush, and is not limited to a charging brush, and is a cleaning brush. The present invention can be applied to any brush built in an electrophotographic apparatus such as an intermediate transfer brush.

本発明に用いる3領域分離型導電性複合繊維の単糸の横断面図である。It is a cross-sectional view of a single yarn of a three-region separation type conductive conjugate fiber used in the present invention. 発明及び比較例に用いる4領域分離型導電性複合繊維の単糸の横断面図である。It is a cross-sectional view of a single yarn of a four-region separation type conductive composite fiber used in the invention and comparative examples. 本発明に用いる8領域分離型導電性複合繊維の単糸の横断面図である。It is a cross-sectional view of a single yarn of 8-region separation type conductive conjugate fiber used in the present invention. 比較例の海島型導電性複合繊維の単糸の横断面図である。It is a cross-sectional view of a single yarn of a sea-island conductive composite fiber of a comparative example.

符号の説明Explanation of symbols

1:導電性粒子を含有した導電層
2:導電性粒子を含有しない非導電層
1: Conductive layer containing conductive particles 2: Non-conductive layer not containing conductive particles

Claims (7)

導電性粒子を10wt%〜80wt%含有する熱可塑性重合体からなる導電層と該導電層の熱可塑性重合体と相溶性のある熱可塑性重合体からなる非導電層から形成され、該複合繊維(導電性粒子を含有する)導電層が非導電層により複数領域に分離された形状を持ち、かつ、導電層/非導電層の断面積比が3:2〜10:1で、該複合繊維の単糸が7.5dtex以下、さらには導電層の1つの領域の繊度が1.5dtex以下であり、全ての導電層の一部が繊維表面に露出していることを特徴とする導電性複合繊維。 Formed of a conductive layer made of a thermoplastic polymer containing 10 wt% to 80 wt% of conductive particles and a non-conductive layer made of a thermoplastic polymer compatible with the thermoplastic polymer of the conductive layer, The conductive layer (containing conductive particles) has a shape separated into a plurality of regions by a non-conductive layer, and the cross-sectional area ratio of the conductive layer / non-conductive layer is 3: 2 to 10: 1, A conductive composite fiber characterized in that a single yarn is 7.5 dtex or less, and further, a fineness of one region of the conductive layer is 1.5 dtex or less, and a part of all the conductive layers is exposed on the fiber surface. . 導電層が導電性粒子を含有するポリアミドで非導電層がポリアミドあることを特徴とする請求項1記載の導電性複合繊維。 The conductive composite fiber according to claim 1, wherein the conductive layer is polyamide containing conductive particles and the non-conductive layer is polyamide. 導電層が導電性粒子を含有するポリエステルで非導電層がポリエステルであることを特徴とする請求項1記載の導電性複合繊維。 2. The conductive conjugate fiber according to claim 1, wherein the conductive layer is polyester containing conductive particles, and the non-conductive layer is polyester. 前記導電性複合繊維の比抵抗が10〜1012Ω・cmであることを特徴とする請求項1記載の導電性複合繊維。 2. The conductive conjugate fiber according to claim 1, wherein a specific resistance of the conductive conjugate fiber is 10 1 to 10 12 Ω · cm. 前記導電性複合繊維の導電層が導電性カーボンブラック粒子を含有することを特徴とする請求項1記載の導電性複合繊維。 The conductive composite fiber according to claim 1, wherein the conductive layer of the conductive composite fiber contains conductive carbon black particles. 前記導電性複合繊維の導電層が導電性皮膜を有する酸化チタン粒子を含有することを特徴とする請求項1記載の導電性複合繊維。 The conductive composite fiber according to claim 1, wherein the conductive layer of the conductive composite fiber contains titanium oxide particles having a conductive film. 請求項1から請求項6のいずれかに記載された導電性複合繊維を接触子とする電子写真式画像形成装置の接触帯電ブラシ。
A contact charging brush of an electrophotographic image forming apparatus using the conductive conjugate fiber according to any one of claims 1 to 6 as a contact.
JP2004281295A 2004-09-28 2004-09-28 Conductive conjugate fiber and contact charging brush made thereof Pending JP2006097146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281295A JP2006097146A (en) 2004-09-28 2004-09-28 Conductive conjugate fiber and contact charging brush made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281295A JP2006097146A (en) 2004-09-28 2004-09-28 Conductive conjugate fiber and contact charging brush made thereof

Publications (2)

Publication Number Publication Date
JP2006097146A true JP2006097146A (en) 2006-04-13
JP2006097146A5 JP2006097146A5 (en) 2006-11-16

Family

ID=36237227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281295A Pending JP2006097146A (en) 2004-09-28 2004-09-28 Conductive conjugate fiber and contact charging brush made thereof

Country Status (1)

Country Link
JP (1) JP2006097146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451771A (en) * 2012-06-04 2013-12-18 聚隆纤维股份有限公司 Antistatic composite fiber precursor, antistatic textured yarn prepared through using it, and method for preparing antistatic textured yarn through using antistatic composite fiber precursor
US9138935B2 (en) 2012-05-22 2015-09-22 Acelon Chemicals & Fiber Corporation Process for producing an antistatic yarn

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138935B2 (en) 2012-05-22 2015-09-22 Acelon Chemicals & Fiber Corporation Process for producing an antistatic yarn
CN103451771A (en) * 2012-06-04 2013-12-18 聚隆纤维股份有限公司 Antistatic composite fiber precursor, antistatic textured yarn prepared through using it, and method for preparing antistatic textured yarn through using antistatic composite fiber precursor

Similar Documents

Publication Publication Date Title
JP4452859B2 (en) Conductive multileaf fiber and electrophotographic brush using the same
JP5609638B2 (en) Conductive flock and conductive brush
JP5070991B2 (en) Conductive yarn with crimp
JP2006097146A (en) Conductive conjugate fiber and contact charging brush made thereof
JP4872688B2 (en) Conductive yarn
JP2010037664A (en) Electroconductive fiber
JP4905373B2 (en) Conductive polyester fiber and brush product comprising the same
JP4636983B2 (en) Conductive conjugate fiber and cleaning brush comprising the same
JP2013122582A (en) Charging component, electrophotographic image formation device, and electrophotographic image formation method
JP2006336141A (en) Electrically conductive crimped yarn and method for producing the same
JP3279965B2 (en) Conductive composite fiber and contact charging brush comprising the same
JP3278137B2 (en) Conductive composite fiber and contact charging brush comprising the same
JP2019163568A (en) Conductive fiber and brush
JP2001271219A (en) Semiconductive fiber and its use
JP2006276154A (en) Brush comprising antistatic-additive-containing fiber
JP6118561B2 (en) Conductive composite fiber
JP4128494B2 (en) Core-sheath composite type conductive fiber
JPH1165227A (en) Conductive composite fiber and contact electrification brush comprising the fiber
JP2002309446A (en) Electroconductive conjugate fiber
JP2005256207A (en) Electroconductive polyamide filament yarn and brush
JP2007247095A (en) Conductive polyester fiber
JP2003105634A (en) Electroconductive yarn
JP4651492B2 (en) Conductive composite fiber
JP4128475B2 (en) Core-sheath composite type conductive fiber
JP2013104140A (en) Conductive fiber, charging member using the same and electrophotographic image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20060929

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20060929

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Effective date: 20090714

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A02