JP2019163568A - Conductive fiber and brush - Google Patents
Conductive fiber and brush Download PDFInfo
- Publication number
- JP2019163568A JP2019163568A JP2018052737A JP2018052737A JP2019163568A JP 2019163568 A JP2019163568 A JP 2019163568A JP 2018052737 A JP2018052737 A JP 2018052737A JP 2018052737 A JP2018052737 A JP 2018052737A JP 2019163568 A JP2019163568 A JP 2019163568A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- section
- brush
- conductive
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cleaning In Electrography (AREA)
- Electrophotography Configuration And Component (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Artificial Filaments (AREA)
Abstract
Description
本発明は電子写真記録方式のプリンターやコピー機、ファックス等に用いられる導電繊維に関するものであり、特に印刷画像の高画質化、長期使用時の画質劣化防止に寄与するものである。また前記繊維を用いてなる、プリンターやコピー機、ファックス等に組み込まれる帯電ブラシやクリーニングブラシに関するものである。 The present invention relates to conductive fibers used in electrophotographic recording printers, copiers, fax machines, and the like, and in particular, contributes to improving the quality of printed images and preventing image quality deterioration during long-term use. The present invention also relates to a charging brush and a cleaning brush that are incorporated in a printer, a copier, a fax machine, or the like, using the fiber.
電子写真記録方式のプリンターやコピー機、ファックス等には、感光体に滑剤を塗布する滑剤塗布ブラシ、感光体を帯電させる帯電ブラシ、感光体にトナーを供給するトナー供給ブラシ、感光体に残ったトナーを除去するクリーニングブラシ等様々なブラシが使用されている。 For electrophotographic printers, copiers, fax machines, etc., lubricant application brushes that apply lubricant to the photoreceptor, charging brushes that charge the photoreceptor, toner supply brushes that supply toner to the photoreceptor, and remaining on the photoreceptor Various brushes such as a cleaning brush for removing toner are used.
これら感光体への帯電やトナーの供給、残トナーの除去等は静電的な力が重要であり、ブラシには比抵抗値が102〜1012Ω・cmの導電糸が用いられている。このような導電糸は導電性カーボン微粒子を含有するマルチフィラメントが一般的に用いられ、ブラシ性能の向上に向け様々な様態の繊維が提案されている。 The electrostatic force is important for charging the photosensitive member, supplying the toner, removing the residual toner, and the like, and a conductive yarn having a specific resistance of 10 2 to 10 12 Ω · cm is used for the brush. . As such a conductive yarn, a multifilament containing conductive carbon fine particles is generally used, and various modes of fibers have been proposed for improving brush performance.
特許文献1には導電性微粒子を含有する熱可塑性樹脂のみを用いてなる、多葉断面形状を有する導電繊維が提案されており、通常の丸断面と比較し、感光体との接触点数を増やすことで、感光体の帯電均一化や残トナーの除去効率向上を可能としている。 Patent Document 1 proposes a conductive fiber having a multi-leaf cross-sectional shape using only a thermoplastic resin containing conductive fine particles, and increases the number of contact points with a photoconductor as compared with a normal round cross-section. This makes it possible to make the charge of the photoreceptor uniform and to improve the removal efficiency of residual toner.
また特許文献2、3では、導電繊維の断面二次モーメントをある範囲とすることで、適度なハリコシを有する繊維が提案されており、印刷画像の高画質化、長期使用時の画質劣化防止を可能としている。 In Patent Documents 2 and 3, fibers having moderate elasticity are proposed by setting the cross-sectional second moment of the conductive fiber within a certain range, thereby improving the quality of the printed image and preventing the deterioration of the image quality during long-term use. It is possible.
しかしながら、特許文献1に記載の多葉断面では、丸断面に比べ感光体との接触点数を増やし、帯電の均一化、残トナーの除去効率向上は可能であるが、近年の印刷画像の高画質化に対しては不十分であった。さらには断面形状が複雑であることから、ブラシとした際にブラシ密度が小さくなり、プリンター等の機器を小型化した際は性能を十分に発揮できていなかった。また特許文献2、3についても、繊維のハリコシだけでは近年の印刷画像の高画質化に対しては不十分であった。 However, the multi-leaf cross section described in Patent Document 1 can increase the number of contact points with the photoconductor as compared with the round cross section, and can make the charging uniform and improve the removal efficiency of the residual toner. It was inadequate for conversion. Further, since the cross-sectional shape is complicated, the brush density is reduced when the brush is used, and when the device such as a printer is downsized, the performance cannot be sufficiently exhibited. In Patent Documents 2 and 3 as well, the fiber tension alone is insufficient for improving the quality of printed images in recent years.
そこで本発明では、ねじれやすさと曲げやすさの最適バランスを持った繊維断面形状を有する導電繊維を提供し、電子写真記録方式のプリンターやコピー機、ファックス等に組み込まれる導電ブラシとした際に、印刷画像の高画質化、長期使用時の画質劣化防止に優れる導電ブラシを提供することを課題とする。 Therefore, in the present invention, when providing a conductive fiber having a fiber cross-sectional shape having an optimal balance between twistability and bendability, and a conductive brush incorporated in an electrophotographic recording printer, copier, fax machine, etc., It is an object of the present invention to provide a conductive brush that is excellent in improving the quality of printed images and preventing deterioration of image quality during long-term use.
上記課題を解決するために、本発明は以下の形態をとる。
(1)繊維断面の二次モーメントの比(Ir)が式(I)を満たすことを特徴とする導電繊維。
1.5≦Ir≦30.0・・・式(I)
Ir=I1/I2
I1=Imax/Imin(Imax:最大繊維断面の二次モーメント、Imin:最小繊維断面の二次モーメント)
I2=Imin/I0(I0:同一繊度の丸断面の二次モーメント)
(2)繊維断面内の最小断面二次モーメント方向に水平面と略平行な辺を有することを特徴とする(1)に記載の導電繊維。
(3)(1)または(2)に記載の導電繊維を用いて製造した電子写真記録方式の機器に用いられるブラシ。
In order to solve the above problems, the present invention takes the following forms.
(1) A conductive fiber characterized in that the ratio (I r ) of the second moment of the fiber cross section satisfies the formula (I).
1.5 ≦ I r ≦ 30.0 Formula (I)
I r = I 1 / I 2
I 1 = I max / I min (I max : secondary moment of the maximum fiber section, I min : secondary moment of the minimum fiber section)
I 2 = I min / I 0 (I 0 : secondary moment of a round cross section of the same fineness)
(2) The conductive fiber according to (1), wherein the conductive fiber has a side substantially parallel to the horizontal plane in the direction of the minimum moment of inertia in the cross section of the fiber.
(3) A brush used in an electrophotographic recording apparatus manufactured using the conductive fiber according to (1) or (2).
ねじれやすさと曲げやすさの最適バランスを持った繊維断面を有する導電繊維であって、電子写真記録方式の機器に好適な導電ブラシを提供する。 Provided is a conductive brush having a fiber cross section having an optimal balance between twistability and bendability, and suitable for an electrophotographic recording apparatus.
本発明の導電繊維は、下式(I)の繊維断面の二次モーメント比(Ir)の範囲を満たすことが必要である。
1.5≦Ir≦30.0・・・式(I)
Ir=I1/I2
I1=Imax/Imin(Imax:最大繊維断面の二次モーメント、Imin:最小繊維断面の二次モーメント)
I2=Imin/I0(I0:同一繊度の丸断面の断面二次モーメント)
ここでいう、繊維断面の二次モーメント比(Ir)とは、I1とI2の比で表され、繊維のねじれやすさと曲げやすさを示す指標となる。I1はImaxとIminの比であり、Imaxは、繊維断面中の最大繊維断面の二次モーメントであり、Iminは、繊維断面中の最小繊維断面の二次モーメントである。ここで図1(b)は図1(a)の長方形断面と同一繊度の丸断面のモデル図である。長方形断面のImaxは図1(a)は長方形断面のb軸方向の断面二次モーメントであり、Iminは図1(a)の長方形断面のa軸方向の断面二次モーメントとなる。すなわち、I1は、繊維のねじれやすさを表す指標で、I1値が大きいほど、繊維がねじれやすいことを意味する。また、I2はIminとI0の比であり、I0は、図1(b)の丸断面の断面二次モーメントである。すなわち、I2は、同一繊度の丸断面繊維と比較した際の繊維の曲がりやすさを表す指標で、I2値が小さいほど、繊維が曲がりやすいことを意味する。
The conductive fiber of the present invention needs to satisfy the range of the secondary moment ratio (I r ) of the fiber cross section of the following formula (I).
1.5 ≦ I r ≦ 30.0 Formula (I)
I r = I 1 / I 2
I 1 = I max / I min (I max : secondary moment of the maximum fiber section, I min : secondary moment of the minimum fiber section)
I 2 = I min / I 0 (I 0 : Sectional moment of the circular section of the same fineness)
The second moment ratio (I r ) of the fiber cross-section here is expressed by the ratio of I 1 and I 2 and serves as an index indicating the ease of twisting and bending of the fiber. I 1 is the ratio of I max to I min , I max is the second moment of the maximum fiber cross section in the fiber cross section, and I min is the second moment of the minimum fiber cross section in the fiber cross section. Here, FIG. 1 (b) is a model diagram of a round cross section having the same fineness as the rectangular cross section of FIG. 1 (a). I max of the rectangular cross section 1 (a) is a cross-sectional second moment of the b-axis direction of the rectangular cross-section, I min is the rectangular cross section of the a-axis direction of the second moment of Figure 1 (a). That is, I 1 is an index representing the ease of twisting of the fiber, and the larger the I 1 value, the easier the fiber is twisted. I 2 is the ratio of I min to I 0 , and I 0 is the cross-sectional second moment of the round cross section of FIG. That is, I 2 is an index representing the ease of bending of a fiber when compared with a round cross-section fiber having the same fineness, and the smaller the I 2 value, the easier the fiber is bent.
本発明の導電繊維の繊維断面形状は、上述した繊維断面の二次モーメント比(Ir)を満たせば限定されないが、好ましくは、長方形、楕円形、H型、繭型等の扁平形がよい。 The fiber cross-sectional shape of the conductive fiber of the present invention is not limited as long as it satisfies the above-mentioned second moment ratio (Ir) of the fiber cross-section, but a flat shape such as a rectangle, an ellipse, an H shape, and a saddle shape is preferable.
本発明でいう断面二次モーメントとは、マルチフィラメントを構成する単糸毎の断面二次モーメントを指す。通常、断面二次モーメントとは断面の重心を通るある直線軸と平行に曲げ応力を加えたときの曲げやすさの指標であるが、本発明では、曲げやすさに加え、ねじれやすさの指標としての意味も大きく含まれている。例えば、電子写真記録方式の機器のブラシとして用いた場合、ブラシが回転する感光体と接触して繊維に曲げ応力が加わる際、繊維は断面二次モーメントが最小となる方向が感光体に接触する方向にねじれ、その面が感光体と接触する。 The cross-sectional secondary moment as used in the field of this invention refers to the cross-sectional secondary moment for every single yarn which comprises a multifilament. Usually, the section moment of inertia is an index of ease of bending when a bending stress is applied parallel to a certain linear axis passing through the center of gravity of the section, but in the present invention, in addition to bendability, an index of ease of twisting. The meaning as is also included. For example, when used as a brush for an electrophotographic recording apparatus, when a bending stress is applied to the fiber when the brush comes into contact with the rotating photoconductor, the fiber comes into contact with the photoconductor in the direction in which the second moment of section is minimized. Twisted in the direction and its surface is in contact with the photoreceptor.
具体例として略平行な辺を有する長方形断面を挙げて説明する。長方形断面内の最小断面二次モーメントは断面の長辺に垂直方向であり、最大断面二次モーメントは長辺と平行方向である。これらの比が大きいほど繊維はねじれやすく、また最小断面二次モーメント方向の面が感光体と接触するようにねじれる。すなわち長方形の長辺が感光体と接触するようにねじれが生じる。またその楕円形断面と同一繊度の丸断面の断面二次モーメントと楕円形断面の最小断面二次モーメントの比が小さいほど繊維が曲がりやすいことを示す。 As a specific example, a rectangular cross section having substantially parallel sides will be described. The minimum cross-sectional moment in the rectangular cross section is perpendicular to the long side of the cross section, and the maximum cross-sectional moment is parallel to the long side. The larger these ratios, the easier the fibers are twisted, and the fibers are twisted so that the surface in the direction of the minimum moment of inertia is in contact with the photoreceptor. That is, twisting occurs so that the long side of the rectangle comes into contact with the photoreceptor. Moreover, it shows that a fiber is easy to bend, so that the ratio of the cross-section secondary moment of a round cross section of the same fineness as the elliptic cross section and the minimum cross-section second moment of an elliptic cross section is small.
本発明の導電繊維をパイル状にして電子写真記録方式の機器のブラシに用いる際には、ブラシに適正なねじれやすさと曲がりやすさが必要である。 When the conductive fiber of the present invention is piled and used as a brush for an electrophotographic recording apparatus, it is necessary that the brush be twisted and bent appropriately.
I1値を適正な範囲にすることで、ブラシが回転する感光体と接触して繊維に曲げ応力が加わる際、繊維断面上の任意の面を感光体に接触させることができ、印刷画像の高画質化ができる。I1が大きいほど繊維がねじれやすく、任意の面をより感光体に接触させることができるが、大きすぎるとブラシが毛倒れしやすくなり、長期使用時の画像品質悪化が顕著になってしまう。またI1は小さいほど繊維がねじれにくく、小さすぎると任意の面を感光体に接触させることができなくなる。 The I 1 values by the appropriate range, when the bending stress is applied to the fibers in contact with the photoreceptor brush is rotated, it can be brought into contact with any surface on the fiber cross section the photosensitive member, the printed image High image quality can be achieved. The larger I 1 is, the more easily the fibers are twisted, and the arbitrary surface can be brought into contact with the photoreceptor more. However, if it is too large, the brush is liable to fall down and the image quality deteriorates during long-term use. Further, the smaller I 1 is, the more difficult the fibers are twisted. If it is too small, any surface cannot be brought into contact with the photoreceptor.
I2は適正な範囲とすることで、繰り返し使用によりブラシが毛倒れしにくく、ソフトに感光体に接触した状態を保ち、長期使用においても印刷画質を維持できる。I2が小さいほど繊維が曲がりやすく、小さ過ぎると繰り返し使用によりブラシが毛倒れしやすくなり、感光体への接触圧が徐々に低下し、印刷画質が低下しやすい。I2が大きいほど繊維が曲がりにくく、大き過ぎると繰り返し使用によりブラシが感光体を徐々に傷つけてしまい、印字した際にスポットやスジが発生し、印刷画質が低下しやすい。 I 2 is that the appropriate range, repeating the brush is less likely to fall down hair by using, keep it in contact with the photoreceptor soft, also possible to maintain the printing quality in long-term use. More fibers bend easily I 2 is small, too small repetition becomes brush is liable to fall down hair by the use, the contact pressure to the photosensitive member gradually decreases, the printing quality tends to decrease. As I 2 is larger, the fiber is less likely to bend, and when it is too large, the brush gradually damages the photoreceptor due to repeated use, and spots and streaks are generated during printing, and the print image quality is likely to deteriorate.
このねじれやすさと曲げやすさのバランス、すなわち、ねじれやすさの指標であるI1と曲げやすさの指標であるI2について、発明者らが鋭意検討の結果、断面二次モーメント比(Ir)を1.5〜30.0の範囲に制御することで、極めて優れた印刷画像、長期使用時の印字耐久性を有する結論に至ったのである。Irが1.7未満の場合、繊維がねじれにくく、任意の面を感光体に接触できず、さらには繰り返し使用によりブラシが感光体を徐々に傷つけてしまい、印字した際にスポットやスジ発生し、印刷画質が低下させてしまう。またIrが30.0を超える場合、繰り返し使用によりブラシが毛倒れしやすくなり、感光体への接触圧が徐々に低下し、印刷画質が低下しやすい。好ましくは2.0〜15.0、さらに好ましくは3.0〜8.0である。 This balance of twist Yasu Is the pliability, i.e., for I 2 which is an index of I 1 and pliability is indicative of torsional ease, the results of the examination inventors have intensively, the geometrical moment of inertia ratio (I r ) Is controlled within the range of 1.5 to 30.0, and the conclusion has been reached that it has extremely excellent printed images and printing durability during long-term use. If I r is less than 1.7, the fiber is hardly twisted, can not contact any surface in the photosensitive member, more brushes may damage gradually photoreceptor by repeated use, spots and streaks occur when printed However, the print image quality is degraded. In the case where I r exceeds 30.0, the brush tends to fall hair by repeated use, the contact pressure to the photosensitive member gradually decreases, the printing quality tends to decrease. Preferably it is 2.0-15.0, More preferably, it is 3.0-8.0.
本発明の導電繊維の断面形状は、上述した断面二次モーメント比(Ir)を満たせば限定ないが、好ましくは、長方形、楕円形、H型、繭型等の扁平形がよい。さらに好ましくは、繊維断面内の最小断面二次モーメント方向に水平面と略平行な辺を有する長方形、H型等の扁平形がよい。水平面と略平行な辺を有することで、ブラシと感光体とは面でより密着して接触し、ブラシが回転する感光体との接触面積をより増加させることができ、より均一に感光体の帯電や清掃を行うことが可能となる。その結果、印刷画像の高画質化が図れる。ここで略平行とは2つの線分のなす角度が0°以上3°以下であることを指し、繊維断面の任意の辺と水平面とのなす角度をいい、より好ましくは0°以上1°以下である。 The cross-sectional shape of the conductive fiber of the present invention is not limited as long as the cross-sectional second moment ratio (I r ) described above is satisfied, but a flat shape such as a rectangle, an ellipse, an H shape, and a saddle shape is preferable. More preferably, a flat shape such as a rectangle or an H shape having a side substantially parallel to the horizontal plane in the direction of the minimum moment of inertia in the fiber cross section is preferable. By having a side substantially parallel to the horizontal plane, the brush and the photoconductor are in close contact with each other on the surface, and the contact area with the photoconductor on which the brush rotates can be further increased. Charging and cleaning can be performed. As a result, the quality of the printed image can be improved. Here, “substantially parallel” means that an angle formed by two line segments is 0 ° or more and 3 ° or less, and an angle formed by an arbitrary side of the fiber cross section and a horizontal plane, and more preferably 0 ° or more and 1 ° or less. It is.
断面形状が長方形の場合、アスペクト比(長辺と短辺の比)は1.2〜3.1がよい。かかる範囲とすることにより、適正な断面二次モーメント比が得られ、これにより適度な繊維のねじれやすさと曲げやすさに加え、ブラシと感光体とは面で接触し、この繊維を用いたブラシを使用することで、さらに印刷画像の高画質化、長期使用時の画質劣化防止が達成できる。 When the cross-sectional shape is a rectangle, the aspect ratio (ratio of long side to short side) is preferably 1.2 to 3.1. By setting such a range, an appropriate ratio of the moment of inertia of the cross section can be obtained. In addition to appropriate twisting and bending of the fiber, the brush and the photoconductor are in contact with each other, and the brush using this fiber is used. By using, it is possible to achieve higher image quality of printed images and prevention of image quality deterioration during long-term use.
一方でH型断面では、H型の軸に垂直方向に最小断面二次モーメントを有する場合、目標の断面二次モーメント比を得ることができるが、H型の軸に水平方向に最小断面二次モーメントを有する場合、目標の断面二次モーメント比をえることはできない。このため、H型では断面の設計がに重要となる。 On the other hand, in the case of the H-shaped cross section, when the H-shaped axis has the minimum secondary moment of inertia in the direction perpendicular to the H-shaped axis, the target cross-sectional secondary moment ratio can be obtained. If there is a moment, the target cross-sectional second moment ratio cannot be obtained. For this reason, the cross-section design is important for the H type.
本発明の導電繊維は、カーボンブラックや金属酸化物、カーボンナノチューブ等の導電性粒子を含有し、102〜1010Ω・cm程度の比抵抗を有する繊維である。また形態としては、導電性粒子を繊維全体に均一に分散させた形態や、芯鞘複合の鞘部分に導電性粒子を含有するポリマを配置した形態が好ましい。導電性粒子を含有するポリマを芯鞘複合の芯部に配置した形態や、導電性粒子を含有するポリマを芯鞘複合の鞘部に一部のみ露出させた形態の場合、繊維表面の比抵抗バラツキ易く、印刷画像品質が安定しない。 The conductive fiber of the present invention is a fiber containing conductive particles such as carbon black, metal oxide, and carbon nanotube and having a specific resistance of about 10 2 to 10 10 Ω · cm. In addition, as a form, a form in which conductive particles are uniformly dispersed throughout the fiber or a form in which a polymer containing conductive particles is disposed in the sheath part of the core-sheath composite is preferable. When the polymer containing conductive particles is placed in the core of the core-sheath composite or the polymer containing conductive particles is only partially exposed in the sheath of the core-sheath composite, the specific resistance of the fiber surface It tends to vary and the print image quality is not stable.
導電性粒子を含有させるポリマとしては、ナイロンやポリエステル等の熱可塑性樹脂であれば何を用いても良いが、ほどよい柔軟性を有し、かつ毛倒れ性に優位な点からナイロンが好ましい。さらにブラシとして用いた際、機器の使用環境は低温低湿環境や高温高湿環境と様々な環境となり得ることから、その環境変化に対して吸湿によりブラシの状態変化による画像品質の低下抑制の点から、ナイロンの中でも吸湿率の低いナイロンであることがより好ましい。例示すると、ナイロン610やナイロン12である。 As the polymer containing the conductive particles, any thermoplastic resin such as nylon or polyester may be used, but nylon is preferable because it has moderate flexibility and is superior in hair fallability. Furthermore, when used as a brush, the device can be used in various environments such as low-temperature and low-humidity environments and high-temperature and high-humidity environments. Of these, nylon having a low moisture absorption rate is more preferable. Illustrative examples are nylon 610 and nylon 12.
本発明の導電繊維の比抵抗は、102〜1010Ω・cm(温度20℃、湿度30%RH条件下)である。比抵抗が102Ω・cm未満では、ブラシとし電圧をかけた際、電子が隣り合う単糸に移動し、印刷ができないという問題が発生する。また、比抵抗が1010Ω・cmを超えると、電圧をかけても単糸中を電子が移動できずに印刷できないという問題が発生する。すなわち、かかる範囲とすることで画像の印字が可能となる。なお導電繊維の比抵抗は、導電性粒子の含有量や、紡糸工程における紡糸温度、紡糸速度、あるいは延伸工程における延伸倍率や延伸温度により制御することができる。 The specific resistance of the conductive fiber of the present invention is 10 2 to 10 10 Ω · cm (temperature 20 ° C., humidity 30% RH condition). When the specific resistance is less than 10 2 Ω · cm, when a voltage is applied as a brush, electrons move to adjacent single yarns, and printing cannot be performed. On the other hand, if the specific resistance exceeds 10 10 Ω · cm, there is a problem that even if voltage is applied, printing cannot be performed because electrons cannot move through the single yarn. In other words, an image can be printed within this range. The specific resistance of the conductive fiber can be controlled by the content of the conductive particles, the spinning temperature in the spinning process, the spinning speed, or the draw ratio or drawing temperature in the drawing process.
また導電繊維に含有させる導電性粒子としては、上述のようにカーボンブラックや金属酸化物、カーボンナノチューブ等を用いることができるが、価格面や加工のしやすさからカーボンブラックが好ましく、その含有率は10〜40重量%が好ましく、より好ましくは15〜35重量%、さらに好ましくは20〜30重量%である。カーボンブラックの含有量が10重量%未満の場合、繊維の比抵抗が高くなりすぎ、印刷できないという問題が発生する。またカーボンブラックの含有量が40重量%を超えると、繊維の強度が低下し、実用性に欠けるとともに紡糸時に糸切れが増加し生産性が悪くなる。すなわち、かかる範囲とすることで画像の印字に適切な比抵抗を有する繊維を生産性良く繊維を得ることができる。 As the conductive particles to be contained in the conductive fiber, carbon black, metal oxide, carbon nanotube, etc. can be used as described above, but carbon black is preferable from the viewpoint of price and ease of processing, and its content rate Is preferably 10 to 40% by weight, more preferably 15 to 35% by weight, and still more preferably 20 to 30% by weight. When the content of carbon black is less than 10% by weight, the specific resistance of the fiber becomes too high, causing a problem that printing cannot be performed. On the other hand, if the carbon black content exceeds 40% by weight, the strength of the fiber is lowered and lacks practicality, and yarn breakage increases during spinning, resulting in poor productivity. That is, by setting it as this range, it is possible to obtain a fiber having a specific resistance suitable for image printing with high productivity.
本発明の導電繊維の繊度については特に範囲はないが、60〜400dtex程度が好ましい。本発明の導電性繊維の単糸繊度は、1.5〜10.0dtexが好ましい。近年、電子写真複写機等はカラーが主であり、高画質化も大きく進歩している。高画質化に伴いトナー粒子は小粒化し、導電ブラシの高密度化の要求が大きくなっている。これらのことから、高画質化に伴ったトナーの小粒化においても優れた印字画像を得ることができる点から、2.0〜8.0dtexがより好ましい。 The fineness of the conductive fiber of the present invention is not particularly limited, but is preferably about 60 to 400 dtex. The single yarn fineness of the conductive fiber of the present invention is preferably 1.5 to 10.0 dtex. In recent years, color is mainly used for electrophotographic copying machines and the like, and the improvement in image quality has been greatly advanced. As the image quality increases, the toner particles become smaller and the demand for higher density of the conductive brush is increasing. For these reasons, 2.0 to 8.0 dtex is more preferable from the standpoint that an excellent printed image can be obtained even in the case of toner particle size reduction accompanying high image quality.
本発明の導電性繊維の強度は、1.3cN/dtex以上であることが好ましい。かかる範囲とすることにより、ブラシに加工する際に糸切れなく良好な工程通過性が得られる。より好ましくは1.5cN/dtex以上である。 The strength of the conductive fiber of the present invention is preferably 1.3 cN / dtex or more. By setting it as such a range, when processing into a brush, favorable process passability is obtained without thread breakage. More preferably, it is 1.5 cN / dtex or more.
本発明の導電繊維の熱水収縮率は、12%以下が好ましい。かかる範囲とすることで、ブラシ加工において熱処理工程での導電繊維の収縮バラツキが小さくなり、比抵抗バラツキが小さくなる。そのため、ブラシとした際にブラシの抵抗値バラツキが小さくなり、画像品質が向上する。より好ましくは10%以下、さらに好ましくは8%以下である。 The hot water shrinkage of the conductive fiber of the present invention is preferably 12% or less. By setting it as such a range, the shrinkage | contraction variation of the electrically conductive fiber in a heat processing process in brush processing becomes small, and a specific resistance variation becomes small. Therefore, when the brush is used, the variation in the resistance value of the brush is reduced, and the image quality is improved. More preferably, it is 10% or less, More preferably, it is 8% or less.
本発明の導電繊維に導電性粒子を含有させる方法としては、熱可塑性樹脂ペレットと導電性粒子をブレンドし溶融紡糸する方法、熱可塑性樹脂ペレットへ高濃度の導電性粒子を含有するマスターペレットをブレンドし溶融紡糸する方法、溶融状態の熱可塑性樹脂へ導電性粒子を添加し混練する方法等が挙げられる。また本発明の導電性繊維は、本発明の効果を損なわない範囲で耐光剤や難燃剤、滑剤、酸化防止剤等の添加剤を含んでも良い。 The conductive fiber of the present invention contains conductive particles by blending thermoplastic resin pellets and conductive particles and melt spinning, blending thermoplastic pellets with high concentration conductive pellets. And a method of melt spinning, a method of adding conductive particles to a molten thermoplastic resin, and kneading. Moreover, the conductive fiber of this invention may also contain additives, such as a light-resistant agent, a flame retardant, a lubricant, and antioxidant, in the range which does not impair the effect of this invention.
本発明の導電繊維は既知の溶融紡糸法により得られる。例えば原料を押出機で溶融し、紡糸パックから繊維を押出し、冷却風で繊維を冷却、紡糸油剤を給油した後、複数のローラーで延伸、熱セットを行い巻き取る方法や、一旦未延伸糸を巻き取り、巻き取った未延伸糸を延伸機で延伸、熱セットする方法が一般的である。 The conductive fiber of the present invention can be obtained by a known melt spinning method. For example, the raw material is melted with an extruder, the fiber is extruded from a spinning pack, the fiber is cooled with cooling air, and the spinning oil is supplied. A general method is to wind and unwind the wound undrawn yarn with a drawing machine and heat set.
電子写真記録方式に用いられる導電ブラシとは、非接触コロナ放電に代わって感光体を接触帯電させる印荷ブラシや、感光体上に残存した電荷およびトナーを除去するクリーニングブラシ、トナーカートリッジ内でトナーに電荷を与えるトナー供給ブラシ、感光体に付着させたトナーを印刷用紙に転写させるための転写ブラシ等であり、プリンターやコピー機、ファクシミリ等に組み込まれるものを言い、導電繊維をパイルとして製織した後、導電性を有するバッキング剤でバッキングし、幅10〜30mmにカットしたパイルテープを、円柱の金属棒にバイアスに巻き付けるか、単に板にパイル織物を張り付けてブラシ状に仕立てることにより得られる。 The electroconductive brush used in the electrophotographic recording system is a printing brush that contacts and charges the photoreceptor in place of non-contact corona discharge, a cleaning brush that removes charge and toner remaining on the photoreceptor, and toner in the toner cartridge. This is a toner supply brush that gives electric charge to the toner, a transfer brush for transferring the toner adhered to the photosensitive member to the printing paper, etc., which is incorporated in a printer, copier, facsimile, etc., and is woven as a pile of conductive fibers Thereafter, the pile tape, which is backed with a conductive backing agent and cut to a width of 10 to 30 mm, is wound around a cylindrical metal rod with a bias, or simply a pile woven fabric is attached to a plate to make it into a brush shape.
パイル織物とする際の基布として用いる繊維は、導電性であっても絶縁性であっても良いが、コストとの兼ね合いからポリエステルの紡績糸が好ましく用いられる。得られたパイル織物は、経時での収縮を防ぐために120〜200℃程度で乾燥加熱処理する。 The fiber used as the base fabric when making the pile fabric may be conductive or insulating, but polyester spun yarn is preferably used in view of cost. The obtained pile fabric is dried and heated at about 120 to 200 ° C. in order to prevent shrinkage over time.
上記の乾燥加熱処理されたパイル織物は、導電性ブラシとした際のブラシ抵抗値の安定化、導電繊維の抜け・脱落防止の観点から、バッキング処理に付される。バッキング処理は、パイル状の導電繊維が起立した反対側の生地に導電性バッキング剤を塗布し、塗布後に50〜100℃程度の温度で乾燥されて行われる。 The pile fabric subjected to the above drying and heating treatment is subjected to a backing treatment from the viewpoint of stabilizing the brush resistance value when the conductive brush is made and preventing the conductive fibers from coming off and falling off. The backing treatment is performed by applying a conductive backing agent to the fabric on the opposite side where the pile-like conductive fibers stand up and drying at a temperature of about 50 to 100 ° C. after the application.
導電性バッキング剤は、バインダーと導電性物質を溶媒に溶解させた溶液であり、バインダーとして用いられるポリマは特に限定されないが、例えば、芳香族ビニル単量体と共役ジエン単量体との共重合体、ニトリル基含有ビニル重合体と共役ジエン単量体との共重合体、アクリル酸エステル共重合体、エチレンオキシド−プロピレンオキシド共重合体等を用いることができる。中でも、芳香族ビニル単量体と共役ジエン単量体との共重合体を用いることが好ましく、その具体例としては、スチレンとブタジエンの共重合体を挙げることができる。共重合体の単量体組成比や分子量には、特に限定はなく、これらは、公知の方法で製造できる。 The conductive backing agent is a solution in which a binder and a conductive substance are dissolved in a solvent, and the polymer used as the binder is not particularly limited. For example, a copolymer of an aromatic vinyl monomer and a conjugated diene monomer is used. A polymer, a copolymer of a nitrile group-containing vinyl polymer and a conjugated diene monomer, an acrylate copolymer, an ethylene oxide-propylene oxide copolymer, or the like can be used. Among them, it is preferable to use a copolymer of an aromatic vinyl monomer and a conjugated diene monomer, and specific examples thereof include a copolymer of styrene and butadiene. There are no particular limitations on the monomer composition ratio and molecular weight of the copolymer, and these can be produced by known methods.
導電性物質としては、カーボンブラック、グラファイトカーボン、炭素繊維、金属粉等を用いることができる。この中でも、入手容易性、取り扱い易さ等の点から、カーボンブラックが好ましく用いられる。 As the conductive substance, carbon black, graphite carbon, carbon fiber, metal powder, or the like can be used. Among these, carbon black is preferably used from the viewpoints of availability, ease of handling, and the like.
次に、前記方法で得られた導電性ブラシ用パイル織物をハサミ等で裁断し、例えば、幅20mm、長さ400mmのリボン状のパイル織物を得る。そして、導電性のあるシャフト、例えば外径8mm、長さ250mmのステンレス製シャフトに部分的に両面テープで貼り付ける(全面に絶縁性の両面テープを貼り付けた場合は、パイル織物とシャフトの間に電気が流れなくなる。)。この両面テープは絶縁性のものであっても良いし、導電性があっても良い。また裁断したパイル織物を、前記ステンレス製シャフトに傾斜をつけて螺旋状にパイル織物を両面テープでシャフトに貼り付ける。 Next, the pile fabric for conductive brushes obtained by the above method is cut with scissors or the like to obtain a ribbon-like pile fabric having a width of 20 mm and a length of 400 mm, for example. Then, it is partially affixed to a conductive shaft, for example, a stainless steel shaft having an outer diameter of 8 mm and a length of 250 mm with a double-sided tape. Electricity will not flow to. This double-sided tape may be insulative or conductive. In addition, the cut pile fabric is attached to the shaft with a double-sided tape in a spiral manner by inclining the stainless steel shaft.
最後に、シャフトを回転させながら120〜200℃程度の熱板にブラシの毛先を接触させ、毛先を同一方向にセットさせる導電性ブラシとする。この時、スチームを当てながらセットさせても良い。 Finally, the brush tip is brought into contact with a hot plate of about 120 to 200 ° C. while rotating the shaft, and the conductive tip is set in the same direction. At this time, it may be set while applying steam.
以下、実施例により本発明を詳細に説明する。なお、実施例における測定方法は次のとおりである。 Hereinafter, the present invention will be described in detail by way of examples. In addition, the measuring method in an Example is as follows.
(1)断面二次モーメント比(Ir)
KEYENCE製デジタルマイクロスコープ(VHX−2000)を用いて導電性複合繊維の横断面を100倍〜300倍に拡大し断面写真を撮影した。断面写真から単糸を5本ランダムに選び、各単糸の断面二次モーメントI0、Imax、Iminを算出し、単糸5本分の平均値からIrを算出した。なお、本発明の実施例と比較例の断面二次モーメント比の算出式は以下のとおりである。なお、その他の断面形状についても、一般的な算出式で算出すれば問題ない。
[丸形]
I=(π×R4)/4 (R:半径)
[楕円]
Imax=(π×a×b3)/64 (a:短径、b:長径)
Imin=(π×b×a3)/64 (a:短径、b:長径)
[長方形]
Imax=(a×b3)/12 (a:短辺、b:長辺)
Imin=(b×a3)/12 (a:短辺、b:長辺)
[三角形]
Imax=(lmin×hmax 3)/36 (lmin:最短の辺、hmax:最長の高さ)
Imin=(lmax×hmin 3)/36 (lmax:最長の辺、hmin:最短の高さ)
[H形]
H型断面については、図2、図3をもとに算出式を下記する。図2はH型断面の軸方向の断面二次モーメント(I1)の算出に用い、図3はH型断面の軸に垂直方向の断面二次モーメント(I2)の算出に用いた。
I1、I2を算出して大きい数値をImaxとし、小さい数値をIminとする。
I1=(B×H3−b×h3)/12(図2矢印方向の断面二次モーメント)
I2=(B′×H′3+b′×h′3)/12(図3矢印方向の断面二次モーメント) 。
(1) Sectional secondary moment ratio (Ir)
Using a KEYENCE digital microscope (VHX-2000), the cross section of the conductive conjugate fiber was magnified 100 to 300 times and a cross-sectional photograph was taken. Select from a cross-sectional photograph of the single yarn in five randomly second moment I 0 of each single yarn, I max, were calculated I min, was calculated I r from the average value of single yarn 5 duty. In addition, the calculation formula of the cross-sectional secondary moment ratio of the Example of this invention and a comparative example is as follows. It should be noted that there is no problem if other cross-sectional shapes are calculated by a general calculation formula.
[circular]
I = (π × R 4 ) / 4 (R: radius)
[ellipse]
I max = (π × a × b 3 ) / 64 (a: minor axis, b: major axis)
I min = (π × b × a 3 ) / 64 (a: minor axis, b: major axis)
[Rectangle]
I max = (a × b 3 ) / 12 (a: short side, b: long side)
I min = (b × a 3 ) / 12 (a: short side, b: long side)
[triangle]
I max = (l min × h max 3 ) / 36 (l min : shortest side, h max : longest height)
I min = (l max × h min 3 ) / 36 (l max : longest side, h min : shortest height)
[H type]
The calculation formula for the H-shaped cross section is shown below based on FIGS. FIG. 2 was used for calculating the axial secondary moment (I 1 ) of the H-shaped section, and FIG. 3 was used for calculating the sectional secondary moment (I 2 ) perpendicular to the axis of the H-shaped section.
I 1 and I 2 are calculated, a large numerical value is set as I max , and a small numerical value is set as I min .
I 1 = (B × H 3 −b × h 3 ) / 12 (secondary moment in section in the arrow direction in FIG. 2)
I 2 = (B ′ × H ′ 3 + b ′ × h ′ 3 ) / 12 (second moment of section in the arrow direction in FIG. 3).
(2)画像品質
ブラシを帯電ブラシ、クリーナーブラシとして電子写真記録方式のプリンターに組み込み、温度20℃、湿度30%RHの条件下、温度30℃、湿度90%RHの条件下、温度10℃、湿度10%RHの条件下において、それぞれ日本画像学会が発行するテストチャートを印刷し、10が最も優れているものとして10段階で評価し、7以上を合格レベルとした。
(2) Image quality The brush is incorporated into an electrophotographic printer as a charging brush and a cleaner brush. The temperature is 20 ° C., the humidity is 30% RH, the temperature is 30 ° C., the humidity is 90% RH, the temperature is 10 ° C. A test chart issued by the Imaging Society of Japan was printed under conditions of a humidity of 10% RH, and 10 were evaluated as being the most excellent, with a score of 7 or higher being a passing level.
(3)長期使用時の画像品質の変化
日本画像学会が発行するテストチャートを印刷回数1回目と2万回目のものとを比較し、10人による官能評価を行い、次の基準で点数をつけ、10人分合計した点数を次の基準で分類した。なお△以上で合格とした。
差異なし:2点
やや差異が見られる:1点
差異が見られる:0点
上記点数を
18〜20点:◎
15〜17点:○
10〜14点:△
0〜9点:× 。
(3) Changes in image quality during long-term use Test charts issued by the Imaging Society of Japan are compared between the first and 20,000 times printed, and sensory evaluation is performed by 10 people, and points are assigned according to the following criteria: The total score for 10 people was classified according to the following criteria. In addition, it was set as the pass above (triangle | delta).
No difference: 2 points are slightly different: 1 point is observed: 0 points The above score is 18-20 points: ◎
15-17 points: ○
10-14 points: △
0-9 points: x.
(4)比抵抗
超絶縁計(川口電機製作所製 TERAOHMMETER R−503)を用いて試長10cmの試料に1000Vの電圧をかけ、温度20℃、湿度30%RHの条件下での電気抵抗値を測定し、比抵抗(Ω・cm)を算出した(測定は2回行い、その平均値を算出した)。なお表1、2には比抵抗の対数値を示した。
(4) Specific resistance Using a super insulation meter (TERAOHMMETER R-503, manufactured by Kawaguchi Electric Manufacturing Co., Ltd.), a voltage of 1000 V was applied to a sample with a test length of 10 cm, and the electrical resistance value under the conditions of temperature 20 ° C. and humidity 30% RH was obtained. The specific resistance (Ω · cm) was calculated (measurement was performed twice and the average value was calculated). Tables 1 and 2 show logarithmic values of specific resistance.
(5)繊度
JIS L 1013(2010)8.3.1 A法に準じて算出した。
(5) Fineness Calculated according to JIS L 1013 (2010) 8.3.1 A method.
(6)強度、伸度
JIS L 1013(2010)に準じて引張強さおよび伸び率を測定した。
(6) Strength and elongation Tensile strength and elongation were measured according to JIS L 1013 (2010).
(7)熱水収縮率
JIS L 1013(2010)8.18.1に準じて測定した。
(7) Hot water shrinkage rate Measured according to JIS L 1013 (2010) 8.18.1.
[実施例1]
導電性粒子としてカーボンブラックをナイロン610に添加量25重量%となるように練り込みペレットとした。つづいてペレットを285℃で溶融し、スリット巾0.1mm、スリット長0.3mmのスリットの両端にスリット巾0.1mm、スリット長0.1mmのスリットが放射状に2本配置された孔を30個有する口金から吐出させ、冷却させた後、紡糸油剤を給油、800m/分で未延伸糸を巻き取った。ついで得られた未延伸糸を延伸機で、延伸倍率2.6倍、熱板温度160℃で延伸することで、単糸の断面がアスペクト比1.5の長方形断面を有する、170dtex30フィラメントの導電繊維を得た。得られた導電繊維を用いてパイル密度1000本/インチ、パイル長7mmとなるようにパイルを製織し、90℃で熱水処理を行い乾燥させた。次にパイルの背面をバッキング剤でバッキングし、幅15mmのテープ状にした後、直径6mmの金属棒に螺旋状に巻き付けてブラシを作製した。作製したブラシを電子写真記録方式のプリンターに組み込み、画像品質及び長期使用時の画像品質の変化を評価した。結果を表1に示した。
[Example 1]
Carbon black as conductive particles was kneaded into nylon 610 so as to have an addition amount of 25% by weight to obtain pellets. Subsequently, the pellet was melted at 285 ° C., and 30 holes each having two slits having a slit width of 0.1 mm and a slit length of 0.1 mm radially arranged at both ends of the slit having a slit width of 0.1 mm and a slit length of 0.3 mm were formed. After discharging from the individual die and cooling, the spinning oil was supplied, and the undrawn yarn was wound up at 800 m / min. Next, the obtained undrawn yarn was drawn with a drawing machine at a draw ratio of 2.6 times and a hot plate temperature of 160 ° C. so that the single yarn had a rectangular cross section with an aspect ratio of 1.5, and the conductivity of 170 dtex 30 filaments. Fiber was obtained. The obtained conductive fibers were used to weave the piles so that the pile density was 1000 pieces / inch and the pile length was 7 mm, followed by hot water treatment at 90 ° C. and drying. Next, the back of the pile was backed with a backing agent to form a tape having a width of 15 mm, and then wound around a metal rod having a diameter of 6 mm in a spiral shape to produce a brush. The produced brush was incorporated into an electrophotographic printer and evaluated for changes in image quality and image quality during long-term use. The results are shown in Table 1.
[実施例2]
導電繊維がアスペクト比1.2の長方形断面になるように設計した口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表1に示した。
[Example 2]
Except for using a base designed so that the conductive fiber has a rectangular cross section with an aspect ratio of 1.2, a conductive fiber is obtained by the same method as in Example 1, and further a brush is produced by the same method as in Example 1. Image quality was evaluated. The results are shown in Table 1.
[実施例3]
導電繊維がアスペクト比1.4の長方形になるように設計した口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表1に示した。
[Example 3]
A conductive fiber is obtained by the same method as in Example 1 except that a base designed so that the conductive fiber becomes a rectangle having an aspect ratio of 1.4 is obtained. Further, a brush is produced by the same method as in Example 1, and an image is obtained. The quality was evaluated. The results are shown in Table 1.
[実施例4]
導電繊維がアスペクト比2.5の長方形断面になるように設計した口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表1に示した。
[Example 4]
Except for using a base designed so that the conductive fiber has a rectangular cross section with an aspect ratio of 2.5, a conductive fiber is obtained by the same method as in Example 1, and further a brush is produced by the same method as in Example 1. Image quality was evaluated. The results are shown in Table 1.
[実施例5]
導電繊維がアスペクト比3.1の長方形断面になるように設計した口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表1に示した。
[Example 5]
Except for using a base designed so that the conductive fiber has a rectangular cross section with an aspect ratio of 3.1, a conductive fiber is obtained by the same method as in Example 1, and further a brush is produced by the same method as in Example 1. Image quality was evaluated. The results are shown in Table 1.
[実施例6]
導電繊維が長軸/短軸比1.5の楕円断面になるように、スリット巾0.1mm、スリット長0.2mmの口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表1に示した。
[Example 6]
A conductive fiber was obtained in the same manner as in Example 1 except that a base having a slit width of 0.1 mm and a slit length of 0.2 mm was used so that the conductive fiber had an elliptical cross section with a major axis / minor axis ratio of 1.5. Further, a brush was produced by the same method as in Example 1, and the image quality was evaluated. The results are shown in Table 1.
[実施例7]
スリット巾0.08mm、スリット長0.24mmの平行なスリットの間がスリット巾0.1mm、スリット長0.3mmのスリットで結合したH型の孔を30個有する口金を用いること以外は、実施例1と同じ方法でH型断面の導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表1に示した。
[Example 7]
Except for using a base having 30 H-shaped holes joined by a slit having a slit width of 0.1 mm and a slit length of 0.3 mm between parallel slits having a slit width of 0.08 mm and a slit length of 0.24 mm Conductive fibers having an H-shaped cross section were obtained in the same manner as in Example 1, and brushes were produced in the same manner as in Example 1 to evaluate the image quality. The results are shown in Table 1.
[実施例8]
導電性粒子であるカーボンブラックを含有させる熱可塑性樹脂をナイロン6とすること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表2に示した。
[Example 8]
A conductive fiber is obtained by the same method as in Example 1 except that the thermoplastic resin containing carbon black, which is conductive particles, is nylon 6, and a brush is produced by the same method as in Example 1. Was evaluated. The results are shown in Table 2.
[実施例9]
導電性粒子であるカーボンブラックを含有させる熱可塑性樹脂をナイロン12とすること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表2に示した。
[Example 9]
A conductive fiber is obtained by the same method as in Example 1 except that the thermoplastic resin containing carbon black, which is conductive particles, is nylon 12, and a brush is produced by the same method as in Example 1. Was evaluated. The results are shown in Table 2.
[実施例10]
導電性粒子であるカーボンブラックを含有させる熱可塑性樹脂をポリエチレンテレフタレートとすること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表2に示した。
[Example 10]
Except that the thermoplastic resin containing conductive carbon black is polyethylene terephthalate, a conductive fiber is obtained by the same method as in Example 1, and a brush is produced by the same method as in Example 1 to obtain image quality. Was evaluated. The results are shown in Table 2.
[実施例11]
導電性粒子であるカーボンブラックを30重量%含有させること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表2に示した。
[Example 11]
Except for containing 30% by weight of carbon black as conductive particles, conductive fibers were obtained by the same method as in Example 1, and further brushes were produced by the same method as in Example 1 to evaluate the image quality. . The results are shown in Table 2.
[実施例12]
導電性粒子であるカーボンブラックを20重量%含有させること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表2に示した。
[Example 12]
Except for containing 20% by weight of carbon black as conductive particles, conductive fibers were obtained by the same method as in Example 1, and further brushes were produced by the same method as in Example 1 to evaluate the image quality. . The results are shown in Table 2.
[実施例13]
口金孔数を68個とすること以外は、実施例1と同じ方法で170dtex68フィラメントの導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表2に示した。
[Example 13]
A conductive fiber of 170 dtex 68 filament was obtained by the same method as in Example 1 except that the number of base holes was 68, and a brush was produced by the same method as in Example 1 to evaluate the image quality. The results are shown in Table 2.
[実施例14]
口金孔数を18個とすること以外は、実施例1と同じ方法で170dtex18フィラメントの導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表2に示した。
[Example 14]
A conductive fiber of 170 dtex 18 filament was obtained by the same method as in Example 1 except that the number of holes in the die was set to 18, and a brush was produced by the same method as in Example 1 to evaluate the image quality. The results are shown in Table 2.
[比較例1]
直径0.1mmの円形の孔を30個有する口金を用いること以外は、実施例1と同じ方法で丸断面の導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表3に示した。
[Comparative Example 1]
Except for using a base having 30 circular holes with a diameter of 0.1 mm, a conductive fiber having a round cross-section was obtained by the same method as in Example 1, and a brush was produced by the same method as in Example 1 to obtain image quality. Was evaluated. The results are shown in Table 3.
[比較例2]
導電繊維がアスペクト比1.1の長方形断面になるように設計した口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表3に示した。
[Comparative Example 2]
Except for using a base designed so that the conductive fiber has a rectangular cross section with an aspect ratio of 1.1, a conductive fiber is obtained by the same method as in Example 1, and further a brush is produced by the same method as in Example 1. Image quality was evaluated. The results are shown in Table 3.
[比較例3]
スリット巾0.1mm、スリット長0.4mmのスリットが放射状に3本配置されたY型の孔を30個有する口金を用いること以外は、実施例1と同じ方法で三角形断面の導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表3に示した。
[Comparative Example 3]
A conductive fiber having a triangular cross section is obtained in the same manner as in Example 1 except that a base having 30 Y-shaped holes in which three slits having a slit width of 0.1 mm and a slit length of 0.4 mm are radially arranged is used. Further, a brush was produced by the same method as in Example 1, and the image quality was evaluated. The results are shown in Table 3.
[比較例4]
スリット巾0.08mm、スリット長0.4mmの平行なスリットの間がスリット巾0.1mm、スリット長0.1mmのスリットで結合したH型の孔を30個有する口金を用いること以外は、実施例1と同じ方法でH型断面の導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。
[Comparative Example 4]
Except for using a base having 30 H-shaped holes joined by a slit having a slit width of 0.1 mm and a slit length of 0.1 mm between parallel slits having a slit width of 0.08 mm and a slit length of 0.4 mm. Conductive fibers having an H-shaped cross section were obtained in the same manner as in Example 1, and brushes were produced in the same manner as in Example 1 to evaluate the image quality.
[比較例5]
導電繊維がアスペクト比3.2の長方形断面になるように設計した口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表3に示した。
[Comparative Example 5]
Except for using a base designed so that the conductive fiber has a rectangular cross section with an aspect ratio of 3.2, a conductive fiber is obtained by the same method as in Example 1, and further a brush is produced by the same method as in Example 1. Image quality was evaluated. The results are shown in Table 3.
[比較例6]
導電繊維が正六角形になるように設計した口金を用いること以外は、実施例1と同じ方法で導電繊維を得、さらには実施例1と同じ方法でブラシを作製し、画像品質の評価を行った。結果を表3に示した。
[Comparative Example 6]
Except for using a base designed so that the conductive fibers are regular hexagons, conductive fibers are obtained by the same method as in Example 1, and further, a brush is produced by the same method as in Example 1, and the image quality is evaluated. It was. The results are shown in Table 3.
表1、表2の結果から明らかなように、本発明の導電繊維及びそれを用いて作製したブラシは、電子写真記録方式のプリンターにおいて、低温低湿から高温多湿のあらゆる環境下においても印刷画像の高画質化を実現し、長期使用時の画質劣化防止に極めて顕著な効果を奏することが判る。 As is apparent from the results of Tables 1 and 2, the conductive fibers of the present invention and the brushes produced using the conductive fibers are electrophotographic recording printers that can print printed images in any environment from low temperature and low humidity to high temperature and high humidity. It can be seen that high image quality can be achieved and that it has a remarkable effect in preventing image quality deterioration during long-term use.
a:長方形断面の短辺
b:長方形断面の長辺
h:軸長さ
H:H型の幅
b:高さ−軸幅
B:H型の高さ
h′:軸の幅
H′:H型の高さ
b′:軸長さ
B′:H型の両軸の幅×2
a: short side of rectangular section b: long side of rectangular section h: shaft length H: H-type width b: height-shaft width B: H-type height h ': shaft width H': H-type Height b ': shaft length B': width of both shafts of H type x 2
Claims (3)
・ 5≦Ir≦30.0・・・式(I
・ )
Ir=I1/I2
I1=Imax/Imin(Imax:最大断面二次モーメント、Imin:最小断面二次モーメント)
I2=Imin/I0(I0:同一繊度丸断面の断面二次モーメント) A conductive fiber, wherein the second moment ratio (Ir) of the fiber cross section satisfies the formula (I).
・ 5 ≦ Ir ≦ 30.0 ... Formula (I
・)
Ir = I 1 / I 2
I 1 = I max / I min (I max : maximum cross-section secondary moment, I min : minimum cross-section secondary moment)
I 2 = I min / I 0 (I 0 : Sectional secondary moment of the same fineness round section)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018052737A JP2019163568A (en) | 2018-03-20 | 2018-03-20 | Conductive fiber and brush |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018052737A JP2019163568A (en) | 2018-03-20 | 2018-03-20 | Conductive fiber and brush |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019163568A true JP2019163568A (en) | 2019-09-26 |
Family
ID=68064322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018052737A Pending JP2019163568A (en) | 2018-03-20 | 2018-03-20 | Conductive fiber and brush |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019163568A (en) |
-
2018
- 2018-03-20 JP JP2018052737A patent/JP2019163568A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1063162A (en) | Small cleaning brush having conductive fiber | |
JP5609638B2 (en) | Conductive flock and conductive brush | |
JP2009046785A (en) | Crimped conductive yarn | |
JP2019163568A (en) | Conductive fiber and brush | |
JP2000075601A (en) | Electrifying roller type electrophotographic copying device | |
JP4905373B2 (en) | Conductive polyester fiber and brush product comprising the same | |
JP2008184713A (en) | Electroconductive yarn | |
JP4436725B2 (en) | Conductive multifilament yarn | |
JP2006097146A (en) | Conductive conjugate fiber and contact charging brush made thereof | |
JP5488733B2 (en) | Conductive polyamide fiber and conductive brush | |
JP2005256207A (en) | Electroconductive polyamide filament yarn and brush | |
JP2007003791A (en) | Conductive brush | |
JP4214939B2 (en) | Method for producing a brushed cloth for conductive brush and conductive brush having the brushed cloth | |
JP2002235245A (en) | Electroconductive conjugate fiber | |
JP4825042B2 (en) | Conductive polyester fiber | |
JP2004277957A (en) | Polyamide multifilament containing conductive carbon and brush made thereof | |
JP4475036B2 (en) | Conductive multifilament and brush comprising the same | |
JP2002309446A (en) | Electroconductive conjugate fiber | |
JP2009114554A (en) | Electroconductive fiber and electroconductive brush using the same | |
JP2007247094A (en) | Conductive polyester fiber | |
JP2006336142A (en) | Flat electrically conductive fiber and method for producing the same | |
JP5332269B2 (en) | Conductive flock | |
JP3278137B2 (en) | Conductive composite fiber and contact charging brush comprising the same | |
JP2004131900A (en) | Conductive combined filament yarn with different shrinkage and brush | |
JP2004093948A (en) | Conductive brush |