JP2006165864A - カラー画像処理システム - Google Patents

カラー画像処理システム Download PDF

Info

Publication number
JP2006165864A
JP2006165864A JP2004352700A JP2004352700A JP2006165864A JP 2006165864 A JP2006165864 A JP 2006165864A JP 2004352700 A JP2004352700 A JP 2004352700A JP 2004352700 A JP2004352700 A JP 2004352700A JP 2006165864 A JP2006165864 A JP 2006165864A
Authority
JP
Japan
Prior art keywords
color
lut
color space
patch
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004352700A
Other languages
English (en)
Inventor
Kiminori Matsuzaki
公紀 松▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004352700A priority Critical patent/JP2006165864A/ja
Publication of JP2006165864A publication Critical patent/JP2006165864A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 色変換プロファイルのLUTを初めから作り直すのではなく修正することでパッチの量や計算量を減らし、処理時間を大幅に短くする。
【解決手段】 入力側のデバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTと、デバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換するLUTを持つ画像処理システムにおいて、カラーパッチを作成する手段と、前記カラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記カラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて前記LUTを修正する手段とを有する。
【選択図】 図10

Description

本発明は、PC等から送られた画像等のデータを、カラーマネージメントしてプリントするカラー画像処理システムに関するものである。
近年、出力デバイスのカラー化が進み、色情報を管理するカラーマネージメント技術の重要性が増してきている。モニタ等の入力デバイスとプリンタ等の出力デバイスとでは色の再現範囲が異なるため、入力デバイスの色情報をそのまま出力デバイスの色情報として扱うことができない。また、入力色空間と出力色空間とでは色空間の定義が異なる場合も多い。そこで従来では、入力デバイスに依存した色空間で定義されたデータを一度デバイス非依存色空間へと変換し、そのデバイス非依存色空間の情報を出力デバイスに依存した色空間へと変換することで、入力デバイスのデータを出力デバイスにて出力するということが行われている。図1は入力デバイスから出力デバイスへ画像を出力する際の色空間の遷移を表した図である。入力デバイス色空間101はソースプロファイル102によってデバイス非依存色空間へと変換される(ステップ103)。そしてデバイス非依存色空間はディスティネーションプロファイル104によって出力デバイス色空間へと変換される(ステップ105)。デバイスに依存した色空間としてはRGBやCMYKが、デバイス非依存色空間としてはLが通常用いられる。一般に、出力デバイスではCMYKが用いられることがほとんどである。ここで、ソースプロファイル102は入力デバイス色空間をデバイス非依存色空間に変換するプロファイル、ディスティネーションプロファイル104はデバイス非依存色空間を出力デバイス色空間に変換するプロファイルのことを示しており、現在ではICCで定められたICCプロファイルが多く使われている。図2はICCプロファイルのデータ表現形式について表した図であり、この図で示すように色空間の変換をLUTで表現している。図2の(A)はデバイスに依存したCMYKデータをデバイスに依存しないLデータに変換するためのLUTであり、図2の(B)はデバイスに依存しないLデータをデバイスに依存するCMYKデータに変換するためのLUTである。ソースプロファイルの場合はCMYK→L(図2のA)、ディスティネーションプロファイルの場合はL→CMYK(図2のB)のLUTのみ利用するが、ICCプロファイルの仕様により片方だけではなく両方のLUTを持つようになっている。
ここで、ICCプロファイルに代表される色変換プロファイルは通常はデフォルトのものが配布または組み込まれており、その値は一定である。しかし、どのようなデバイスでも月日がたつと特性が変わってしまうため、その変わってしまった特性に合わせたICCプロファイルを得ることが重要となる。そこで、ICCプロファイルを作り直すためのツール及び測色機が多く市場に出回っている。この場合、ディスティネーションプロファイル104に対して再作成を行う。
また、これら色変換処理の効果を高めるために、CMYKそれぞれ独立に1次元の補正用LUTを用意しておいてそれぞれ最適な色に補正する手段が行われている。この操作は出力デバイスに依存した色空間に変換された後に行われ、図1のステップ106がそれにあたる。出力デバイスがスキャナを持つMFPや外部に接続されたスキャナの値を取り込めるものであった場合、一次色で構成された濃淡パッチを出力してそれをスキャナで読み込み、ステップ106で利用する1次元の補正用LUTを修正して現在のデバイス状態に適した出力が行われるようにキャリブレーションする手法が行われている。
特開2002−94813号公報 特開2003−18419号公報
しかしながら、ICCプロファイルのLUTが複数のLUTを合成することで生成された「複合プロファイル」である場合、ICCプロファイルを作り直すためには元となったLUTをすべて作り直す必要があり、効率が悪かった。
特に、電子写真方式のような日々のデバイスの状態変化が激しい傾向にあるデバイスに対しては頻繁にキャリブレーションを行うことで色安定性を得る必要がある。だがディスティネーションプロファイル104を作り直す手法では、精度の高いキャリブレーションが実現できる代わりに必要なパッチの数や計算量が多いため時間がかかってしまい短いサイクルで運用していくことが難しいという課題があった。また、ステップ106の手法では、短時間で処理を行うことが可能だが、二次転写・三次転写の問題等から複数の色を用いた多次色に対する補正が十分ではないという問題があり、最適な色味で画像が出力されないことや、同じ機種であっても複数のデバイス間で色味が異なってしまう問題があった。
この問題を解決するため、本発明では、デバイスから出力される画像を常に望ましい色で出力できるようにするカラー画像処理システムと、複数台のデバイスに対して常に類似した色で出力できるようにするカラー画像処理システムを提供することを目的とする。その際にディスティネーションプロファイルなどのICCプロファイルに代表されるLUTを作り直すのではなく、最適な形に書き換えることによってパッチの数や計算量を減らし、全体の処理時間を大幅に縮めることを目的とする。また、一次色を扱うLUTではなく、ディスティネーションプロファイルのような多次色を扱うLUTを修正の対象とすることで、従来手法に比べより精度の高いキャリブレーション手法を提供することを目的とする。さらに、複数のLUTを合成した「複合プロファイル」に対しても最適な処理を行うことで短い処理時間でかつ精度の高いキャリブレーション手法を提供することを目的とする。
上述した課題を解決するために、本発明は、カラーパッチを作成する手段と、前記カラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記カラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いてデバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換するLUTを修正する手段と、を有することを特徴とする。
また、複数の要素を含むカラーパッチを作成する手段と、前記複数の要素を含むカラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記複数の要素を含むカラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて、デバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTを修正する手段と、を有することを特徴とする。
また、カラーパッチを作成する手段と、前記カラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記カラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換するLUTを修正する手段と、を有することを特徴とする。
また、複数の要素についてカラーパッチを作成する手段と、前記カラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記カラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて、入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTを修正する手段と、を有することを特徴とする。
本発明によって、色変換プロファイルのLUTを初めから作り直すのではなく修正することでパッチの量や計算量を減らし、処理時間を大幅に短くすることが可能となる。また、多次色で構成されたLUTの値を変更するため、従来技術では安定しなかった多次色に関する補正が行え、より精度の高いキャリブレーション手段をユーザに提供することができる。さらに、複数の要素で構成されたLUTに対しても短い処理時間でかつ精度の高いキャリブレーションを行うことが可能となる。
また、色変換プロファイルのLUTを修正する基準を統一することによって、複数のデバイス間での精度の高いキャリブレーションを行うことが可能となる。
(実施例1)
本発明の実施の形態について説明する。図3は本発明によるカラー画像処理システム構成を表すブロック図である。このカラー画像処理システムはオフィス10とオフィス20とがインターネット308で接続された環境で実現される。オフィス10内に構築されたLAN309にはカラーMFP301、カラーMFP302、マネージメントPC304、クライアントPC305、及びProxyサーバ306が接続されている。また、オフィス10内のLAN309とオフィス20内のLAN310はProxyサーバ306を介してインターネット308に接続されている。カラーMFP301、302は本手法において画像の出力を主に担当する。一方、カラーMFP301、302とLAN312またはLAN309で接続されたマネージメントPC304は、USB311で接続されている測色機303で得られた測色値の処理やプロファイルの修正等の画像処理部分、カラーMFPへのプロファイルのアップロード及びダウンロードを担当する。その他にも、内部に画像記憶手段、画像処理手段、表示手段、入力手段を有している。また、クライアントPC305,307は実際にユーザが出力を希望する画像データを出力するためのPCである。
図4はカラーMFP301,302の構成図である。図4においてオートドキュメントフィーダーを含む画像読み取り部401は束状のあるいは一枚の原稿画像を図示しない光源で照射し、原稿反射像をレンズで固定撮像素子上に結像し、固定撮像素子からラスター状の画像読み取り信号を600DPIの密度のイメージ情報として得る。通常の複写機能はこの画像信号をデータ処理部405で記録信号へ画像処理し、記録装置403に順次出力して紙上に画像を形成する。
カラーMFP301、302への操作者の指示はカラーMFPに装備されたキー操作部である入力装置406か、マネージメントPC304に付属したキーボード及びマウスから行われ、これら一連の動作はデータ処理装置405内の図示しない制御部で制御される。
一方、操作入力の状態表示及び処理中の画像データの表示は表示装置404で行われる。なお、記憶装置402はマネージメントPC304からも制御され、これらMFPとマネージメントPCとのデータの授受及び制御はネットワークIF407及び直結したLAN312、またはLAN308を用いて行われる。
ここで、クライアントPC305から画像データをカラーMFP301、302に送った場合、データ処理部405では図5のような処理が行われる。データ処理部405がデータを受け取った際、画像データはCMYKかRGBで表現されていることがほとんどである。そこで、それぞれに対応したソースプロファイルを用いて画像データの色空間をデバイスに依存しない色空間へ変換する。多くの場合、L表色系が使われるため、ここではLデータを例としてあげる。図5に示すように画像データ(CMYK)501に対してはソースプロファイル502を用い、画像データ(RGB)503に対してはソースプロファイル504を用いる。そしてデバイスに依存しない色空間で記述された画像データ(L)505が生成される。次にこのデータに対してディスティネーションプロファイル506を用いて出力デバイスに依存した色空間で表現された画像データ(CMYK’)507に変換し、その後適切な画像処理を行ってデータを出力する。また、例外処理として画像データ(CMYK)501を直接画像データ(CMYK’)507として出力することも可能である。この場合は出力デバイスの状態に合う色変換処理がなされていないため、意図とは違う画像が出力されてしまうことが多い。なお、ソースプロファイル502及び504は図2の(A)で示すようなLUTを、ディスティネーションプロファイル506は図2(B)で示すようなLUTを持つ。
(パッチ作成作業(前処理))
次に本発明において前処理であるパッチ作成手段について図6を用いて説明する。図6においてまず、ディスティネーションプロファイルのLUTを取り出す(ステップ601)。ここではL→CMYKのLUTを持つプロファイルを例として示す。次にステップ602でLUTが複数の要素で構成されているか否かを判定する。ここで、複数の要素とは複数のLUTのことを表している。例えば文字部分を黒単色で打ち、それ以外は通常通りCMYK混色で打つようなプロファイルである場合、文字部分に相当する色(a=b=0等のグレー軸に相当する値)とそれ以外とで別々にプロファイルを作成し、それらを合成することで一つのプロファイルを作成する。LUT内のデータが何種類のLUTで作成されたものであるかを、ICCプロファイルのプライベートタグあるいは専用のデータファイルで保存しておき、ステップ602でそのデータから判定を行う。LUTが複数の要素で構成されていない場合はステップ605へと進み、構成されている場合はステップ603にてLUTのデータを要素ごとに分類する。次にステップ604で処理を行っていない要素に属するデータを取り出す。そしてステップ605にてLUTの入力側の色空間に着目し、その空間の中で均等になるようにデータを取り出す。本実施例では色空間としてLを用いているが、どのような色空間であっても問題はない。
次にステップ606において、ステップ605で取り出したデータの中から色再現範囲内のデータを取り出す。プリンタやモニタの色再現範囲からかけ離れたデータを使用してLUTを修正しても、望ましい結果にならない場合が多いからである。ここで用いる色再現範囲はプリンタ、モニタが持つ色再現範囲をすべて網羅したものであることが望ましい。次にステップ607にてデータがカバーしている範囲が十分であるか否かの判定を行う。L空間において均等にデータを取り出すため、データ間に一定の間隔があいてしまっている。よって特に重点的に修正を行いたい部分がある場合には十分ではない可能性がある。そのためにステップ607で判定を行い、十分でなかった場合はステップ608にて足りない部分のデータを取り出す。十分である場合はステップ609にて取り出したLデータに対応したCMYKデータを取り出す。そしてステップ610にてCMYKデータについてどの要素に属しているかを示すインデックス付けを行う。
最後にステップ611にてすべての要素について処理したかを判定し、まだ処理していない要素がある場合はステップ604へ進み処理を続行する。すべての要素について判定を行った場合はステップ612へと進みパッチ画像を作成して処理を終了する。
(処理概要)
本発明によるLUT修正処理の概要を示したものが図7である。まず、ステップ701にて図6で作成したパッチデータの読み込みを行う。次にステップ702で読み込んだパッチデータを出力する。この際、読み込んだパッチデータがそのまま反映されるように、図5の画像データ(CMYK)501→画像データ(CMYK’)507のように直接パッチのCMYKデータをデバイスに送る形で出力する。そしてステップ703にて測色機を用いて測色作業を行い、ステップ704に示すように測色値をLで算出する。
一方、ステップ706にて基準値算出用プロファイル713からCMYK→Lを示すLUTを取り出す。そしてステップ707で補間演算を行い、ステップ708で示すLの基準値を算出する。補間演算については詳しく後述する。本実施例ではソースプロファイル502からCMYK→Lを示すLUTを取り出している。これは、ソースプロファイル中にあるCMYK→LのLUTが、デバイスの標準的な出力値を表している場合を想定しているからである。もちろん、デバイスが目標としている値を示すLUTまたはプロファイル713を、別な記憶領域に保持していても問題はない。
また、ステップ705で示すようにディスティネーションプロファイルを取り出し、ステップ709でディスティネーションプロファイルからL→CMYKを示すLUTを取り出す。そして先ほど求めた測色値、基準値についてステップ710にて分類処理を行う。測色値、基準値はすでに元となったCMYKデータが要素ごとにインデックス付けがなされているためそれを用いて分類処理を行う。次にステップ711にて読み込んだLUTと分類した測色値・基準値を利用してL→CMYK変換を示すLUTの修正を行う。この処理については詳しく後述する。最後にステップ712にてディスティネーションプロファイルの修正を行って処理が終了する。
本処理を行うことで、現在のデバイスの状態を、目標としている出力状態に近づけることが可能となり、理想的な色味で画像を出力することができる。また、基準値を算出するLUTを統一し、複数のデバイスで同一の操作を行うことでデバイス間の色味をあわせることが可能となる。
以下、各処理について説明する。
まず、補間演算707について説明する。
(補間演算処理)
ステップ707で行う補間演算は、CMYKパッチデータに対するL値の測色値を求めるための処理である。ステップ706で読み込んだLUTは、CMYKをLに変換するためのものであり、あるCMYK値の組み合わせに対応したL値が記述されている。このLUTを用いて補間演算を行えば、パッチデータのCMYK値に対するL値を計算することができる。だがCMYK色空間では、理論上では同じL値だとしても、Kの値が異なると実際の値が異なってしまう場合があるのでそれを考慮した図8に示す補間演算を行う。
まず、ステップ801にてCMYK→L変換を行うLUTを抽出する。次に、ステップ802にてKの値を基準としたグループ化を行う。一般にプロファイルのLUTは入力側が段階的に増えることが多い。例えばC,M,Y,Kがそれぞれ17段階であるとすると、Kの値を基準にしてグループ化した場合、17個のグループができることになる。一方、ステップ803にてパッチデータの抽出を行う。これは一つのパッチのCMYK値を抽出する操作である。そしてステップ804にて取り出したC,M,Y,K値のうちKに着目する。これをK1とする。
次に、グループ化したLUTのKの値に着目する。そして、K1の値を囲むようなグループを2つ取り出す(ステップ805)。例えば色の階調が256段階で17段階のLUTがありK1が20である場合、K=16のグループとK=32のグループを取り出す。ここで、Kの値が小さいグループをKa、Kの値が大きいグループをKbとする。そして、Ka、KbそれぞれのグループについてCMYの値を用いた線形補間を行う。この際の線形補間では三次元の既知の手法を用いる(ステップ806、ステップ807)。
最後にステップ808にてKa、Kbの線形補間結果に対して、Ka、Kbの値を使って一次元の線形補間を行う。このようにしてパッチデータの基準値が出力される。また、ステップ809により、すべてのパッチデータに対して処理が行われていないと判定された場合はステップ803へと戻り処理を繰り返す。すべてのデータに対して処理が行われたと判断された場合は処理を終了する。
以上で記述したように、ディスティネーションプロファイルのCMYKからLへの変換を行うLUTを利用し、またKの値に対して特別な処理を行うことによってパッチデータに対する基準値を求めることができる。この結果はL→CMYKを示すLUTの修正711にて利用する。
本実施例ではLUTを用いているが、演算式を用いて基準値を算出しても問題はない。
(L→CMYK変換を示すLUTの修正処理)
ディスティネーションプロファイルは印刷時にデバイスに依存しない色空間のデータを出力デバイスに依存する色空間に変換する部分で利用される。よって、デバイスの不安定性により出力結果が異なるというのは、ディスティネーションプロファイルのL→CMYK変換を示すLUTが現状のデバイス状態に対して適切でないためだと言うことができる。そこで、ステップ711では、L→CMYK変換を示すLUTをデバイスの状態に最適な形になるように修正する。
まず、L→CMYKのLUTと各要素の情報を読み込んで分類処理を行う。ここで、「複数の要素を含むLUT」の例として、グレーバランスを考慮したプロファイルを挙げる。このプロファイルは黒い文字の部分にはK単色を用い、それ以外では4色を用いる構成になっている。図2(B)を例として挙げると、a=b=0の部分が黒い文字の部分にあたる。この場合はLのみが変動するので各33段階のLUTである場合は33個のデータがあることになる。以降、この黒い文字の部分のデータをグレーラインのデータと呼ぶ事にする。
→CMYKを示すLUTの修正処理の概要を図9に示す。まず、ステップ901でL→CMYKを示すLUTを、ステップ902で各要素の情報を読み込む。そしてそれらの情報を元にステップ903にて分類処理を行う。例えば上記グレーバランスを考慮したプロファイルの場合、L側(入力側)に注目して分類を行う。a=b=0のデータはグレーラインのデータとして取り出し、それ以外のデータは通常のデータとして区別する。このように、グレーラインのデータを表すLUTとグレーラインの部分が足りない状態になったLUTの2つのLUTが完成する。次にステップ904にて足りない部分を補間する必要があるか否かを判別する。グレーラインのLUTはa=b=0が条件であり、L方向にのみ変動するので1次元の独立したLUTとみなすことができる。それに対してもう一つのLUTはグレーラインの部分が足りない中途半端なLUTとなっているため、ステップ905で補間演算を行い、足りない部分を計算する。この計算方法はすでに一般に使われている方法を用いる。一方、LUTのデータと読み込んだ各要素の情報を用いてLUTに対してどの要素に属しているかを示すインデックス付けをステップ907にて行う。
以上のような前処理を行ってからステップ906のLUTの修正処理を行う。これについては図10を用いて説明する。
まず、ステップ1001にてLからCMYKへの変換を示すLUTのLデータ側を取り出す。ここで、このLUTはステップ907にてインデックス付けを行ったLUTである。LUTのLデータ(入力側)は増分が固定している格子点データであると考えることができる。図11はL空間上に格子点データが存在している例を示す図である。例えばL各33段階のLUTであった場合、33×33×33個ある格子点のうちの一つをステップ1001で取り出すということとなる。次にステップ1002で基準値・測色値を保存したパッチデータ1014から、取り出したLデータと同じ要素のものを抽出する。そしてステップ1003にてステップ1001で取り出したL値と最も値が近い基準値を算出する。図12に例を示す。基準値や側色値はLデータなので、図に示すように格子点空間の中に存在している。図12の例では基準値1と基準値2が存在するが、注目されている格子点データにとって最も近い基準値は基準値1の方なのでそちらが選ばれる。そしてステップ1003にて算出された基準値と測色値の差を計算する。この値を用いてLデータを修正するわけだがパッチデータの数が少ないと、格子点データから距離が大きく離れた基準値が取り出されることが多くなる。このような基準値に大きく影響をうけることは望ましくないため、基準値と取り出されたLデータの距離を算出し、それに応じた重み付けをする(ステップ1005)。例えば距離は三次元空間上でのユークリッド距離を用い、重みは以下の式を用いる。
Figure 2006165864
ここでWは重みであり、distは基準値との距離を格子点複数個分の距離で正規化したものである。
以上の処理をすべてのLUTのL値に対して繰り返す(ステップ1006)。
ステップ1006までの処理により、すべてのL格子点データに対して基準値と測色値との差が求まった。図13は全ての格子点に対して基準値と測色値の差を求めた結果の図であり、矢印は測色値から基準値への方向ベクトルを表す。この方向ベクトルの分だけ格子点のL値をずらすことになるわけだが、影響の受ける基準値の違いにより、極端な方向・大きさの方向ベクトルが存在する可能性がある。図13の例では丸で示した方向ベクトルが、周りの他の方向ベクトルに比べて極端な大きさを持つものとなっている。このようなベクトルが存在した場合は、修正した格子点のL値が極端なものとなり擬似輪郭の原因となる。そこで、次にこの差に対してスムージング処理(ステップ1007)を行うことにより、L格子点データの修正が極端になることを防ぐ。スムージングの方法の例として、注目格子点を中心として、5×5×5の範囲の格子点での値を合計し、その平均を算出する方法や、さらに注目格子点を数倍してから平均を算出する方法などが挙げられる。ここで、スムージングを行う際は各格子点が属する要素に着目し、同一の要素のみでスムージング処理を行う。例えば5×5×5の範囲のうち、違う要素に属する格子点が5個あった場合はその点を除いて計算する。
そしてステップ1008にてスムージングをかけた基準値と測色値との差をL格子点データに加えていくことで格子点データを修正する。
次に、ステップ1009にて変更したLデータを一つ取り出す。変更されたLデータに対するCMYK値がわかればディスティネーションプロファイルのL→CMYK変換を示すLUTの修正が可能となる。そこで、要素ごとに分類したL→CMYKを示すLUT1015を取り出し(ステップ1010)、そのデータを利用してステップ1011にて線形補間によるCMYKデータの算出を行う。ここで、取り出したLUTが図9で作成したグレーデータのLUTの場合はL方向にのみ変化する1次元のLUTとみなすことができるので線形補間で求めることができる。また、足りないグレーの部分を補間したLUTである場合は入力側が3次元であるので公知の三次元の線形補間手法を行えばよい。以上の処理を修正したすべてのLデータに対して行う(ステップ1012)。このようにして新しいL値とそれに対応したCMYK値が求まったので、その結果を用いてL→CMYKを示すLUTを修正する(ステップ1013)。
ここで、ステップ1004で基準値と測色値の差を求める場合やステップ1005にて距離による重み付けをした際に、要素ごとに特別なルールを採用してもかまわない。例えばグレーラインである場合、L方向にのみ差を求めてa,bに影響を与えない計算方法を適用してもかまわない。また、重みやスムージングの計算方法についてはどのようなものを用いてもかまわない。また、本実施例ではデバイスに依存しない色空間としてLを用いているが、デバイスに依存しない色空間であればどの色空間を用いてもかまわない。
(実施例2)
実施例1では、図5に示すようにデバイスに依存しない色空間を仲介した画像データ変換を行う場合について説明した。だが、デバイスによってはデバイスに依存した色空間を直接変換するLUTを扱うものもある。実施例2ではこのようなデバイスの場合に適用した例について説明する。
図14はデバイスに依存した色空間同士を直接変換するRGB→CMYKのLUTを用いたデータ変換の流れを示している。まず、入力された画像データがCMYK1401である場合は、ソースプロファイル1402を用いてデータ変換を行いLデータ1405を得る。また、画像データがRGB1403である場合は、ソースプロファイル1404を用いてデータ変換を行いLb*データ1405を得る。そしてLデータ1405に対してディスティネーションプロファイル1406を用いてデータ変換を行い、画像データ(RGB’)1407を得る。このディスティネーションプロファイルは図5のものと異なりプリンタに依存したCMYK値ではなく、プリンタに依存したRGB値を出力するためのものである。そしてRGB’→CMYK’のLUT1408を用いて画像データ(CMYK’)1409を計算し、そのデータを画像として出力する。ここで、デバイスによっては画像データ(CMYK)1401を画像データ(CMYK’)1409として直接扱えるものや、画像データ(RGB)1403を画像データ(RGB’)1407として直接扱えるものがある。
本実施例では、RGB’→CMYK’のLUTに対して修正を行う必要がある。だが、実施例1と違い格子点の入力側がLではなくデバイスに依存したRGBであるためそのまま手段を当てはめることはできない。
処理の構成はL→CMYKの場合と同一であり、パッチを作成するための前処理と実際に修正を行う本処理の2つである。それでは次にこれらについて詳しく説明する。
(実施例2におけるパッチ作成作業(前処理))
実施例2において前処理であるパッチを作成する手段について図15を用いて説明する。図15においてまず、RGB→CMYKのLUTを取り出す(ステップ1501)。次にステップ1502でLUTが複数の要素で構成されているか否かを判定する。実施例1と同様に、例えば文字を黒単色で打つようなLUTである場合、グレーラインとそれ以外とで別々にプロファイルを作成し、それらを合成することで一つのプロファイルを作成する。LUT内のデータがどのプロファイルから作成されたものであるかを、あらかじめ専用のデータファイルで保存しておき、ステップ1502でそのデータから判定を行う。LUTが複数の要素で構成されていない場合はステップ1505へと進み、構成されている場合はステップ1503にてそのデータを要素ごとに分類する。次にステップ1504で処理を行っていない要素に属するデータを取り出す。
ステップ1505にてデータを一度L空間に投影する。そしてステップ1506にて投影したL空間を均等に分割し、その区切られた範囲にあるデータを取り出す。図16に例を示す。図16の(a)はRGBデータをLデータに投影したものである。このデータはRGB空間では均一な格子点データとなるが、L空間上では不規則な間隔の格子点データとなる。次に(b)に示すようにL空間で均一にデータを区切り、その区画にあるデータを取り出していく。ここでもし、一つの区画に複数のデータがある場合は区画の中心値に近いデータを取り出す。ここで、区切り方については自由であり、Lの値を基準として低濃度、中濃度、高濃度に対して異なる区切り方を採用しても問題はない。本実施例では色空間としてLを用いているが、どのような色空間であっても問題はない。
次にステップ1507において、ステップ1506で取り出したデータの中から色再現範囲内にあるデータを取り出す。ここで用いる色再現範囲はプリンタ、モニタが持つ色再現範囲をすべて網羅したものであることが望ましい。次にステップ1508にてデータがカバーしている範囲が十分であるか否かの判定を行う。L空間において均等にデータを取り出すため、データ間に一定の間隔があいてしまっている。よって特に重点的に修正を行いたい部分がある場合には十分ではない可能性がある。そのためにステップ1508で判定を行い、十分でなかった場合はステップ1509にて足りない部分のデータを取り出す。十分である場合はステップ1510にて取り出したLデータ(RGBデータ)に対応したCMYKデータを取り出す。そしてステップ1511にてCMYKデータについてどの要素に属しているかを示すインデックス付けを行う。
最後にステップ1512にてすべての要素について処理したかを判定し、まだ処理していない要素がある場合はステップ1504へ進み処理を続行する。すべての要素について判定を行った場合はステップ1513へと進みパッチ画像を作成して処理を終了する。
ここでステップ1501にて読み込んだLUTは、入力および出力がどのような形式であっても問題ない。また、この手段は図14において画像データ(CMYK)1401を画像データ(CMYK’)1409として直接送ることができる場合を想定している。もしこれができず、画像データ(RGB)1403を画像データ(RGB’)1407として直接出力できる場合は、取り出したRGBデータでRGB画像のパッチを作成する。このパッチとRGB’→CMYK’のLUT1408を用いれば、CMYK画像を作成した場合と同様の効果を得ることができる。
(実施例2における処理概要)
実施例2におけるLUT修正処理の概要を示したものが図17である。まず、ステップ1701にて図15で作成したパッチデータの読み込みを行う。次にステップ1702で読み込んだパッチデータを出力する。この際、パッチデータがCMYKならば読み込んだパッチデータがそのまま反映されるように、図14の画像データ(CMYK)1401を直接画像データ(CMYK’)1409として出力する。もしもパッチデータがRGBならば画像データ(RGB)1403を画像データ(RGB’)1407として直接出力する。そしてステップ1703にて測色機を用いて測色作業を行い、ステップ1704に示すように測色値をLで算出する。
一方、ステップ1705で示すようにRGB→CMYKのLUTを読み込む。また、ステップ1706にて基準値作成用LUT1711からCMYK→Lを示すLUTを読み込む。そしてステップ1707で補間演算を行い、ステップ1708で示すLの基準値を算出する。補間演算については実施例1とほぼ同様である。ただし、もしもパッチがRGBである場合は一度RGB→CMYKのLUT1408を用いて演算を行ってからステップ1706以降の処理を行うか、あらかじめ作成されたRGB→LのLUTを用いて演算を行う。また、実施例1と同様にここで用いるLUTはデバイスが目標としている値を示しており、どのような記憶領域に保持しても問題はない。
次に作成した測色値、基準値についてステップ1709にて分類処理を行う。測色値、基準値についてはすでに元となったCMYKデータが要素ごとにインデックス付けがなされているためそれを用いて分類処理を行う。そして最後にステップ1710にて読み込んだLUTのデータや分類した測色値・基準値を利用してRGB→CMYK変換を示すLUTの修正を行う。この処理については詳しく後述する。
本処理を行うことで、デバイスが目標としている出力状態を保つことができ、理想的な色味で画像を出力することができる。また、基準値を算出するLUTを統一し、複数のデバイスで同一の操作を行うことで色味をあわせることが可能となる。
以下、各処理について説明する。
(RGB→CMYK変換を示すLUTの修正処理)
図14においてRGB→CMYKのLUTは出力デバイスの色空間に変換するために利用される。よって、デバイスの不安定性により出力結果が異なるというのは、このLUTが現状のデバイス状態に対して適切ではないためだと言うことができる。そこで、ステップ1710では現状のデバイスの状態にとって最適な形になるようにLUTの値を修正する。
まず、RGB→CMYKのLUTと各要素の情報を読み込んで分類処理を行う。複数の要素をもつLUTの例として、グレーバランスを考慮したLUTを挙げる。このプロファイルは黒い文字の部分にはK単色を用い、それ以外では4色を用いる構成になっている。例えば、R,G,Bの値が等しい部分が黒い文字の部分にあたる。この場合はRGBが同時に変動するので各33段階のLUTである場合は33個のデータがあることになる。以降、この黒い文字の部分のデータをグレーラインのデータと呼ぶ事にする。
RGB→CMYKを示すLUTの修正処理の概要を図18に示す。まず、ステップ1801でRGB→CMYKを示すLUTを、ステップ1802で各要素の情報を読み込む。そしてそれらの情報を元にステップ1803にて分類処理を行う。例えば上記グレーバランスを考慮したLUTの場合、RGB側(入力側)に注目して分類を行う。R,G,Bの値が等しいデータはグレーラインのデータとして取り出し、それ以外のデータは通常のデータとして区別する。このように、グレーラインのデータを表すLUTとグレーラインの部分が足りない状態になったLUTの2つのLUTが完成する。
次にステップ1804にて足りない部分を補間する必要があるか否かを判別する。グレーラインのLUTはRとGとBが等しいことが条件であり、この3つの値は同時に変動するので1次元の独立したLUTとみなすことができる。それに対してもう一つのLUTはグレーラインの部分が足りない中途半端なLUTとなっているため、ステップ1805で補間演算を行い、足りない部分を計算する。この計算方法はすでに一般に使われている方法を用いる。一方、LUTのデータと読み込んだ各要素の情報を用いてLUTに対してどの要素に属しているかを示すインデックス付けをステップ1807にて行う。
以上のような前処理を行ってからステップ1806のLUTの修正処理を行う。これについては図19を用いて説明する。
まず、ステップ1901にてRGB→CMYKのLUTのRGBデータを取り出す。ここで、このLUTはステップ1807にてインデックス付けを行ったLUTである。次にステップ1902でRGBデータをLデータに変換する。LUTのRGBデータ(入力側)は増分が固定しているが、Lデータに変換すると間隔が一定でない格子点データとなる。図20はL空間上にRGBを変換した格子点データが存在している例を示す図である。例えばL各33段階のLUTであった場合、33×33×33個ある格子点のうちの一つをステップ1901で取り出すということとなる。次にステップ1903で、基準値・測色値を保存したパッチデータ1916から取り出したRGBデータと同じ要素のものを抽出する。次にステップ1904にてステップ1901で取り出したRGBデータを変換したL値と最も値が近い基準値を算出する。図21に例を示す。基準値や測色値はLデータなので、図に示すように格子点空間の中に存在している。図21の例では基準値1と基準値2が存在するが、注目されている格子点データにとって最も近い基準値は基準値1の方なのでそちらが選ばれる。そしてステップ1905にて算出された基準値と測色値の差を計算する。この値を用いてLデータを修正するわけだが、パッチデータの数が少ないと、格子点データから距離が大きく離れた基準値が取り出されることが多くなる。このような基準値に大きく影響をうけることは望ましくないため、基準値と取り出されたLデータの距離を算出し、それに応じた重み付けをする(ステップ1906)。例えば距離は三次元空間上でのユークリッド距離を用い、重みは以下の式を用いる。
Figure 2006165864
ここでWは重みであり、distは基準値との距離を格子点複数個分の距離で正規化したものである。
以上の処理をすべてのLUTのRGBデータを変換したL値に対して繰り返す(ステップ1907)。
ステップ1907までの処理により、すべてのRGB格子点データに対して基準値と測色値との差が求まった。図22は全ての格子点に対して基準値と測色値の差を求めた結果の図であり、矢印は測色値から基準値への方向ベクトルを表す。この方向ベクトルの分だけ格子点のL値をずらすことになるわけだが、影響の受ける基準値の違いにより、極端な方向・大きさの方向ベクトルが存在する可能性がある。図22の例では丸で示した方向ベクトルが、周りの他の方向ベクトルに比べて極端な大きさを持つものとなっている。このようなベクトルが存在した場合は、修正した格子点のL値が極端なものとなり擬似輪郭の原因となる。そこで、次にこの差に対してスムージング処理(ステップ1908)を行うことにより、L格子点データの修正が極端になることを防ぐ。スムージングの方法の例として、注目格子点を中心として、5×5×5の範囲の格子点での値を合計し、その平均を算出する方法や、さらに注目格子点を数倍してから平均を算出する方法などが挙げられる。ここで、スムージングを行う際は各格子点が属する要素に着目し、同一の要素のみでスムージング処理を行う。例えば5×5×5の範囲のうち、違う要素に属する格子点が5個あった場合はその点を除いて計算する。
そしてステップ1909にてスムージングをかけた基準値と測色値との差をL格子点データに加えていくことで格子点データを修正する。次にこのLデータをRGBデータに変換し、修正されたRGB格子点を作る。
次に、ステップ1910にて変更したRGBデータを一つ取り出す。変更されたRGBデータに対するCMYK値がわかればRGB→CMYK変換を示すLUTの修正が可能となる。そこで、要素ごとに分類したRGB→CMYKを示すLUT1917を取り出し(ステップ1912)、そのデータを利用してステップ1913にて線形補間によるCMYKデータの算出を行う。ここで、取り出したLUTが図18で作成したグレーデータのLUTの場合は1次元のLUTとみなすことができるので線形補間で求めることができる。また、足りないグレーの部分を補間したLUTである場合は入力側が3次元であるので公知の三次元の線形補間手法を行えばよい。以上の処理を修正したすべてのRGBデータに対して行う(ステップ1914)。このようにして新しいRGB値とそれに対応したCMYK値が求めることができる。
ここで、ステップ1904で基準値と測色値の差を求める場合やステップ1905にて距離による重み付けをした際に、要素ごとに特別なルールを採用してもかまわない。例えばグレーラインである場合、L方向にのみ差を求めてa,bに影響を与えない計算方法を適用してもかまわない。また、重みやスムージングの計算方法についてはどのようなものを用いてもかまわない。また、本実施例ではデバイスに依存しない色空間としてLを用いているが、デバイスに依存しない色空間であればどの色空間を用いてもかまわない。
入力デバイスから出力デバイスへ画像を出力する際の色空間の遷移について示した図である。 ICCプロファイルのデータ表現形式について示した図である。 本発明で提案するカラー画像処理システムの構成図について示した図である。 本発明で使用するカラーMFPの構成図である。 本発明で使用するカラーMFPのデータ処理部における画像データ変換の流れについて示した図である。 本発明の実施例1において前処理であるパッチ作成手段について示した図である。 本発明の実施例1における処理全体の概要について示した図である。 本発明にて使用する補間演算処理について示した図である。 本発明の実施例1におけるL→CMYKを示すLUTの修正処理の概要を表した図である。 本発明の実施例1におけるL→CMYKを示すLUTの修正処理について詳細に表した図である。 空間上にある格子点データを表した図である。 格子点上における測色値、基準値を示した図である。 格子点データとそれに対する測色値と基準値の差について示した図である。 実施例2における画像データ変換の流れについて示した図である。 実施例2において前処理であるパッチ作成手段について示した図である。 実施例2においてRGBデータをLデータに投影した例を示した図である。 実施例2における処理全体の概要を表した図である。 実施例2においてRGB→CMYKを示すLUTの修正処理の概要を表した図である。 実施例2においてRGB→CMYK変換を示すLUTの修正処理について詳細に示した図である。 実施例2におけるL空間上の格子点データについて表した図である。 実施例2における格子点上の測色値、基準値を表した図である。 実施例2における格子点データとそれに対する測色値と基準値の差を表した図である。

Claims (30)

  1. 入力側のデバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTと、デバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換するLUTを持つ画像処理システムにおいて、カラーパッチを作成する手段と、前記カラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記カラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて前記LUTを修正する手段を持つカラー画像処理システム。
  2. 前記カラーパッチ作成手段はデバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換するLUTから算出することを特徴とする第1項記載のカラー画像処理システム。
  3. 前記カラーパッチ出力手段は前記作成されたカラーパッチをプリンタで出力することを特徴とする第1項記載のカラー画像処理システム。
  4. 前記カラーパッチ測色手段は前記出力したカラーパッチを測色機等で測色することを特徴とする第1項記載のカラー画像処理システム。
  5. 前記基準となる値を計算する手段は作成したカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTを用いて算出することを特徴とする第1項記載のカラー画像処理システム。
  6. 前記基準となる値を計算する手段は作成したカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換する演算式を用いて算出することを特徴とする第1項記載のカラー画像処理システム。
  7. 前記LUT修正手段は、前記デバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換するLUTの、デバイスに依存しない色空間の値と最も近い前記計算値を算出し、その値に対応した測色値との差を求め、その値を利用して前記デバイスに依存しない色空間を出力色空間に変換するLUTを修正することを特徴とする第1項記載のカラー画像処理システム。
  8. 入力側のデバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTと、デバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTを持つ画像処理システムにおいて、複数の要素を含むカラーパッチを作成する手段と、前記複数の要素を含むカラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記複数の要素を含むカラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて前記複数の要素で構成されたLUTを修正する手段を持つカラー画像処理システム。
  9. 前記複数の要素を含むカラーパッチ作成手段はデバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTを用いて、要素ごとに算出することを特徴とする第8項記載のカラー画像処理システム。
  10. 前記カラーパッチ出力手段は前記作成された複数の要素を含むカラーパッチをプリンタで出力することを特徴とする第8項記載のカラー画像処理システム。
  11. 前記カラーパッチ測色手段は前記出力した複数の要素を含むカラーパッチを測色機等で測色することを特徴とする第8項記載のカラー画像処理システム。
  12. 前記基準となる値を計算する手段は作成した複数の要素を含むカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTを用いて算出することを特徴とする第8項記載のカラー画像処理システム。
  13. 前記基準となる値を計算する手段は作成した複数の要素を含むカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換する演算式を用いて算出することを特徴とする第8項記載のカラー画像処理システム。
  14. 前記LUT修正手段は、前記デバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTと作成した測色値と計算値を要素ごとに分類して修正することを特徴とする第8項記載のカラー画像処理システム。
  15. 前記LUT修正手段は、前記デバイスに依存しない色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTのデバイスに依存しない色空間の値と最も近い前記計算値を算出し、その値に対応した測色値との差を求め、その値を利用して前記デバイスに依存しない色空間を出力色空間に変換するLUTを修正することを特徴とする第14項記載のカラー画像処理システム。
  16. 入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換するLUTを持つ画像処理システムにおいて、カラーパッチを作成する手段と、前記カラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記カラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて前記LUTを修正する手段を持つカラー画像処理システム。
  17. 前記カラーパッチ作成手段は入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換するLUTから算出することを特徴とする第16項記載のカラー画像処理システム。
  18. 前記カラーパッチ出力手段は前記作成されたカラーパッチをプリンタで出力することを特徴とする第16項記載のカラー画像処理システム。
  19. 前記カラーパッチ測色手段は前記出力したカラーパッチを測色機等で測色することを特徴とする第16項記載のカラー画像処理システム。
  20. 前記基準となる値を計算する手段は作成したカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTを用いて算出することを特徴とする第16項記載のカラー画像処理システム。
  21. 前記基準となる値を計算する手段は作成したカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換する演算式を用いて算出することを特徴とする第16項記載のカラー画像処理システム。
  22. 前記LUT修正手段は、前記入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換するLUTの入力色空間の値と最も近い前記計算値を算出し、その値に対応した測色値との差を求め、その値を利用して前記入力色側のデバイスに依存する空間を出力側のデバイスに依存する色空間に変換するLUTを修正することを特徴とする第16項記載のカラー画像処理システム。
  23. 入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTを持つ画像処理システムにおいて、前記複数の要素についてカラーパッチを作成する手段と、前記カラーパッチを出力する手段と、前記出力されたパッチを測色する手段と、前記カラーパッチのデータを用いて基準となる値を計算する手段と、前記測色値と前記計算値を用いて前記複数の要素で構成されたLUTを修正する手段を持つカラー画像処理システム。
  24. 前記複数の要素を含むカラーパッチ作成手段は入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTを用いて、要素ごとに算出することを特徴とする第23項記載のカラー画像処理システム。
  25. 前記カラーパッチ出力手段は前記作成された複数の要素を含むカラーパッチをプリンタで出力することを特徴とする第23項記載のカラー画像処理システム。
  26. 前記カラーパッチ測色手段は前記出力した複数の要素を含むカラーパッチを測色機等で測色することを特徴とする第23項記載のカラー画像処理システム。
  27. 前記基準となる値を計算する手段は作成した複数の要素を含むカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTを用いて算出することを特徴とする第23項記載のカラー画像処理システム。
  28. 前記基準となる値を計算する手段は作成した複数の要素を含むカラーパッチのデータと、デバイスに依存する色空間をデバイスに依存しない色空間に変換するLUTを用いて算出することを特徴とする第23項記載のカラー画像処理システム。
  29. 前記LUT修正手段は、前記入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTと、作成した測色値と計算値を要素ごとに分類して修正することを特徴とする第23項記載のカラー画像処理システム。
  30. 前記LUT修正手段は、前記入力側のデバイスに依存する色空間を出力側のデバイスに依存する色空間に変換する複数の要素で構成されたLUTのデバイスに依存しない色空間の値と最も近い前記計算値を算出し、その値に対応した測色値との差を求め、その値を利用して前記入力色空間を出力色空間に変換するLUTを修正することを特徴とする第29項記載のカラー画像処理システム。
JP2004352700A 2004-12-06 2004-12-06 カラー画像処理システム Withdrawn JP2006165864A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352700A JP2006165864A (ja) 2004-12-06 2004-12-06 カラー画像処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352700A JP2006165864A (ja) 2004-12-06 2004-12-06 カラー画像処理システム

Publications (1)

Publication Number Publication Date
JP2006165864A true JP2006165864A (ja) 2006-06-22

Family

ID=36667396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352700A Withdrawn JP2006165864A (ja) 2004-12-06 2004-12-06 カラー画像処理システム

Country Status (1)

Country Link
JP (1) JP2006165864A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193076A (ja) * 2009-02-17 2010-09-02 Canon Inc 画像処理装置、画像処理方法、およびプログラム
CN102271214A (zh) * 2010-06-03 2011-12-07 佳能株式会社 图像处理设备和图像处理方法
EP2393276A2 (en) 2010-06-02 2011-12-07 Canon Kabushiki Kaisha Profile processing apparatus, profile processing method, and storage medium
EP2541894A2 (en) 2011-06-30 2013-01-02 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program executing image processing method
US20130058662A1 (en) * 2011-09-05 2013-03-07 Canon Kabushiki Kaisha Image forming apparatus and method for calibrating density and color
US8649056B2 (en) 2011-02-16 2014-02-11 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium
US8964221B2 (en) 2011-06-28 2015-02-24 Canon Kabushiki Kaisha Image forming apparatus and control method for the image forming apparatus
US9013754B1 (en) 2013-12-19 2015-04-21 Fuji Xerox Co., Ltd. Color processing device, image forming apparatus, and recording medium
US9025223B2 (en) 2011-02-16 2015-05-05 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium for color matching
US20150237235A1 (en) * 2014-02-20 2015-08-20 Fuji Xerox Co., Ltd. Color processing apparatus, image forming apparatus, and non-transitory computer readable recording medium
US9159001B2 (en) 2013-04-22 2015-10-13 Canon Kabushiki Kaisha Device, method, and recording medium for controlling image forming apparatus
US10126694B2 (en) 2016-04-26 2018-11-13 Canon Kabushiki Kaisha Image forming apparatus capable of performing calibration

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193076A (ja) * 2009-02-17 2010-09-02 Canon Inc 画像処理装置、画像処理方法、およびプログラム
US8699106B2 (en) 2009-02-17 2014-04-15 Canon Kabushiki Kaisha Image processing apparatus and image processing method that correct color conversion table used when reading document
US8576466B2 (en) 2009-02-17 2013-11-05 Canon Kabushiki Kaisha Image processing apparatus and image processing method that correct color conversion table used when reading document
US8537441B2 (en) 2010-06-02 2013-09-17 Canon Kabushiki Kaisha Profile processing apparatus, method, and program product to adjusting color printer profile based on condition of colorimetric measurement of test patch
EP2393276A2 (en) 2010-06-02 2011-12-07 Canon Kabushiki Kaisha Profile processing apparatus, profile processing method, and storage medium
CN102271214B (zh) * 2010-06-03 2014-09-10 佳能株式会社 图像处理设备和图像处理方法
CN102271214A (zh) * 2010-06-03 2011-12-07 佳能株式会社 图像处理设备和图像处理方法
US8705122B2 (en) 2010-06-03 2014-04-22 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program for executing the image processing method
US9025223B2 (en) 2011-02-16 2015-05-05 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium for color matching
US8649056B2 (en) 2011-02-16 2014-02-11 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium
US8964221B2 (en) 2011-06-28 2015-02-24 Canon Kabushiki Kaisha Image forming apparatus and control method for the image forming apparatus
US9100624B2 (en) 2011-06-30 2015-08-04 Canon Kabushiki Kaisha Information processing apparatus, method and medium for generating color correction data with reference to measured color values from a number of sensors
EP2541894A2 (en) 2011-06-30 2013-01-02 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program executing image processing method
US8831443B2 (en) 2011-09-05 2014-09-09 Canon Kabushiki Kaisha Image forming apparatus and method for calibrating density and color
US20130058662A1 (en) * 2011-09-05 2013-03-07 Canon Kabushiki Kaisha Image forming apparatus and method for calibrating density and color
CN102984431B (zh) * 2011-09-05 2015-07-08 佳能株式会社 图像形成设备及其控制方法
CN102984431A (zh) * 2011-09-05 2013-03-20 佳能株式会社 图像形成设备及其控制方法
US9159001B2 (en) 2013-04-22 2015-10-13 Canon Kabushiki Kaisha Device, method, and recording medium for controlling image forming apparatus
US9013754B1 (en) 2013-12-19 2015-04-21 Fuji Xerox Co., Ltd. Color processing device, image forming apparatus, and recording medium
JP2015119422A (ja) * 2013-12-19 2015-06-25 富士ゼロックス株式会社 色処理装置、画像形成装置およびプログラム
US20150237235A1 (en) * 2014-02-20 2015-08-20 Fuji Xerox Co., Ltd. Color processing apparatus, image forming apparatus, and non-transitory computer readable recording medium
JP2015156570A (ja) * 2014-02-20 2015-08-27 富士ゼロックス株式会社 色処理装置、画像形成装置およびプログラム
US9332158B2 (en) 2014-02-20 2016-05-03 Fuji Xerox Co., Ltd. Color processing apparatus, image forming apparatus, and non-transitory computer readable recording medium performing color conversion, adjustment and matching process between input color data and reproducible color data of image output device
US10126694B2 (en) 2016-04-26 2018-11-13 Canon Kabushiki Kaisha Image forming apparatus capable of performing calibration

Similar Documents

Publication Publication Date Title
JP5269042B2 (ja) 画像処理装置、画像処理方法およびルックアップテーブル生成方法
Kriss Color management: understanding and using ICC profiles
JP2005175806A (ja) 画像処理装置および方法
US20060007457A1 (en) Image processing apparatus and its method
JPH1028231A (ja) 自動カラー修正方法および装置
JPH08237495A (ja) 選択されたカラーを正確に描写するためのカラープリンタ校正方法
WO2006109859A1 (en) Color processing method and apparatus
EP2597857A2 (en) Image processing apparatus and method for performing calibration for printing, program, and storage medium
JP6338480B2 (ja) 色変換装置および色変換方法
US7652806B2 (en) Optimal node placement for multi-dimensional profile luts for arbitrary media and halftones using parameterized minimization
JPH07184078A (ja) 色空間変換システム
JP2006165864A (ja) カラー画像処理システム
JPH10271344A (ja) カラー画像処理装置
JP2000188697A (ja) 画像処理方法およびその装置、並びに、そのプロセスステップ
JP2012105233A (ja) 色変換方法、色変換装置及び画像形成システム
JP4252748B2 (ja) 変換テーブルの生成方法、プログラム、カラー複写機
JP2009049839A (ja) 色変換装置及びプログラム
US20100182649A1 (en) Halftone independent device characterization accounting for colorant interactions
JP2007280402A (ja) カラー画像データからグレイ・トーンを生成するシステムおよび方法
JP7297547B2 (ja) 画像処理装置、画像形成装置
JP2015156570A (ja) 色処理装置、画像形成装置およびプログラム
JP4077938B2 (ja) カラーパッチに関する測色値の推定方法、該方法を利用したデバイス・プロファイルの作成方法および画像処理装置
JP2008312119A (ja) カラーパッチに関する測色値の推定方法、該方法を利用したデバイス・プロファイルの作成方法および画像処理装置
US20080144114A1 (en) Method and system for dynamic printer profiling
JP2007243957A (ja) カラー画像データからグレイ情報を抽出するシステム、方法およびプログラム

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304