JP2006178411A - 画像形成方法及び画像形成装置 - Google Patents

画像形成方法及び画像形成装置 Download PDF

Info

Publication number
JP2006178411A
JP2006178411A JP2005306968A JP2005306968A JP2006178411A JP 2006178411 A JP2006178411 A JP 2006178411A JP 2005306968 A JP2005306968 A JP 2005306968A JP 2005306968 A JP2005306968 A JP 2005306968A JP 2006178411 A JP2006178411 A JP 2006178411A
Authority
JP
Japan
Prior art keywords
toner
image
image forming
developing
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306968A
Other languages
English (en)
Inventor
Akihiko Itami
明彦 伊丹
Kunio Shigeta
邦男 重田
Hiroshi Yamazaki
弘 山崎
Masanari Asano
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005306968A priority Critical patent/JP2006178411A/ja
Publication of JP2006178411A publication Critical patent/JP2006178411A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Developing For Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

【課題】本発明の目的はカウンター現像方式で発生しやすいカブリや先端部濃度低下に基づく画像ムラの発生を防止して、画像濃度が高く、色再現性が良好な電子写真画像を作製できる画像形成方法及び画像形成装置を提供することである。
【解決手段】有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成方法において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
【選択図】図1

Description

本発明は、電子写真方式の画像形成に用いる画像形成方法及び画像形成装置に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる画像形成方法及び画像形成装置に関するものである。
電子写真用の感光体はSe、ヒ素、ヒ素/Se合金、CdS、ZnO等の無機感光体から、公害や製造の容易性等の利点に優れる有機感光体に主体が移り、様々な材料を用いた有機感光体(以下、単に感光体とも云う)が開発されている。
近年では電荷発生と電荷輸送の機能を異なる材料に担当させた機能分離型の感光体が主流となっており、例えば、導電性支持体上に中間層を介して電荷発生層、電荷輸送層を積層した積層型の感光体が広く用いられている(特許文献1)。
また、電子写真プロセスに目を向けると潜像画像形成方式は、ハロゲンランプを光源とするアナログ画像形成とLEDやレーザーを光源とするデジタル方式の画像形成に大別される。最近はパソコンのハードコピー用のプリンターとして、また通常の複写機においても画像処理の容易さや複合機への展開の容易さからデジタル方式の潜像画像形成方式が急激に主流となりつつある。
又、デジタル方式の画像形成方法では、オリジナルのプリント画像を作製する機会が増大し、高画質への要求が高まっいる。該電子写真画像の高画質化のために、有機感光体上にスポット径が小さい露光光源を用いて微細な潜像形成を行い、微細なドット画像を形成する技術が開発されている。例えば、スポット径が4000μm2以下の光源を用いて有機感光体上に高精細の潜像を形成する方法が知られている(特許文献2)。このような小径スポット径で、高密度のドット露光を行なっても、該ドット露光により高密度で、均一な潜像を形成できる有機感光体と、該潜像をトナー画像として再現できる現像方式の構成がまだ十分に達成されていない。
即ち、有機感光体上の潜像の現像方法としては、有機感光体に対設した現像スリーブを現像領域で、有機感光体の進行方向と平行に進行させる現像方式(以後、パラレル現像方式)と、カウンター方向に進行させる現像方式(以後、カウンター現像方式)が知られているが、両者共、高密度のドット画像を形成するに際し、課題を十分に解決し得ていない。
前記、有機感光体に対設した現像スリーブを有機感光体の進行方向と平行に進行させるパラレル現像方式では、高濃度の画像の周辺の現像性が劣化し、濃度不足になりやすく、コントラストが高い写真画像等で、画質が劣化しやすい。
一方、カウンター方向に進行させる現像方式では、現像性が高く、高濃度のドット画像を形成できるが、しばしば、カブリが発生したり、先端部に濃度不足が発生しやすい。
上記のような現象は、単に現像剤の改善のみでは、十分に解決されず、有機感光体の特性によっても、これらの現象が強調されたり、改善されたりすることが見出されている。
即ち、有機感光体上に形成される静電潜像のコントラストや、有機感光体と現像剤の摩擦による逆帯電トナーの生成等にも関連していると推測される。
即ち、静電潜像が高精細で形成されても、カウンター現像方式では、トナーの帯電量分布がブロードだと、逆帯電性のトナーが生成しやすく、その結果、トナー飛散が発生したり、先端部濃度低下が発生したりしやすく、高精細の静電潜像をトナー画像として再現できない。従来、粒度分布を狭くした重合トナーを現像手段に用いることが提案されている(特許文献3)。しかしながら、ここで提案された粒度分布のトナーでは、カウンター現像方式では、トナー飛散の発生を十分に抑制できず、高精細の静電潜像をトナー画像として再現できていないことが見いだされた。
また、最近、ワーム状ムラと言われる微細なムラ故障が問題となっている。このワーム状ムラの原因はあまり判明されていないが、感光体と現像スリーブの相対速度が速く、現像剤の磁気ブラシと感光体間の摩擦帯電が強くなることにより発生するものと考えられている。このため、パラレル現像方式より、カウンター現像方式の方が、ワーム状ムラが発生しやすい傾向にある。また、ワーム状ムラは現像バイアスの周波数と相関性があり、周波数を高くすると、ワーム状ムラは少なくなる。ところが、周波数を高くすると、画像の鮮鋭性が低下する傾向にあり、ワーム状ムラの軽減と画像の鮮鋭性の両方を満足すことは困難である。
特開2004−133018号公報 特開平8−272197号公報 特開2002−244336号公報
本発明は上述のような従来技術の問題点を解決して、即ち、カウンター現像方式で発生しやすい問題点を解決し、高精細のデジタル画像を安定して形成する画像形成方法に関するものであり、更に詳しくは、カウンター現像方式で発生しやすいカブリや先端部濃度低下に基づく画像ムラやワーム状ムラの発生を防止して、画像濃度が高く、色再現性が良好な電子写真画像を作製できる画像形成方法及び画像形成装置を提供することである。
本発明の上記のような課題、即ち、カウンター現像方式で発生しやすいカブリの発生や部分的な濃度不足を解消し、均一で高精細の電子写真画像を得るために、現像剤の構成、有機感光体の構成及び現像方式との関連を検討した結果、現像性が優れたカウンター方式でのカブリの発生や画像先端部の濃度不良やワーム状ムラを防止するためには、現像剤に用いるトナーの微小トナー成分をより少なくすると、及びトナーの含水率を小さくすることが効果的であることを見出し、本発明を完成した。
すなわち、カウンター現像方式を適正にすることにより、カブリの発生や画像先端部の濃度不良の問題をある程度改善できたが、ワーム状ムラと言われる微細なムラ故障防止と鮮鋭性向上の両立を図る事は出来なかった。そこで、本発明者らが鋭意検討を行った結果、カウンター現像方式において、本発明のトナーを用いることにより上記両立を達成し、更に、カブリの発生や画像先端部の濃度不良の問題を改善することができることを見出した。ワーム状ムラと言われる微細なムラ故障防止と鮮鋭性向上の両立を可能にすることができた理由については定かではないが、本発明のトナーの分布の狭さと適正な含水率が、摩擦帯電性のバラツキを少なくし、あたかも現像バイアス周波数を上げたと同じ作用があるものと推測している。
即ち、本発明は以下のような構成を有することにより達成される。
1.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成方法において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
2.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成方法において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
3.前記トナーはトナー粒子の50%体積粒径(Dv50)と50%個数粒径(Dp50)の比(Dv50/Dp50)が1.0〜1.11であり、体積粒径の大きい方からの累積75%体積粒径(Dv75)と個数粒径の大きい方からの累積75%個数粒径(Dp75)の比(Dv75/Dp75)が1.0〜1.10のトナーであることを特徴とする前記1又は2に記載の画像形成方法。
4.トナー粒子の50%体積粒径(Dv50)が2〜9μmであることを特徴とする前記1〜3のいずれか1項に記載の画像形成方法。
5.前記有機感光体が導電性支持体上にバインダー樹脂中に数平均一次粒径3〜200nmのN型半導性粒子を含有する中間層を介して感光層を有することを特徴とする前記1〜4のいずれか1項に記載の画像形成方法。
6.前記N型半導性粒子が酸化チタン又は酸化亜鉛であることを特徴とする前記5に記載の画像形成方法。
7.前記N型半導性粒子が酸化チタンであることを特徴とする前記6に記載の画像形成方法。
8.前記酸化チタンがルチル形酸化チタン顔料又はアナターゼ形酸化チタン顔料であることを特徴とする前記7に記載の画像形成方法。
9.前記有機感光体と現像スリーブ間の現像ギャップ(Dsd)が0.2〜0.6mmであることを特徴とする前記1〜8のいずれか1項に記載の画像形成方法。
10.前記有機感光体と現像スリーブ間の現像領域における磁気ブラシの食い込み深さ(Bsd)が0.0〜0.8mmであることを特徴とする前記1〜9のいずれか1項に記載の画像形成方法。
11.前記現像スリーブと有機感光体の周速比(Vs/Vopc)が1.2〜3.0であることを特徴とする前記1〜10に記載の画像形成方法。
12.有機感光体の表面電位V0と現像スリーブに付加される現像バイアスの直流成分Vdcの差│V0−Vdc│が100〜300V、該現像バイアスの直流成分Vdcが−300V〜−650V、該現像バイアスの交流成分Vacが0.5〜1.5kV、周波数3〜9kHz且つDuty45〜70%、矩形波であることを特徴とする前記9〜11のいずれか1項に記載の画像形成方法。
13.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成装置において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
14.有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成装置において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
本発明の画像形成方法及び画像形成装置を用いることにより、カウンター現像方式で発生しやすいカブリの発生や先端部の濃度不良を防止でき、更にはワーム状ムラと言われる微細なムラを消失させ、色再現性が良好な電子写真画像を提供することができる。
以下、本発明について、詳細に説明する。
本発明の画像形成方法は、有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成方法において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする。
又、本発明の画像形成方法は、有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成方法において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする。
本発明の画像形成方法は上記構成を有することにより、カウンター現像方式により発生しやすい、カブリの発生や先端部の濃度不良を防止でき、高画質のデジタル画像或いはカラー画像を提供することができる。
一方、本発明に係わる現像剤は、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であるトナーを含有する。
粒径0.7×(Dp50)以下のトナー粒子の含有量が8個数%を越えると小粒径成分の存在比率が増大し、弱帯電トナーの増加や逆極性のトナーの発生、あるいは過帯電トナーの発生などの原因となる。その結果、カウンター現像方式ではカブリや先端部濃度低下が発生しやすく、カラー画像では色再現性が劣化しやすい。
又、トナーの含水率は、トナーの帯電性及び帯電保持性に強く関連し、本発明では、上記分布特性を有するトナーでは、含水率が0.1〜2.0質量%の範囲で、トナーの帯電立ち上がり及び帯電保持性が良好であることが見出された。含水量が0.1質量%未満では帯電立ち上がり特性が低下し、弱帯電トナーが発生しやすく、カウンター現像方式ではカブリや先端部濃度低下が発生しやすい。一方、含水率が2.0質量%を超えると、トナーの電荷保持性が低下し、画像濃度が低下しやすく、先端部濃度低下も発生しやすい。
更に、本発明に係わるトナーの粒度分布は、50%体積粒径(Dv50)と50%個数粒径(Dp50)の比(Dv50/Dp50)が1.0〜1.11が好ましく、より好ましくは1.0〜1.10がよい。
また、トナー粒子の大きい方からの累積75%体積粒径(Dv75)と累積75%個数粒径(Dp75)の比(Dv75/Dp75)が1.0〜1.10であることが好ましい。1.10を越える場合には小粒径成分の存在比率が増大し、弱帯電成分の増加や逆極性のトナーの発生、あるいは過帯電成分の発生などの原因となる。その結果、カウンター現像方式ではカブリや先端部濃度低下が発生しやすく、カラー画像では色再現性が劣化しやすい。
なお、トナーの体積平均粒径、即ち、上記50%体積粒径(Dv50)は2〜9μm、より好ましくは3〜7μmであることが望ましい。この範囲とすることにより、解像度を高くすることができる。さらに上記の範囲と組み合わせることにより、小粒径トナーでありながら、微細な粒径のトナーの存在量を少なくすることができ、長期に亘ってドット画像の再現性が改善され、鮮鋭性の良好な、安定した画像を形成することができる。
本発明において、大きい方からの累積75%体積粒径(Dv75)或いは累積75%個数粒径(Dp75)とは、粒径の大きな方からの頻度を累積し、全体積の和或いは個数の和に対して、それぞれが75%を示す粒径分布部位の体積粒径或いは個数粒径で表す。
本発明において、粒度分布、50%体積粒径(Dv50)、50%個数粒径(Dp50)、累積75%体積粒径(Dv75)、累積75%個数粒径(Dp75)等は、シースフロー電気抵抗式粒度分布測定装置SD−2000を用いて測定することができる。
尚、静電潜像を乾式現像で顕像化する技術分野においては、少なくとも着色剤と樹脂よりなる着色粒子(トナー粒子の原型)に、外添剤等を加えたものをトナーとして用いている。しかし、特に問題がない限り着色粒子とトナーとをあまり区別せず、記載しているのが一般的である。本発明におけるその粒径および粒径分布においても、着色粒子とトナー粒子の何れを測定してもその測定値に変化はない。
また、外添剤等の径粒はnmオーダーであり(数平均1次粒子)、光散乱電気泳動粒径測定装置「ELS−800」(大塚電子工業株式会社製)で測定することが出来る。
以下、前記した粒度分布を示す本発明に用いられるトナーの構成及び製造方法について詳細に説明する。
〈トナー〉
本発明に用いるトナーは、粉砕トナーでも、重合トナーでも、前記範囲に作製されたトナーであればよいが、本発明に係わるトナーとしては、安定した粒度分布を得られる観点から、重合法で作製できる重合トナーが好ましい。
重合トナーとはトナー用のバインダー樹脂(樹脂粒子)の生成とトナー形状がバインダー樹脂の原料モノマーの重合と、必要によりその後の化学的処理により形成されるトナーを意味する。より具体的には懸濁重合、乳化重合等の重合反応と、必要によりその後に行われる粒子同士の融着工程を経て形成されるトナーを意味する。
本発明では、トナーとして離型剤を含有する樹脂粒子と着色剤とを塩析/融着させて得られた会合型トナーを使用することが好ましい。
この理由としては前記のような粒度分布を示すトナーを製造出来ることに加え会合型トナーはトナー粒子間の表面性が均質なものとなっており、転写性を損なうことなく、本発明の効果を発揮することができたものと推定される。
上記の「塩析/融着」とは、塩析(粒子の凝集)と融着(粒子間の界面消失)とが同時に起こること、または、塩析と融着とを同時に起こさせる行為をいう。塩析と融着とを同時に行わせるためには、樹脂粒子を構成する樹脂のガラス転移温度(Tg)以上の温度条件下において粒子(樹脂粒子、着色剤)を凝集させる必要がある。
〈離型剤〉
本発明に係わるトナーを構成する離型剤としては、特に限定されるものではないが、下記一般式(5)で示される結晶性のエステル化合物(以下、「特定のエステル化合物」という。)からなるものであることが好ましい。
一般式(5):R1−(OCO−R2n
(式中、R1およびR2は、それぞれ、置換基を有していてもよい炭素数が1〜40の炭化水素基を示し、nは1〜4の整数である。)
〈特定のエステル化合物〉
特定のエステル化合物を示す一般式(5)において、R1およびR2は、それぞれ、置換基を有していてもよい炭化水素基を示す。
炭化水素基R1の炭素数は1〜40とされ、好ましくは1〜20、更に好ましくは2〜5とされる。
炭化水素基R2の炭素数は1〜40とされ、好ましくは16〜30、更に好ましくは18〜26とされる。
また、一般式(5)において、nは1〜4の整数とされ、好ましくは2〜4、さらに好ましくは3〜4、特に好ましくは4とされる。
特定のエステル化合物は、アルコールとカルボン酸との脱水縮合反応により好適に合成することができる。
最も好適な特定のエステル化合物としては、ペンタエリスリトールテトラベヘン酸エステルを挙げることができる。
特定のエステル化合物の具体例としては、下記式1)〜26)に示す化合物を例示することができる。
Figure 2006178411
Figure 2006178411
〈離型剤の含有割合〉
本発明に係わるトナーにおける離型剤の含有割合としては、通常1〜30質量%とされ、好ましくは2〜20質量%、更に好ましくは3〜15質量%とされる。
〈離型剤を含有する樹脂粒子〉
本発明において「離型剤を含有する樹脂粒子」は、樹脂粒子を得るための単量体中に離型剤を溶解させ、得られる単量体溶液を水系媒体中に分散させ、この系を重合処理することにより、ラテックス粒子として得ることができる。
かかる樹脂粒子の重量平均粒径は50〜2000nmであることが好ましい。
離型剤を含有する樹脂粒子を得るための重合法としては、乳化重合法、懸濁重合法、シード重合法などの造粒重合法を挙げることができる。
離型剤を含有する樹脂粒子を得るための好ましい重合法としては、臨界ミセル濃度以下の濃度の界面活性剤を溶解してなる水系媒体中に、単量体中に離型剤を溶解してなる単量体溶液を、機械的エネルギーを利用して油滴分散させて分散液を調製し、得られた分散液に水溶性重合開始剤を添加して、ラジカル重合させる方法(以下、この明細書において「ミニエマルジョン法」という。)を挙げることができる。なお、水溶性重合開始剤を添加することに代えて、または、当該水溶性重合開始剤を添加するとともに、油溶性の重合開始剤を前記単量体溶液中に添加してもよい。
ここに、機械的エネルギーによる油滴分散を行うための分散機としては、特に限定されるものではないが、例えば、高速回転するローターを備えた攪拌装置「クレアミックス(CLEARMIX)」(エム−テクニック(株)社製)、超音波分散機、機械式ホモジナイザー、マントンゴーリンおよび圧力式ホモジナイザーなどを挙げることができる。また、分散粒子径としては、10〜1000nmとされ、好ましくは30〜300nmとされる。
〈バインダー樹脂〉
本発明に係わるトナーを構成するバインダー樹脂は、GPCにより測定される分子量分布で100,000〜1,000,000の領域にピークまたは肩を有する高分子量成分と、1,000〜20,000の領域にピークまたは肩を有する低分子量成分とを含有する樹脂であることが好ましい。
ここに、GPCによる樹脂の分子量の測定方法としては、測定試料0.5〜5.0mg(具体的には1mg)に対してTHFを1ml加え、マグネチックスターラーなどを用いて室温にて撹拌を行って十分に溶解させる。次いで、ポアサイズ0.45〜0.50μmのメンブランフィルターで処理した後にGPCへ注入する。
GPCの測定条件としては、40℃にてカラムを安定化させ、THFを毎分1mlの流速で流し、1mg/mlの濃度の試料を約100μl注入して測定する。カラムは、市販のポリスチレンジェルカラムを組み合わせて使用することが好ましい。例えば、昭和電工社製のShodex GPC KF−801,802,803,804,805,806,807の組合せや、東ソー社製のTSKgelG1000H、G2000H,G3000H,G4000H,G5000H,G6000H,G7000H,TSK guard columnの組合せなどを挙げることができる。また、検出器としては、屈折率検出器(IR検出器)またはUV検出器を用いるとよい。試料の分子量測定では、試料の有する分子量分布を単分散のポリスチレン標準粒子を用いて作製した検量線を用いて算出する。検量線作製用のポリスチレンとしては10点程度用いるとよい。
以下、樹脂粒子の構成材料および調製方法(重合方法)について説明する。
〔単量体〕
樹脂粒子(バインダー樹脂)を得るために使用する重合性単量体としては、ラジカル重合性単量体を必須の構成成分とし、必要に応じて架橋剤を使用することができる。また、以下の酸性基を有するラジカル重合性単量体または塩基性基を有するラジカル重合性単量体を少なくとも1種類含有させることが好ましい。
(1)ラジカル重合性単量体:
ラジカル重合性単量体としては、特に限定されるものではなく従来公知のラジカル重合性単量体を用いることができる。また、要求される特性を満たすように、1種または2種以上のものを組み合わせて用いることができる。
具体的には、芳香族系ビニル単量体、(メタ)アクリル酸エステル系単量体、ビニルエステル系単量体、ビニルエーテル系単量体、モノオレフィン系単量体、ジオレフィン系単量体、ハロゲン化オレフィン系単量体等を用いることができる。
芳香族系ビニル単量体としては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロロスチレン、p−エチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、2,4−ジメチルスチレン、3,4−ジクロロスチレン等のスチレン系単量体およびその誘導体が挙げられる。
(メタ)アクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸−2−エチルヘキシル、β−ヒドロキシアクリル酸エチル、γ−アミノアクリル酸プロピル、メタクリル酸ステアリル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等が挙げられる。
ビニルエステル系単量体としては、酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル等が挙げられる。
ビニルエーテル系単量体としては、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル、ビニルフェニルエーテル等が挙げられる。
モノオレフィン系単量体としては、エチレン、プロピレン、イソブチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン等が挙げられる。
ジオレフィン系単量体としては、ブタジエン、イソプレン、クロロプレン等が挙げられる。
ハロゲン化オレフィン系単量体としては、塩化ビニル、塩化ビニリデン、臭化ビニル等が挙げられる。
(2)架橋剤:
架橋剤としては、トナーの特性を改良するためにラジカル重合性架橋剤を添加しても良い。ラジカル重合性架橋剤としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルエーテル、ジエチレングリコールメタクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、フタル酸ジアリル等の不飽和結合を2個以上有するものが挙げられる。
(3)酸性基または塩基性基を有するラジカル重合性単量体:
酸性基を有するラジカル重合性単量体または塩基性基を有するラジカル重合性単量体としては、例えば、カルボキシル基含有単量体、スルホン酸基含有単量体、第1級アミン、第2級アミン、第3級アミン、第4級アンモニウム塩等のアミン系の化合物を用いることができる。
酸性基を有するラジカル重合性単量体としては、カルボン酸基含有単量体として、アクリル酸、メタクリル酸、フマール酸、マレイン酸、イタコン酸、ケイ皮酸、マレイン酸モノブチルエステル、マレイン酸モノオクチルエステル等が挙げられる。
スルホン酸基含有単量体としては、スチレンスルホン酸、アリルスルホコハク酸、アリルスルホコハク酸オクチル等が挙げられる。
これらは、ナトリウムやカリウム等のアルカリ金属塩あるいはカルシウムなどのアルカリ土類金属塩の構造であってもよい。
塩基性基を有するラジカル重合性単量体としては、アミン系の化合物が挙げられ、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、および上記4化合物の4級アンモニウム塩、3−ジメチルアミノフェニルアクリレート、2−ヒドロキシ−3−メタクリルオキシプロピルトリメチルアンモニウム塩、アクリルアミド、N−ブチルアクリルアミド、N,N−ジブチルアクリルアミド、ピペリジルアクリルアミド、メタクリルアミド、N−ブチルメタクリルアミド、N−オクタデシルアクリルアミド;ビニルピリジン、ビニルピロリドン;ビニルN−メチルピリジニウムクロリド、ビニルN−エチルピリジニウムクロリド、N,N−ジアリルメチルアンモニウムクロリド、N,N−ジアリルエチルアンモニウムクロリド等を挙げることができる。
本発明に用いられるラジカル重合性単量体としては、酸性基を有するラジカル重合性単量体または塩基性基を有するラジカル重合性単量体が単量体全体の0.1〜15質量%使用することが好ましく、ラジカル重合性架橋剤はその特性にもよるが、全ラジカル重合性単量体に対して0.1〜10質量%の範囲で使用することが好ましい。
〔連鎖移動剤〕
樹脂粒子の分子量を調整することを目的として、一般的に用いられる連鎖移動剤を用いることが可能である。
連鎖移動剤としては、特に限定されるものではなく例えばオクチルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン等のメルカプタン、n−オクチル−3−メルカプトプロピオン酸エステル等のメルカプトプロピオン酸エステル類、四臭化炭素およびスチレンダイマー等が使用される。
〔重合開始剤〕
本発明に用いられるラジカル重合開始剤は水溶性であれば適宜使用が可能である。例えば過硫酸塩(過硫酸カリウム、過硫酸アンモニウム等)、アゾ系化合物(4,4′−アゾビス4−シアノ吉草酸及びその塩、2,2′−アゾビス(2−アミジノプロパン)塩等)、パーオキシド化合物等が挙げられる。
更に上記ラジカル性重合開始剤は、必要に応じて還元剤と組み合わせレドックス系開始剤とする事が可能である。レドックス系開始剤を用いる事で、重合活性が上昇し重合温度の低下が図れ、更に重合時間の短縮が期待できる。
重合温度は、重合開始剤の最低ラジカル生成温度以上であればどの温度を選択しても良いが例えば50℃から90℃の範囲が用いられる。但し、常温開始の重合開始剤、例えば過酸化水素−還元剤(アスコルビン酸等)の組み合わせを用いる事で、室温またはそれ以上の温度で重合する事も可能である。
〔界面活性剤〕
前述のラジカル重合性単量体を使用して重合を行うためには、界面活性剤を使用して水系媒体中に油滴分散を行う必要がある。この際に使用することのできる界面活性剤としては特に限定されるものでは無いが、下記のイオン性界面活性剤を好適なものの例として挙げることができる。
イオン性界面活性剤としては、スルホン酸塩(ドデシルベンゼンスルホン酸ナトリウム、アリールアルキルポリエーテルスルホン酸ナトリウム、3,3−ジスルホンジフェニル尿素−4,4−ジアゾ−ビス−アミノ−8−ナフトール−6−スルホン酸ナトリウム、オルト−カルボキシベンゼン−アゾ−ジメチルアニリン、2,2,5,5−テトラメチル−トリフェニルメタン−4,4−ジアゾ−ビス−β−ナフトール−6−スルホン酸ナトリウム等)、硫酸エステル塩(ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム等)、脂肪酸塩(オレイン酸ナトリウム、ラウリン酸ナトリウム、カプリン酸ナトリウム、カプリル酸ナトリウム、カプロン酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等)が挙げられる。
また、ノニオン性界面活性剤も使用することができる。具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリプロピレンオキサイドとポリエチレンオキサイドの組み合わせ、ポリエチレングリコールと高級脂肪酸とのエステル、アルキルフェノールポリエチレンオキサイド、高級脂肪酸とポリエチレングリコールのエステル、高級脂肪酸とポリプロピレンオキサイドのエステル、ソルビタンエステル等を挙げることができる。
〈着色剤〉
本発明に係わるトナーを構成する着色剤としては無機顔料、有機顔料、染料を挙げることができる。
無機顔料としては、従来公知のものを用いることができる。具体的な無機顔料を以下に例示する。
黒色の顔料としては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ランプブラック等のカーボンブラック、更にマグネタイト、フェライト等の磁性粉も用いられる。
これらの無機顔料は所望に応じて単独または複数を選択併用する事が可能である。また顔料の添加量は重合体に対して2〜20質量%であり、好ましくは3〜15質量%が選択される。
磁性トナーとして使用する際には、前述のマグネタイトを添加することができる。この場合には所定の磁気特性を付与する観点から、トナー中に20〜60質量%添加することが好ましい。
有機顔料及び染料としても従来公知のものを用いることができる。具体的な有機顔料及び染料を以下に例示する。
マゼンタまたはレッド用の顔料としては、C.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド5、C.I.ピグメントレッド6、C.I.ピグメントレッド7、C.I.ピグメントレッド15、C.I.ピグメントレッド16、C.I.ピグメントレッド48:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド122、C.I.ピグメントレッド123、C.I.ピグメントレッド139、C.I.ピグメントレッド144、C.I.ピグメントレッド149、C.I.ピグメントレッド166、C.I.ピグメントレッド177、C.I.ピグメントレッド178、C.I.ピグメントレッド222等が挙げられる。
オレンジまたはイエロー用の顔料としては、C.I.ピグメントオレンジ31、C.I.ピグメントオレンジ43、C.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー15、C.I.ピグメントイエロー17、C.I.ピグメントイエロー93、C.I.ピグメントイエロー94、C.I.ピグメントイエロー138、C.I.ピグメントイエロー180、C.I.ピグメントイエロー185、C.I.ピグメントイエロー155、C.I.ピグメントイエロー156等が挙げられる。
グリーンまたはシアン用の顔料としては、C.I.ピグメントブルー15、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー16、C.I.ピグメントブルー60、C.I.ピグメントグリーン7等が挙げられる。
また、染料としてはC.I.ソルベントレッド1、同49、同52、同58、同63、同111、同122、C.I.ソルベントイエロー19、同44、同77、同79、同81、同82、同93、同98、同103、同104、同112、同162、C.I.ソルベントブルー25、同36、同60、同70、同93、同95等を用いる事ができ、またこれらの混合物も用いる事ができる。
これらの有機顔料及び染料は所望に応じて単独または複数を選択併用する事が可能である。また顔料の添加量は重合体に対して2〜20質量%であり、好ましくは3〜15質量%が選択される。
着色剤は表面改質して使用することもできる。その表面改質剤としては、従来公知のものを使用することができ、具体的にはシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤等が好ましく用いることができる。
〈外添剤〉
本発明に係わるトナーには、流動性、帯電性の改良およびクリーニング性の向上などの目的で、いわゆる外添剤を添加して使用することができる。これら外添剤としては特に限定されるものでは無く、種々の無機微粒子、有機微粒子及び滑剤を使用することができる。
無機微粒子としては、従来公知のものを使用することができる。具体的には、シリカ、チタン、アルミナ微粒子等が好ましく用いることができる。これら無機微粒子としては疎水性のものが好ましい。具体的には、シリカ微粒子として、例えば日本アエロジル社製の市販品R805、R976、R974、R972、R812、R809、ヘキスト社製のHVK2150、H200、キャボット社製の市販品TS720、TS530、TS610、H5、MS5等が挙げられる。
チタン微粒子としては、例えば、日本アエロジル社製の市販品T−805、T−604、テイカ社製の市販品MT−100S、MT−100B、MT−500BS、MT−600、MT−600SS、JA−1、富士チタン社製の市販品TA−300SI、TA−500、TAF−130、TAF−510、TAF−510T、出光興産社製の市販品IT−S、IT−OA、IT−OB、IT−OC等が挙げられる。
アルミナ微粒子としては、例えば、日本アエロジル社製の市販品RFY−C、C−604、石原産業社製の市販品TTO−55等が挙げられる。
また、有機微粒子としては数平均一次粒子径が10〜2000nm程度の球形の有機微粒子を使用することができる。このものとしては、スチレンやメチルメタクリレートなどの単独重合体やこれらの共重合体を使用することができる。
滑剤には、例えばステアリン酸の亜鉛、アルミニウム、銅、マグネシウム、カルシウム等の塩、オレイン酸の亜鉛、マンガン、鉄、銅、マグネシウム等の塩、パルミチン酸の亜鉛、銅、マグネシウム、カルシウム等の塩、リノール酸の亜鉛、カルシウム等の塩、リシノール酸の亜鉛、カルシウムなどの塩等の高級脂肪酸の金属塩が挙げられる。
これら外添剤の添加量は、トナーに対して0.1〜5質量%が好ましい。
本発明に係わるトナーは、離型剤を含有する樹脂粒子と、着色剤とを水系媒体中で塩析/融着させて得られる会合型のトナーであることが好ましい。このように、離型剤を含有する樹脂粒子を塩析/融着させることで、離型剤が微細に分散されたトナーを得ることができ、且つ、粒径分布の効果に加えて帯電性の安定化等の効果を発揮することができる。
そして、本発明に係わるトナーは、その製造時から表面に凹凸がある形状を有しており、さらに、樹脂粒子と着色剤とを水系媒体中で融着して得られる会合型のトナーであるために、トナー粒子間における形状および表面性の差がきわめて小さく、結果として表面性が均一となりやすい。このためにトナー間での転写性、帯電性に差異を生じにくく、画像を良好に保つことができるものである。
〈トナーの製造工程〉
本発明に係わるトナーを製造する方法の一例としては、
(1)単量体に離型剤を溶解して単量体溶液を調製する溶解工程、
(2)得られる単量体溶液を水系媒体中に分散する分散工程、
(3)得られる単量体溶液の水系分散系を重合処理することにより、離型剤を含有する樹脂粒子の分散液(ラテックス)を調製する重合工程、
(4)得られる樹脂粒子と、前記着色剤とを水系媒体中で塩析/融着させて会合粒子(トナー粒子)を得る塩析/融着工程、
(5)得られる会合粒子を水系媒体中より濾別し、当該会合粒子から界面活性剤などを洗浄除去する濾過・洗浄工程、
(6)洗浄処理された会合粒子の乾燥工程から構成され、
(7)乾燥処理された会合粒子に外添剤を添加する外添剤添加工程が含まれていてもよい。
〔溶解工程〕
単量体に離型剤を溶解する方法としては特に限定されるものではない。
単量体への離型剤の溶解量としては、最終的に得られるトナーにおける離型剤の含有割合が1〜30質量%、好ましくは2〜20質量%、更に好ましくは3〜15質量%となる量とされる。
なお、この単量体溶液中に、油溶性重合開始剤および他の油溶性の成分を添加することもできる。
〔分散工程〕
単量体溶液を水系媒体中に分散させる方法としては、特に限定されるものではないが、機械的エネルギーにより分散させる方法が好ましく、特に、臨界ミセル濃度以下の濃度の界面活性剤を溶解してなる水系媒体中に、機械的エネルギーを利用して単量体溶液を油滴分散させること(ミニエマルジョン法における必須の態様)が好ましい。
ここに、機械的エネルギーによる油滴分散を行うための分散機としては、特に限定されるものではないが、例えば「クレアミックス」、超音波分散機、機械式ホモジナイザー、マントンゴーリンおよび圧力式ホモジナイザーなどを挙げることができる。また、分散粒子径としては、10〜1000nmとされ、好ましくは30〜300nmとされる。
〔重合工程〕
重合工程においては、基本的には従来公知の重合法(乳化重合法、懸濁重合法、シード重合法などの造粒重合法)を採用することができる。
好ましい重合法の一例としては、ミニエマルジョン法、すなわち、臨界ミセル濃度以下の濃度の界面活性剤を溶解してなる水系媒体中に、機械的エネルギーを利用して単量体溶液を油滴分散させて得られる分散液に水溶性重合開始剤を添加して、ラジカル重合させる方法を挙げることができる。
〔塩析/融着工程〕
塩析/融着工程においては、上記の重合工程により得られる樹脂粒子の分散液に着色剤の分散液を添加し、前記樹脂粒子と、前記着色剤とを水系媒体中で塩析/融着させる。
また、当該塩析/融着工程においては、樹脂粒子および着色剤とともに、荷電制御剤などの内添剤粒子なども融着させることもできる。
塩析/融着工程における「水系媒体」とは、主成分(50質量%以上)が水からなるものをいう。ここに、水以外の成分としては、水に溶解する有機溶媒を挙げることができ、例えばメタノール、エタノール、イソプロパノール、ブタノール、アセトン、メチルエチルケトン、テトラヒドロフランなどが挙げられる。これらのうち、樹脂を溶解しない有機溶媒であるメタノール、エタノール、イソプロパノール、ブタノールのようなアルコール系有機溶媒が特に好ましい。
塩析/融着工程に使用される着色剤は、着色剤を水系媒体中に分散することにより調製することができる。着色剤の分散処理は、水中で界面活性剤濃度を臨界ミセル濃度(CMC)以上にした状態で行われる。
着色剤の分散処理に使用する分散機は特に限定されないが、好ましくは「クレアミックス」、超音波分散機、機械的ホモジナイザー、マントンゴーリンや圧力式ホモジナイザー等の加圧分散機、サンドグラインダー、ゲッツマンミルやダイヤモンドファインミル等の媒体型分散機が挙げられる。また、使用される界面活性剤としては、前述の界面活性剤と同様のものを挙げることができる。
なお、着色剤(粒子)は表面改質されていてもよい。着色剤の表面改質法は、溶媒中に着色剤を分散させ、その分散液中に表面改質剤を添加し、この系を昇温することにより反応させる。反応終了後、着色剤を濾別し、同一の溶媒で洗浄濾過を繰り返した後、乾燥することにより、表面改質剤で処理された着色剤(顔料)が得られる。
塩析/融着法は、樹脂粒子と着色剤とが存在している水中に、アルカリ金属塩および/またはアルカリ土類金属塩等からなる塩析剤を臨界凝集濃度以上の凝集剤として添加し、次いで、前記樹脂粒子のガラス転移点以上に加熱することで塩析を進行させると同時に融着を行う工程である。この工程では、水に無限溶解する有機溶媒を添加してもよい。
ここで、塩析剤であるアルカリ金属塩及びアルカリ土類金属塩は、アルカリ金属として、リチウム、カリウム、ナトリウム等が挙げられ、アルカリ土類金属として、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられ、好ましくはカリウム、ナトリウム、マグネシウム、カルシウム、バリウムが挙げられる。また塩を構成するものとしては、塩素塩、臭素塩、沃素塩、炭酸塩、硫酸塩等が挙げられる。
さらに、前記水に無限溶解する有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、グリセリン、アセトン等があげられるが、炭素数が3以下のメタノール、エタノール、1−プロパノール、2−プロパノールのアルコールが好ましく、特に、2−プロパノールが好ましい。
塩析/融着工程においては、塩析剤を添加した後に放置する時間(加熱を開始するまでの時間)をできるだけ短くすることが好ましい。すなわち、塩析剤を添加した後、樹脂粒子および着色剤の分散液の加熱をできるだけ速やかに開始し、樹脂粒子のガラス転移温度以上とすることが好ましい。
この理由としては明確ではないが、塩析した後の放置時間によって、粒子の凝集状態が変動し、粒径分布が不安定になったり、融着させたトナーの表面性が変動したりする問題が発生する。
加熱を開始するまでの時間(放置時間)は、通常30分以内とされ、好ましくは10分以内である。
塩析剤を添加する温度は特に限定されないが、樹脂粒子のガラス転移温度以下であることが好ましい。
また、塩析/融着工程においては、加熱により速やかに昇温させる必要があり、昇温速度としては、1℃/分以上とすることが好ましい。昇温速度の上限は、特に限定されないが、急速な塩析/融着の進行による粗大粒子の発生を抑制する観点から15℃/分以下とすることが好ましい。
さらに、樹脂粒子および着色剤の分散液が前記ガラス転移温度以上の温度に到達した後、当該分散液の温度を一定時間保持することにより、塩析/融着を継続させることが肝要である。これにより、トナー粒子の成長(樹脂粒子および着色剤の凝集)と、融着(粒子間の界面消失)とを効果的に進行させることができ、最終的に得られるトナーの耐久性を向上することができる。
また、会合粒子の成長を停止させた後に、加熱による融着を継続させてもよい。
〔濾過・洗浄工程〕
この濾過・洗浄工程では、上記の工程で得られたトナー粒子の分散液から当該トナー粒子を濾別する濾過処理と、濾別されたトナー粒子(ケーキ状の集合物)から界面活性剤や塩析剤などの付着物を除去する洗浄処理とが施される。
ここに、濾過処理方法としては、遠心分離法、ヌッチェ等を使用して行う減圧濾過法、フィルタープレス等を使用して行う濾過法など特に限定されるものではない。
〔乾燥工程〕
この工程は、洗浄処理されたトナー粒子を乾燥処理する工程である。
この工程で使用される乾燥機としては、スプレードライヤー、真空凍結乾燥機、減圧乾燥機などを挙げることができ、静置棚乾燥機、移動式棚乾燥機、流動層乾燥機、回転式乾燥機、攪拌式乾燥機などを使用することが好ましい。
乾燥処理されたトナー粒子の含水率は、2質量%以下であることが好ましく、更に好ましくは1.5質量%以下とされる。
なお、乾燥処理されたトナー粒子同士が、弱い粒子間引力で凝集している場合には、当該凝集体を解砕処理してもよい。ここに、解砕処理装置としては、ジェットミル、ヘンシェルミキサー、コーヒーミル、フードプロセッサー等の機械式の解砕装置を使用することができる。
〔外添剤の添加工程〕
この工程は、乾燥処理されたトナー粒子に外添剤を添加する工程である。
外添剤を添加するために使用される装置としては、タービュラーミキサー、ヘンシエルミキサー、ナウターミキサー、V型混合機などの種々の公知の混合装置を挙げることができる。
さらに、本発明に係わるトナーは、0.7×(Dp50)以下の粒径のトナーが8個数%以下である。この範囲に粒径分布を調整するためには、塩析/融着段階での温度制御を狭くすることがよい。具体的にはできるだけすばやく昇温する、すなわち、昇温を速くすることである。この条件としては、前述の条件に示したものであり、昇温までの時間としては30分未満、好ましくは10分未満、さらに、昇温速度としては、1〜15℃/分が好ましい。
本発明に係わるトナーは、着色剤、離型剤以外にトナー用材料として種々の機能を付与することのできる材料を加えてもよい。具体的には荷電制御剤等が挙げられる。これらの成分は前述の塩析/融着段階で樹脂粒子と着色剤と同時に添加し、トナー中に包含する方法、樹脂粒子自体に添加する方法等種々の方法で添加することができる。
荷電制御剤も同様に種々の公知のもので、且つ水中に分散することができるものを使用することができる。具体的には、ニグロシン系染料、ナフテン酸または高級脂肪酸の金属塩、アルコキシル化アミン、第4級アンモニウム塩化合物、アゾ系金属錯体、サリチル酸金属塩あるいはその金属錯体等が挙げられる。
本発明に係わるトナーの含水率は0.1〜2.0質量%である。トナーの含水量は以下のような方法により調整することができる。
具体的なトナー含水率調整方法;
1)トナー特にそのバインダー樹脂の疎水成分を増量する。バインダー樹脂の構成成分中、疎水性の強いスチレン成分を全モノマー中50質量%以上占めるようにする。特に好ましくは60%以上、更に、好ましくは70%以上がよい。
2)トナーの外添剤の含水率を下げる。それには後記するように外添剤の疎水化度を高くするのが効果的である。外添剤の疎水化度が60以上のものを使用するのが望ましい。
3)表面に存在する非極性の離型剤量を多くするのも有効な方法である。それには特にポリオレフィン系ワックスを使用すると好適であり、表面に存在するポリオレフィンの量を増加させるためには、機械式粉砕機を使用し、破砕時に摩擦熱を付与しトナー表面にブリードアウトさせる方法がある。
4)トナー表面のカルボン酸量を調整する。
含水率の範囲
本発明に係わるトナーは30℃、80%RH(相対湿度)環境における含水率が0.1〜2.0質量%である。より好ましくは0.2〜1.8質量%である。
トナーの含水率の測定法
トナーをフィッシャーサンプル瓶に入れ開封したまま、30℃、80%RH環境に72時間放置する。放置後密栓をし、カールフィッシャー法により測定する。測定器は平沼式自動微量水分測定器AQS−724で、測定条件としては、気化温度を110℃、気化時間を25秒とする。
〈現像剤〉
本発明に係わるトナーは、一成分現像剤でも二成分現像剤として用いてもよい。
一成分現像剤として用いる場合は、非磁性一成分現像剤、あるいはトナー中に0.1〜0.5μm程度の磁性粒子を含有させ磁性一成分現像剤としたものがあげられ、いずれも使用することができる。
又、キャリアと混合して二成分現像剤として用いることができる。この場合は、キャリアの磁性粒子として、鉄、フェライト、マグネタイト等の金属、それらの金属とアルミニウム、鉛等の金属との合金等の従来から公知の材料を用いることが出来る。特にフェライト粒子が好ましい。上記磁性粒子は、その50%体積粒径(Dv50)としては15〜100μm、より好ましくは25〜80μmのものがよい。
キャリアの50%体積粒径(Dv50)の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
キャリアは、磁性粒子が更に樹脂により被覆されているもの、あるいは樹脂中に磁性粒子を分散させたいわゆる樹脂分散型キャリアが好ましい。コーティング用の樹脂組成としては、特に限定は無いが、例えば、オレフィン系樹脂、スチレン系樹脂、スチレン−アクリル系樹脂、シリコーン系樹脂、エステル系樹脂或いはフッ素含有重合体系樹脂等が用いられる。また、樹脂分散型キャリアを構成するための樹脂としては、特に限定されず公知のものを使用することができ、例えば、スチレン−アクリル系樹脂、ポリエステル樹脂、フッ素系樹脂、フェノール樹脂等を使用することができる。
本発明に係わる有機感光体について記載する。本発明に用いられる有機感光体は、導電性支持体上にバインダー樹脂中に数平均一次粒径3〜200nmの無機粒子を含有する中間層を介して感光層を有することが好ましい。
有機感光体が上記のような構成を有することにより、カウンター現像方式により発生しやすい、カブリの発生や先端部の濃度不良を防止でき、高画質のデジタル画像或いはカラー画像を提供することができる。
以下、本発明に係わる有機感光体の構成について記載する。
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機感光体を全て含有する。
本発明に係わる感光体の構成は、導電性支持体上に感光層として電荷発生層および電荷輸送層を順次積層した構成が好ましい。更に、導電性支持体と感光層の間に中間層を設けることが好ましく、また、必要により、感光層上にさらに表面保護層を形成した構成にしてもよい。
以下に本発明に係わる有機感光体の層構成の好ましい具体例について記載する。
導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。
導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。導電性支持体としては、アルミニウム支持体が最も好ましい。該アルミニウム支持体は、主成分のアルミニウム以外にマンガン、亜鉛、マグネシウム等の成分が混合したものも用いられる。
又、本発明に係わる有機感光体においては、円筒状支持体の外径が20〜80mmの場合に効果が大きい。外径が20〜80mmの円筒状支持体の場合、画像形成プロセスでの感光体の表面線速が高速になりやすく、カウンター現像方式で、先端部濃度低下やカブリが発生しやすい。
中間層
本発明に係わる有機感光体は導電性支持体と感光層の間に中間層を設ける。中間層にはバインダー樹脂中に数平均一次粒径3〜200nmの無機粒子を含有する。中間層のバインダー樹脂中に無機粒子を含有させる構造を有することにより、導電性支持体からのフリーキャリア(導電性支持体から進入してくる電子やホール)のブロッキング性が向上し、黒ポチやカブリの発生を防止し、且つ現像性を増大させて、先端部濃度低下の発生を防止でき、画像濃度が十分な電子写真画像を得ることができる。
本発明に係わる中間層に用いられる無機粒子は、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)、酸化ジルコニウム、酸化セリウム、酸化鉄、酸化アルミニウム、酸化タングステン、酸化ビスマス等の金属酸化物が好ましく、炭化ケイ素、炭化チタン等の金属炭化物、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム等のチタン酸塩、炭酸カルシウム等の炭酸塩、窒化アルミニウム等の金属窒化物、硫酸バリウム、硫酸銅、硫酸亜鉛等の硫酸塩等も用いられる。
これらの無機粒子の中でも、本発明に好ましく用いられる無機粒子はN型半導性粒子が好ましい。
N型半導性粒子とは、主たる電荷キャリアが電子である粒子を意味する。即ち、主たる電荷キャリアが電子であることから、該N型半導性粒子を絶縁性バインダーに含有させた中間層は、導電性支持体からのホール注入を効率的にブロックし、また、感光層からの電子に対しては輸送性を示す性質を有するものを云う。
N型半導性粒子としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)が好ましく、特に酸化チタンが特に好ましく用いられる。
N型半導性粒子は数平均一次粒子径が3.0〜200nmの範囲の微粒子を用いる。特に、5nm〜100nmが好ましい。数平均一次粒子径とは、微粒子を透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によってフェレ方向平均径としての測定値である。数平均一次粒径が3.0nm未満のN型半導性粒子は中間層バインダー中での均一な分散ができにくく、凝集粒子を形成しやすく、該凝集粒子が電荷トラップとなって残留電位が発生し、カブリが発生しやすい。一方、数平均一次粒径が200nmより大きいN型半導性粒子は中間層の表面に大きな凹凸を作りやすく、これらの大きな凹凸を通して先端部濃度低下が発生しやすい。又、数平均一次粒径が200nmより大きいN型半導性粒子は分散液中で沈澱しやすく、凝集物が発生しやすく、その結果、先端部濃度低下が発生しやすい。
前記酸化チタン粒子は、結晶形としては、アナターゼ形、ルチル形、ブルッカイト形及びアモルファス形等があるが、中でもルチル形酸化チタン顔料又はアナターゼ形酸化チタン顔料は、中間層を通過する電荷の整流性を高め、即ち、電子の移動性を高め、帯電電位を安定させ、残留電位の増大を防止すると共に、転写メモリーの発生を防止することができ、N型半導性粒子として最も好ましい。
N型半導性粒子はメチルハイドロジェンシロキサン単位を含む重合体で表面処理されたものが好ましい。該メチルハイドロジェンシロキサン単位を含む重合体の分子量は1000〜20000のものが表面処理効果が高く、その結果、N型半導性粒子の整流性を高め、このN型半導性粒子を含有する中間層を用いることにより、黒ポチ発生が防止され、又、良好なハーフトーン画像の作製に効果がある。
メチルハイドロジェンシロキサン単位を含む重合体とは−(HSi(CH3)O)−の構造単位とこれ以外の構造単位(他のシロキサン単位のこと)の共重合体が好ましい。他のシロキサン単位としては、ジメチルシロキサン単位、メチルエチルシロキサン単位、メチルフェニルシロキサン単位及びジエチルシロキサン単位等が好ましく、特にジメチルシロキサンが好ましい。共重合体中のメチルハイドロジェンシロキサン単位の割合は10〜99モル%、好ましくは20〜90モル%である。
メチルハイドロジェンシロキサン共重合体はランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよいがランダム共重合体及びブロック共重合体が好ましい。又、共重合成分としてはメチルハイドロジェンシロキサン以外に、一成分でも二成分以上でもよい。
又、N型半導性粒子は下式で表される反応性有機ケイ素化合物で表面処理したものでもよい。
(R)n−Si−(X)4-n
(上式中、Siはケイ素原子、Rは該ケイ素原子に炭素が直接結合した形の有機基を表し、Xは加水分解性基を表し、nは0〜3の整数を表す。)
上式で表される有機ケイ素化合物において、Rで示されるケイ素に炭素が直接結合した形の有機基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ドデシル等のアルキル基、フェニル、トリル、ナフチル、ビフェニル等のアリール基、γ−グリシドキシプロピル、β−(3,4−エポキシシクロヘキシル)エチル等の含エポキシ基、γ−アクリロキシプロピル、γ−メタアクリロキシプロピルの含(メタ)アクリロイル基、γ−ヒドロキシプロピル、2,3−ジヒドロキシプロピルオキシプロピル等の含水酸基、ビニル、プロペニル等の含ビニル基、γ−メルカプトプロピル等の含メルカプト基、γ−アミノプロピル、N−β(アミノエチル)−γ−アミノプロピル等の含アミノ基、γ−クロロプロピル、1,1,1−トリフロオロプロピル、ノナフルオロヘキシル、パーフルオロオクチルエチル等の含ハロゲン基、その他ニトロ、シアノ置換アルキル基を挙げられる。また、Xの加水分解性基としてはメトキシ、エトキシ等のアルコキシ基、ハロゲン基、アシルオキシ基が挙げられる。
また、上式で表される有機ケイ素化合物は、単独でも良いし、2種以上組み合わせて使用しても良い。
また、上式で表される有機ケイ素化合物の具体的化合物で、nが2以上の場合、複数のRは同一でも異なっていても良い。同様に、nが2以下の場合、複数のXは同一でも異なっていても良い。又、上式で表される有機ケイ素化合物を2種以上を用いるとき、R及びXはそれぞれの化合物間で同一でも良く、異なっていても良い。
また、前記メチルハイドロジェンシロキサン共重合体や反応性有機ケイ素化合物の表面処理に先立ちN型半導性粒子をアルミナ、シリカ等の無機の表面処理を行ってもよい。
なお、前述のアルミナ、シリカの処理は同時に行っても良いが、特にアルミナ処理を最初に行い、次いでシリカ処理を行うことが好ましい。また、アルミナとシリカの処理をそれぞれ行う場合のアルミナ及びシリカの処理量は、アルミナよりもシリカの多いものが好ましい。
前記酸化チタン等のN型半導性微粒子のアルミナ、シリカ或いはジルコニア等の金属酸化物による表面処理は湿式法で行うことができる。例えば、シリカ、又はアルミナの表面処理を行ったN型半導性粒子は以下の様に作製することができる。
N型半導性粒子として酸化チタン粒子を用いる場合、酸化チタン粒子(数平均一次粒子径:50nm)を50〜350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等のアルカリで中和することができる。
本発明に用いられる中間層を形成するために作製する中間層塗布液は前記表面処理酸化チタン等のN型半導性粒子の他にバインダー樹脂、分散溶媒等から構成される。
N型半導性粒子の中間層中での比率は、中間層のバインダー樹脂との体積比(バインダー樹脂の体積を1とすると)で1.0〜2.0倍が好ましい。中間層中でこのような高密度でN型半導性粒子を用いることにより、中間層の整流性が高まり、膜厚を厚くしても残留電位の上昇や転写メモリーも発生せず、黒ポチを効果的に防止でき、電位変動が小さい良好な有機感光体を形成することができる。又、このような中間層はバインダー樹脂100体積部に対し、N型半導性粒子を100〜200体積部を用いることが好ましい。
一方、これらの粒子を分散し、中間層の層構造を形成するバインダー樹脂としては、粒子の良好な分散性を得る為にポリアミド樹脂が好ましいが、特に以下に示すポリアミド樹脂が好ましい。
即ち、中間層にはバインダー樹脂に融解熱0〜40J/gで、且つ吸水率5質量%以下のポリアミド樹脂が好ましい。該融解熱は0〜30J/gがより好ましく、0〜20J/gが最も好ましい。一方、前記吸水率が5質量%を超えると、中間層中の含水率が上昇し、中間層の整流性が低下し、黒ポチが発生しやすく、ハーフトン画像が劣化しやすい。該吸水率は4質量%以下がより好ましい。
上記樹脂の融解熱はDSC(示差走査熱量測定:Differential Scanning Calorimetory)にて測定する。但し、DSCの測定値と同じ測定値が得られれば、DSC測定法にこだわらない。該融解熱はDSC昇温時の吸熱ピーク面積から求める。
一方、樹脂の吸水率は水中浸漬法による質量変化又はカールフィッシャー法により求める。
中間層のバインダー樹脂としてはアルコール可溶性ポリアミド樹脂が好ましい。有機感光体の中間層のバインダー樹脂としては、中間層を均一な膜厚で形成するために、溶媒溶解性の優れた樹脂が必要とされている。このようなアルコール可溶性のポリアミド樹脂としては、前記した6−ナイロン等のアミド結合間の炭素鎖の少ない化学構造から構成される共重合ポリアミド樹脂やメトキシメチル化ポリアミド樹脂が知られているが、これらの樹脂は吸水率が高く、このようなポリアミドを用いた中間層は環境依存性が高くなる傾向にあり、その結果、たとえば高温高湿や低温低湿下の帯電特性や感度等が変化しやすく、黒ポチの発生やハーフトン画像の劣化を起しやすい。
アルコール可溶性ポリアミド樹脂には、上記のような欠点を改良し、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を与えることにより、従来のアルコール可溶性ポリアミド樹脂の欠点を改良し、外部環境が変化しても、又有機感光体の長時間連続使用を行っても、良好な電子写真画像を得ることができる。
以下、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を有するアルコール可溶性ポリアミド樹脂について説明する。
前記アルコール可溶性ポリアミド樹脂としては、アミド結合間の炭素数が7〜30の繰り返し単位構造を全繰り返し単位構造の40〜100モル%含有するポリアミド樹脂が好ましい。
ここで、アミド結合間の炭素数が7〜30の繰り返し単位構造について説明する。前記繰り返し単位構造とはポリアミド樹脂を形成するアミド結合単位を意味する。このことを、繰り返し単位構造がアミノ基とカルボン酸基の両方を持つ化合物の縮合により形成されるポリアミド樹脂(タイプA)と、ジアミノ化合物とジカルボン酸化合物の縮合で形成されるポリアミド樹脂(タイプB)の両方の例で説明する。
即ち、タイプAの繰り返し単位構造は一般式(1)で表され、Xに含まれる炭素数が繰り返し単位構造におけるアミド結合単位の炭素数である。一方タイプBの繰り返し単位構造は一般式(2)で表され、Yに含まれる炭素数もZに含まれる炭素数も、各々繰り返し単位構造におけるアミド結合単位の炭素数である。
Figure 2006178411
一般式(1)中、R1は水素原子、置換又は無置換のアルキル基、Xは置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、lは自然数を示す。
Figure 2006178411
一般式(2)中、R2、R3は各水素原子、置換又は無置換のアルキル基、Y、Zは各置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、m、nは自然数を示す。
前記のごとく、炭素数が7〜30の繰り返し単位構造は置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を有する化学構造等が挙げられるが、これらの中で2価のシクロアルカンを含む基を有する化学構造が好ましい。
上記ポリアミド樹脂は繰り返し単位構造のアミド結合間の炭素数が7〜30であるが、好ましくは9〜25、更には11〜20が良い。またアミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率は40〜100モル%、好ましくは60〜100モル%、更には80〜100モル%が良い。
前記炭素数が7より小だと、ポリアミド樹脂の吸湿性が大きく、電子写真特性、特に繰り返し使用時の電位の湿度依存性が大きく、更に黒ポチ等の画像欠陥が発生しやすく、ハーフトン画像が劣化しやすい。30より大であるとポリアミド樹脂の塗布溶媒への溶解が悪くなり、中間層の塗布膜形成に適さない。
又、アミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率が40モル%より小さいと、上記効果が小さくなる。
好ましいポリアミド樹脂としては下記一般式(3)で示される繰り返し単位構造を有するポリアミドが挙げられる。
Figure 2006178411
一般式(3)中、Y1は2価のアルキル置換されたシクロアルカンを含む基、Z1はメチレン基、mは1〜3、nは3〜20を示す。
上記一般式(3)中、Y1の2価のアルキル置換されたシクロアルカンを含む基は下記化学構造が好ましい。即ち、Y1が下記化学構造を有するポリアミド樹脂は、黒ポチやハーフトーン画像の先端部濃度低下の発生に対する防止効果が著しい。
Figure 2006178411
上記化学構造において、Aは単結合、炭素数1〜4のアルキレン基を示し、R4は置換基で、アルキル基を示し、pは1〜5の自然数を示す。但し、複数のR4は同一でも、異なっていても良い。
上記ポリアミド樹脂の具体例としては下記のような例が挙げられる。
Figure 2006178411
Figure 2006178411
Figure 2006178411
上記具体例中の()内の%は繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。
上記具体例の中でも、一般式(3)の繰り返し単位構造を有するN−1〜N−4のポリアミド樹脂が特に好ましい。
又、上記ポリアミド樹脂の分子量は数平均分子量で5,000〜80,000が好ましく、10,000〜60,000がより好ましい。数平均分子量が5,000以下だと中間層の膜厚の均一性が劣化し、本発明の効果が十分に発揮されにくい。一方、80,000より大きいと、樹脂の溶媒溶解性が低下しやすく、中間層中に凝集樹脂が発生しやすく、黒ポチやハーフトーン画像に先端部濃度低下が発生しやすい。
上記ポリアミド樹脂はその一部が既に市販されており、例えばダイセル・デグサ(株)社製のベスタメルトX1010、X4685等の商品名で販売されて、一般的なポリアミドの合成法で作製することができるが、以下に合成例の一例を挙げる。
例示ポリアミド樹脂(N−1)の合成
攪拌機、窒素、窒素導入管、温度計、脱水管等を備えた重合釜にラウリルラクタム215質量部、3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミン112質量部、1,12−ドデカンシカルボン酸153質量部及び水2質量部を混合し、加熱加圧下、水を留出させながら9時間反応させた。重合物を取り出し、C13−NMRにより共重合組成を求めたところ、N−1の組成と一致した。尚、上記合成された共重合のメルトフローインデックス(MFI)は(230℃/2.16kg)の条件で、5g/10minであった。
上記ポリアミド樹脂を溶解し、塗布液を作製する溶媒としては、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、t−ブタノール、sec−ブタノール等の炭素数2〜4のアルコール類が好ましく、ポリアミドの溶解性と作製された塗布液の塗布性の点で優れている。これらの溶媒は全溶媒中に30〜100質量%、好ましくは40〜100質量%、更には50〜100質量%が好ましい。前記溶媒と併用し、好ましい効果を得られる助溶媒としては、メタノール、ベンジルアルコール、トルエン、メチレンクロライド、シクロヘキサノン、テトラヒドロフラン等が挙げられる。
本発明に係わる中間層の膜厚は0.3〜10μmが好ましい。中間層の膜厚が0.5μm未満では、黒ポチ、ハーフトーン画像に先端部濃度低下が発生しやすく、10μmを超えると、残留電位の上昇や転写メモリーが発生しやすく、鮮鋭性が劣化しやすい。中間層の膜厚は0.5〜5μmがより好ましい。
又、上記中間層は実質的に絶縁層であることが好ましい。ここで絶縁層とは、体積抵抗が1×108以上である。本発明に係わる中間層及び保護層の体積抵抗は1×108〜1015Ω・cmが好ましく、1×109〜1014Ω・cmがより好ましく、更に好ましくは、2×109〜1×1013Ω・cmである。体積抵抗は下記のようにして測定できる。
測定条件;JIS:C2318−1975に準ずる。
測定器:三菱油化社製Hiresta IP
測定条件:測定プローブ HRS
印加電圧:500V
測定環境:30±2℃、80±5RH%
体積抵抗が1×108未満では中間層の電荷ブロッキング性が低下し、黒ポチの発生が増大し、有機感光体の電位保持性も劣化し、良好な画質が得られない。一方1015Ω・cmより大きいと繰り返し画像形成で残留電位が増大しやすく、良好な画質が得られない。
中間層の形成用の塗布液を調製するための溶媒としては公知の有機溶剤、例えばアルコール系、芳香族系、ハロゲン化炭化水素系、ケトン系、ケトンアルコール系、エーテル系、エステル系等から任意で選択することができる。
例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤を用いることができる。
また、これらの分散に用いる溶剤は単独あるいは2種以上混合して用いることができる。混合する際、使用される溶剤としては、混合溶剤としてバインダー樹脂を溶かす事ができる溶剤であれば、いかなるものでも使用することが可能である。
カップリング剤等を用いて表面処理した無機粒子をバインダー樹脂中に分散させる方法としては、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカーなどの方法を用いることができる。さらにこの下引層を設けるときに用いる塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
感光層
電荷発生層(CGL)
電荷発生層は、電荷発生物質(CGM)を主成分とする層であって、必要に応じてバインダー樹脂を用いてもよい。
電荷発生物質としては、公知の材料を用いることができる。例えば、金属フタロシアニン、無金属フタロシアニンなどのフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾール骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系又は多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。これらの電荷発生物質は、単独又は2種以上の混合物として用いることができる。
上記CGMの中で、フタロシアニン系顔料を用いた場合、本発明の効果が顕著に表れる。チタニルフタロシアニン顔料顔料やガリウムフタロシアニン顔料等を電荷発生物質として用いた有機感光体は電位特性が変動しやすい傾向にあるが、本発明に係わる中間層を用いると、電位変動が改善され、カウンター現像方式の画像形成方法を用いても、カブリの発生を防止でき、画像先端部等の部分的な濃度低下の発生を防止できる。
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.3μm〜2μmが好ましい。
電荷輸送層(CTL)
電荷輸送層は、帯電電荷を保持させ、かつ、露光により電荷発生層で発生分離した電荷を移動させて保持していた帯電電荷と結合させることを目的とする層である。帯電電荷を保持させる目的を達成するためには、電気抵抗が高いことが要求される。また、保持していた帯電電荷で高い表面電位を得る目的を達成するためには、誘電率が小さく、かつ、電荷移動性が良いことが要求される。
これらの要件を満足させるための電荷輸送層は、電荷輸送性物質(CTM)及び必要に応じて用いられるバインダー樹脂により構成される。かかる電荷輸送層は、これらの電荷輸送性物質及びバインダー樹脂を適当な溶剤に溶解ないし分散し、これを塗布、乾燥することにより形成できる。かかる電荷輸送層には、必要により、電荷輸送性物質及びバインダー樹脂以外に、可塑剤、酸化防止剤、レベリング剤等などの添加剤を適量添加することもできる。
電荷輸送性物質としては、正孔輸送物質と電子輸送物質とがあるが、本発明に係わる有機感光体の層構成では正孔輸送物質が好ましい。
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
電荷輸送物質としては、公知の正孔輸送性(P型)の電荷輸送物質(CTM)を用いることができる。例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。
本発明に係わる電荷輸送物質としては、電荷の移動度が比較的高く、バインダー中への分散性が良好で、電位特性が安定したものが好ましく、特に、下記一般式(4)の化合物が好ましい。
Figure 2006178411
(一般式(4)中、R1は水素原子、アルキル基、アルコキシ基またはハロゲン原子を表し、R2およびR3はアルキル基、置換もしくは無置換のアラルキル基あるいは置換もしくは無置換のアリール基を表し、R2およびR3は同じでも異なっていてもよい。R4、R5は水素原子、低級アルキル基または置換もしくは無置換のアリール基を表し、また、Arは置換もしくは無置換のアリール基を表し、ArとR5が結合し、環を形成してもよい。)
以下に、一般式(4)の化合物の具体例を示す。
Figure 2006178411
Figure 2006178411
Figure 2006178411
電荷輸送層(CTL)に用いられるバインダー樹脂としては熱可塑性樹脂、熱硬化性樹脂いずれの樹脂かを問わない。例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。これらの中で吸水率が小さく、CTMの分散性、電子写真特性が良好なポリカーボネート樹脂が最も好ましい。
バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し50〜200質量部が好ましい。又、電荷輸送層の合計膜厚は20μm以下が好ましく、10〜16μmがより好ましい。該膜厚が20μmを超えると、電荷輸送層内での、短波長レーザの吸収や散乱が大きくなり、鮮鋭性の低下や、残留電位の増加が発生しやすい。
又、本発明に係わる感光体の表面層には酸化防止剤を含有させることが好ましい。表面層は感光体の帯電時の活性ガス、例えばNOxやオゾン等で酸化されやすく、画像ボケが発生しやすいが、酸化防止剤を共存させることにより、画像ボケの発生を防止することが出来る。該酸化防止剤とは、その代表的なものは有機感光体中ないしは有機感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。代表的には下記の化合物群が挙げられる。
Figure 2006178411
Figure 2006178411
Figure 2006178411
Figure 2006178411
又、本発明に係わる感光体の最上層には、含フッ素樹脂微粒子を含有させた構成が好ましい。再表面層に含フッ素樹脂微粒子を含有させることにより、感光体表面に形成されたトナー画像の転写材等への転写性が向上し、ドット画像の再現性を向上させる。
中間層、電荷発生層、電荷輸送層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
カウンター現像方式の現像装置(現像手段)を図1により説明する。なお、図1の現像装置は接触式二成分タイプの現像装置であるが、本発明はこの接触式二成分タイプの現像装置に限定されず、例えば、非接触式一成分タイプの現像装置も採用できる。現像装置102は、二成分現像剤を収容した現像容器110の開口部に、円筒状の磁石121を非回転に配置した現像スリーブ120(現像剤坦持体)が有機感光体(像坦持体)101に対向して配設され、この現像スリーブ120は、矢印方向に回転する有機感光体101に対しカウンター方向に回転して、その表面上に吸着保持された現像剤を有機感光体101と対向した現像部に搬送する。磁石121は、有機感光体101側に現像磁極N1を有し、この現像磁極N1から現像スリーブ120の回転方向に、第1搬送磁極S3、第2搬送磁極N2、第3搬送磁極S2、及び第3搬送磁極と離間磁極を構成する汲み上げ磁極S1を有している。
現像容器110内の現像剤は、磁石121の汲み上げ磁極S1に対応する現像スリーブ120の表面上の位置(汲み上げ位置)Qで、汲み上げ極S1の作用により現像スリーブ120上に吸着保持され、現像ブレード122(現像剤層厚規制手段)によって層厚が規制されたのち現像部に至り、現像部で現像磁極N1の作用により磁気ブラシ(現像ブラシ)を形成して、有機感光体101上の潜像を現像する。
現像によってトナー濃度が低下した現像剤は、第1、第2搬送磁極S3、N2の作用によって、現像容器110内まで現像スリーブ120上に保持されて戻され、第3搬送磁極S2と汲み上げ磁極S1の中間の磁束密度が最も小さい現像スリーブ120表面上の位置(現像剤落下位置)Pで、現像スリーブ120上から剥離して落下する。現像剤が剥離された現像スリーブ120は、上記のように、汲み上げ位置Qで新たな現像剤が吸着保持される。
現像容器110内の現像スリーブ120の下方には、第1の攪拌搬送部材123が設置され、隔壁140を介して更に第2の攪拌搬送部材124が設置されている。これら第1、第2の攪拌搬送部材123、124は、スクリュータイプとされ、らせん状のスクリュー羽根128及びその羽根の鍔間の板状突起130を有してなっている。
現像スリーブ120上から剥離したトナー濃度が低い現像剤は、第1攪拌搬送部材123上に落下して、第1攪拌搬送部材123により近傍の現像剤と軸方向に攪拌搬送され、隔壁140の一端部の図示しない開口を通って、第2攪拌搬送部材124に受け渡される。第2攪拌搬送部材124は、受け渡された現像剤、及び現像容器110の補給口118から補給されたトナーを攪拌しながら上記と逆回転に搬送し、隔壁140の他端部の図示しない開口を通って、第1攪拌搬送部材123側に戻す。
カウンター現像方式の好ましい構成を説明する。尚、ここで、図1における現像磁極N1付近の現像部における感光体101と現像スリーブ120間の間隙を現像ギャップ(Dsd)、現像磁極N1により現像スリーブ120上に形成される磁気ブラシの高さを現像ブラシ高さ(h)と言う。
(1)現像ギャップ(Dsd):0.2〜0.6mm
Dsdを0.2〜0.6mmにすると、強い現像電界のなかで現像が行われ、磁性キャリアの現像スリーブへの拘束力が大きくなり、磁性キャリアが感光体に移行して付着することを防止できる。また、現像ギャップでの現像電界が高くなるので、エッジ効果が低減し、現像能力が向上する。従って、横ライン像の細りや後端部白抜け(後端部現像不良)などの発生を防止し、ベタ画像の現像性を向上することが出来る。
(2)磁気ブラシの食い込み深さ(Bsd):0.0〜0.8mm、尚、磁気ブラシの食い込み深さ(Bsd)=現像ブラシ高さ(h)−現像ギャップ(Dsd)
磁気ブラシ食い込み深さを0.0〜0.8mmにすることにより、現像部での現像剤への圧接が軽減され、現像スリーブ120と現像ブレード122との間隙からの現像剤のすり抜けが防止される。また、磁気ブラシの不均一当接によって生ずる孤立ドット画像の現像不良やハーフトーン画像のざらつき感の増加を防止出来る。磁気ブラシ食い込み深さが0以下、すなわち、非接触状態では濃度の低下が起きやすいし、0.8mmより大きいと、ニップ部から現像剤が溢れ、均一な画像形成が期待できない。
(3)現像スリーブと感光体の周速比(Vs/Vopc):1.2〜3.0
感光体に対する現像スリーブの周速比を1.2〜3.0にすることにより、高い現像性を得ることができる。周速比を上げすぎると、感光体に対する現像スリーブ上の磁気ブラシの接触頻度が多くなり過ぎ、潜感光体に対する磁気ブラシの当たり具合、すなわち機械的力が極端に大きくなり過ぎ、磁気ブラシからキャリアが脱落しやすくなり、感光体にキャリアが付着しやすくなり、その結果、感光体上のトナー像に磁気ブラシの刷毛目が生ずる。また逆に周速比を下げすぎると、感光体に対する磁気ブラシの接触機会が減りすぎて、現像性が低下することになる。従って、周速比が1.2よりも小さいと濃度が低くなり、3.0より大きいとトナーの飛散、キャリアの付着あるいは現像スリーブの耐久性に問題が出てくる。これに対し、周速比を上記範囲にすることにより、刷毛目を防止することができる。更には現像能力が極端に高くなり過ぎてエッジ効果が強調されるのを防止する作用も有する。
(4)現像バイアス条件
感光体の表面電位V0と現像スリーブに付加される現像バイアスの直流成分Vdcの差│V0−Vdc│が100〜300V、該現像バイアスの直流成分Vdcが−300V〜−650V、該現像バイアスの交流成分Vacが0.5〜1.5kV、周波数3〜9kHz且つDuty45〜70%(矩形波での現像側の時間比率)、矩形波とすることが好ましい。すなわち、現像スリーブの外径がφ30mm以下、感光体の外径がφ60mm以下と小型の二成分現像装置においては、現像スリーブを小径にしたことにより現像ニップ幅が小さくなり、現像能力が低下するが、上記現像バイアス条件により、この現像能力の低下を改善できる。
次に、本発明に係わるプロセスカートリッジならびに電子写真装置について説明する。図2に有機感光体を含むプロセスカートリッジを有する電子写真装置の概略構成を示す。
図2において、1はドラム状の有機感光体(感光体)であり、軸Cを中心に矢印方向に所定の周速度で回転駆動される。有機感光体1は、回転過程において、帯電手段2によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強調変調された露光光3(露光手段)を受ける。こうして有機感光体1の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
形成された静電潜像は、次いで現像手段4によりトナー現像され、不図示の給紙部から有機感光体1と転写手段5との間に有機感光体1の回転と同期して取り出されて給紙された転写材Pに、有機感光体1の表面に形成担持されているトナー画像が転写手段5により順次転写されていく。
トナー画像の転写を受けた転写材Pは、有機感光体面から分離されて像定着手段24へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
像転写後の有機感光体1の表面は、クリーニング手段6によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光Pexにより除電処理された後、繰り返し画像形成に使用される。なお、帯電手段2が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
本発明においては、上述の有機感光体1、帯電手段2、現像手段4及びクリーニング手段6等の構成要素のうち、複数のものを容器PCに納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、帯電手段2、現像手段4及びクリーニング手段6の少なくとも一つを有機感光体1と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段ANを用いて装置本体に着脱自在なプロセスカートリッジとすることができる。
さらに、本発明を適用したフルカラー画像形成装置として、電子写真方式のプリンタ(以下、単にプリンタという)の一実施形態について説明する。
図3は、本発明の一実施の形態を示すカラー画像形成装置の断面構成図である。
このカラー画像形成装置は、タンデム型カラー画像形成装置と称せられるもので、4組の画像形成部(画像形成ユニット)10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7と、給紙搬送手段21及び定着手段24とから成る。画像形成装置の本体Aの上部には、原稿画像読み取り装置SCが配置されている。
イエロー色の画像を形成する画像形成部10Yは、第1の像担持体としてのドラム状の感光体1Yの周囲に配置された帯電手段2Y、露光手段3Y、現像手段4Y、一次転写手段としての一次転写ローラ5Y、クリーニング手段6Yを有する。マゼンタ色の画像を形成する画像形成部10Mは、第1の像担持体としてのドラム状の感光体1M、帯電手段2M、露光手段3M、現像手段4M、一次転写手段としての一次転写ローラ5M、クリーニング手段6Mを有する。シアン色の画像を形成する画像形成部10Cは、第1の像担持体としてのドラム状の感光体1C、帯電手段2C、露光手段3C、現像手段4C、一次転写手段としての一次転写ローラ5C、クリーニング手段6Cを有する。黒色画像を形成する画像形成部10Bkは、第1の像担持体としてのドラム状の感光体1Bk、帯電手段2Bk、露光手段3Bk、現像手段4Bk、一次転写手段としての一次転写ローラ5Bk、クリーニング手段6Bkを有する。
前記4組の画像形成ユニット10Y、10M、10C、10Kは、感光体ドラム1Y、1M、1C、1Kを中心に、回転する帯電手段2Y、2M、2C、2Kと、像露光手段3Y、3M、3C、3Kと、回転する現像手段4Y、4M、4C、4K、及び、感光体ドラム1Y、1M、1C、1Kをクリーニングするクリーニング手段5Y、5M、5C、5Kより構成されている。
前記画像形成ユニット10Y、10M、10C、10Kは、感光体1Y、1M、1C、1Bkにそれぞれ形成するトナー画像の色が異なるだけで、同じ構成であり、画像形成ユニット10Yを例にして詳細に説明する。
画像形成ユニット10Yは、像形成体である感光体ドラム1Yの周囲に、帯電手段2Y(以下、単に帯電手段2Y、あるいは、帯電器2Yという)、露光手段3Y、現像手段4Y、クリーニング手段5Y(以下、単にクリーニング手段5Y、あるいは、クリーニングブレード5Yという)を配置し、感光体ドラム1Y上にイエロー(Y)のトナー画像を形成するものである。また、本実施の形態においては、この画像形成ユニット10Yのうち、少なくとも感光体ドラム1Y、帯電手段2Y、現像手段4Y、クリーニング手段5Yを一体化するように設けている。
帯電手段2Yは、感光体ドラム1Yに対して一様な電位を与える手段であって、本実施の形態においては、感光体ドラム1Yにコロナ放電型の帯電器2Yが用いられている。
像露光手段3Yは、帯電器2Yによって一様な電位を与えられた感光体ドラム1Y上に、画像信号(イエロー)に基づいて露光を行い、イエローの画像に対応する静電潜像を形成する手段であって、この露光手段3Yとしては、感光体ドラム1Yの軸方向にアレイ状に発光素子を配列したLEDと結像素子(商品名;セルフォックレンズ)とから構成されるもの、あるいは、レーザ光学系などが用いられる。
本発明の画像形成方法においては、感光体上に静電潜像を形成するに際し、像露光をスポット面積が2000μm2以下の露光ビームを用いて行うことが好ましい。このような小径のビーム露光を行っても、本発明の有機感光体は、該スポット面積に対応した画像を忠実に形成することができる。より好ましいスポット面積は、100〜1000μm2である。その結果800dpi(dpiとは2.54cm当たりのドット数)以上で、階調性が豊かな電子写真画像を達成することができる。
前記露光ビームのスポット面積とは、該露光ビームを該ビームと垂直な面で切断したとき、該切断面に現れる光強度分布面で、光強度が最大ピーク強度の1/e2以上の領域に相当する面積を意味する。
用いられる光ビームとしては半導体レーザを用いた走査光学系、及びLEDや液晶シャッター等の固体スキャナー等があり、光強度分布についてもガウス分布及びローレンツ分布等があるがそれぞれのピーク強度の1/e2までの部分をスポット面積とする。
無端ベルト状中間転写体ユニット7は、複数のローラにより巻回され、回動可能に支持された半導電性エンドレスベルト状の第2の像担持体としての無端ベルト状中間転写体70(転写媒体)を有する。
画像形成ユニット10Y、10M、10C、10Bkより形成された各色の画像は、一次転写手段としての一次転写ローラ5Y、5M、5C、5Bkにより、回動する無端ベルト状中間転写体70上に逐次転写されて、合成されたカラー画像が形成される。給紙カセット20内に収容された転写材(定着された最終画像を担持する支持体:例えば普通紙、透明シート等)としての転写材(転写媒体)Pは、給紙手段21により給紙され、複数の中間ローラ22A、22B、22C、22D、レジストローラ23を経て、二次転写手段としての二次転写ローラ5bに搬送され、転写材P上に二次転写してカラー画像が一括転写される。カラー画像が転写された転写材Pは、定着手段24により定着処理され、排紙ローラ25に挟持されて機外の排紙トレイ26上に載置される。ここで、転写媒体とは中間転写体や転写材等の感光体上のトナー画像の転写媒体を云う。
一方、二次転写手段としての二次転写ローラ5bにより転写材Pにカラー画像を転写した後、転写材Pを曲率分離した無端ベルト状中間転写体70は、クリーニング手段6bにより残留トナーが除去される。
画像形成処理中、一次転写ローラ5Bkは常時、感光体1Bkに圧接している。他の一次転写ローラ5Y、5M、5Cはカラー画像形成時にのみ、それぞれ対応する感光体1Y、1M、1Cに圧接する。
二次転写ローラ5bは、ここを転写材Pが通過して二次転写が行われる時にのみ、無端ベルト状中間転写体70に圧接する。
また、装置本体Aから筐体8を支持レール82L、82Rを介して引き出し可能にしてある。
筐体8は、画像形成部10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7とから成る。
画像形成部10Y、10M、10C、10Bkは、垂直方向に縦列配置されている。感光体1Y、1M、1C、1Bkの図示左側方には無端ベルト状中間転写体ユニット7が配置されている。無端ベルト状中間転写体ユニット7は、ローラ71、72、73、74を巻回して回動可能な無端ベルト状中間転写体70、一次転写ローラ5Y、5M、5C、5Bk、及びクリーニング手段6bとから成る。
次に図4は本発明の有機感光体を用いたカラー画像形成装置(少なくとも有機感光体の周辺に帯電手段、露光手段、複数の現像手段、転写手段、クリーニング手段及び中間転写体を有する複写機あるいはレーザービームプリンタ)の構成断面図である。ベルト状の中間転写体70は中程度の抵抗の弾性体を使用している。
1は像形成体として繰り返し使用される回転ドラム型の感光体であり、矢示の反時計方向に所定の周速度をもって回転駆動される。
感光体1は回転過程で、帯電手段2により所定の極性・電位に一様に帯電処理され、次いで不図示の像露光手段3により画像情報の時系列電気デジタル画素信号に対応して変調されたレーザービームによる走査露光光等による画像露光を受けることにより目的のカラー画像のイエロー(Y)の色成分像に対応した静電潜像が形成される。
次いで、その静電潜像がイエロー(Y)の現像手段(イエロー色現像器)4Yにより第1色であるイエロートナーにより現像される。この時第2〜第4の現像手段(マゼンタ色現像器、シアン色現像器、ブラック色現像器)4M、4C、4Bkの各現像器は作動オフになっていて感光体1には作用せず、上記第1色目のイエロートナー画像は上記第2〜第4の現像器により影響を受けない。
中間転写体70はローラ79a、79b、79c、79d、79eで張架されて時計方向に感光体1と同じ周速度をもって回転駆動されている。
感光体1上に形成担持された上記第1色目のイエロートナー画像が、感光体1と中間転写体70とのニップ部を通過する過程で、1次転写ローラ5aから中間転写体70に印加される1次転写バイアスにより形成される電界により、中間転写体70の外周面に順次中間転写(1次転写)されていく。
中間転写体70に対応する第1色のイエロートナー画像の転写を終えた感光体1の表面は、クリーニング装置6aにより清掃される。
以下、同様に第2色のマゼンタトナー画像、第3色のシアントナー画像、第4色のクロ(ブラック)トナー画像が順次中間転写体70上に重ね合わせて転写され、目的のカラー画像に対応した重ね合わせカラートナー画像が形成される。
2次転写ローラ5bで、2次転写対向ローラ79bに対応し平行に軸受させて中間転写体70の下面部に離間可能な状態に配設してある。
感光体1から中間転写体70への第1〜第4色のトナー画像の順次重畳転写のための1次転写バイアスはトナーとは逆極性で、バイアス電源から印加される。その印加電圧は、例えば+100V〜+2kVの範囲である。
感光体1から中間転写体70への第1〜第3色のトナー画像の1次転写工程において、2次転写ローラ5b及び中間転写体クリーニング手段6bは中間転写体70から離間することも可能である。
ベルト状の中間転写体70上に転写された重ね合わせカラートナー画像の第2の画像担持体である転写材Pへの転写は、2次転写ローラ5bが中間転写体70のベルトに当接されると共に、対の給紙レジストローラ23から転写紙ガイドを通って、中間転写体70のベルトに2次転写ローラ5bとの当接ニップに所定のタイミングで転写材Pが給送される。2次転写バイアスがバイアス電源から2次転写ローラ5bに印加される。この2次転写バイアスにより中間転写体70から第2の画像担持体である転写材Pへ重ね合わせカラートナー画像が転写(2次転写)される。トナー画像の転写を受けた転写材Pは定着手段24へ導入され加熱定着される。
本発明の有機感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。尚、文中の「部」は質量部を表す。
実施例1
本発明に用いるトナー及び該トナーを用いた現像剤を作製した。
次に、下記のごとくしてトナーを作製した。
*トナー1−Bkの作製
スチレン:ブチルアクリレート:ブチルメタクリレート=80:10:10の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)5部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により念入りな分級をして、50%体積粒径(Dv50)が3.8μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=80/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー1−Bk」とする。
*トナー2−Bkの作製
スチレン:ブチルアクリレート:ブチルメタクリレート:アクリル酸=75:18:5:2の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)5部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により念入りな分級をして50%体積粒径(Dv50)が8.1μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=80/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー2−Bk」とする。
*トナー3−Bkの作製
スチレン:ブチルアクリレート:メタクリル酸=70:20:10の質量比からなるスチレン−アクリル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)4部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により念入りな分級をして50%体積粒径(Dv50)が4.8μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=75/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー3−Bk」とする。
*トナー4−Bk、トナー4−Y、トナー4−M、トナー4−Cの作製
n−ドデシル硫酸ナトリウム=0.90kgと純水10.0Lを入れ撹拌溶解する。この液に、撹拌下、リーガル330R(キャボット社製カーボンブラック)1.20kgを徐々に加え、ついで、サンドグラインダー(媒体型分散機)を用いて、20時間連続分散した。分散後、大塚電子社製・電気泳動光散乱光度計ELS−800を用いて、上記分散液の粒径を測定した結果、重量平均粒径で122nmであった。また、静置乾燥による質量法で測定した上記分散液の固形分濃度は16.6質量%であった。この分散液を「着色剤分散液1」とする。
ドデシルベンゼンスルホン酸ナトリウム0.055kgをイオン交換水4.0Lに混合し、室温下撹拌溶解する。これを、アニオン界面活性剤溶液Aとする。
ノニルフェニルアルキルエーテル0.014kgをイオン交換水4.0Lに混合し、室温下撹拌溶解する。これを、ノニオン界面活性剤溶液Aとする。
過硫酸カリウム=223.8gをイオン交換水12.0Lに混合し、室温下撹拌溶解する。これを、開始剤溶液Aと呼ぶ。
温度センサー、冷却管、窒素導入装置を付けた100Lの反応釜に、数平均分子量(Mn)が3500のポリプロピレンエマルジョン3.41kgとアニオン界面活性剤溶液Aとノニオン界面活性剤溶液Aとを入れ、撹拌を開始する。次いで、イオン交換水44.0Lを加える。
加熱を開始し、液温度が75℃になったところで、開始剤溶液Aを全量添加する。その後、液温度を75℃±1℃に制御しながら、スチレン14.3kgとアクリル酸n−ブチル2.88kgとメタクリル酸0.8kgとt−ドデシルメルカプタン548gとを投入する。
さらに、液温度を80℃±1℃に上げて、6時間加熱撹拌を行った。液温度を40℃以下に冷却し撹拌を停止する。ポールフィルターで濾過し、これをラテックスA1とした。
なお、ラテックスA1中の樹脂粒子のガラス転移温度は59℃、軟化点は116℃、分子量分布は、重量平均分子量=1.34万、重量平均粒径は125nmであった。
過硫酸カリウム=200.7gをイオン交換水12.0Lに混合し、室温下撹拌溶解する。これを、開始剤溶液Bとする。
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100Lの反応釜に、ノニオン界面活性剤溶液Aを入れ、撹拌を開始する。次いで、イオン交換水44.0Lを投入する。
加熱を開始し、液温度が70℃になったところで、開始剤溶液Bを添加する。この時、スチレン11.0kgとアクリル酸n−ブチル4.00kgとメタクリル酸1.04kgとt−ドデシルメルカプタン9.02gとをあらかじめ混合した溶液を投入する。
その後、液温度を72℃±2℃に制御して、6時間加熱撹拌を行った。さらに、液温度を80℃±2℃に上げて、12時間加熱撹拌を行った。
液温度を40℃以下に冷却し撹拌を停止する。ポールフィルターで濾過し、この濾液をラテックスB1とした。
なお、ラテックスB1中の樹脂粒子のガラス転移温度は58℃、軟化点は132℃、分子量分布は、重量平均分子量=24.5万、重量平均粒径は110nmであった。
塩析剤としての塩化ナトリウム=5.36kgとイオン交換水20.0Lを入れ、撹拌溶解する。これを、塩化ナトリウム溶液Aとする。
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100LのSUS反応釜(撹拌翼はアンカー翼)に、上記で作製したラテックスA1=20.0kgとラテックスB1=5.2kgと着色剤分散液1=0.4kgとイオン交換水20.0kgとを入れ撹拌する。ついで、35℃に加温し、塩化ナトリウム溶液Aを添加する。その後、5分間放置した後に、昇温を開始し、液温度85℃まで5分で昇温する(昇温速度=10℃/分)。液温度85℃±2℃にて、6時間加熱撹拌し、塩析/融着させる。その後、30℃以下に冷却し撹拌を停止する。目開き45μmの篩いで濾過し、この濾液を会合液とする。ついで、遠心分離機を使用し、会合液よりウェットケーキ状の非球形状粒子を濾取した。その後、イオン交換水により洗浄した。
上記で洗浄を完了したウェットケーキ状の着色粒子を、40℃の温風で乾燥し、着色粒子を得た。更に風力分級機により念入りな分級をして50%体積粒径(Dv50)が4.2μmの着色粒子を得た。さらに、この着色粒子に疎水性シリカ(疎水化度=70、数平均一次粒子径=12nm)を1.0質量%添加し、「トナー4−Bk」を得た。
トナー4−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントイエロー185を8部使用した以外同様にして「トナー4−Y」を得た。
トナー4−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントレッド122を10部使用した以外同様にして「トナー4−M」を得た。
トナー4−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントブルー15:3を5部使用した以外同様にして「トナー4−C」を得た。
*トナー5−Bk、トナー5−Y、トナー5−M、トナー5−Cの作製
トナー4−Bkの融着条件を変更して粒径を変化させた着色粒子を調製した。更に風力分級機により念入りな分級をして50%体積粒径(Dv50)が5.0μmの着色粒子を得た。この着色粒子に疎水性シリカ(疎水化度=75、数平均一次粒径=12nm)を1.0質量%添加し、「トナー5−Bk」を得た。
トナー5−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントイエロー185を8部使用した以外同様にして「トナー5−Y」を得た。
トナー5−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントレッド122を10部使用した以外同様にして「トナー5−M」を得た。
トナー5−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントブルー15:3を5部使用した以外同様にして「トナー5−C」を得た。
*トナー6−Bk、トナー6−Y、トナー6−M、トナー6−Cの作製
トナー5−Bkの分級条件を変え、50%体積粒径(Dv50)が9.5μmの着色粒子を得た。この着色粒子に疎水性シリカ(疎水化度=75、数平均一次粒径=12nm)を1.0質量%添加し、「トナー6−Bk」を得た。
トナー6−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントイエロー185を8部使用した以外同様にして「トナー6−Y」を得た。
トナー6−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントレッド122を10部使用した以外同様にして「トナー6−M」を得た。
トナー6−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントブルー15:3を5部使用した以外同様にして「トナー6−C」を得た。
*トナー7−Bk、トナー7−Y、トナー7−M、トナー7−Cの作製
酸価=45のポリエステル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)5部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により分級を念入りに行い、50%体積粒径(Dv50)が7.5μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=65/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー7−Bk」とする。
トナー7−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントイエロー185を8部使用した以外同様にして「トナー7−Y」を得た。
トナー7−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントレッド122を10部使用した以外同様にして「トナー7−M」を得た。
トナー7−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントブルー15:3を5部使用した以外同様にして「トナー7−C」を得た。
*トナー8−Bk、トナー8−Y、トナー8−M、トナー8−Cの作製
酸価=45のポリエステル樹脂100部、カーボンブラック10部、低分子量ポリプロピレン(数平均分子量=3500)5部とを溶融、混練した後、機械式粉砕機を使用し、微粉砕を行い、風力分級機により分級して50%体積粒径(Dv50)が10.4μmの着色粒子を得た。この着色粒子に対して疎水性シリカ(疎水化度=65/数平均一次粒子径=12nm)を1.2質量%添加しトナーを得た。これを「トナー8−Bk」とする。
トナー8−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントイエロー185を8部使用した以外同様にして「トナー8−Y」を得た。
トナー8−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントレッド122を10部使用した以外同様にして「トナー8−M」を得た。
トナー8−Bkの製造において、カーボンブラック10部の代わりにC.I.ピグメントブルー15:3を5部使用した以外同様にして「トナー8−C」を得た。
上記トナーの30℃、80RH%環境における含水率(質量%)の測定結果を表1に示す。
現像剤の作製
上記の各トナー、即ちトナー1−Bk〜トナー8−C(全部で23のトナー)に、シリコーン樹脂を被覆した50%体積粒径(Dv50)が45μmのフェライトキャリアを混合し、トナー濃度6%の現像剤をそれぞれ調製し、評価に供した。これらの現像剤23種ををトナーに対応してそれぞれ現像剤1−Bk〜現像剤8−Cとする。
キャリアの50%体積粒径(Dv50)の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
Figure 2006178411
次に、実施例に用いる感光体を作製した。
感光体1の作製
中間層1
洗浄済み円筒状アルミニウム基体(切削加工によりJISB−0601規定の十点表面粗さRz:0.81μmに加工した)上に、下記中間層塗布液を浸漬塗布法で塗布し、120℃30分で乾燥し、乾燥膜厚3.0μmの中間層1を形成した。
下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。
(中間層分散液の作製)
バインダー樹脂:(例示ポリアミドN−1) 1部(1.00体積部)
ルチル酸化チタンA1(数平均一次粒径35nm;メチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)を用い、酸化チタン全質量の5質量%の量で表面処理したもの) 3.5部(1.0体積部)
エタノール/n−プロピルアルコール/THF(=45/20/30質量比)10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。
電荷発生層
下記成分を混合し、サンドミル分散機を用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚0.3μmの電荷発生層を形成した。
電荷発生物質(G1):Cu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、27.3°に最大回折ピークを有するY型チタニルフタロシン顔料
20部
シリコーン変性ポリビニルブチラール 10部
4−メトキシ−4−メチル−2−ペンタノン 700部
t−ブチルアセテート 300部
電荷輸送層
下記成分を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、乾燥膜厚25μmの電荷輸送層を形成し、感光体1を作製した。
電荷輸送物質(CTM−4) 70部
バインダー樹脂(例示化合物BPZ(Mv:30000)) 100部
酸化防止剤(例示化合物1−1) 8部
テトラヒドロフラン/トルエン(体積比8/2) 750部
感光体2〜6の作製
中間層のN型半導性粒子、バインダー樹脂、乾燥膜厚、電荷発生物質、電荷輸送層の電荷輸送物質、膜厚等を表2のように変更した以外は感光体1と同様にして感光体2〜6を作製した。但し、表2の中間層体積比は感光体1〜6の全ての中間層のバインダー樹脂の体積とN型半導性粒子の体積の合計体積を一定にした上で、バインダー樹脂の体積とN型半導性粒子の体積の比(Vn/Vb)を変えた中間層分散液を作製して、中間層を形成した。
尚、前記感光体1〜6の作製と同時に、各感光体の中間層塗布液を用いて、アルミ蒸着したポリエチレンテレフタレート支持体上に各中間層塗布液を塗布し、前記感光体の乾燥条件と同じ条件で乾燥膜厚10μmの中間層を形成して体積抵抗測定用試料を作製し、各中間層の体積抵抗を測定した。その結果、感光体1〜6の中間層の体積抵抗は全て1×108Ω・cm以上であった。又、感光体1〜6に用いられたバインダー樹脂(BPZ)の構造式を下記に示す。
Figure 2006178411
Figure 2006178411
表2中G1、G2、G3は下記の電荷発生物質を示す。
G1:Cu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、27.3°に最大回折ピークを有するY型チタニルフタロシン顔料
G2はCu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、少なくとも7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、28.1°の位置に特徴的な回折ピークを有するヒドロキシガリウムフタロシアニン顔料
G3はCu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、少なくとも7.4°、16.6°、25.5°、28.3°の位置に特徴的な回折ピークを有するクロルガリウムフタロシアニン顔料
A1はルチル型酸化チタン
A2はアナターゼ形酸化チタン
*1はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)
*2はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比9:1)
*3はメチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比2:8)
*4はメチルハイドロジェンシロキサンとジエチルシロキサンの共重合体(モル比1:1)
*5はメチルハイドロジェンシロキサンとメチルエチルシロキサンの共重合体(モル比1:1)
*6はメチルハイドロジェンポリシロキサン
尚、表中、表面処理とは粒子の表面に施した表面処理に用いた物質を示す。
又、表中の融解熱、吸水率の測定は以下のようにして行った。
融解熱の測定条件
測定機:島津製作所「島津熱流速示差走査熱量計DSC−50」を用いて測定した。
測定条件:測定試料を上記測定機に設定し、室温(24℃)から測定開始、200℃迄5℃/分で昇温し、次いで室温まで5℃/分で冷却する。これを2回連続で行い、2回めの昇温時の融解による吸熱ピーク面積より融解熱を算出する。
吸水率の測定条件
測定対象の試料を70〜80℃で3〜4時間で十分に乾燥させ、その質量を精密に秤量する。次に、20℃に維持したイオン交換水に試料を投入し、一定時間経過後に引き上げ試料表面の水を清潔な布で拭き取り、質量を測定する。以上の操作を質量増が飽和するまで繰り返し、その結果得られた試料の増加質量(増加分)を初期の質量で除した値を吸水率とした。
表中、炭素数が7以上の単位構造の比率とは、繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。
評価1(カウンター現像方式での評価)
得られた現像剤と感光体を表3のように組み合わせ(組み合わせNo.1〜13)、市販のフルカラー複合機8050(コニカミノルタビジネステクノロジーズ(株)社製)改造機(中間転写体を用いたタンデム方式のフルカラー複合機8050(プロセススピード220mm/sec)をカウンター現像方式及び下記プロセス条件に改造)に搭載し、黒色トナーを用いたモノクロの画像評価を行った。白地部、べた黒部のソリット画像部、文字画像部を有するオリジナル画像を用いて、A4紙に連続複写し評価した。詳しくは、スタート時及び5000枚毎に、評価画像を取り出し、計30万枚印刷して評価した。評価項目と評価基準を以下に示す。
評価条件
カウンター現像方式のプロセス条件としては以下の条件を用いて評価を行なった。
感光体線速;220mm/sec
磁気ブラシ食い込み深さ(Bsd);0.30mm
現像ギャップ(Dsd);0.28mm
現像バイアスの交流成分(Vac);1.0KVp−p
現像スリーブと感光体の周速比(Vs/Vopc);2.0
現像バイアスの直流成分(Vdc);−500V
感光体の表面電位V0と現像バイアスの直流成分Vdcの差(|V0−Vdc|);200V
周波数;5KHz
Duty;50%の矩形波
画像評価に当たっては室温にてプリントを行った。
(1)画像評価
先端部濃度低下
30万枚時のハーフトーン画像を作製して評価した。
◎:先端部濃度低下の発生が見られず、ハーフトーン画像が明瞭に再現されている(非常に良好)。
○:ハーフトーン画像が明瞭に再現されているが、反射濃度で0.04未満の先端部濃度低下有り(実用的に問題なし)。
×:ハーフトーン画像に反射濃度で0.04以上の先端部濃度低下有り(実用的に問題あり)。
カブリ
スタート時、30万枚目について濃度計「RD−918」(マクベス社製)を使用し、カブリ濃度についてはA4紙の反射濃度を0.000とした相対濃度で測定した。
◎:0.010未満(非常に良好)
○:0.010以上0.020未満(実用上問題ないレベル)
×:0.020以上(実用上問題あり)
結果を表3に示す。
画像濃度
スタート時、30万枚目について濃度計「RD−918」(マクベス社製)を使用し、プリンター用紙の濃度を0.0とした相対濃度で測定した。
◎:1.3以上/良好
○:1.0以上〜1.3未満/実用上問題ないレベル
×:1.0未満/実用上問題あり
Figure 2006178411
表3から明らかなように、カウンター現像方式で作製した画像評価では、トナーが、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つの含水率が0.1〜2.0質量%(30℃、80%RH環境下)である組み合わせNo.1〜10は、画像濃度、カブリ、先端部濃度低下等の全ての評価項目で良好な特性を示しているのに対し、組み合わせNo.11の粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%より大きいトナーを用いた場合は、カブリ及び先端部濃度低下が発生している。又、含水率が2.0より大きいトナーを用いた組み合わせNo.12は画像濃度の低下及び先端部濃度低下が発生している。又、トナー粒子の含有量が8個数%より大きく、含水率も2.0より大きいトナーを用いた組み合わせNo.13は、画像濃度の低下、カブリの発生及び先端部濃度低下が発生している。
評価2(パラレル現像方式での評価)
評価1で行なった評価を感光体と現像スリーブの進行方向を平行に進行させるパラレル現像方式で評価した。
評価条件
感光体の線速:220mm/sec
現像スリーブの線速:44mm/sec
その結果、評価1の本発明と比較例の差が明瞭に現れず、且つ全部の本発明及び比較例で、先端部濃度低下やカブリの発生は見られなかったが、カウンター現像方式に比し、画像濃度が低下し、濃度不足の電子写真画像が得られた。
評価3
表4のように感光体及びトナーを組み合わせ(組み合わせNo.21〜25)、市販のフルカラー複合機8050(コニカミノルタビジネステクノロジーズ(株)社製)改造機(中間転写体を用いたタンデム方式のフルカラー複合機8050(プロセススピード220mm/sec)をカウンター現像方式及び下記プロセス条件に改造)に搭載し、カラー画像の評価を行った。
評価は、白地部、べた黒部、及びレッド、グリーン、ブルーのソリッド画像部、文字画像部を有するオリジナル画像を用いて、A4紙に複写し評価した。詳しくは、スタート時及び5000枚毎に、文複写画像を計30万枚印刷して評価した。評価項目は、評価1で行った評価の他に、下記の色再現性とワーム状ムラを追加して行った。
カウンター現像方式のプロセス条件としては以下の条件を用いて評価を行なった。
感光体線速;220mm/sec
磁気ブラシ食い込み深さ(Bsd);0.50mm
現像ギャップ(Dsd);0.38mm
現像バイアスの交流成分(Vac);1.2KVp−p
現像スリーブと感光体の周速比(Vs/Vopc);2.3
現像バイアスの直流成分(Vdc);−550V
感光体の表面電位V0と現像バイアスの直流成分Vdcの差(|V0−Vdc|);200V
周波数;7KHz
Duty;50%の矩形波
画像評価に当たっては室温にてプリントを行った。
色再現性
1枚目の画像および100枚目の画像のY、M、C各トナーにおける二次色(レッド、ブルー、グリーン)のソリッド画像部の色を「MacbethColor−Eye7000」により測定し、CMC(2:1)色差式を用いて各ソリッド画像の1枚目と100枚目の色差を算出した。
◎:色差が3以下(良好)
×:色差が3より大の(実用上問題あり実用不可)
ワーム状ムラ
1万枚時のハーフトーン画像をルーペ(×20)にて観察、ワーム状ムラの有無を観察し、評価した。
◎:ムラの発生が見られない。
○:若干ムラはあるが問題なし。
×:ムラ有り。目視では波状のムラとなって実用的に問題あり。
結果を表4に示す。
Figure 2006178411
表4より明らかなように、有機感光体が縮合多環系化合物の電荷発生物質を含有し、トナーが、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つの含水率が0.1〜2.0質量%(30℃、80%RH環境下)である組み合わせNo.21及び22は、画像濃度、カブリ、先端部濃度低下とワーム状ムラの評価が良好で、色再現性も良好である。一方、組み合わせNo.23の粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%より大きいトナーを用いた場合は、カブリ、先端部濃度低下が発生し、色再現性やワーム状ムラも劣化している。含水率が2.0より大きいトナーを用いた組み合わせNo.24は画像濃度が低下し、先端部濃度低下も発生し、色再現性が劣化している。又、トナー粒子の含有量が8個数%より大きく、含水率も2.0より大きいトナーを用いた組み合わせNo.25は、画像濃度が低下し、カブリや先端部濃度低下も発生し、色再現性やワーム状ムラが劣化している。
カウンター方向現像方法の現像装置の断面を示す図である。 有機感光体を含むプロセスカートリッジを有する電子写真装置の概略構成の例を示す図である。 本発明の一実施の形態を示すカラー画像形成装置の断面構成図である。 本発明の有機感光体を用いたカラー画像形成装置の構成断面図である。。
符号の説明
1 有機感光体
C 軸
2 帯電手段
3 露光光
4 現像手段
5 転写手段
P 転写材
24 定着手段
6 クリーニング手段
Pex 前露光手段
PC プロセスカートリッジ容器
AN 案内手段
101 有機感光体
102 現像装置
110 現像容器
118 補給口
120 現像スリーブ
121 磁石
122 現像ブレード
123 第一搬送部材
124 第二搬送部材
128 スクリュー羽根
130 板状突起
140 隔壁
N1 現像磁極
N2 第二現像磁極
S1 汲み上げ磁極
S2 第三搬送磁極
S3 第一搬送磁極
P 現像剤落下位置
Q 汲み上げ位置

Claims (14)

  1. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成方法において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
  2. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成方法において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成方法。
  3. 前記トナーはトナー粒子の50%体積粒径(Dv50)と50%個数粒径(Dp50)の比(Dv50/Dp50)が1.0〜1.11であり、体積粒径の大きい方からの累積75%体積粒径(Dv75)と個数粒径の大きい方からの累積75%個数粒径(Dp75)の比(Dv75/Dp75)が1.0〜1.10のトナーであることを特徴とする請求項1又は2に記載の画像形成方法。
  4. トナー粒子の50%体積粒径(Dv50)が2〜9μmであることを特徴とする請求項1〜3のいずれか1項に記載の画像形成方法。
  5. 前記有機感光体が導電性支持体上にバインダー樹脂中に数平均一次粒径3〜200nmのN型半導性粒子を含有する中間層を介して感光層を有することを特徴とする請求項1〜4のいずれか1項に記載の画像形成方法。
  6. 前記N型半導性粒子が酸化チタン又は酸化亜鉛であることを特徴とする請求項5に記載の画像形成方法。
  7. 前記N型半導性粒子が酸化チタンであることを特徴とする請求項6に記載の画像形成方法。
  8. 前記酸化チタンがルチル形酸化チタン顔料又はアナターゼ形酸化チタン顔料であることを特徴とする請求項7に記載の画像形成方法。
  9. 前記有機感光体と現像スリーブ間の現像ギャップ(Dsd)が0.2〜0.6mmであることを特徴とする請求項1〜8のいずれか1項に記載の画像形成方法。
  10. 前記有機感光体と現像スリーブ間の現像領域における磁気ブラシの食い込み深さ(Bsd)が0.0〜0.8mmであることを特徴とする請求項1〜9のいずれか1項に記載の画像形成方法。
  11. 前記現像スリーブと有機感光体の周速比(Vs/Vopc)が1.2〜3.0であることを特徴とする請求項1〜10に記載の画像形成方法。
  12. 有機感光体の表面電位V0と現像スリーブに付加される現像バイアスの直流成分Vdcの差│V0−Vdc│が100〜300V、該現像バイアスの直流成分Vdcが−300V〜−650V、該現像バイアスの交流成分Vacが0.5〜1.5kV、周波数3〜9kHz且つDuty45〜70%、矩形波であることを特徴とする請求項9〜11のいずれか1項に記載の画像形成方法。
  13. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する画像形成装置において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
  14. 有機感光体上に静電潜像を形成し、円筒状の現像スリーブにトナーを含有する現像剤による現像ブラシを形成し、該現像ブラシを有機感光体に接触させて、該静電潜像をトナー画像に顕像化する現像手段及び有機感光体に形成されたトナー画像を転写媒体に転写する転写手段を有する画像形成ユニットを複数配列して設け、該複数の画像形成ユニット毎に着色を変えたトナーを用いて有機感光体上に各色トナー画像を形成し、該各色トナー画像を有機感光体から転写媒体に転写してカラー画像を形成する画像形成装置において、前記現像剤が、トナー粒子の50%個数粒径をDp50とすると、粒径が0.7×(Dp50)以下のトナー粒子の含有量が8個数%以下であり且つ含水率が0.1〜2.0質量%(30℃、80%RH環境下)であるトナーを含有し、該有機感光体の回転方向に対し、現像スリーブをカウンター方向に回転させながら静電潜像をトナー画像に顕像化することを特徴とする画像形成装置。
JP2005306968A 2004-11-25 2005-10-21 画像形成方法及び画像形成装置 Pending JP2006178411A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306968A JP2006178411A (ja) 2004-11-25 2005-10-21 画像形成方法及び画像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004340191 2004-11-25
JP2005306968A JP2006178411A (ja) 2004-11-25 2005-10-21 画像形成方法及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2006178411A true JP2006178411A (ja) 2006-07-06

Family

ID=36732545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306968A Pending JP2006178411A (ja) 2004-11-25 2005-10-21 画像形成方法及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2006178411A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905659A3 (en) * 2014-02-10 2015-09-02 Ricoh Company, Ltd. Developing device and image forming apparatus and process cartridge incorporating same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905659A3 (en) * 2014-02-10 2015-09-02 Ricoh Company, Ltd. Developing device and image forming apparatus and process cartridge incorporating same
US9285714B2 (en) 2014-02-10 2016-03-15 Ricoh Company, Ltd. Developing device and image forming apparatus and process cartridge incorporating same

Similar Documents

Publication Publication Date Title
US7466326B2 (en) Image forming method and image forming apparatus
US20060188798A1 (en) Organic photoreceptor, image forming apparatus, image forming method and process cartridge
JP2001255685A (ja) 電子写真感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2006126246A (ja) 画像形成方法及び画像形成装置
EP1662328B1 (en) Image forming method
JP4687368B2 (ja) 画像形成方法及び画像形成装置
JP4201007B2 (ja) 有機感光体、画像形成装置、画像形成方法及びプロセスカートリッジ
JP2004240027A (ja) 画像形成方法及び画像形成装置
JP4360155B2 (ja) 画像形成装置及び画像形成方法
JP2007011115A (ja) 画像形成方法及び画像形成装置
JP4082153B2 (ja) 画像形成方法及び画像形成装置
JP2007011116A (ja) 画像形成方法及び画像形成装置
JP2008145661A (ja) 画像形成方法及び画像形成装置
JP4529745B2 (ja) 画像形成方法及び画像形成装置
JP2006126327A (ja) 画像形成方法及び画像形成装置
JP2004198784A (ja) 画像形成方法及び画像形成装置
JP2006178411A (ja) 画像形成方法及び画像形成装置
JP2006227483A (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
JP4380627B2 (ja) 画像形成方法及び画像形成装置
JP4032177B2 (ja) 画像形成方法及び画像形成装置
JP2003186235A (ja) 画像形成方法及び画像形成装置
JP2003241412A (ja) 画像形成方法及び画像形成装置
JP2006301400A (ja) 画像形成方法、画像形成装置及び該画像形成方法に用いる有機感光体
JP2007003675A (ja) 画像形成方法及び画像形成装置、有機感光体及びプロセスカートリッジ
JP2004347853A (ja) 画像形成方法及び画像形成装置