JP2006175299A - Nox occlusion material, its carrying method and nox occlusion reduction type catalyst - Google Patents

Nox occlusion material, its carrying method and nox occlusion reduction type catalyst Download PDF

Info

Publication number
JP2006175299A
JP2006175299A JP2004368289A JP2004368289A JP2006175299A JP 2006175299 A JP2006175299 A JP 2006175299A JP 2004368289 A JP2004368289 A JP 2004368289A JP 2004368289 A JP2004368289 A JP 2004368289A JP 2006175299 A JP2006175299 A JP 2006175299A
Authority
JP
Japan
Prior art keywords
titanium
storage material
compound
alkaline
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004368289A
Other languages
Japanese (ja)
Other versions
JP4534749B2 (en
Inventor
Toshiyuki Tanaka
寿幸 田中
Haruo Imagawa
晴雄 今川
Yukikazu Kato
千和 加藤
Shinichi Matsunaga
真一 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004368289A priority Critical patent/JP4534749B2/en
Publication of JP2006175299A publication Critical patent/JP2006175299A/en
Application granted granted Critical
Publication of JP4534749B2 publication Critical patent/JP4534749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NOx occlusion material capable of suppressing a reaction of cordierite or the like with a substrate and suppressing sulfur poisoning. <P>SOLUTION: The NOx occlusion material comprises a composite body in which an alkaline element comprising at least one kind selected from alkaline metal and alkaline earth metal and combinable with titanium and a titanium element are made composite in the fine state. Because of the fine shape, it has a large reactable area with NOx and movement of the alkaline element is suppressed by combination. Further, since movement of the alkaline element is suppressed, movement of carried noble metal is also suppressed and grain growth of the noble metal is suppressed. Further, approaching of a sulfur oxide is suppressed by a titanium element having high acidity and the sulfur poisoning is suppressed. Since grain grotwh of a sulfate produced by a reaction of the alkaline element and the sulfur oxide is suppressed and dispersibility is enhanced, restoration property from the sulfur poisoning is enhanced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸素過剰のリーン雰囲気でNOx を吸蔵し、ストイキ又は酸素不足のリッチ雰囲気でNOx を放出するNOx 吸蔵材とその担持方法、及びそのNOx 吸蔵材を担持したNOx 吸蔵還元型触媒に関する。 The present invention, oxygen excess occludes NO x in lean atmosphere, the NO x storage material and how bearing that releases NO x at a rich atmosphere of the stoichiometric or oxygen-deficient, and the NO x storage carrying the the NO x storage material The present invention relates to a reduced catalyst.

従来より自動車の排ガス浄化用触媒として、理論空燃比(ストイキ)において排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの貴金属を担持させたものが広く知られている。 Conventionally, as a catalyst for exhaust gas purification of automobiles, a three-way catalyst that purifies by performing CO and HC oxidation and NO x reduction simultaneously in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric) has been used. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. Those carrying a noble metal are widely known.

一方、近年、地球環境保護の観点から、自動車などの内燃機関から排出される排ガス中の二酸化炭素(CO2 )が問題とされ、その解決策として酸素過剰雰囲気において希薄燃焼させるいわゆるリーンバーンが有望視されている。このリーンバーンにおいては、燃料の使用量が低減されるため、CO2 の排出量を低減することができる。 On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem. Is being viewed. In this lean burn, since the amount of fuel used is reduced, CO 2 emissions can be reduced.

これに対し、従来の三元触媒は、空燃比が理論空燃比(ストイキ)において排ガス中のCO、HC、NOx を同時に酸化・還元し浄化するものであって、リーンバーン時の排ガスの酸素過剰雰囲気下においては、NOx の還元除去に対して充分な浄化性能を示さない。このため、酸素過剰雰囲気下においてもNOx を効率よく浄化しうる触媒及び浄化システムの開発が望まれていた。 In contrast, conventional three-way catalysts are those that simultaneously oxidize, reduce, and purify CO, HC, and NO x in exhaust gas when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric). In an excess atmosphere, it does not show sufficient purification performance for NO x reduction and removal. Therefore, it has been desired to develop a catalyst and a purification system that can efficiently purify NO x even in an oxygen-excess atmosphere.

そこでリーンバーンにおいて、常時は酸素過剰のリーン条件で燃焼させ、間欠的にストイキ〜リッチ条件とすることにより排ガスを還元雰囲気としてNOx を還元浄化するシステムが開発された。そしてこのシステムに最適な触媒として、リーン雰囲気でNOx を吸蔵し、ストイキ〜リッチ雰囲気で吸蔵されたNOx を放出するNOx 吸蔵材を用いたNOx 吸蔵還元型の排ガス浄化用触媒が開発され、利用に供されている。 Therefore, in lean burn, a system for reducing and purifying NO x using exhaust gas as a reducing atmosphere has been developed by always burning under lean conditions with excess oxygen and intermittently changing from stoichiometric to rich conditions. And as the best catalysts for this system, occludes NO x in lean atmosphere, stoichiometric ~ the NO x storage-reduction type exhaust purifying catalyst is developing with the NO x storage material that releases occluded NO x in a rich atmosphere And is available for use.

このNOx の吸蔵・放出作用をもつNOx 吸蔵材としては、アルカリ土類金属、アルカリ金属及び希土類元素が知られ、例えば特開平05−317652号公報には、Baなどのアルカリ土類金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。また特開平06−031139号公報には、Kなどのアルカリ金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。さらに特開平05−168860号公報には、Laなどの希土類元素とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。 As the NO x storage material with absorbing and releasing action of the NO x, the alkaline earth metals, known alkali metal and rare earth elements, for example, JP-A-05-317652, and alkaline earth metals such as Ba Pt was supported on a porous carrier such as alumina NO x storage-and-reduction type catalyst has been proposed. Japanese Laid-Open Patent Publication No. 06-031139 proposes a NO x storage reduction catalyst in which an alkali metal such as K and Pt are supported on a porous carrier such as alumina. Furthermore, Japanese Patent Laid-Open No. 05-168860 proposes a NO x storage reduction catalyst in which a rare earth element such as La and Pt are supported on a porous carrier such as alumina.

これらのNOx 吸蔵還元型触媒を用いれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、排ガスもリーン雰囲気からパルス状にストイキ〜リッチ雰囲気となる。したがって、リーン側ではNOx がNOx 吸蔵材に吸蔵され、それがストイキ又はリッチ側で放出されてHCやCOなどの還元性成分と反応して浄化されるため、リーンバーンエンジンからの排ガスであってもNOx を効率良く浄化することができる。また排ガス中のHC及びCOは、貴金属により酸化されるとともにNOx の還元にも消費されるので、HC及びCOも効率よく浄化される。 With these NO x storage-and-reduction type catalyst, by controlling so that the stoichiometric-rich side air-fuel ratio from the lean side in a pulsed manner, the exhaust gas becomes stoichiometric-rich atmosphere from a lean atmosphere in pulses. Therefore, on the lean side, NO x is occluded in the NO x occlusion material, and it is released on the stoichiometric or rich side and reacts with reducing components such as HC and CO to be purified, so the exhaust gas from the lean burn engine Even if it exists, NO x can be purified efficiently. Further, HC and CO in the exhaust gas are oxidized by the noble metal and consumed for the reduction of NO x , so that HC and CO are also efficiently purified.

ところで、排ガス規制の強化及びエンジンの高性能化などにより、排ガス浄化用触媒への入りガスの平均温度及び最高温度は近年ますます上昇する傾向にあり、排ガス浄化用触媒にはさらなる耐熱性の向上が望まれている。また入りガス温度の上昇に伴い、高温域におけるNOx 浄化性能の向上も望まれている。 By the way, due to stricter exhaust gas regulations and higher engine performance, the average temperature and maximum temperature of the gas entering the exhaust gas purification catalyst have been increasing in recent years, and the exhaust gas purification catalyst has further improved heat resistance. Is desired. In addition, as the incoming gas temperature rises, it is desired to improve the NO x purification performance in a high temperature range.

ところが従来のNOx 吸蔵還元型触媒では、高温域でNOx 吸蔵材と担体との反応が生じてNOx 吸蔵能が低下するという問題がある。また従来の排ガス浄化用触媒では、最高浄化能を示す温度域(温度ウインドウ)が狭く、高温域でのNOx 浄化能を確保することが困難であった。 However, in the conventional NO x storage-and-reduction type catalyst, there is a problem that reaction with the NO x storage material and carrier in a high temperature region is the NO x storage ability is decreased occurs. Further, the conventional exhaust gas purifying catalyst has a narrow temperature range (temperature window) showing the maximum purifying ability, and it has been difficult to ensure the NO x purifying ability in a high temperature range.

さらにNOx 吸蔵還元型触媒においては、燃料中に含まれる微量の硫黄に起因するSOx によるNOx 吸蔵材の硫黄被毒(硫酸塩の生成によるNOx 吸蔵能の低下)が生じ、その結果耐久性が低下してしまう。 Furthermore, in the NO x storage-reduction catalyst, sulfur poisoning of the NO x storage material due to SO x caused by a small amount of sulfur contained in the fuel (decrease in NO x storage capacity due to sulfate formation) occurs, and as a result Durability will be reduced.

そこで特開平09−201532号公報には、アルカリ金属、アルカリ土類金属及び希土類元素からなる群から選ばれる少なくとも一種のNOx 吸蔵元素と、多孔質酸化物担体と、貴金属とよりなる非晶質の複合酸化物から基体を構成し、貴金属は基体に均一に高分散されてなるNOx 吸蔵還元型触媒が提案されている。 Therefore, JP-A 09-201532 discloses an amorphous material comprising at least one NO x storage element selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements, a porous oxide carrier, and a noble metal. complex oxides constitutes the substrate from, the noble metal NO x storage-and-reduction type catalyst comprising a uniformly high dispersion to a substrate has been proposed.

このNOx 吸蔵還元型触媒によれば、多孔質担体とNOx 吸蔵材及び貴金属とは非晶質の複合酸化物を構成しているので、NOx 吸蔵材の移動が抑制されNOx 吸蔵材と基材との反応が防止される。またNOx 吸蔵材の飛散や溶出も抑制されるので、高温下での貴金属の粒成長が防止され、高温耐久試験後においても性能の低下を抑制することができる。 According to this NO x storage-reduction catalyst, the porous carrier, the NO x storage material, and the noble metal constitute an amorphous composite oxide, so that the movement of the NO x storage material is suppressed and the NO x storage material. Reaction with the substrate. Further, since scattering and elution of the NO x storage material are suppressed, noble metal grain growth at high temperatures can be prevented, and performance degradation can be suppressed even after a high temperature durability test.

また特開平10−128114号公報には、アルカリ金属から選ばれる第1元素と、アルカリ土類金属、希土類元素及び遷移金属の少なくとも一種から選ばれる第2元素とを含む複合化合物からなるNOx 吸蔵材が記載されている。このNOx 吸蔵材によれば、貴金属担持時の第1元素の溶出が抑制されるとともに、高温時の第1元素の蒸散が抑制される。したがって高温耐久後も第1元素であるアルカリ金属の高いNOx 吸蔵能が維持され、NOx 吸蔵能が安定化するとともに耐久性が向上する。また高熱が作用してもアルカリ金属の高分散担持が維持されるため、硫黄被毒により生成した硫酸塩の結晶の成長が抑制され、その結果硫酸塩の脱離が容易となって耐久性が向上する。 Japanese Patent Application Laid-Open No. 10-128114 discloses NO x storage comprising a composite compound containing a first element selected from alkali metals and a second element selected from at least one of alkaline earth metals, rare earth elements and transition metals. The materials are listed. According to this NO x storage material, the elution of the first element at the time of supporting the noble metal is suppressed, and the transpiration of the first element at a high temperature is suppressed. Thus after the high temperature durability is also maintained higher the NO x storage ability of the alkali metal is first element, the NO x storage ability is improved durability as well as stabilized. In addition, since highly dispersed support of alkali metal is maintained even when high heat is applied, the growth of sulfate crystals produced by sulfur poisoning is suppressed, and as a result, the detachment of sulfate is facilitated and durability is improved. improves.

ところが特開平09−201532号公報に記載の触媒では、貴金属とNOx 吸蔵材とが共に基体中に取り込まれているため、排ガスとの接触性に難点があり、反応効率が低いという問題がある。また特開平10−128114号公報に記載のNOx 吸蔵材では、複合化合物が微細でないために反応効率が低いという問題があり、第2元素の範疇に含まれる筈のチタンに関しては全く記載されていない。
特開平06−031139号 特開平09−201532号 特開平10−128114号
However, in the catalyst described in Japanese Patent Application Laid-Open No. 09-201532, both the noble metal and the NO x storage material are taken into the substrate, so that there is a problem in contact with exhaust gas and the reaction efficiency is low. . In addition, the NO x storage material described in JP-A-10-128114 has a problem that the reaction efficiency is low because the composite compound is not fine, and there is no description of titanium contained in the category of the second element. Absent.
JP 06-031139 JP 09-201532 A JP-A-10-128114

本発明は、上記事情に鑑みてなされたものであり、コージェライトなどの基材との反応を抑制でき、かつ硫黄被毒も抑制できるNOx 吸蔵材とその担持方法を提供することを目的とする。また、そのNOx 吸蔵材を担持することで、耐久後も高いNOx 浄化活性を示すNOx 吸蔵還元型触媒を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a NO x storage material capable of suppressing a reaction with a base material such as cordierite and suppressing sulfur poisoning and a method for supporting the same. To do. Moreover, the the NO x storage material by carrying, and to provide a NO x storage-and-reduction type catalysts having after the durability is high the NO x purification activity.

上記課題を解決する本発明のNOx 吸蔵材の特徴は、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なアルカリ性元素と、チタン元素と、が微細な状態で複合化した複合体からなることにある。 The feature of the NO x storage material of the present invention that solves the above problems is that the alkaline element that can be combined with titanium and composed of at least one selected from alkali metals and alkaline earth metals, and the titanium element are combined in a fine state. It consists of a complex.

また本発明のNOx 吸蔵材の担持方法の特徴は、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なアルカリ性元素を含む第1の化合物と、
チタンアルコキシドを含む第2の化合物と多座配位子を有する第3の化合物とから生成された第4の化合物と、
チタンに対してモル比で1/2以上の過酸化水素と、が共存する多孔質酸化物からなる担体に含浸させ、その後焼成することにある。
Further, the feature of the method for supporting the NO x storage material of the present invention is the first compound comprising an alkaline element which is composed of at least one selected from alkali metals and alkaline earth metals and can be combined with titanium,
A fourth compound produced from a second compound comprising a titanium alkoxide and a third compound having a polydentate ligand;
The purpose is to impregnate a support made of a porous oxide in which hydrogen peroxide having a molar ratio of 1/2 or more with respect to titanium coexists, and then firing.

そして本発明のNOx 吸蔵還元型触媒の特徴は、多孔質酸化物よりなる担体と、担体に担持された貴金属と、担体に担持された本発明のNOx 吸蔵材と、からなることにある。この触媒においては、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化していない独立NOx 吸蔵材をさらに担持することが好ましい。また本発明のNOx 吸蔵材を排ガス上流側に担持し、独立NOx 吸蔵材を排ガス下流側に担持することも好ましい。 The feature of the NO x storage reduction catalyst of the present invention is that it comprises a support made of a porous oxide, a noble metal supported on the support, and the NO x storage material of the present invention supported on the support. . In this catalyst, it is preferable to further support an independent NO x storage material which is composed of at least one selected from alkali metals and alkaline earth metals and which is not complexed with titanium. It is also preferable that the NO x storage material of the present invention is supported on the exhaust gas upstream side and the independent NO x storage material is supported on the exhaust gas downstream side.

本発明のNOx 吸蔵材によれば、アルカリ性元素とチタン元素とが微細な状態で複合化しているので、NOx と反応可能な面積が大きい。したがって、アルカリ性元素によるNOx 吸蔵能が良好に発現される。またチタン元素と複合化しているため、アルカリ性元素の移動が抑制されコージェライトなどの基材との反応が抑制される。そして、アルカリ性元素の移動が抑制されているため、担持されている貴金属の移動も抑制され貴金属の粒成長が抑制される。また酸性度が高いチタン元素によって硫黄酸化物の近接が抑制され硫黄被毒が抑制されるとともに、アルカリ性元素と硫黄酸化物との反応により生成した硫酸塩の粒成長が抑制されるため、分解性が向上し硫黄被毒の回復性が向上する。したがって本発明のNOx 吸蔵還元型触媒によれば、微細化による高NOx 吸蔵能及び高硫黄脱離性と、複合化による移動抑制との両立を図ることが可能になるので、耐久後も高いNOx 吸蔵能が維持され、NOx 浄化性能の耐久性に優れている。 According to the NO x storage material of the present invention, since the alkaline element and the titanium element are complexed in a fine state, the area capable of reacting with NO x is large. Therefore, the NO x storage ability by the alkaline element is expressed well. Moreover, since it is compounded with the titanium element, the movement of the alkaline element is suppressed, and the reaction with the base material such as cordierite is suppressed. Since the movement of the alkaline element is suppressed, the movement of the supported noble metal is also suppressed, and the noble metal grain growth is suppressed. In addition, the titanium element with high acidity suppresses the proximity of sulfur oxides to suppress sulfur poisoning, and also suppresses the grain growth of sulfate produced by the reaction between alkaline elements and sulfur oxides. And the recovery from sulfur poisoning is improved. Therefore, according to the NO x storage-reduction catalyst of the present invention, the high the NO x storage capacity and high sulfur leaving due to miniaturization, it becomes possible to achieve both a moving suppression by compounding, after durability High NO x storage capacity is maintained and the durability of NO x purification performance is excellent.

またチタンと複合化していない独立NOx 吸蔵材をさらに担持すれば、高温域におけるNOx 吸蔵能が向上する。しかし独立NOx 吸蔵材を担持したNOx 吸蔵還元型触媒では、高温域における貴金属の粒成長によって活性が低下し、耐久後は独立NOx 吸蔵材本来の特性を発揮できないという欠点がある。そこで本発明のNOx 吸蔵材を排ガス上流側に担持し、独立NOx 吸蔵材を上流側に比べて低温の排ガスが流入する排ガス下流側に担持したNOx 吸蔵還元型触媒とすれば、下流側における貴金属の粒成長を抑制でき、独立NOx 吸蔵材本来の高いNOx 吸蔵能を発現できる。 Further, if an independent NO x storage material that is not combined with titanium is further supported, the NO x storage capacity in a high temperature region is improved. However, in carrying the independent the NO x storage material NO x storage-and-reduction type catalyst, the activity is lowered by grain growth of a noble metal in a high temperature range, after endurance has the disadvantage of not exhibit independence the NO x storage material original characteristics. Therefore, if the NO x storage material of the present invention is supported on the exhaust gas upstream side, and the independent NO x storage material is supported on the exhaust gas downstream side where the low temperature exhaust gas flows compared to the upstream side, the NO x storage reduction catalyst is downstream. The grain growth of the noble metal on the side can be suppressed, and the original high NO x storage capacity of the independent NO x storage material can be expressed.

また本発明のNOx 吸蔵材の担持方法によれば、アルカリ性元素とチタン元素とが微細な状態で複合化した複合体を安定して担持することができる。したがって本発明のNOx 吸蔵材本来の特性が発現し、優れた特性をもつNOx 吸蔵還元型触媒を製造することができる。 Further, according to the method for supporting the NO x storage material of the present invention, it is possible to stably support a complex in which an alkaline element and a titanium element are combined in a fine state. Therefore, the original characteristics of the NO x storage material of the present invention are expressed, and an NO x storage reduction type catalyst having excellent characteristics can be manufactured.

本発明のNOx 吸蔵材は、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なアルカリ性元素と、チタン元素と、が微細な状態で複合化した複合体からなる。アルカリ性元素とチタン元素とがどのように複合化しているかは、現時点では明らかになっていないが、X線回折による観察の結果からは、この複合体は粒径が数nm以下と微細な状態で安定して存在することが明らかとなっている。 The NO x storage material of the present invention is composed of a composite in which an alkaline element that can be combined with titanium and at least one selected from alkali metals and alkaline earth metals and a titanium element are combined in a fine state. It is not clear at this time how alkaline elements and titanium elements are complexed, but from the results of observation by X-ray diffraction, this complex has a fine particle size of several nanometers or less. It is clear that it exists stably.

アルカリ性元素は、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なものである。チタンと複合化可能なものとしては、K、Na、Li、Cs、Ba、Sr、Ca、Mgなどが例示されるが、NOx 吸蔵能が高いもののコージェライトなどの基材と反応し易いKを含む場合に、本発明は特に有用である。単一種であってもよいし、複数種が混合されていてもよい。 The alkaline element is at least one selected from alkali metals and alkaline earth metals and can be combined with titanium. As may be complexed with titanium, K, Na, Li, Cs , Ba, Sr, Ca, although such as Mg is exemplified, easily react with a substrate such as cordierite having a high the NO x storage capacity K The present invention is particularly useful when A single species may be used, or a plurality of species may be mixed.

アルカリ性元素とチタン元素との組成比率は特に制限されないが、アルカリ性元素:チタン元素のモル比が1:1〜3:1の範囲とすることが望ましい。   The composition ratio of the alkaline element and the titanium element is not particularly limited, but the molar ratio of the alkaline element: titanium element is preferably in the range of 1: 1 to 3: 1.

本発明のNOx 吸蔵材を製造するにあたり、アルカリ性元素の化合物とチタン化合物とを混合して加熱するだけでは、複合体は形成できたとしても、微細な状態で複合化することは困難である。そこで例えば、アルカリ性元素を含む第1の化合物と、チタンアルコキシドを含む第2の化合物と多座配位子を有する第3の化合物とから生成された第4の化合物と、チタンに対してモル比で1/2以上の過酸化水素と、が共存する溶液を調製し、これを焼成する方法がある。また、この溶液を用い、加水分解あるいはpH調製することで前駆体を析出させ、それを焼成してもよい。 In producing the NO x storage material of the present invention, it is difficult to form a complex in a fine state even if a complex can be formed only by mixing and heating an alkaline element compound and a titanium compound. . Therefore, for example, a molar ratio with respect to titanium, a fourth compound produced from a first compound containing an alkaline element, a second compound containing a titanium alkoxide, and a third compound having a polydentate ligand. There is a method in which a solution in which ½ or more hydrogen peroxide coexists is prepared and baked. Alternatively, the precursor may be precipitated by hydrolysis or pH adjustment using this solution, and may be fired.

上記第1の化合物、第4の化合物及び過酸化水素を含む溶液では、第4の化合物にアルカリ性元素とチタン元素とが配位結合した錯体が形成され、それを焼成することで複合体を形成することができる。焼成直後は、複合体はアルカリ性元素の酸化物とチタン酸化物とが複合化した複合酸化物、チタン酸塩などの単体若しくは混合物と考えられる。   In the solution containing the first compound, the fourth compound and hydrogen peroxide, a complex in which an alkaline element and a titanium element are coordinated to the fourth compound is formed, and a complex is formed by firing the complex. can do. Immediately after firing, the composite is considered to be a simple substance or a mixture of a composite oxide, titanate or the like in which an oxide of an alkaline element and a titanium oxide are combined.

しかし上記製造方法では、焼成時のシンタリングによって複合体が粗大粒子となる可能性が大きく、それを担持することで得られる触媒は実用的でない。そこで本発明のNOx 吸蔵材の担持方法では、上記溶液中を多孔質酸化物からなる担体に含浸させ、その後焼成する方法を採用している。あるいは、上記溶液中に多孔質酸化物からなる担体を混合し、その後加水分解あるいはpH調製することで前駆体を析出させ、それを焼成してもよい。 However, in the above production method, there is a high possibility that the composite becomes coarse particles due to sintering during firing, and a catalyst obtained by supporting the composite is not practical. Therefore, the method for supporting the NO x storage material of the present invention employs a method in which the above solution is impregnated into a carrier made of a porous oxide and then fired. Or the support | carrier which consists of porous oxides in the said solution may be mixed, and a precursor may be deposited by carrying out hydrolysis or pH adjustment after that, and you may bake it.

この方法によれば、焼成時の濃縮により析出した前駆体、あるいは加水分解やpH調製で析出した前駆体は、担体表面に析出して担持されるため、担体との相互作用によって焼成時の粒成長が抑制される。したがって形成される複合体は、微細な状態で担体に担持され、NOx 吸蔵材を微細な状態で担持することができる。 According to this method, the precursor deposited by concentration during firing or the precursor deposited by hydrolysis or pH adjustment is deposited and supported on the surface of the carrier, so that the particles during firing are interacted with the carrier. Growth is suppressed. Therefore, the formed composite can be supported on the carrier in a fine state, and the NO x storage material can be supported in a fine state.

第1の化合物は、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なアルカリ性元素を含む化合物であり、溶液中に溶解するものが用いられる。溶液が水溶液であれば、水溶性のアルカリ性元素の硝酸塩、アルカリ性元素の酢酸塩などを用いることができる。水溶性のアルコールを含んでもよい。   The first compound is a compound containing an alkaline element that is composed of at least one selected from alkali metals and alkaline earth metals and can be complexed with titanium, and is dissolved in a solution. If the solution is an aqueous solution, a water-soluble alkaline element nitrate, an alkaline element acetate, or the like can be used. It may contain a water-soluble alcohol.

第2の化合物はチタンアルコキシドを含む化合物であり、チタンメトキシド、チタンエトキシド、チタンプロポキシド、チタンブトキシドなどが例示される。これらの単種でもよいし複数種を混合して用いることもできる。また少なくともチタンアルコキシドを含めばよく、NOx 吸蔵材としての特性を損なわない範囲であれば他の金属アルコキシドが共存していてもよい。 The second compound is a compound containing titanium alkoxide, and examples thereof include titanium methoxide, titanium ethoxide, titanium propoxide, and titanium butoxide. These may be used alone or in combination. Further, at least titanium alkoxide may be included, and other metal alkoxides may coexist as long as the characteristics as the NO x storage material are not impaired.

第3の化合物は多座配位子(キレート配位子)を有する化合物であり、クエン酸、シュウ酸、エチレンジアミン、アセト酢酸エチル、グリコール、ピナコールなどが例示される。アルカリ性元素が配位結合するものであるから、酸性配位子を有するクエン酸などが特に好ましい。第2の化合物と第3の化合物を混合し、必要に応じて加熱することにより、チタンに多座配位子が配位した第4の化合物を生成することができる。   The third compound is a compound having a polydentate ligand (chelate ligand), and citric acid, oxalic acid, ethylenediamine, ethyl acetoacetate, glycol, pinacol and the like are exemplified. Citric acid having an acidic ligand is particularly preferable because an alkaline element is coordinate-bonded. A fourth compound in which a multidentate ligand is coordinated to titanium can be produced by mixing the second compound and the third compound and heating as necessary.

なお第1〜3の化合物の添加量は、目的とするNOx 吸蔵材の特性に応じて選択すればよい。 The addition amount of the first to third compounds may be selected according to the characteristics of the target NO x storage material.

上記溶液には、チタンに対してモル比で1/2以上の過酸化水素がさらに含まれている。過酸化水素は、チタンと反応してベロキソ錯体を形成することで、第1の化合物の存在下におけるゲル化を抑制する。したがって、その添加量がチタンに対してモル比で1/2未満では、水溶液の安定性が低下し、担体上への高分散担持が困難になる。   The solution further contains hydrogen peroxide having a molar ratio of 1/2 or more with respect to titanium. Hydrogen peroxide reacts with titanium to form a beloxo complex, thereby suppressing gelation in the presence of the first compound. Therefore, when the addition amount is less than 1/2 in terms of molar ratio with respect to titanium, the stability of the aqueous solution is lowered and it becomes difficult to carry highly dispersed on the carrier.

多孔質酸化物からなる担体としては、アルミナ、セリア、ジルコニア、チタニア、これらから選ばれる複数種からなる複合酸化物など、従来のNOx 吸蔵還元型触媒に用いられている多孔質酸化物を用いることができる。この担体に上記溶液が含浸され、その状態で加熱されることで、蒸発乾固、焼成され、アルカリ性元素とチタン元素とが微細な状態で複合化した複合体からなるNOx 吸蔵材を担持することができる。 As the support made of a porous oxide, porous oxides used in conventional NO x storage reduction catalysts such as alumina, ceria, zirconia, titania, and complex oxides selected from these are used. be able to. The solution is impregnated into the carrier, by being heated in this state, it evaporated to dryness, calcined, and the alkaline element and titanium element carrying the NO x storage material comprising a composite of the complex in a fine state be able to.

そして本発明のNOx 吸蔵還元型触媒は、多孔質酸化物よりなる担体と、担体に担持された貴金属と、担体に担持された本発明のNOx 吸蔵材と、からなる。担体には、上記した多孔質酸化物が用いられる。また貴金属は、リーン雰囲気で排ガス中のNOを酸化してNOx 吸蔵材への吸蔵を促進するとともに、ストイキからリッチ雰囲気でNOx 吸蔵材から放出されたNOx をN2へ還元して浄化する。また同時に、排ガス中のCO及びHCを酸化して浄化する。このような貴金属としては、Pt、Rh、Pd、Irなどから選ばれる少なくとも一種を用いることができ、その担持量は、担体に対して 0.1〜10重量%の範囲とすることができる。 The NO x storage-reduction catalyst of the present invention comprises a support made of a porous oxide, a noble metal supported on the support, and the NO x storage material of the present invention supported on the support. The above-described porous oxide is used for the support. The precious metal serves to promote the occlusion to the NO x storage material by oxidizing the NO in the exhaust gas in a lean atmosphere, by reducing the NO x released from the NO x storage material in a rich atmosphere from the stoichiometric to the N 2 purification To do. At the same time, CO and HC in the exhaust gas are oxidized and purified. As such a noble metal, at least one selected from Pt, Rh, Pd, Ir and the like can be used, and the supported amount can be in the range of 0.1 to 10% by weight with respect to the support.

また本発明のNOx 吸蔵材の担持量は、複合体中のアルカリ性元素の濃度として、触媒1リットルあたり0.01モル〜5モルの範囲が実用的である。 Further, the supported amount of the NO x storage material of the present invention is practically in the range of 0.01 mol to 5 mol per liter of the catalyst as the concentration of the alkaline element in the composite.

担体に本発明のNOx 吸蔵材を担持するには、本発明の担持方法を利用することが望ましい。また担体に貴金属を担持するには、従来用いられている吸着担持法、吸水担持法などを用いることができる。 In order to carry the NO x storage material of the present invention on the carrier, it is desirable to use the loading method of the present invention. In order to support the noble metal on the carrier, a conventionally used adsorption supporting method, water absorbing supporting method, or the like can be used.

本発明のNOx 吸蔵還元型触媒は、担体粉末に貴金属及びNOx 吸蔵材を担持した触媒粉末を成形してペレット触媒としてもよいし、コージェライトあるいはメタル製のハニカム基材に担体コート層を形成し、そのコート層に貴金属及びNOx 吸蔵材を担持してハニカム触媒とすることも好ましい。後者の場合には、本発明の担持方法で調整された溶液をコート層に含浸し、それを焼成することで、アルカリ性元素とチタン元素とが微細な状態で複合化した複合体からなるNOx 吸蔵材を担持することができる。 NO x storage-and-reduction type catalyst of the present invention, by forming the catalyst powder carrying a noble metal and NO x storage material in the support powder may be used as the catalyst pellets, the carrier coating layer cordierite or honeycomb substrate made of metal It is also preferable to form a honeycomb catalyst by supporting the noble metal and NO x storage material on the coating layer. In the latter case, the solution prepared by the carrying method of the present invention is impregnated into the coat layer and fired to form a NO x composed of a composite in which an alkaline element and a titanium element are complexed in a fine state. An occlusion material can be carried.

本発明のNOx 吸蔵還元型触媒は、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化していない独立NOx 吸蔵材をさらに担持することが好ましい。独立NOx 吸蔵材を担持することで、高温域のNOx 吸蔵能が向上する。この独立NOx 吸蔵材としては、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種であり、本発明のNOx 吸蔵材のアルカリ性元素と同一でもよいし異なっていてもよい。また独立NOx 吸蔵材の担持量は、触媒1リットルあたり0.01モル〜5モルの範囲となるようにすればよい。 The NO x storage-reduction catalyst of the present invention preferably further supports an independent NO x storage material that is made of at least one selected from alkali metals and alkaline earth metals and is not complexed with titanium. By supporting the independent NO x storage material, the NO x storage capacity in the high temperature region is improved. The independent NO x storage material is at least one selected from alkali metals and alkaline earth metals, and may be the same as or different from the alkaline element of the NO x storage material of the present invention. Further, the supported amount of the independent NO x storage material may be in the range of 0.01 mol to 5 mol per liter of the catalyst.

しかしながら独立NOx 吸蔵材を担持したNOx 吸蔵還元型触媒では、高温域において独立NOx 吸蔵材の移動に伴う貴金属の粒成長によって活性が低下し、耐久後は独立NOx 吸蔵材本来の特性を発揮できない場合がある。そこで本発明のNOx 吸蔵材を排ガス上流側に担持し、独立NOx 吸蔵材を排ガス下流側に担持したNOx 吸蔵還元型触媒とすることが望ましい。下流側では上流側に比べて低温の排ガスが流入するので、下流側における貴金属の粒成長を抑制できるとともに独立NOx 吸蔵材と基材との反応も抑制でき、独立NOx 吸蔵材本来の高いNOx 吸蔵能を発現できる。 However, in carrying the independent the NO x storage material NO x storage-and-reduction type catalyst, activity decreases by an independent the NO x storage moving grain growth of the noble metal associated with the material in the high temperature region, after the durability is independently the NO x storage material inherent characteristics May not be possible. Therefore, it is desirable to use an NO x storage reduction catalyst in which the NO x storage material of the present invention is supported on the exhaust gas upstream side and the independent NO x storage material is supported on the exhaust gas downstream side. Since the exhaust gas flows at a lower temperature on the downstream side than the upstream side, it is possible to suppress the noble metal grain growth on the downstream side and to suppress the reaction between the independent NO x storage material and the base material, which is inherently high in the independent NO x storage material. Can express NO x storage capacity.

以下、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
多座配位子を有する第3の化合物としてのクエン酸 1.5モルをイオン交換水に溶解し、75℃に加熱した。この溶液に第2の化合物としてのチタンイソプロポキシド 0.3モルを加え、溶解後に室温まで冷却して、第4の化合物としてのチタンクエン酸錯体水溶液(濃度0.57モル/L)を調製した。
Example 1
1.5 mol of citric acid as a third compound having a polydentate ligand was dissolved in ion-exchanged water and heated to 75 ° C. To this solution was added 0.3 mol of titanium isopropoxide as the second compound, and after dissolution, the mixture was cooled to room temperature to prepare an aqueous solution of titanium citrate complex (concentration 0.57 mol / L) as the fourth compound.

得られたチタンクエン酸錯体水溶液6.15mlに、30%過酸化水素水溶液 0.6mlを加え、さらに第1化合物としての酢酸カリウム水溶液(濃度4.26モル/L)1.64mlを加えて撹拌し、K−Ti複合体前駆体水溶液を調製した。溶液中の各成分のモル比Ti/Kは、1/2であり、KとTiとが微細な状態で複合化している。   To 6.15 ml of the obtained aqueous solution of titanium citrate complex, 0.6 ml of 30% aqueous hydrogen peroxide solution is added, and further 1.64 ml of aqueous potassium acetate solution (concentration 4.26 mol / L) as the first compound is added and stirred, and K-Ti A composite precursor aqueous solution was prepared. The molar ratio Ti / K of each component in the solution is 1/2, and K and Ti are compounded in a fine state.

一方、γ−アルミナ粉末 100g、TiO2−ZrO2複合酸化物粉末(重量比TiO2/ZrO2=30/70) 100g、ジルコニアにRhを1重量%担持したRh/ZrO2粉末50g、CeO2−ZrO2複合酸化物粉末(モル比Ce/Zr=7/3)20g、及び無機バインダを含む水性スラリーを調製し、六角セルをもつコージェライト製のハニカム基材(直径30mm、長さ50mm)にウォッシュコートしてコート層を形成した。コート層の形成量は、ハニカム基材1Lあたり 270gである。このコート層にジニトロジアンミン白金硝酸溶液を用いてPtを選択吸着担持し、大気中にて 300℃で3時間焼成してPt担持触媒を調製した。Ptの担持量は、ハニカム基材1Lあたり2gである。 On the other hand, 100 g of γ-alumina powder, 100 g of TiO 2 —ZrO 2 composite oxide powder (weight ratio TiO 2 / ZrO 2 = 30/70), 50 g of Rh / ZrO 2 powder in which 1% by weight of Rh is supported on zirconia, CeO 2 -An aqueous slurry containing 20 g of ZrO 2 composite oxide powder (molar ratio Ce / Zr = 7/3) and an inorganic binder, and a honeycomb substrate made of cordierite with hexagonal cells (diameter 30 mm, length 50 mm) A coat layer was formed by wash coating. The amount of coat layer formed is 270 g per liter of honeycomb substrate. Pt was selectively adsorbed and supported on this coat layer using a dinitrodiammine platinum nitric acid solution, and calcined in the atmosphere at 300 ° C. for 3 hours to prepare a Pt-supported catalyst. The amount of Pt supported is 2 g per 1 L of honeycomb substrate.

上記Pt担持触媒に、上記K−Ti複合体前駆体水溶液の所定量を吸水含浸させ、大気中にて 300℃で3時間焼成して、本発明のNOx 吸蔵材が担持されたNOx 吸蔵還元型触媒を調製した。担持されたK−Ti複合体の量は、ハニカム基材1LあたりKが 0.4モル、Tiが 0.2モルとなる量である。 To the Pt supported catalyst, a predetermined amount of the K-Ti composite precursor solution imbibed impregnated, and calcined 3 hours at 300 ° C. in air, the NO x storage to the NO x storage material is supported in the present invention A reduced catalyst was prepared. The amount of the supported K-Ti composite is such that K is 0.4 mol and Ti is 0.2 mol per liter of the honeycomb substrate.

X線回折による観察の結果、K−Ti複合体は粒径が数nm以下の微粒子状であり、高分散担持されていた。   As a result of observation by X-ray diffraction, the K-Ti composite was in the form of fine particles having a particle size of several nm or less and was highly dispersed and supported.

(比較例1)
実施例1と同様に調製されたPt担持触媒に、K−Ti複合体前駆体水溶液に代えて酢酸カリウム水溶液を用いたこと以外は実施例1と同様にしてKを担持した。Kの担持量は、ハニカム基材1Lあたり 0.4モルである。
(Comparative Example 1)
K was supported in the same manner as in Example 1 except that a potassium acetate aqueous solution was used instead of the K-Ti complex precursor aqueous solution on the Pt-supported catalyst prepared in the same manner as in Example 1. The amount of K supported is 0.4 mol per liter of honeycomb substrate.

(実施例2)
実施例1のNOx 吸蔵還元型触媒を長さが半分になるように切断した触媒が排ガス上流側となるように、かつ比較例1のNOx 吸蔵還元型触媒を長さが半分になるように切断した触媒が排ガス下流側となるように、両者を直列に連結して実施例2のNOx 吸蔵還元型触媒とした。
(Example 2)
As the catalyst NO x storage-and-reduction type catalyst the length of Example 1 was cut into half so that the exhaust-gas upstream side, and the NO x storage reduction catalyst a length of Comparative Example 1 is halved cut catalyst so that the exhaust gas downstream side, and by connecting the two in series and the NO x storage reduction catalyst of example 2.

<試験・評価>
実施例及び比較例のNOx 吸蔵還元型触媒に対し、 750℃に加熱された空気を1L/分の流量で5時間流通させる耐久試験をそれぞれ行った。
<Test and evaluation>
Durability tests were conducted on the NO x storage reduction type catalysts of Examples and Comparative Examples, in which air heated to 750 ° C. was circulated at a flow rate of 1 L / min for 5 hours.

次に、直噴ガソリンエンジンのスタート触媒(酸化触媒)の下流側における排ガスを模擬した表1に示す各モデルガスを用い、耐久試験後の各触媒に図1に示すパターンで流通させて、前処理、S被毒処理、S再生処理を行った。すなわち、前処理リッチガスを 650℃で5分間流通させた後、S被毒リーンガス/S被毒リッチガスを 120秒/3秒で変動させながら 400℃において41分間流通させるS被毒処理を行った。この時、各触媒2LあたりのS供給量を3gとした。この後、S再生リーンガスにて 600℃で5分間処理し、次いでS再生リッチガスにて 600℃で10分間処理するS再生処理を行った。   Next, each model gas shown in Table 1 simulating exhaust gas on the downstream side of the start catalyst (oxidation catalyst) of the direct injection gasoline engine was used and distributed to each catalyst after the durability test in the pattern shown in FIG. Processing, S poisoning processing, and S regeneration processing were performed. That is, after pretreatment rich gas was circulated at 650 ° C. for 5 minutes, S poisoning treatment was conducted in which S poison lean gas / S poison rich gas was circulated at 400 ° C. for 41 minutes while fluctuating at 120 seconds / 3 seconds. At this time, the supply amount of S per 2 L of each catalyst was 3 g. Thereafter, an S regeneration treatment was performed in which an S regeneration lean gas was treated at 600 ° C. for 5 minutes, and then an S regeneration rich gas was treated at 600 ° C. for 10 minutes.

Figure 2006175299
Figure 2006175299

S再生リッチガス流通時における各触媒からの出ガス中のS濃度を経時でそれぞれ測定し、結果を図2に示す。図2から、実施例1の触媒は比較例1の触媒に比べてS脱離性が大幅に向上していることがわかり、これはKをTiと複合化した微細な状態で担持したことによる格別な効果であることが明らかである。   The S concentration in the outgas from each catalyst during the S regeneration rich gas flow was measured over time, and the results are shown in FIG. From FIG. 2, it can be seen that the catalyst of Example 1 has significantly improved S-elimination compared to the catalyst of Comparative Example 1, and this is due to the fact that K is supported in a fine state combined with Ti. It is clear that this is a special effect.

次に、S再生処理後の各触媒に対し、表2に示す評価リーンガス/評価リッチガスを 120秒/3秒で変動させながらSV=51400h-1で流通させ、 300℃、 400℃及び 500℃における高温NOx 浄化率をそれぞれ測定した。また、表3に示す評価リーンガス/評価リッチガスを60秒/3秒で変動させながらSV=25700h-1で流通させ、 270℃、 300℃及び 330℃における低温NOx 浄化率をそれぞれ測定した。それぞれの結果を表4に示す。 Next, for each catalyst after the S regeneration treatment, the evaluation lean gas / evaluation rich gas shown in Table 2 was circulated at SV = 51400 h −1 while fluctuating at 120 seconds / 3 seconds, at 300 ° C., 400 ° C. and 500 ° C. The high temperature NO x purification rate was measured respectively. Further, the evaluation lean gas / evaluation rich gas shown in Table 3 was circulated at SV = 25700 h −1 while fluctuating at 60 seconds / 3 seconds, and the low temperature NO x purification rates at 270 ° C., 300 ° C. and 330 ° C. were measured. Each result is shown in Table 4.

Figure 2006175299
Figure 2006175299

Figure 2006175299
Figure 2006175299

Figure 2006175299
Figure 2006175299

表4より、実施例1及び実施例2の触媒は、高温耐久試験後においても、比較例1の触媒に比べて高温及び低温におけるNOx 浄化性能に優れていることがわかる。これは、Kと基材との反応が抑制されたこと、Ptの粒成長が抑制されたこと、硫黄脱離性が向上したこと、などに起因していると考えられる。また実施例2の触媒は、実施例1の触媒に比べて高温域におけるNOx 浄化性能に特に優れていることもわかり、独立NOx 吸蔵材を排ガス下流側に担持することが望ましいことが明らかである。 From Table 4, it can be seen that the catalysts of Example 1 and Example 2 are superior in NO x purification performance at high and low temperatures as compared with the catalyst of Comparative Example 1 even after the high temperature durability test. This is considered to be due to the fact that the reaction between K and the substrate was suppressed, the growth of Pt grains was suppressed, and the sulfur detachment property was improved. In addition, it can be seen that the catalyst of Example 2 is particularly excellent in NO x purification performance in a high temperature range as compared with the catalyst of Example 1, and it is clear that it is desirable to carry an independent NO x storage material on the exhaust gas downstream side. It is.

実施例における評価パターンを示すタイムチャートである。It is a time chart which shows the evaluation pattern in an Example. S再生処理時の時間と脱離S濃度との関係を示すグラフである。It is a graph which shows the relationship between the time at the time of S reproduction | regeneration processing, and desorption S concentration.

Claims (7)

アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なアルカリ性元素と、チタン元素と、が微細な状態で複合化した複合体からなることを特徴とするNOx 吸蔵材。 A NO x storage material comprising a composite of at least one element selected from alkali metals and alkaline earth metals, an alkaline element that can be combined with titanium, and a titanium element in a fine state. 前記アルカリ性元素はカリウムである請求項1に記載のNOx 吸蔵材。 The NO x storage material according to claim 1, wherein the alkaline element is potassium. アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なアルカリ性元素を含む第1の化合物と、
チタンアルコキシドを含む第2の化合物と多座配位子を有する第3の化合物とから生成された第4の化合物と、
チタンに対してモル比で1/2以上の過酸化水素と、が共存する溶液から調製された請求項1又は請求項2に記載のNOx 吸蔵材。
A first compound comprising an alkaline element which is composed of at least one selected from alkali metals and alkaline earth metals and can be combined with titanium;
A fourth compound produced from a second compound comprising a titanium alkoxide and a third compound having a polydentate ligand;
The NO x storage material according to claim 1 or claim 2 and a half or more of hydrogen peroxide in a molar ratio, were prepared from solutions coexist against titanium.
アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化可能なアルカリ性元素を含む第1の化合物と、
チタンアルコキシドを含む第2の化合物と多座配位子を有する第3の化合物とから合成された第4の化合物と、
チタンに対してモル比で1/2以上の過酸化水素と、が共存する溶液を多孔質酸化物からなる担体に含浸させ、その後焼成することを特徴とするNOx 吸蔵材の担持方法。
A first compound comprising an alkaline element which is composed of at least one selected from alkali metals and alkaline earth metals and can be combined with titanium;
A fourth compound synthesized from a second compound containing a titanium alkoxide and a third compound having a polydentate ligand;
A method for supporting an NO x storage material, comprising impregnating a porous oxide carrier with a solution in which hydrogen peroxide having a molar ratio of 1/2 or more with respect to titanium coexists, and then firing the support.
多孔質酸化物よりなる担体と、該担体に担持された貴金属と、該担体に担持された請求項1〜3のいずれかに記載のNOx 吸蔵材と、からなることを特徴とするNOx 吸蔵還元型触媒。 NO x to a carrier made of a porous oxide, characterized the noble metal supported on the carrier, and the NO x storage material according to claim 1 supported on the carrier, in that it consists of Occlusion reduction type catalyst. 前記担体に、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種からなりチタンと複合化していない独立NOx 吸蔵材をさらに担持した請求項5に記載のNOx 吸蔵還元型触媒。 The carrier, the NO x storage-reduction type catalyst according to claim 5 which further carries the titanium comprises at least one uncomplexed independently the NO x storage material selected from alkali metals and alkaline earth metals. 請求項1〜3のいずれかに記載のNOx 吸蔵材を排ガス上流側に担持し、前記独立NOx 吸蔵材を排ガス下流側に担持してなる請求項6に記載のNOx 吸蔵還元型触媒。 The the NO x storage material according to any one of claims 1 to 3 supported on the exhaust-gas upstream side, the NO x storage-reduction type catalyst according to the independent the NO x storage material in claim 6 comprising supported on the exhaust gas downstream side .
JP2004368289A 2004-12-20 2004-12-20 NOx storage material, method for supporting the same, and NOx storage reduction catalyst Expired - Fee Related JP4534749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368289A JP4534749B2 (en) 2004-12-20 2004-12-20 NOx storage material, method for supporting the same, and NOx storage reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368289A JP4534749B2 (en) 2004-12-20 2004-12-20 NOx storage material, method for supporting the same, and NOx storage reduction catalyst

Publications (2)

Publication Number Publication Date
JP2006175299A true JP2006175299A (en) 2006-07-06
JP4534749B2 JP4534749B2 (en) 2010-09-01

Family

ID=36729903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368289A Expired - Fee Related JP4534749B2 (en) 2004-12-20 2004-12-20 NOx storage material, method for supporting the same, and NOx storage reduction catalyst

Country Status (1)

Country Link
JP (1) JP4534749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178811A (en) * 2007-01-25 2008-08-07 Toyota Central R&D Labs Inc Aqueous solution of composite particle precursor and method for manufacturing composite particle using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737422A (en) * 1993-07-22 1995-02-07 Mitsubishi Materials Corp Composition for forming titanic acid ferroelectric film and its forming method
JPH07136514A (en) * 1993-11-17 1995-05-30 Toyota Motor Corp Exhaust gas purifying catalyst and exhaust gas purifying method
JP2001000863A (en) * 1999-04-22 2001-01-09 Toyota Motor Corp Waste gas purifying catalyst and waste gas purifying method using the catalyst
JP2002126453A (en) * 2000-10-25 2002-05-08 Toyota Motor Corp Waste gas cleaning device
JP2002191977A (en) * 2000-12-27 2002-07-10 Toyota Central Res & Dev Lab Inc NOx OCCLUSION-REDUCTION TYPE CATALYST AND ITS PRODUCTION METHOD
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
JP2005060147A (en) * 2003-08-08 2005-03-10 Toyota Central Res & Dev Lab Inc AQUEOUS SOLUTION OF COMPOUND OXIDE PRECURSOR AND METHOD FOR CARRYING NOx OCCLUSION MATERIAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737422A (en) * 1993-07-22 1995-02-07 Mitsubishi Materials Corp Composition for forming titanic acid ferroelectric film and its forming method
JPH07136514A (en) * 1993-11-17 1995-05-30 Toyota Motor Corp Exhaust gas purifying catalyst and exhaust gas purifying method
JP2001000863A (en) * 1999-04-22 2001-01-09 Toyota Motor Corp Waste gas purifying catalyst and waste gas purifying method using the catalyst
JP2002126453A (en) * 2000-10-25 2002-05-08 Toyota Motor Corp Waste gas cleaning device
JP2002191977A (en) * 2000-12-27 2002-07-10 Toyota Central Res & Dev Lab Inc NOx OCCLUSION-REDUCTION TYPE CATALYST AND ITS PRODUCTION METHOD
JP2003071298A (en) * 2001-09-05 2003-03-11 Toyota Central Res & Dev Lab Inc COMPOSITE MATERIAL, PRODUCTION METHOD THEREFOR, CATALYST, PRODUCTION METHOD THEREFOR, NOx SORPTION METHOD, AND NOx SORPTIVE REDUCTION METHOD
JP2005060147A (en) * 2003-08-08 2005-03-10 Toyota Central Res & Dev Lab Inc AQUEOUS SOLUTION OF COMPOUND OXIDE PRECURSOR AND METHOD FOR CARRYING NOx OCCLUSION MATERIAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178811A (en) * 2007-01-25 2008-08-07 Toyota Central R&D Labs Inc Aqueous solution of composite particle precursor and method for manufacturing composite particle using the same

Also Published As

Publication number Publication date
JP4534749B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP3741303B2 (en) Exhaust gas purification catalyst
JP3826357B2 (en) Hydrogen production catalyst and exhaust gas purification catalyst
JP3758601B2 (en) NOx storage reduction catalyst
JPWO2017203863A1 (en) Three-way catalyst for purification of gasoline engine exhaust gas
JPH10286462A (en) Catalyst of purifying exhaust gas
JP2004074138A (en) Catalyst for exhaust gas purification, and exhaust gas purification method
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007105632A (en) Exhaust gas cleaning catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4534749B2 (en) NOx storage material, method for supporting the same, and NOx storage reduction catalyst
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP4538726B2 (en) Exhaust gas purification catalyst
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2008279319A (en) Catalyst for cleaning exhaust gas and method for producing acidic oxide-deposited alumina to be used therefor
JP4103407B2 (en) NOx storage reduction catalyst
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP2000140644A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP2010110732A (en) Exhaust gas purifying catalyst
JP2007283207A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP2000051705A (en) Catalyst for purification of exhaust gas and its production
JP4556084B2 (en) Exhaust gas purification catalyst
JP3885339B2 (en) Exhaust gas purification catalyst, method for producing the same, and method for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees