JP2009144265A - Conductive monofilament and industrial woven fabric - Google Patents
Conductive monofilament and industrial woven fabric Download PDFInfo
- Publication number
- JP2009144265A JP2009144265A JP2007320319A JP2007320319A JP2009144265A JP 2009144265 A JP2009144265 A JP 2009144265A JP 2007320319 A JP2007320319 A JP 2007320319A JP 2007320319 A JP2007320319 A JP 2007320319A JP 2009144265 A JP2009144265 A JP 2009144265A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- monofilament
- conductive layer
- sheath
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Multicomponent Fibers (AREA)
- Woven Fabrics (AREA)
Abstract
Description
本発明は、従来の導電性モノフィラメントと比較し、使用による擦過や摩耗を受けた場合においても、極めて安定した導電性能を維持し得る導電性芯鞘構造モノフィラメントおよび導電性モノフィラメントを使用した工業用織物に関するものである。 INDUSTRIAL APPLICABILITY The present invention relates to a conductive core-sheath structure monofilament and an industrial fabric using the conductive monofilament that can maintain extremely stable conductive performance even when subjected to abrasion or wear due to use, compared to conventional conductive monofilaments It is about.
合成樹脂モノフィラメントは、抄紙機に装着される織物である抄紙ワイヤー、抄紙プレスフェルトおよび抄紙ドライヤーカンバスなどの抄紙用織物、コンベアベルトや脱水ベルトなどのベルト用織物、および各種フィルター用織物など、多くの工業用織物の構成素材などとして使用されてきた。 Synthetic resin monofilaments are used in many types of paper, such as papermaking wires, paper press felts and paper dryer canvas, which are installed in paper machines, belt fabrics such as conveyor belts and dewatering belts, and various filter fabrics. It has been used as a constituent material for industrial fabrics.
しかしながら、合成樹脂モノフィラメントは、導電性が極めて低いため、静電気が帯電しやすいことに起因して、種々の不具合を来すなどの問題が指摘されていた。 However, since the synthetic resin monofilament has extremely low electrical conductivity, problems such as various problems have been pointed out due to static electricity being easily charged.
例えば、ポリエチレンテレフタレートを構成素材とするモノフィラメントを抄紙機に装着される抄紙ドライヤーキャンバス、搬送用ベルト、不織布製造時に使用される乾燥および搬送用ベルトなどの工業用織物に用いると、使用中に発生する静電気が織物に蓄積し、製品への粉塵の付着や、放電火花による引火・爆発などの危険性を招き、操業に支障をきたすという問題を有していた。 For example, when monofilament made of polyethylene terephthalate is used for industrial fabrics such as paper dryer canvas mounted on paper machines, conveyor belts, drying and conveyor belts used in the manufacture of nonwoven fabrics, this occurs during use. Static electricity accumulates in the fabric, causing the risk of dust adhering to the product and the risk of ignition and explosion due to discharge sparks, causing problems in operation.
これら問題の解決手段として、帯電防止剤を含有するか、または繊維の外層を導電性金属で覆った導電性モノフィラメントが工業用織物の構成素材として用いられてきているが、近年では抄紙機の生産性を高める目的で、抄紙機の高速化が進んでいることから、より高度な帯電防止性能ばかりか、帯電性防止効果の長期に渡る性能維持などの特性が求められるようになっており、従来から様々な提案が行われてきている。 As a means for solving these problems, conductive monofilaments containing an antistatic agent or having an outer layer of fibers covered with a conductive metal have been used as a constituent material for industrial fabrics. In order to increase the performance of paper machines, the speed of paper machines has been increasing, so not only higher antistatic performance but also long-term performance such as antistatic performance has been required. Various proposals have been made.
例えば、導電性繊維の形状として、導電性熱可塑性成分と繊維形成性成分からなる導電性複合繊維を混用した繊維複合体であって、導電性複合繊維がカーボンブラックを含有する熱可塑性重合体からなり比抵抗106Ω・cm以下であって、導電性熱可塑性成分が繊維表面の50%以上を被覆し、かつ繊維長軸方向に連続した構造を有するものであることを特徴とする繊維複合体(例えば、特許文献1参照)が提案されている。しかしながら、本技術で得られる導電性繊維は、優れた導電性能を持つものの、製織時にガイド類との擦過によって導電性成分を含む鞘部分が摩耗・剥離しやすいため、導電性能が長期間維持できないという問題があった。 For example, as a shape of the conductive fiber, a fiber composite in which a conductive composite fiber composed of a conductive thermoplastic component and a fiber-forming component is mixed, and the conductive composite fiber is made of a thermoplastic polymer containing carbon black. A fiber composite having a specific resistance of 10 6 Ω · cm or less, wherein the conductive thermoplastic component covers 50% or more of the fiber surface, and has a continuous structure in the fiber major axis direction. A body (see, for example, Patent Document 1) has been proposed. However, although the conductive fiber obtained by the present technology has excellent conductive performance, the conductive performance cannot be maintained for a long time because the sheath portion containing the conductive component is easily worn and peeled by rubbing with guides during weaving. There was a problem.
また、導電性カーボンブラックを15〜50%含有する熱可塑性樹脂からなる鞘部分と繊維形成性ポリエステル系熱可塑性樹脂からなる芯部分を接合してなる導電性繊維の単繊維横断面において、鞘部分と芯部分の接合面曲線が鞘部分に向かって凸であり、その接合面曲線の最小曲線半径rと単糸繊維半径Rの比、r/Rが0.6以下であり、繊維断面周における鞘部分を占める周長が全周長の2〜40%であることを特徴とする導電性複合繊維(例えば、特許文献2参照)が提案されており、本技術によれば導電ポリマー層が擦過や繰り返し使用に対して優れた耐久性を保ち、かつ帯電性防止効果の長期に渡る性能維持が可能である導電性繊維となっている。しかしながら、本技術は、マルチフィラメントとしての技術であり、モノフィラメントに応用した場合には、十分な導電性能が得られないばかりか、擦過や摩耗に対しての耐久性に乏しく、十分な効果が得られないという問題があった。 Moreover, in the single fiber cross section of the conductive fiber formed by joining the sheath part made of a thermoplastic resin containing 15 to 50% of conductive carbon black and the core part made of a fiber-forming polyester-based thermoplastic resin, the sheath part The joint surface curve of the core portion is convex toward the sheath portion, the ratio of the minimum curve radius r of the joint surface curve to the single yarn fiber radius R, r / R is 0.6 or less, A conductive conjugate fiber (see, for example, Patent Document 2) characterized in that the circumference occupying the sheath portion is 2 to 40% of the total circumference has been proposed. According to the present technology, the conductive polymer layer is abraded. In addition, the conductive fiber has excellent durability against repeated use and can maintain the performance over a long period of the antistatic property. However, this technology is a multifilament technology, and when applied to monofilaments, not only does it not provide sufficient electrical conductivity, but it has poor durability against scratching and wear, and has a sufficient effect. There was a problem that it was not possible.
さらに、導電性カーボンブラックを15〜50%含有する熱可塑性ポリアミドからなる導電ポリマー層と繊維形成性ポリアミドからなる保護ポリマー層とが複合され、かつ導電ポリマー層が繊維面に露出し、その表面露出部が1フィラメントあたり3以上であり、かつその1個の繊維断面周長方向の露出距離をL1(μm)、1フィラメントの繊維断面周長をL2(μm)としたとき、式1≦L1≦L2/10及び100V印加時の電気抵抗値R(Ω/cm・f)としたとき、式logR=6.3〜11.9の両式を満足し、かつ保護ポリマー層が繊維断面周長の60%以上を占有し、繊維全体重量の50重量%以上97重量%以下で形成していることを特徴とする導電性複合繊維(例えば、特許文献3参照)が提案されている。しかしながら、本技術は繊維直径の細いマルチフィラメントでは有効であるが、繊維直径の太いモノフィラメントでは、導電性成分を含まない保護ポリマー層が厚くなることから表面の電気抵抗値が高くなり、導電性能が実用の域に達しないという問題があった。
以上のような状況を鑑み、本発明は、従来技術における問題を解決すべく検討した結果達成されたものである。 In view of the circumstances as described above, the present invention has been achieved as a result of investigations to solve the problems in the prior art.
したがって、本発明の目的は、導電性を有する鞘部導電層が使用によって擦過や摩耗をした場合であっても、導電性能が著しく低下することなく、極めて安定した導電性能を長期に渡って維持することを可能とする芯鞘構造の導電性モノフィラメントおよびこれを用いた工業用織物を提供することにある。 Therefore, the object of the present invention is to maintain extremely stable conductive performance over a long period of time without significant deterioration in conductive performance even when the conductive sheath conductive layer is scratched or worn by use. An object of the present invention is to provide a conductive monofilament having a core-sheath structure that can be used, and an industrial fabric using the same.
上記の目的を達成するために、本発明によれば、芯鞘複合構造を有するモノフィラメントであって、芯部非導電層とそれを覆う鞘部導電層からなり、モノフィラメントの長さ方向に直交する断面において、芯部非導電層の内側に向かって鞘部導電層の一部が凸状に突き出た補助導電部を有する導電性モノフィラメントが提供される。 In order to achieve the above object, according to the present invention, a monofilament having a core / sheath composite structure, comprising a core non-conductive layer and a sheath conductive layer covering the core, is orthogonal to the length direction of the monofilament. In a cross section, a conductive monofilament having an auxiliary conductive portion in which a part of the sheath conductive layer protrudes in a convex shape toward the inside of the core nonconductive layer is provided.
なお、本発明の導電性モノフィラメントにおいては、
芯部非導電層の内側に向かって鞘部導電層の一部が凸状に突き出た補助導電部を少なくとも2個以上有すること、
補助導電部を含む鞘部導電層と非導電成分からなる芯部面積比が1:95〜50:50の範囲であること、
モノフィラメントの両端に電極を繋いで印加し、測定されるモノフィラメントの抵抗値(Ω)÷抵抗値測定値時の電極間距離(cm)で表した体積固有抵抗値が1×108Ω/cm以下であること、
JIS−1095−9.10.2B法に準じて行った強制摩耗試験において、強制摩耗試験前後の導電性モノフィラメントの体積固有抵抗値をそれぞれA(Ω/cm)およびB(Ω/cm)した場合のB÷Ax100で示される導電性保持率が50%以上であること、
がより好ましい条件として挙げられる。
In the conductive monofilament of the present invention,
Having at least two auxiliary conductive portions in which a part of the sheath conductive layer protrudes in a convex shape toward the inside of the core non-conductive layer,
The core area ratio comprising the sheath conductive layer including the auxiliary conductive part and the non-conductive component is in the range of 1:95 to 50:50;
When the monofilament is connected to both ends of the electrode and applied, the resistivity value (Ω) of the measured monofilament ÷ the volume resistivity represented by the distance between the electrodes (cm) when the resistance value is measured is 1 × 10 8 Ω / cm or less Being
In the forced wear test conducted in accordance with the JIS-1095-9.10.2B method, the volume resistivity values of the conductive monofilament before and after the forced wear test are A (Ω / cm) and B (Ω / cm), respectively. The conductivity retention indicated by B ÷ Ax100 is 50% or more,
Is mentioned as a more preferable condition.
また、本発明の工業用織物は、上記導電性モノフィラメントを緯糸および/または経糸
の少なくとも一部に用いたことを特徴とし、本発明の導電性モノフィラメントを実際の工業用織物として使用した場合、導電性モノフィラメントが擦過や摩耗を受けた際においても、極めて安定した導電性能を長期にわたって維持し得るなどの優れた効果を発揮する。
The industrial fabric of the present invention is characterized in that the conductive monofilament is used in at least a part of the weft and / or warp. When the conductive monofilament of the present invention is used as an actual industrial fabric, the conductive fabric is electrically conductive. Even when the conductive monofilament is rubbed or worn, it exhibits excellent effects such as being able to maintain extremely stable conductive performance over a long period of time.
本発明によれば、長期の使用においても優れた導電性能を維持し続け、静電気の発生による種々の不具合を来すことのない工業用織物の構成素材として好適な導電性モノフィラメントが得られる。 According to the present invention, it is possible to obtain a conductive monofilament suitable as a constituent material of an industrial fabric that maintains excellent conductive performance even in long-term use and does not cause various problems due to generation of static electricity.
以下、図面を参照しつつ本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
図1は本発明の導電性モノフィラメントの一例を示す繊維軸方向に垂直な断面図、図2は同じく他の一例を示す断面図である。 FIG. 1 is a cross-sectional view perpendicular to the fiber axis direction showing an example of the conductive monofilament of the present invention, and FIG. 2 is a cross-sectional view showing another example.
なお、図1および2において、1は本発明の導電性モノフィラメントの断面全体図、2は芯部非導電層、3は鞘部導電層、4は補助導電部を示す。 In FIGS. 1 and 2, 1 is an overall cross-sectional view of the conductive monofilament of the present invention, 2 is a core non-conductive layer, 3 is a sheath conductive layer, and 4 is an auxiliary conductive portion.
図1に示したとおり、本発明の導電性モノフィラメント1は、芯部非導電層2と、それを覆う鞘部導電層3からなり、モノフィラメントの長さ方向に直交する断面において、芯部非導電層2の内側に向かって鞘部導電層3の一部が凸状に突き出た補助導電部4を持つ芯鞘複合構造を有している。
As shown in FIG. 1, the conductive monofilament 1 of the present invention includes a core
ここで、本発明の導電性モノフィラメントが摩耗や擦過によって鞘部導電層3が削れた場合において、補助導電部4がモノフィラメント表層へ露出する。しかるにこの時、鞘部導電層3が擦過や摩耗により削り取られてしまい、芯部非導電層2が露出する状態となるが、補助導電部4が残るために導電性能の低下が抑制される。
Here, when the sheath
すなわち、従来の導電性モノフィラメントは、鞘部導電層が摩耗した場合、鞘部導電層に剥離や亀裂が生じ、導電性能の低下を来す問題があったが、本発明の導電性モノフィラメントは、鞘部導電層3が摩耗した状態であっても、補助導電部4が残るために優れた導電性能を長期に渡って維持する効果を発現することができるのである。
That is, the conventional conductive monofilament has a problem that when the sheath conductive layer is worn, the sheath conductive layer is peeled off or cracked, resulting in a decrease in the conductive performance. Even when the sheath
なお、本発明の導電性モノフィラメントは、芯部非導電層の内側に向かって凸状に突き出た補助導電部を少なくとも2個以上有する場合、さらに好ましい効果の発現が期待できる。ここで、補助導電部はモノフィラメントの長さ方向に連続して存在することが、好ましい条件として挙げられる。 In addition, when the conductive monofilament of the present invention has at least two auxiliary conductive portions protruding in a convex shape toward the inside of the core non-conductive layer, a more preferable effect can be expected. Here, a preferable condition is that the auxiliary conductive portion is continuously present in the length direction of the monofilament.
また補助導電部の個数としては、2個以上であれば特に制限はないが、好ましくは3個から16個、さらに好ましくは4個から8個の補助導電部を有する場合、特に所望とする効果の発現が期待できる。 Further, the number of auxiliary conductive portions is not particularly limited as long as it is 2 or more, but preferably 3 to 16, more preferably 4 to 8 auxiliary conductive portions, particularly desired effects. Can be expected.
すなわち、例えば補助導電部の個数が1〜3個と少ない場合、導電性モノフィラメントの物理的強度を高く保つ上では好ましいが、逆に鞘部導電層が擦過などにより摩耗や剥離をした際の高い導電性能を長期に渡って維持させる上では、多くの補助導電部を有することが所望とする導電性能を効果的に持続させるために肝要である。このため、本発明の導電性モノフィラメントにおいては、その導電性モノフィラメントを使用する工業用製品に求められる導電性能や物理的な強度特性などを勘案した上で、必要とされる導電性能を効果的に維持させるために、所望の範囲で補助導電部を必要とする個数だけ設けることが可能である。 That is, for example, when the number of auxiliary conductive parts is as small as 1 to 3, it is preferable to keep the physical strength of the conductive monofilament high, but conversely, it is high when the sheath conductive layer is worn or peeled off due to abrasion or the like. In order to maintain the conductive performance over a long period of time, it is important to have many auxiliary conductive portions in order to effectively maintain the desired conductive performance. For this reason, in the conductive monofilament of the present invention, the required conductive performance is effectively obtained in consideration of the conductive performance and physical strength characteristics required for industrial products using the conductive monofilament. In order to maintain it, it is possible to provide as many auxiliary conductive parts as necessary within a desired range.
なお、本発明の導電性モノフィラメントにおける補助導電部4の形状は、鞘部導電層3の一部が芯部非導電層2の内側に向かって凸状に突出していれば特に制限はなく、例えば図1の略三角形や図2の略半円形などのように形成することにより、所望とする効果の発現を期待することができる。
The shape of the auxiliary
また、本発明の導電性モノフィラメントは、補助導電部を含む鞘部導電層:芯部非導電層で示す面積比を5:95〜50:50とすることが望ましいが、より好ましくは10:90〜35:65、さらには15:85〜30:70の範囲とした場合、特に優れた効果を発揮する。つまり、本発明の導電性モノフィラメントにおいて、補助導電部を含む鞘部導電層の面積が大きい場合は、導電成分をより多く含む導電性モノフィラメントとなるため、導電性能を向上させる上で好ましい効果が発揮される。一方、導電成分を含まない芯部非導電層の面積が大きい場合は、物理的な強度を高く維持できる効果が得られる。したがって、導電性能と物理的強度のバランスを好適に保つ上で、鞘部導電層:芯部非導電層で示す面積比は上記のとおりとすることが望ましい。 In the conductive monofilament of the present invention, the area ratio represented by the sheath conductive layer including the auxiliary conductive portion: core non-conductive layer is preferably 5:95 to 50:50, more preferably 10:90. When it is in the range of ˜35: 65, and further 15:85 to 30:70, particularly excellent effects are exhibited. That is, in the conductive monofilament of the present invention, when the area of the sheath conductive layer including the auxiliary conductive part is large, the conductive monofilament contains a larger amount of the conductive component, so that a favorable effect is exhibited in improving the conductive performance. Is done. On the other hand, when the area of the core non-conductive layer containing no conductive component is large, an effect of maintaining a high physical strength can be obtained. Therefore, in order to maintain a good balance between the conductive performance and the physical strength, it is desirable that the area ratio indicated by the sheath conductive layer: core nonconductive layer is as described above.
なお、本発明の導電性モノフィラメント断面の重心を通る線分の長さで表される直径は、用途によって適宜選択できるが、0.05mmから2.5mmの範囲とすることが好ましい。また、必要強度は使用目的によって異なるが、概ね2.0cN/dtex以上である場合、さらに好ましい効果が期待できる。 In addition, although the diameter represented by the length of the line segment which passes through the gravity center of the electroconductive monofilament cross section of this invention can be suitably selected according to a use, it is preferable to set it as the range of 0.05 mm to 2.5 mm. Further, the required strength varies depending on the purpose of use, but if it is approximately 2.0 cN / dtex or more, a more preferable effect can be expected.
本発明の導電性モノフィラメントの導電性能は、補助導電部を含む鞘部導電層に使用されている導電成分やその使用濃度、芯鞘比率、さらには補助導電部の個数によって異なるが、抵抗値(Ω)÷抵抗値測定値時の電極間距離(cm)で表した体積固有抵抗値が1x108Ω/cm以下、さらには1x105Ω/cm以下であることが好ましい。 The conductive performance of the conductive monofilament of the present invention varies depending on the conductive component used in the sheath conductive layer including the auxiliary conductive portion, its concentration, the core-sheath ratio, and the number of auxiliary conductive portions. (Ω) ÷ Volume specific resistance value represented by the distance (cm) between the electrodes when the resistance value is measured is preferably 1 × 10 8 Ω / cm or less, more preferably 1 × 10 5 Ω / cm or less.
すなわち、導電性モノフィラメントの電気抵抗値が1x108Ω/cm以下であれば帯電防止材としての機能を有し、さらに電気抵抗値が1x105Ω/cm以下であれば帯電防止材として極めて優れた性能を発揮することができる。 That is, if the electrical resistance value of the conductive monofilament is 1 × 10 8 Ω / cm or less, it has a function as an antistatic material, and if the electrical resistance value is 1 × 10 5 Ω / cm or less, it is extremely excellent as an antistatic material. Performance can be demonstrated.
また、JIS−1095−9.10.2B法に準じて行った強制摩耗試験において、強制摩耗試験前後の導電性モノフィラメントの体積固有抵抗値をそれぞれA(Ω/cm)およびB(Ω/cm)した場合のB÷Ax100で示される導電性保持率が50%以上であることが好ましい。すなわち、本発明の導電性モノフィラメントは強制的に強制摩耗試験を行った場合、補助導電部がモノフィラメント表面に露出して十分な導電性を維持することが可能であることから、導電性保持率が50%以上であれば、帯電防止材として必要な導電性能を持ち、かつ長期間の導電性能の維持が期待できる。 Further, in the forced wear test conducted according to the JIS-1095-9.10.2B method, the volume resistivity values of the conductive monofilament before and after the forced wear test are A (Ω / cm) and B (Ω / cm), respectively. In this case, the conductivity retention indicated by B ÷ Ax100 is preferably 50% or more. That is, the conductive monofilament of the present invention has a conductivity retention rate because the auxiliary conductive portion can be exposed to the monofilament surface and maintain sufficient conductivity when the forced wear test is performed forcibly. If it is 50% or more, it can be expected to have a conductive performance required as an antistatic material and to maintain a long-term conductive performance.
本発明の導電性モノフィラメントの形状については、特に制限はなく、繊維軸方向に垂直な断面形状が、楕円形、正方形、長方形、六角形、多角形などであっても、同様に安定した導電性能が得られる。 The shape of the conductive monofilament of the present invention is not particularly limited, and even if the cross-sectional shape perpendicular to the fiber axis direction is an ellipse, a square, a rectangle, a hexagon, a polygon, etc., the same stable conductive performance Is obtained.
ここで、本発明の導電性モノフィラメントを構成する素材については、特に制限はなく、芯部非導電層を構成するポリマー樹脂としては、例えばポリエチレン、ポリプロピレンなどのポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデン、6ナイロン、66ナイロン、610ナイロン、612ナイロン、6/66共重合などのポリアミド樹脂またはその共重合体、ポリエチレンテレフタレート(以下、PETという)、ポリブチレンテレフタレート(以下、PBTという)、ポリエチレンナフタレート(以下、PENという)、ポリシクロヘキサンジメチレンテレフタレート、などのポリエステル類またはその重合体、ポリフッ化ビニリデン、エチレンテトラフルオロエチレン共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン・フッ化ビニリデン共重合体などのフッ素樹脂類、ポリカーボネート類、ポリフェニレンスルファイド(以下、PPSという)、ポリスルホン、非晶ポリアリレート、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド、ポリアリルエーテルニトリル、液晶ポリエステルなどが挙げられる。 Here, the material constituting the conductive monofilament of the present invention is not particularly limited, and examples of the polymer resin constituting the core non-conductive layer include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, and polyvinylidene chloride. Polyamide resins such as 6 nylon, 66 nylon, 610 nylon, 612 nylon, 6/66 copolymer or copolymers thereof, polyethylene terephthalate (hereinafter referred to as PET), polybutylene terephthalate (hereinafter referred to as PBT), polyethylene naphthalate (Hereinafter referred to as PEN), polyesters such as polycyclohexanedimethylene terephthalate or polymers thereof, polyvinylidene fluoride, ethylene tetrafluoroethylene copolymer, tetrafluoroethylene / hexafluoropropylene Fluorine resins such as vinylidene fluoride copolymer, polycarbonates, polyphenylene sulfide (hereinafter referred to as PPS), polysulfone, amorphous polyarylate, polyetherimide, polyethersulfone, polyetheretherketone, polyamideimide, Examples include polyimide, polyallyl ether nitrile, and liquid crystal polyester.
さらに、上記PET及びPBTは、そのジカルボン酸成分であるテレフタル酸の一部を、イソフタル酸、2,6−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、ダイマー酸およびスルホン酸金属塩置換イソフタル酸などで置き換えたものであってもよく、またグリコール成分であるエチレングリコールまたは1,4−ブタンジオールの一部を、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノールおよびポリアルキレングリコールなどで置き換えたものであってもよい。また、これらを単独成分として使っても良いし、複数成分のブレンド物として使っても良い。 Furthermore, the above PET and PBT are a part of the dicarboxylic acid component terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, dimer acid and sulfone. It may be replaced with an acid metal salt-substituted isophthalic acid or the like, and ethylene glycol or a part of 1,4-butanediol as a glycol component may be replaced with diethylene glycol, neopentyl glycol, 1,4-cyclohexanediol, 1 , 4-cyclohexanedimethanol and polyalkylene glycol may be substituted. Moreover, these may be used as a single component or may be used as a blend of a plurality of components.
一方、鞘部導電層を形成する導電性ポリマー樹脂組成物としては、導電性カーボンブラックを高濃度にブレンドしたものが使用されるが、その主成分となるポリマー樹脂については、芯部非導電層を形成するポリマー樹脂として例示したものと同様の樹脂を用いることができる。 On the other hand, as the conductive polymer resin composition for forming the sheath conductive layer, a conductive carbon black blended at a high concentration is used. For the polymer resin as the main component, the core non-conductive layer is used. Resins similar to those exemplified as the polymer resin for forming can be used.
また、鞘部導電層および補助導電部を形成する上で、使用するポリマー樹脂組成物には導電性カーボンブラックを6〜40重量%含有するものを使用することができ、このポリマー樹脂組成物を使用した場合は、導電性カーボンブラックが高濃度含有しているため、鞘部導電層および補助導電部が占める体積が小さくても優れた導電性を発揮することができ、さらに真円性や線径斑の優れたフィラメントが得られる。 Moreover, when forming a sheath part conductive layer and an auxiliary | assistant conductive part, what contains 6-40 weight% of conductive carbon black can be used for the polymer resin composition to be used, and this polymer resin composition is used. When used, since the conductive carbon black contains a high concentration, excellent conductivity can be exhibited even if the volume occupied by the sheath conductive layer and the auxiliary conductive portion is small. A filament with excellent diameter spots is obtained.
しかし、導電性カーボンブラックの含有量がそれ以下の場合は十分な導電性が得られず、逆に、それ以上の場合はポリマー樹脂組成物の流動性が著しく低下するため、鞘部導電層にクラックが発生し易くなる。 However, when the content of the conductive carbon black is less than that, sufficient conductivity cannot be obtained, and conversely, when the content is more than that, the fluidity of the polymer resin composition is remarkably lowered. Cracks are likely to occur.
なお、鞘部導電層に含有される導電性カーボンブラックとしては、高導電性を有するものであれば特に制限はないが、なかでもDBP給油量(9g法)が340ml/100g以上のファーネス系カーボンブラックの使用が望ましい。このようなファーネス系カーボンブラックとしては、ケッチェン・ブラック・インターナショナル社製“ケッチェンブラック”(商標)ECや、“ケッチェンブラック”(商標)EC600JDが知られている。なおカーボンブラックとしては、DBP給油量が340ml/100g以下のアセチレンブラックも知られているが、これは上記“ケッチェンブラック”(商標)ECなどと比べて導電性が低いため、アセチレンブラックの使用により満足する導電性を得るためには、例えば“ケッチェンブラック”(商標)ECの約3倍の添加量が必要になり、導電層ポリマーの流動性が低下する傾向が生じやすい。 The conductive carbon black contained in the sheath conductive layer is not particularly limited as long as it has high conductivity, and among them, a furnace carbon having a DBP oil supply amount (9 g method) of 340 ml / 100 g or more. The use of black is desirable. As such furnace-based carbon black, “Ketjen Black” (trademark) EC and “Ketjen Black” (trademark) EC600JD manufactured by Ketjen Black International are known. As carbon black, acetylene black having a DBP oil supply of 340 ml / 100 g or less is also known. However, since this has lower conductivity than the above-mentioned “Ketjen Black” (trademark) EC, etc., acetylene black is used. In order to obtain a more satisfactory conductivity, for example, an addition amount of about three times that of “Ketjen Black” (trademark) EC is required, and the fluidity of the conductive layer polymer tends to decrease.
また、本発明の導電性モノフィラメントは、目的とする特性を疎外しない範囲であれば、さらなる特性を付加する目的で、種々の添加物を制限なくポリマー樹脂やポリマー樹脂組成物中に含有することができ、例えば、耐摩耗性向上を目的にアイオノマー樹脂やシリコーン樹脂を鞘部導電層中に0.1〜0.5重量%添加することも可能である。 In addition, the conductive monofilament of the present invention may contain various additives in a polymer resin or a polymer resin composition without limitation for the purpose of adding further characteristics as long as the target characteristics are not excluded. For example, an ionomer resin or a silicone resin can be added to the sheath conductive layer in an amount of 0.1 to 0.5% by weight for the purpose of improving wear resistance.
本発明の導電性モノフィラメントの製造方法には、なんら特殊な方法を必要とせず、例えばエクストルーダー型等の複合溶融紡糸機と所望の複合紡糸口金を用いて溶融押出する製造方法など、公知の芯鞘複合紡糸方法により製造することができる。 The production method of the conductive monofilament of the present invention does not require any special method. For example, a known core such as a production method of melt extrusion using an extruder type composite melt spinning machine and a desired composite spinneret. It can be produced by a sheath composite spinning method.
かくして得られる本発明の導電性モノフィラメントは、工業用資材としての十分な物理的強度を兼ね備えるとともに、帯電防止材として必要とされる導電性能を十分に有し、さらには鞘部導電層が摩耗した場合でも、極めて安定した導電性能を持続的に具備するため、各種の工業用織物における帯電防止材として極めて優れた効果を発揮し、これら工業用織物の経糸および/または緯糸として好適に利用し得るものである。 The conductive monofilament of the present invention thus obtained has sufficient physical strength as an industrial material, has sufficient conductive performance required as an antistatic material, and the sheath conductive layer is worn. Even in such a case, since it has an extremely stable conductive performance continuously, it exhibits an extremely excellent effect as an antistatic material in various industrial fabrics, and can be suitably used as warps and / or wefts of these industrial fabrics. Is.
以下、本発明の導電性モノフィラメントの実施形態をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, although embodiment of the electroconductive monofilament of this invention is described in detail, this invention is not limited to a following example, unless the summary is exceeded.
なお、上記及び下記に記載する鞘部導電層と芯部非導電層の面積比、体積固有抵抗値、強制摩耗試験は、次の方法で評価を行ったものである。 In addition, the area ratio of the sheath part conductive layer and the core part non-conductive layer, the volume specific resistance value, and the forced wear test described above and below are evaluated by the following methods.
[鞘部導電層と芯部非導電層の面積比]
導電性モノフィラメントの繊維軸方向に対し垂直方向に切り出した断面観察サンプルをKEYENCE製デジタルマイクロスコープVHX−100Fにて観察し、本デジタルマイクロスコープの面積測定ツールを用いて、導電性モノフィラメントの鞘部導電層(補助導電層を含む)の面積および芯部非導電層の面積を計測し、その面積比を百分率で求めた。
[Area ratio between the sheath conductive layer and the core non-conductive layer]
A cross-sectional observation sample cut in a direction perpendicular to the fiber axis direction of the conductive monofilament is observed with a digital microscope VHX-100F manufactured by KEYENCE, and the sheath conductivity of the conductive monofilament is measured using the area measurement tool of this digital microscope. The area of the layer (including the auxiliary conductive layer) and the area of the core non-conductive layer were measured, and the area ratio was determined as a percentage.
[体積固有抵抗値]
モノフィラメント試料5cmの両端をクリンプ(電極)で把持し、印加して糸の抵抗値を測定し、下記の計算式により抵抗値を求めた。なお、クリンプで把持したモノフィラメント試料の電極間距離は4cm、測定時の環境条件は温度20℃、湿度65%の下で行い、抵抗値は東亜電波工業(株)製の極超絶縁計SM−10型を使用して測定した。
体積固有抵抗値(Ω/cm)=測定抵抗値(Ω)÷電極間距離(cm)
[Volume resistivity]
Both ends of a monofilament sample 5 cm were gripped with a crimp (electrode), applied to measure the resistance value of the yarn, and the resistance value was determined by the following formula. The distance between the electrodes of the monofilament sample gripped by the crimp was 4 cm, the environmental conditions at the time of measurement were 20 ° C. and the humidity 65%, and the resistance value was a super insulation meter SM- manufactured by Toa Denpa Kogyo Co., Ltd. Measurements were made using type 10.
Volume resistivity (Ω / cm) = Measured resistance (Ω) ÷ Distance between electrodes (cm)
[強制摩耗試験]
JIS L−1095−9.10.2B法に準じて、固定されたφ1.0mmの摩擦子(硬質鋼線(SWP−A))の上に接触させた導電性モノフィラメントを前記摩擦子の左右各55度角度で斜め下に設けたフリーローラー2個(ローラー間距離100mm)の下に掛け、別の1個のフリーローラーの上を介して、導電性モノフィラメントの一端に0.22cN/dtexの荷重をかけてセットし、その後、速度120往復/分、往復ストローク長25mmの条件で導電性モノフィラメントを摩擦子に300回接触させて摩耗させた。
[Forced wear test]
In accordance with the JIS L-1095-9.10.2B method, conductive monofilaments brought into contact with a fixed φ1.0 mm friction element (hard steel wire (SWP-A)) A load of 0.22 cN / dtex is applied to one end of a conductive monofilament through two free rollers (100 mm distance between rollers) provided at an angle of 55 degrees and over another free roller. Then, the conductive monofilament was brought into contact with the friction element 300 times and was worn under the conditions of a speed of 120 reciprocations / minute and a reciprocation stroke length of 25 mm.
[導電性保持率]
強制摩耗試験前の導電性モノフィラメントの体積固有抵抗値をA、強制摩耗試験後の導電性モノフィラメントの体積固有抵抗値をBとし、下記の計算式により導電性保持率を求めた。
導電性保持率(%)=B÷Ax100
[Conductivity retention]
The volume resistivity value of the conductive monofilament before the forced wear test was A, and the volume resistivity value of the conductive monofilament after the forced wear test was B, and the conductivity retention was determined by the following formula.
Conductivity retention (%) = B ÷ Ax100
なお、本発明の実施例中で導電性モノフィラメントの製造に使用した原料は、特に記されない限り次のものを使用した。 The raw materials used in the production of the conductive monofilament in the examples of the present invention were as follows unless otherwise specified.
1.ポリエステルペレット
公知の溶融重縮合と固相重縮合とによって製造した極限粘度0.94、末端カルボキシル基濃度15当量/106 gの乾燥したPETペレット(以下、PETペレットと略称する)。
1. Polyester pellets Dry PET pellets (hereinafter abbreviated as PET pellets) produced by known melt polycondensation and solid phase polycondensation and having an intrinsic viscosity of 0.94 and a terminal carboxyl group concentration of 15 equivalents / 10 6 g.
2.カーボンブラック含有PETマスターバッチペレット
極限粘度が0.67のPETチップにカーボンブラックであるケッチェンブラックEC(ケッチェン・ブラック・インターナショナル社製品)を11重量%含有したPETペレット。
2. Carbon black-containing PET master batch pellets PET pellets containing 11% by weight of Ketjen Black EC (Ketjen Black International Co., Ltd.), which is carbon black, on a PET chip having an intrinsic viscosity of 0.67.
[実施例1]
芯部非導電層にPETペレット、鞘部導電層および補助導電層にカーボンブラックを含有するPETマスターバッチペレットを表1に記載の複合面積比になるように、それぞれのペレットを各々の1軸エクストルーダーに連続供給した。
[Example 1]
A PET master batch pellet containing PET pellets in the core non-conductive layer and carbon black in the sheath conductive layer and auxiliary conductive layer so that each of the pellets has a uniaxial extension so as to have the composite area ratio shown in Table 1. Continuously fed to the ruder.
各々のエクストルーダー内において各ペレットを約290℃で溶融混練した後、ギヤポンプを介して複合紡糸パック内のそれぞれの濾過層を通して口金吐出孔直前で合流させ、円形断面糸用紡糸口金より紡出した。その後紡出されたモノフィラメントは70℃の湯浴中で冷却固化され、引き続きトータル5.5倍に延伸し、さらに熱セットされて、直径0.5mm、芯部非導電層:鞘部導電層=67:33、かつ補助導電部が6つの円形断面形状の導電性モノフィラメントを得た。得られた導電性モノフィラメントの体積固有抵抗値、強制摩耗後の体積固有抵抗値、導電性保持率の評価結果を表1に示す。 Each pellet was melt-kneaded at about 290 ° C. in each extruder, and then merged immediately before the nozzle discharge hole through each filter layer in the composite spinning pack via a gear pump, and was spun from the spinneret for circular cross-sectional yarn. . Thereafter, the spun monofilament was cooled and solidified in a 70 ° C. hot water bath, subsequently stretched to a total of 5.5 times, further heat-set, and 0.5 mm in diameter, core non-conductive layer: sheath conductive layer = 67:33, and a conductive monofilament having a circular cross-sectional shape with six auxiliary conductive portions was obtained. Table 1 shows the evaluation results of the volume resistivity value, the volume resistivity value after forced wear, and the conductivity retention rate of the obtained conductive monofilament.
[実施例2〜6]
芯部非導電層と鞘部導電層の面積比、補助導電部の数を変えたこと以外は実施例1と同じ製造方法で導電性モノフィラメントを得た。得られた各導電性モノフィラメントの体積固有抵抗値、強制摩耗後の体積固有抵抗値、導電性保持率の評価結果を表1に示す。
[Examples 2 to 6]
A conductive monofilament was obtained by the same production method as in Example 1 except that the area ratio between the core non-conductive layer and the sheath conductive layer and the number of auxiliary conductive portions were changed. Table 1 shows the evaluation results of the volume specific resistance value, the volume specific resistance value after forced wear, and the conductivity retention rate of each conductive monofilament obtained.
[比較例1〜2]
補助導電層を持たない芯鞘複合構造の導電性モノフィラメントとしたこと以外は実施例1と同じ製造方法で導電性モノフィラメントを得た。得られた各導電性モノフィラメントの体積固有抵抗値、強制摩耗後の体積固有抵抗値、導電性保持率の評価結果を表1に示す。
[Comparative Examples 1-2]
A conductive monofilament was obtained by the same production method as in Example 1 except that a conductive monofilament having a core-sheath composite structure having no auxiliary conductive layer was used. Table 1 shows the evaluation results of the volume specific resistance value, the volume specific resistance value after forced wear, and the conductivity retention rate of each conductive monofilament obtained.
表1の結果から明らかなように、本発明の導電性モノフィラメントは、鞘部導電層が摩耗した場合においても、補助導電部が残っているために極めて安定した導電性能を保つことが分かる。 As is clear from the results in Table 1, it can be seen that the conductive monofilament of the present invention maintains extremely stable conductive performance because the auxiliary conductive portion remains even when the sheath conductive layer is worn.
一方、補助導電部を持たない導電性モノフィラメント(比較例1、比較例2)は、本発明の導電性モノフィラメントに比べて強制摩耗試験後の導電性保持率が低く、導電性能の耐久性が不十分であった。 On the other hand, conductive monofilaments having no auxiliary conductive portion (Comparative Example 1 and Comparative Example 2) have a lower conductivity retention after the forced wear test than the conductive monofilaments of the present invention, and have poor conductivity performance. It was enough.
本発明の導電性モノフィラメントは、従来の導電性モノフィラメントに比べ長期の使用においても優れた導電性能を維持し続けるため、この導電性モノフィラメントを工業用織物の構成素材とした場合、長期間に渡って帯電防止効果を維持する工業用織物を得ることが出来る。 The conductive monofilament of the present invention continues to maintain excellent conductive performance even in long-term use as compared to conventional conductive monofilaments. Therefore, when this conductive monofilament is used as a constituent material for industrial fabrics, it will last for a long period of time. An industrial fabric that maintains the antistatic effect can be obtained.
1 導電性モノフィラメント
2 芯部非導電層
3 鞘部導電層
4 補助導電部
DESCRIPTION OF SYMBOLS 1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007320319A JP2009144265A (en) | 2007-12-12 | 2007-12-12 | Conductive monofilament and industrial woven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007320319A JP2009144265A (en) | 2007-12-12 | 2007-12-12 | Conductive monofilament and industrial woven fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009144265A true JP2009144265A (en) | 2009-07-02 |
Family
ID=40915197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007320319A Pending JP2009144265A (en) | 2007-12-12 | 2007-12-12 | Conductive monofilament and industrial woven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009144265A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014091869A (en) * | 2012-11-01 | 2014-05-19 | Toray Monofilament Co Ltd | Conductive composite polyester monofilament and industrial fabric |
CN117813425A (en) * | 2021-11-02 | 2024-04-02 | 日本酯股份有限公司 | Core-sheath type polyester composite fiber and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169816A (en) * | 1980-05-27 | 1981-12-26 | Unitika Ltd | Electrically conductive fiber |
-
2007
- 2007-12-12 JP JP2007320319A patent/JP2009144265A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169816A (en) * | 1980-05-27 | 1981-12-26 | Unitika Ltd | Electrically conductive fiber |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014091869A (en) * | 2012-11-01 | 2014-05-19 | Toray Monofilament Co Ltd | Conductive composite polyester monofilament and industrial fabric |
CN117813425A (en) * | 2021-11-02 | 2024-04-02 | 日本酯股份有限公司 | Core-sheath type polyester composite fiber and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1939335B1 (en) | Electrically conductive composite fiber and process for producing the same | |
ES2232367T3 (en) | FIBER OF ELECTRICALLY CONDUCTING COMPOSITE MATERIAL. | |
JP4923174B2 (en) | Conductive composite yarn and conductive fabric | |
US7094467B2 (en) | Antistatic polymer monofilament, method for making an antistatic polymer monofilament for the production of spiral fabrics and spiral fabrics formed with such monofilaments | |
JP2009144265A (en) | Conductive monofilament and industrial woven fabric | |
JP5220673B2 (en) | Conductive sewing thread and knitted fabric | |
JP2007002374A (en) | Conductive conjugated fiber and conductive fabric | |
JP4280546B2 (en) | Conductive composite fiber and conductive woven / knitted fabric | |
JP7535284B2 (en) | Conductive composite fiber and its manufacturing method | |
JP4905373B2 (en) | Conductive polyester fiber and brush product comprising the same | |
JP4682305B2 (en) | Conductive polyester monofilament and industrial fabric | |
JP2012107349A (en) | Electroconductive conjugate monofilament | |
JP3951010B2 (en) | Conductive synthetic resin filament for antistatic, its production method and its use | |
JP2007092200A (en) | Conductive conjugate fiber having moist heat resistance and conductive fabric having moist heat resistance | |
JP4598785B2 (en) | Conductive composite fiber | |
JP5254532B2 (en) | Conductive polyester fiber | |
JP2007092199A (en) | Conductive conjugate fiber having moist heat resistance and conductive fabric having moist heat resistance | |
JP4825042B2 (en) | Conductive polyester fiber | |
JP2006161190A (en) | Conductive synthetic resin filament | |
JP6118561B2 (en) | Conductive composite fiber | |
JP7340183B1 (en) | Core-sheath type polyester composite fiber and its manufacturing method | |
JP2004036040A (en) | Antistatic woven or knitted fabric and dustproof clothing | |
JP3958227B2 (en) | Blended yarn | |
JP2018193648A (en) | Polyamide-based conductive composite fiber | |
JP2007262624A (en) | Electroconductive conjugate monofilament and industrial woven fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100301 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100301 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120717 |