JP2006179720A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2006179720A
JP2006179720A JP2004372035A JP2004372035A JP2006179720A JP 2006179720 A JP2006179720 A JP 2006179720A JP 2004372035 A JP2004372035 A JP 2004372035A JP 2004372035 A JP2004372035 A JP 2004372035A JP 2006179720 A JP2006179720 A JP 2006179720A
Authority
JP
Japan
Prior art keywords
discharge
discharge electrode
workpiece
electrode
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372035A
Other languages
Japanese (ja)
Inventor
Tatsuya Sakota
達也 迫田
Kazuo Nagasawa
和男 長澤
Kazuyuki Takatsudo
一之 高津戸
Hiroki Herai
洋城 戸来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Setek Co Ltd
Original Assignee
M Setek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Setek Co Ltd filed Critical M Setek Co Ltd
Priority to JP2004372035A priority Critical patent/JP2006179720A/en
Publication of JP2006179720A publication Critical patent/JP2006179720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device directly and uniformly forming a recessed groove for a formation formed by a patterning on the surface of a substrate used for a solar cell with high efficiency. <P>SOLUTION: The plasma treatment device is composed of a discharge electrode (1) for placing an article to be treated, a counter discharge electrode (2) oppositely arranged to the discharge electrode (1), and a solid-state dielectric (3) mounted on a surface on the discharge electrode (1) side for placing the article to be treated in the counter discharge electrode (2). The plasma treatment device is further composed of an atmospheric-gas supply pipe (5a) for supplying atmospheric gas to a space (4) between the solid-state dielectric (3) and the discharge electrode (1) for placing the article to be worked with an atmospheric gas. In such a plasma treatment device, a project (8) for a discharge or a recess (7) for the discharge is formed to an opposed surface to the discharge electrode (1) for placing the article to be treated in the solid-state dielectric (3). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体誘電体からの放電によりプラズマを発生させ、被加工物、特に、半導体のシリコンウェハーや太陽電池基板のデポジットやエッチングなどの表面加工をダイレクトに行うプラズマ加工装置に関する。   The present invention relates to a plasma processing apparatus that generates plasma by discharge from a solid dielectric and directly performs surface processing such as deposit or etching of a workpiece, particularly a semiconductor silicon wafer or a solar cell substrate.

太陽電池は入射した光エネルギを電気エネルギに変換するもので、使用材料により結晶系、アモルファス系、化合物系などに分類されるが、現在市場で流通しているのは変換効率が高い結晶系シリコン太陽電池である。この結晶系シリコン太陽電池はさらに単結晶型、多結晶型に分類される。この太陽電池は1枚の絶縁性基板(100)或いはモジュール内に多数のセル(110)をカスケード接続して高い電圧を取り出せるようにしている。図10は前記方法で製造された電力用モジュールの断面図である。   Solar cells convert incident light energy into electrical energy, and are classified into crystalline, amorphous, and compound types depending on the materials used. Currently, the crystalline silicon with high conversion efficiency is in the market. It is a solar cell. This crystalline silicon solar cell is further classified into a single crystal type and a polycrystalline type. In this solar cell, a large number of cells (110) are cascade-connected in one insulating substrate (100) or module so that a high voltage can be taken out. FIG. 10 is a cross-sectional view of the power module manufactured by the above method.

1枚の絶縁性基板(100)上に形成された各セル(110)は適当なパターニングによって透明電極(109)および裏面電極(111)を通じて隣接するセル(110)とそれぞれ直列に接続され、高い電圧が得られるようになっている。パターニングは、図8〜9に示すように樹脂印刷→エッチング→樹脂剥離→太陽電池素子層形成のためのマスク合わせ→裏面電極形成のマスク合わせによりパターニングを行うメタルマスク方式又はフォトリソグラフィ方式あるいは透明電極被着層のレーザーによるパターニング→太陽電池素子層のレーザーを用いてのパターニング→裏面電極被着層のレーザーによるパターニング方式などがある(非特許文献1)。
太陽電池とその応用[改訂版] 発行所 (株)パワー社 著者 桑野幸徳 中野昭一 岸 靖雄 大西三千年 1994年4月25日発行
Each cell (110) formed on one insulating substrate (100) is connected in series with an adjacent cell (110) through a transparent electrode (109) and a back electrode (111) by appropriate patterning, and is high. Voltage can be obtained. As shown in FIGS. 8 to 9, the metal mask method, the photolithography method, or the transparent electrode is used for patterning by resin printing → etching → resin peeling → mask alignment for solar cell element layer formation → mask alignment for back electrode formation There is a patterning method using a laser of a deposition layer → a patterning using a laser of a solar cell element layer → a laser of a back electrode deposition layer (Non-Patent Document 1).
Photovoltaic cells and their applications [Revised Edition] Publishing company Power Co., Ltd. Author Kokunori Kuwano Shoichi Nakano Ikuo Kishi Mizuno Onishi April 25, 1994

現在、太陽電池は研究レベルから量産レベルに移行しており、且つ、近年の地球環境保護の面から世界的に注目されており、需要が大幅に増してきているのが現状であり、高い変換効率に対する要求と同じくして低コスト化がより求められるようになった。このような太陽電池に於いて、前述のパターニング方法はいずれも生産効率が悪く多大なコストがかかっているのが現状である。   At present, solar cells are moving from research level to mass production level, and in recent years, they are attracting worldwide attention from the viewpoint of protecting the global environment. Along with the demand for efficiency, lower costs have become more demanding. In such a solar cell, the above-described patterning methods are all inferior in production efficiency and costly.

本発明はこのような従来技術の問題点に鑑みてなされたものであり、半導体基板、特に半導体装置(とりわけダイオード)や太陽電池に用いられる基板の表面にパターニングにて形成される埋め込み型電極用の凹溝やセル形成用の凹溝或いは逆にデポジットを高効率で均一に形成するプラズマ加工装置を提供することを発明の課題とする。     The present invention has been made in view of such problems of the prior art, and is for a buried electrode formed by patterning on the surface of a semiconductor substrate, particularly a substrate used for a semiconductor device (especially a diode) or a solar cell. It is an object of the present invention to provide a plasma processing apparatus capable of uniformly forming a high-efficiency deposit or a concave groove for cell formation.

上記課題を達成するために、請求項1に係るプラズマ加工装置は、「被加工物載置用放電電極(1)と、該放電電極(1)に対向して配置された対向放電電極(2)と、対向放電電極(2)の被加工物載置用放電電極側の面に設けられた固体誘電体(3)と、固体誘電体(3)と被加工物載置用放電電極(1)間の空間(4)に雰囲気ガスを供給する雰囲気ガス供給配管(5a)とで構成されたプラズマ加工装置であって、固体誘電体(3)の対向放電電極(2)に対する対向面(2a)に放電用凸部(8)又は放電用凹部(7)が形成されている」ことを特徴とする。   In order to achieve the above object, a plasma processing apparatus according to claim 1 includes: a discharge electrode for placing a workpiece (1) and a counter discharge electrode (2) disposed opposite to the discharge electrode (1). ), A solid dielectric (3) provided on the surface of the counter discharge electrode (2) on the workpiece mounting discharge electrode side, and a solid dielectric (3) and a workpiece mounting discharge electrode (1) ) Is a plasma processing apparatus configured with an atmosphere gas supply pipe (5a) for supplying an atmosphere gas to the space (4) between the opposing surfaces (2a) of the solid dielectric (3) with respect to the counter discharge electrode (2) ) Is provided with a discharge convex portion (8) or a discharge concave portion (7).

本加工装置にあっては、固体誘電体(3)の対向面に放電用凸部(8)又は放電用凹部(7)が形成されているので、放電用凸部(8)と被加工物(10)との間、或いは放電用凹部(7)の天井面(7a)と前記被加工物(10)との間でグロー放電によるプラズマが発生し、放電用凸部(8)或いは放電用凹部(7)に合わせて被加工物(10)全面にわたって或いは必要部分に所定の穴又は溝形状が直接形成される。なお、被加工物(10)は例えばシリコンウェハーやガラスなどである。   In this processing apparatus, since the discharge convex portion (8) or the discharge concave portion (7) is formed on the opposite surface of the solid dielectric (3), the discharge convex portion (8) and the workpiece (10) or plasma due to glow discharge is generated between the ceiling surface (7a) of the discharge recess (7) and the workpiece (10), and the discharge protrusion (8) or discharge discharge A predetermined hole or groove shape is directly formed over the entire surface of the workpiece (10) or in a necessary portion in accordance with the recess (7). The workpiece (10) is, for example, a silicon wafer or glass.

以下、本発明を添付図面に基づいて詳細に説明する。図1は本発明装置の原理図で、円板又は角板状の被加工物載置用放電電極(1)と、前記被加工物載置用放電電極(1)の直上に該放電電極(1)に対向して配置された対向放電電極(2)と、対向放電電極(2)の被加工物載置用放電電極(1)に対する対向面に設けられた固体誘電体(3)と、固体誘電体(3)と被加工物載置用放電電極(1)間の空間(4)に雰囲気ガスを供給する雰囲気ガス供給機構(5)と、CCDセンサ(22)とで大略構成されており、密閉チャンバ(11)内に収納されている。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows the principle of the apparatus of the present invention. A discharge electrode (1) for placing a work piece on a disc or a square plate, and the discharge electrode (1) directly above the discharge electrode (1) for placing a work piece. A counter discharge electrode (2) disposed opposite to 1), and a solid dielectric (3) provided on a surface of the counter discharge electrode (2) facing the workpiece mounting discharge electrode (1), The atmosphere gas supply mechanism (5) for supplying the atmosphere gas to the space (4) between the solid dielectric (3) and the discharge electrode (1) for placing the work piece, and the CCD sensor (22) are roughly configured. And is housed in a sealed chamber (11).

図1において、被加工物載置用放電電極(1)は密閉チャンバ(11)の底部に設置された移動台(12)に載置されており、縦横回転および上下方向(X-Y-θ-Z方向)に駆動装置(13)により駆動されるようになっている。前記駆動装置(13)は、公知機構で、例えば、ステッピングモータ駆動機構を用いたX−Yステージ、その上に設置されたステッピングモータ駆動を用いた分割回転機構、更にその上にシリンダのような昇降機構とで構成されている。被加工物載置用放電電極(1)は、その上に設置された被加工物(10)を例えば、真空吸着あるいは静電吸着固定できるようになっている。   In FIG. 1, the discharge electrode (1) for placing a workpiece is placed on a movable table (12) installed at the bottom of a sealed chamber (11), and is rotated in the vertical and horizontal directions and in the vertical direction (XY-θ). It is driven by the drive device (13) in the -Z direction). The drive device (13) is a known mechanism, such as an XY stage using a stepping motor drive mechanism, a split rotation mechanism using a stepping motor drive installed thereon, and a cylinder thereon. It consists of a lifting mechanism. The workpiece mounting discharge electrode (1) can fix the workpiece (10) placed thereon, for example, by vacuum chucking or electrostatic chucking.

前記駆動装置(13)は、ドライバ(14)およびコントローラ(15)により縦・横・回転および上下方向の位置制御又は位置制御及び速度制御がなされるようになっている。また、密閉チャンバ(11)の底部と移動台(12)とは移動台(12)の移動に合わせて伸縮する密閉用蛇腹(16)によって接続されている。また、被加工物載置用放電電極(1)は電流センサ(17)を介して接地されている。   The drive device (13) is configured to be subjected to vertical, horizontal, rotational and vertical position control or position control and speed control by a driver (14) and a controller (15). The bottom of the sealed chamber (11) and the moving table (12) are connected by a sealing bellows (16) that expands and contracts with the movement of the moving table (12). Further, the discharge electrode (1) for placing the workpiece is grounded via the current sensor (17).

一方、対向放電電極(2)は密閉チャンバ(11)の天井部分から垂設され、電極交換時に用いられる昇降機構(18)に取り付けられており、対向放電電極(2)の下面(2a)(被加工物載置用放電電極(1)に対する対向面)に対向放電電極(2)より大きい固体誘電体(3)が対向放電電極(2)の下面(2a)全面を覆うように脱着可能に設置されている。また、対向放電電極(2)には対向放電電極(2)を冷却するための水冷用配管(21)と、前記固体誘電体(3)を通して被加工物載置用放電電極(1)上の被加工物(10)の合わせマークを見て位置決めするCCDセンサ(22)と、高電圧電源装置(23)が設置されており、前記CCDセンサ(22)にはCCDセンサ用のアンプ(24)およびCRT(25)が接続されている。昇降機構(18)は例えばシリンダ機構のようなもので上下方向に移動可能となっている。   On the other hand, the counter discharge electrode (2) is suspended from the ceiling portion of the sealed chamber (11), and is attached to an elevating mechanism (18) used at the time of electrode replacement, and the lower surface (2a) of the counter discharge electrode (2) ( Solid dielectric (3) larger than the counter discharge electrode (2) can be attached to and detached from the discharge electrode (1) facing the work piece so as to cover the entire lower surface (2a) of the counter discharge electrode (2). is set up. Further, the counter discharge electrode (2) includes a water cooling pipe (21) for cooling the counter discharge electrode (2), and a work electrode mounting discharge electrode (1) through the solid dielectric (3). A CCD sensor (22) for positioning by looking at the alignment mark of the workpiece (10) and a high voltage power supply device (23) are installed. The CCD sensor (22) has an amplifier (24) for the CCD sensor. And CRT (25) are connected. The elevating mechanism (18) is a cylinder mechanism, for example, and is movable in the vertical direction.

上記放電電極(1)(2)としては、例えば、銅、アルミニウム等の金属単体、ステンレス、真鍮等の合金、シリコン導体材料等が用いられ、それらの構造は、同図に示すような平行平板型に限らず、円筒対向平板型、球対向平板型、双曲面対向平板型、同軸円筒型、円筒対向円筒型の各構造を用いることが可能である。そして前記被加工物載置用放電電極(1)(平板電極)と固体誘電体(3)とは互いに一定の間隔(S1)(S2)を空けて対向するように配置されており、これら被加工物載置用放電電極(1)、固体誘電体(3)との間にはプラズマ発生空間(4)が形成される。   As the discharge electrodes (1) and (2), for example, a single metal such as copper or aluminum, an alloy such as stainless steel or brass, a silicon conductor material or the like is used, and the structure thereof is a parallel plate as shown in FIG. Not limited to the mold, it is possible to use each structure of a cylindrical opposed flat plate type, a sphere opposed flat plate type, a hyperboloid opposed flat plate type, a coaxial cylindrical type, and a cylindrical opposed cylindrical type. The workpiece-mounting discharge electrode (1) (flat plate electrode) and the solid dielectric (3) are arranged so as to face each other with a predetermined distance (S1) (S2) therebetween. A plasma generation space (4) is formed between the workpiece mounting discharge electrode (1) and the solid dielectric (3).

前記両者間の間隔(S1)(S2)は以下の通りである。図2に示すように被加工物載置用放電電極(1)に載置された被加工物(10)の上面と固体誘電体(3)の対向下面との間隔(S1)は0.05〜0.5mm程度で、通常は0.1mm前後である。溝幅(W)は50μm以上で、通常は50〜100μmであり、溝高さ(H)は2〜4mmである。このような数値が選ばれる理由は、放電用凹部(7)内を雰囲気ガス(エッチングガス或いはデポジットガス)が流れ、被加工物(10)の上面と固体誘電体(3)の対向下面との間には雰囲気ガスが流れないようにするためである。従って、放電用凹部(7)が溝の場合は、溝に沿って雰囲気ガスが流れるが、穴のような場合には図示していないが、例えば、穴の天井から雰囲気ガスが流れ込むようにする必要がある。   The interval (S1) (S2) between the two is as follows. As shown in FIG. 2, the distance (S1) between the upper surface of the workpiece (10) placed on the workpiece placement discharge electrode (1) and the opposite lower surface of the solid dielectric (3) is 0.05. About 0.5 mm, and usually around 0.1 mm. The groove width (W) is 50 μm or more, usually 50 to 100 μm, and the groove height (H) is 2 to 4 mm. The reason why such a numerical value is selected is that atmospheric gas (etching gas or deposit gas) flows in the discharge recess (7), and the upper surface of the workpiece (10) and the lower surface of the solid dielectric (3) are opposed to each other. This is to prevent atmospheric gas from flowing between them. Therefore, when the discharge recess (7) is a groove, the atmospheric gas flows along the groove. However, in the case of a hole, the atmospheric gas flows from the ceiling of the hole, which is not shown. There is a need.

一方、図3のように逆に被加工物載置用放電電極(1)に載置された被加工物(10)の上面と固体誘電体(3)の放電用凸部(8)の対向下面(8a)との間隔(S2)は1〜2mm程度で、通常は1mm前後である。放電用凸部(8)の幅は特に限定されるものではない。放電用凸部(8)の高さも別段限定されるものではないが、放電用凸部(8) の対向下面(8a)から優先的にプラズマ放電が発生するように2〜4mmの数値が選ばれる。なお、放電用凸部(8)の間にも雰囲気ガスは通流するが、放電用凸部(8)間の天井面(7a)は放電用凸部の対向下面より被加工物(10)から遠いので、放電用凸部(8)から優先的のプラズマ放電が生成することになる。以上のように図2、3にいずれに場合でもプラズマ放電生成領域に雰囲気ガスが通流するようにする。   On the other hand, the upper surface of the workpiece (10) placed on the workpiece placement discharge electrode (1) and the discharge convex portion (8) of the solid dielectric (3) are opposed to each other as shown in FIG. The distance (S2) from the lower surface (8a) is about 1 to 2 mm, usually around 1 mm. The width of the discharge projection (8) is not particularly limited. The height of the discharge convex portion (8) is not particularly limited, but a value of 2 to 4 mm is selected so that plasma discharge is preferentially generated from the opposite lower surface (8a) of the discharge convex portion (8). It is. Note that the atmospheric gas also flows between the discharge convex portions (8), but the ceiling surface (7a) between the discharge convex portions (8) is the workpiece (10) from the lower surface facing the discharge convex portions. Therefore, a preferential plasma discharge is generated from the discharge projection (8). As described above, in either case of FIGS. 2 and 3, the atmospheric gas is allowed to flow through the plasma discharge generation region.

固体誘電体(3)は例えば、石英ガラスのような誘電率の高いもの(一般的には、酸化物)で構成されており、対向放電電極(2)に取り付けられたとき、そのの下面(被加工物載置用放電電極(1)に対する対向面)に図2又は図3に示すような放電用凹部(7)又は放電用凸部(8)が形成されている。放電用凹部(7)又は放電用凸部(8)同士の間隔は被加工物(10)に必要な部位に合わせて形成されている。太陽電池の場合ではセルを構成するパターニング溝又は埋め込み電極用溝に合わせて形成される。放電用凹部(7)又は放電用凸部(8)の断面形状は、矩形であるが、勿論、これに限られず、被加工物(10)に形成されるパターニング形状に最適の断面形状が採用される。また、放電用凹部(7)又は放電用凸部(8)は細長い直線又は曲線或いは直線又は曲線の溝状、或いは直線又は曲線の突畝状でもよいし、単なる穴状或いは円柱状のものでもよい。要するに被加工物(10)に形成されるパターニング形状に最適の断面形状が採用される。   The solid dielectric (3) is made of a material having a high dielectric constant (generally, an oxide) such as quartz glass, for example, and when attached to the counter discharge electrode (2), its lower surface ( A discharge concave portion (7) or a discharge convex portion (8) as shown in FIG. 2 or FIG. 3 is formed on the workpiece mounting discharge electrode (1). The interval between the discharge concave portions (7) or the discharge convex portions (8) is formed in accordance with a site necessary for the workpiece (10). In the case of a solar cell, it is formed in accordance with a patterning groove or a buried electrode groove constituting a cell. The cross-sectional shape of the discharge concave portion (7) or the discharge convex portion (8) is rectangular, but of course, it is not limited to this, and the optimal cross-sectional shape is adopted for the patterning shape formed on the workpiece (10). Is done. Further, the discharge concave portion (7) or the discharge convex portion (8) may be an elongated straight line or a curved line, a straight or curved groove shape, a straight or curved protrusion shape, or a simple hole shape or a cylindrical shape. Good. In short, the optimum cross-sectional shape is adopted as the patterning shape formed on the workpiece (10).

なお、固体誘電体(3)は、同図に示すような対向放電電極(2)に設置するものに限られず、両放電電極(1)(2)の対向面の双方に設置するようにしてもよい。ただし、前述の放電用凹部(7)又は放電用凸部(8)は対向放電電極(2)に取り付けられる固体誘電体(3)に限られる。固体誘電体(3)は放電電極(2)に真空吸着にて密着するように設置され、対向する放電電極(1)に対して放電電極(2)の対向面を覆うようにして、露出部分へのプラズマ移動を防止している。   It should be noted that the solid dielectric (3) is not limited to the one installed on the counter discharge electrode (2) as shown in the figure, and is installed on both the opposing surfaces of the two discharge electrodes (1) and (2). Also good. However, the discharge recess (7) or the discharge protrusion (8) is limited to the solid dielectric (3) attached to the counter discharge electrode (2). The solid dielectric (3) is placed so as to be in close contact with the discharge electrode (2) by vacuum adsorption, and the exposed portion of the opposite discharge electrode (1) is covered so as to cover the opposite surface of the discharge electrode (2). Prevents plasma transfer to

雰囲気ガス供給機構(5)は昇降機構(18)に取り付けられ、対向放電電極(2)と共に昇降するようになっている。雰囲気ガス給排機構(5)の構成は固体誘電体(3)と被加工物載置用放電電極(1)との間のプラズマ発生空間(4)に開口した雰囲気ガス供給配管(5a)と雰囲気ガス排気配管(5b)及び両者(5a)(5b)の間のプラズマ発生空間(4)を前後に囲む隔壁(5c)とで構成されており、両者(5a)(5b)の上下両面にはシール部材(6)が設けられ、固体誘電体(3)の下面と被加工物載置用放電電極(1)の上面に密着するようになっている。   The atmospheric gas supply mechanism (5) is attached to the elevating mechanism (18) and elevates together with the counter discharge electrode (2). The atmosphere gas supply / exhaust mechanism (5) consists of an atmosphere gas supply pipe (5a) opened in the plasma generation space (4) between the solid dielectric (3) and the discharge electrode (1) for placing the workpiece. It consists of an atmosphere gas exhaust pipe (5b) and a partition wall (5c) surrounding the plasma generation space (4) between the two (5a) and (5b). Is provided with a seal member (6), which is in close contact with the lower surface of the solid dielectric (3) and the upper surface of the discharge electrode (1) for placing the workpiece.

従って、両者(5a)(5b)と前後の隔壁(5c)(5c)とで囲まれた上下両面が開口していることになる。この下面開口(5d)内に被加工物(10)が入り込み、上面開口(5e)に固体誘電体(3)が入り込むことになり、前記シール(6)にて雰囲気ガス供給・排気配管(5a)(5b)の上下がそれぞれ固体誘電体(3)と被加工物載置用放電電極(1)に密着してプラズマ発生空間(4)を形成することになる。なお、(5a1)は雰囲気ガス供給配管(5a)の給気口、(5a2)は雰囲気ガス供給配管(5a)の給気バッファ、(5b1)は雰囲気ガス排気配管(5b)の排気口、(5b2)は雰囲気ガス排気配管(5b)の排気バッファで、給気や排気の圧力変化(換言すれば圧力のハンチング)を軽減するものである。   Therefore, both upper and lower surfaces surrounded by both (5a) and (5b) and the front and rear partition walls (5c) and (5c) are opened. The workpiece (10) enters the lower surface opening (5d), and the solid dielectric (3) enters the upper surface opening (5e), and the atmosphere gas supply / exhaust piping (5a ) (5b) are in close contact with the solid dielectric (3) and the workpiece placement discharge electrode (1) to form a plasma generation space (4). (5a1) is the air supply port of the atmospheric gas supply pipe (5a), (5a2) is the air supply buffer of the atmospheric gas supply pipe (5a), (5b1) is the exhaust port of the atmospheric gas exhaust pipe (5b), ( 5b2) is an exhaust buffer of the atmospheric gas exhaust pipe (5b), which reduces changes in supply air and exhaust pressure (in other words, pressure hunting).

本実施例の被加工物(10)である太陽電池基板は単結晶もしくは多結晶の円形或いは矩形のシリコン基板である。この基板はp型、n型いずれでもよい。   The solar cell substrate which is the workpiece (10) of this example is a single crystal or polycrystalline circular or rectangular silicon substrate. This substrate may be either p-type or n-type.

密閉チャンバ(11)は本発明装置を収納するもので、不活性ガス供給配管(28a)、不活性ガス排気配管(28b)及び被加工物(10)の出し入れを行う開閉扉(29)が設けられている。   The closed chamber (11) accommodates the apparatus of the present invention, and is provided with an inert gas supply pipe (28a), an inert gas exhaust pipe (28b), and an open / close door (29) for taking in and out the workpiece (10). It has been.

しかして、ロボットハンドのような搬送手段(図示せず)により開閉扉(29)のところから被加工物載置用放電電極(1)上に被加工物(10)を載置し、続いて密閉チャンバ(11)内を真空にした後、不活性ガス供給配管(28a)のバルブ(31)を開き、不活性ガスが充填され、密閉チャンバ(11)内を所定圧(通常は常圧)の不活性雰囲気とする。通常、Heが不活性雰囲気として使用される。   Then, the workpiece (10) is placed on the workpiece placement discharge electrode (1) from the opening / closing door (29) by a transfer means (not shown) such as a robot hand, and then After the inside of the sealed chamber (11) is evacuated, the valve (31) of the inert gas supply pipe (28a) is opened, filled with inert gas, and the inside of the sealed chamber (11) is at a predetermined pressure (usually normal pressure). Inert atmosphere. Usually, He is used as an inert atmosphere.

続いて、CCDセンサ(22)を作動させ、被加工物載置用放電電極(1)上の被加工物(10)の位置合わせマークを基準として固体誘電体(3)に対して被加工物載置用放電電極(1)上の被加工物(10)が所定の位置に来るように駆動装置(13)により移動台(12)を移動させる。被加工物(10)の位置が定まったところで移動台(12)を停止させ、この状態で雰囲気ガス供給配管(5a)からキャリアガスと処理ガス(エッチングの場合はエッチングガスであり、デポジットの場合はデポジットガスである。)の混合ガスをプラズマ発生空間(4)に供給し、同時に雰囲気ガス排気配管(5b)から排出してプラズマ発生空間(4)全体(より正確には、放電用凹部(7)の場合は放電用凹部(7)内、放電用凸部(8)の場合は放電用凸部(8)と被加工物(10)との間)を通流する混合ガスで覆う。   Subsequently, the CCD sensor (22) is operated, and the workpiece to the solid dielectric (3) with reference to the alignment mark of the workpiece (10) on the discharge electrode (1) for placing the workpiece The moving table (12) is moved by the driving device (13) so that the workpiece (10) on the mounting discharge electrode (1) is at a predetermined position. When the position of the workpiece (10) is fixed, the moving table (12) is stopped, and in this state, the carrier gas and the processing gas (etching gas in the case of etching, etching gas from the atmosphere gas supply pipe (5a) Is supplied to the plasma generation space (4) and simultaneously discharged from the atmospheric gas exhaust pipe (5b) to discharge the entire plasma generation space (4) (more precisely, the discharge recess ( In the case of 7), it is covered with the mixed gas flowing in the discharge concave portion (7), and in the case of the discharge convex portion (8), between the discharge convex portion (8) and the workpiece (10).

この状態で、高電圧電源装置(23)を作動させて図4に示すような高電圧パルス([a]は一方向の高圧パルスの印加で、[b]は双方向の高圧パルスの印加の場合である。後者にあっては放電中に対向放電電極(2)に溜まったマイナス電荷を逆極性のパルスで中和し、安定的なグロー放電プラズマを生成させることができる。)を両放電電極(1)(2)に印加し、固体誘電体(3)と被加工物(10)との間に安定なグロー放電プラズマを発生させ、混合ガスにより被加工物(10)の放電部分のエッチング又はデポジットを直接行う。グロー放電プラズマの発生状況は前述の通りで、図2のように、固体誘電体(3)に放電用凹部(7)が形成されている場合、放電用凹部(7)の放電用天井面(7a)と、被加工物(10)の当該放電用天井面(7a)に対向する部分との間にグロー放電プラズマが発生することになる。(固体誘電体(3)の対向下面と被加工物(10)との間の狭い隙間(S1)には前記混合ガスが流れないのでエッチング又はデポジットは行われない。)。   In this state, the high-voltage power supply device (23) is operated and a high-voltage pulse as shown in FIG. 4 ([a] is a one-way high-voltage pulse application and [b] is a two-way high-voltage pulse application. In the latter case, the negative charge accumulated in the counter discharge electrode (2) during discharge can be neutralized with a pulse of reverse polarity to generate stable glow discharge plasma). Applied to the electrodes (1) and (2), a stable glow discharge plasma is generated between the solid dielectric (3) and the work piece (10), and the discharge portion of the work piece (10) is generated by the mixed gas. Etch or deposit directly. The state of generation of the glow discharge plasma is as described above. When the discharge concave portion (7) is formed in the solid dielectric (3) as shown in FIG. 2, the discharge ceiling surface of the discharge concave portion (7) ( Glow discharge plasma is generated between 7a) and the portion of the workpiece (10) facing the discharge ceiling surface (7a). (Since the mixed gas does not flow in the narrow gap (S1) between the opposing lower surface of the solid dielectric (3) and the workpiece (10), no etching or depositing is performed.)

また、図3のように固体誘電体(3)に放電用凸部(8)が形成されている場合も前述の通りで、放電用凸部(8)の下端面(8a)と被加工物(10)の当該下端面(8a)に対向する部分との間にグロー放電プラズマが発生することになる。   Further, as shown in FIG. 3, when the discharge convex portion (8) is formed on the solid dielectric (3) as shown in FIG. 3, the lower end surface (8a) of the discharge convex portion (8) and the workpiece Glow discharge plasma is generated between the portion facing the lower end surface (8a) of (10).

所定量の表面処理(エッチングやデポジット)が終了すると前記混合ガスの供給と放電電極(1)(2)間の通電を停止し、密閉チャンバ(11)内を窒素などのパージガスでパージした後、開閉扉(29)を開き、表面加工処理の終了した被加工物(10)をロボットアームのような搬送手段により取り出す。   When a predetermined amount of surface treatment (etching or deposit) is completed, the supply of the mixed gas and the energization between the discharge electrodes (1) and (2) are stopped, and the inside of the sealed chamber (11) is purged with a purge gas such as nitrogen, The open / close door (29) is opened, and the workpiece (10) having been subjected to the surface processing is taken out by a conveying means such as a robot arm.

本発明において処理に用いるガスとしては、電界を印加することによってグロー放電プラズマを発生するガスであれば、特に限定されず、処理目的に応じて種々のガスを使用できる。   The gas used in the treatment in the present invention is not particularly limited as long as it is a gas that generates glow discharge plasma by applying an electric field, and various gases can be used depending on the purpose of the treatment.

本発明は、従来のパターニング方法を変更する画期的な方法であり、太陽電池基板の低コスト・大量生産に多大の貢献するものであり、ひいては地球環境の改善に資すること甚だ大である。   The present invention is an epoch-making method for changing the conventional patterning method, greatly contributes to low-cost and mass production of solar cell substrates, and greatly contributes to improvement of the global environment.

本発明の概略構造説明図Schematic structure explanatory diagram of the present invention 本発明で使用される固体誘電体の第1実施例の断面図Sectional view of the first embodiment of the solid dielectric used in the present invention 本発明で使用される固体誘電体の第2実施例の断面図Sectional view of the second embodiment of the solid dielectric used in the present invention 本発明の被加工物載置用放電電極周りの概略構造図Schematic structure around the discharge electrode for placing a workpiece of the present invention 本発明の雰囲気ガス給排機構の概略斜視図Schematic perspective view of the atmospheric gas supply / discharge mechanism of the present invention 太陽電池のセル部分の原理図Principle diagram of solar cell 同上の背面斜視図Rear perspective view 従来のパターニングのフロー図Conventional patterning flow diagram 他の従来のパターニングのフロー図Flow chart of other conventional patterning 一般的な電力用モジュールの断面図Cross section of a general power module

符号の説明Explanation of symbols

(1) 被加工物載置用放電電極
(2) 対向放電電極
(3) 固体誘電体
(4) プラズマ発生空間
(5a) 雰囲気ガス供給管
(7) 放電用凸部
(8) 放電用凹部
(1) Discharge electrode for placing workpiece
(2) Counter discharge electrode
(3) Solid dielectric
(4) Plasma generation space
(5a) Atmospheric gas supply pipe
(7) Discharge convex part
(8) Recess for discharge

Claims (1)

被加工物載置用放電電極と、該放電電極に対向して配置された対向放電電極と、対向放電電極の被加工物載置用放電電極側の面に設けられた固体誘電体と、固体誘電体と被加工物載置用放電電極間の空間に雰囲気ガスを供給する雰囲気ガス供給管とで構成されたプラズマ加工装置であって、
固体誘電体の対向放電電極に対する対向面に放電用凸部又は放電用凹部が形成されていることを特徴とするプラズマ加工装置。
A discharge electrode for mounting a workpiece, a counter discharge electrode disposed opposite the discharge electrode, a solid dielectric provided on a surface of the counter discharge electrode on the discharge electrode for mounting the workpiece, and a solid A plasma processing apparatus comprising an atmosphere gas supply pipe for supplying an atmosphere gas to a space between a dielectric and a discharge electrode for placing a workpiece;
A plasma processing apparatus, wherein a discharge convex portion or a discharge concave portion is formed on a surface of a solid dielectric facing a counter discharge electrode.
JP2004372035A 2004-12-22 2004-12-22 Plasma treatment device Pending JP2006179720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372035A JP2006179720A (en) 2004-12-22 2004-12-22 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372035A JP2006179720A (en) 2004-12-22 2004-12-22 Plasma treatment device

Publications (1)

Publication Number Publication Date
JP2006179720A true JP2006179720A (en) 2006-07-06

Family

ID=36733526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372035A Pending JP2006179720A (en) 2004-12-22 2004-12-22 Plasma treatment device

Country Status (1)

Country Link
JP (1) JP2006179720A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179651A (en) * 2004-12-22 2006-07-06 Sony Corp Forming method of pattern
JP2008140566A (en) * 2006-11-30 2008-06-19 Univ Nagoya Apparatus and method for treatment by irradiation of energy ray
JP2008153065A (en) * 2006-12-18 2008-07-03 Sekisui Chem Co Ltd Plasma treatment device
JP2009252800A (en) * 2008-04-01 2009-10-29 M Setek Co Ltd Method and apparatus for plasma arc cutting
KR20180048666A (en) * 2015-08-31 2018-05-10 토탈 에스에이 Plasma generating device and method of manufacturing patterned device using spatially separated plasma processing
JP2020161301A (en) * 2019-03-26 2020-10-01 日本電産株式会社 Plasma processing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179651A (en) * 2004-12-22 2006-07-06 Sony Corp Forming method of pattern
JP2008140566A (en) * 2006-11-30 2008-06-19 Univ Nagoya Apparatus and method for treatment by irradiation of energy ray
JP2008153065A (en) * 2006-12-18 2008-07-03 Sekisui Chem Co Ltd Plasma treatment device
JP2009252800A (en) * 2008-04-01 2009-10-29 M Setek Co Ltd Method and apparatus for plasma arc cutting
KR20180048666A (en) * 2015-08-31 2018-05-10 토탈 에스에이 Plasma generating device and method of manufacturing patterned device using spatially separated plasma processing
JP2018533158A (en) * 2015-08-31 2018-11-08 トタル ソシエテ アノニムTotal Sa Plasma generating apparatus and method for manufacturing patterned devices using spatially resolved plasma processing
KR102594824B1 (en) * 2015-08-31 2023-10-30 토탈에너지스 에스이 Method for manufacturing patterned devices using plasma generating apparatus and spatially separated plasma processing
JP2020161301A (en) * 2019-03-26 2020-10-01 日本電産株式会社 Plasma processing device
JP7067516B2 (en) 2019-03-26 2022-05-16 日本電産株式会社 Plasma processing equipment

Similar Documents

Publication Publication Date Title
US7235736B1 (en) Monolithic integration of cylindrical solar cells
CN102224599A (en) Dry cleaning of silicon surface for solar cell applications
US20150318432A1 (en) Tubular photovoltaic device and method of making
CN101866981B (en) Thin film deposition process module for manufacturing solar cell, thin film deposition process system for manufacturing solar cell, and cleaning method for thin film deposition process module
KR20080075156A (en) Photovoltaic contact and wiring formation
JP2010500760A (en) Heating and cooling the substrate support
JP2014158018A (en) Semiconductor device and method of manufacturing the same
CN110571121B (en) Ion beam etching device and method for self-cleaning by adopting remote plasma
US20160329446A1 (en) Device for manufacturing integrated thin film solar cell
JP2006179720A (en) Plasma treatment device
US20090060687A1 (en) Transfer chamber with rolling diaphragm
JPH0246670B2 (en)
US20050178329A1 (en) Formation of photoconductive and photovoltaic films
US6136162A (en) Method and apparatus for depositing zinc oxide film and method for producing photoelectric converter device
US9905723B2 (en) Methods for plasma activation of evaporated precursors in a process chamber
US8026157B2 (en) Gas mixing method realized by back diffusion in a PECVD system with showerhead
KR20100105096A (en) In-situ laser scribing apparatus
JP3879093B2 (en) Combinatorial device manufacturing equipment
JP2009252800A (en) Method and apparatus for plasma arc cutting
JP2008045180A (en) Method for depositing dlc film, and manufacturing apparatus of dlc film
CN210722984U (en) Laser annealing system
JPS60175411A (en) Manufacture of thin semiconductor film and apparatus thereof
CN109841471B (en) Device for separating positive ions from negative ions, film forming equipment and chamber cleaning method
TW202410139A (en) Preclean and encapsulation of microled features
KR101181411B1 (en) Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus