JP2006164628A - Electrolyte film and fuel cell - Google Patents

Electrolyte film and fuel cell Download PDF

Info

Publication number
JP2006164628A
JP2006164628A JP2004351722A JP2004351722A JP2006164628A JP 2006164628 A JP2006164628 A JP 2006164628A JP 2004351722 A JP2004351722 A JP 2004351722A JP 2004351722 A JP2004351722 A JP 2004351722A JP 2006164628 A JP2006164628 A JP 2006164628A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer
electrode
electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004351722A
Other languages
Japanese (ja)
Inventor
Hideki Hiraoka
秀樹 平岡
Yoshinori Yamada
芳範 山田
Keizo Hayashi
桂三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2004351722A priority Critical patent/JP2006164628A/en
Publication of JP2006164628A publication Critical patent/JP2006164628A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive electrolyte film of high productivity, by restraining permeation of fuel in the case that the electrolyte film for a fuel cell of a structure of an electrolyte polymer filled in pores of a porous base material is directly applied to a methanol fuel cell, and solving a problem in which durability is low. <P>SOLUTION: Of the electrolyte film made by filling a polymer having an ion-exchange group as an electrolyte polymer 13 in pores of the porous base material 12, a part contributing to power generation alone pinched by a pair of electrodes is to be an ion-conductive part, with the surroundings made non-ion-conductive, whereby, unnecessary fuel crossover is restrained, and at the same time, durability is improved in case of operation as a fuel cell. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解質膜および燃料電池に関するもので、当該電解質膜は電気化学装置用、特に燃料電池用、さらに詳細には直接アルコール形燃料電池用途として好適なものである。   The present invention relates to an electrolyte membrane and a fuel cell, and the electrolyte membrane is suitable for electrochemical devices, particularly for fuel cells, and more specifically for direct alcohol fuel cell applications.

高分子電解質膜を用いた電気化学装置の一種である燃料電池は、近年電解質膜や触媒技術の発展により性能の向上が著しくなり、低公害自動車用電源や高効率発電方法として注目を集めている。高分子電解質膜を用いた燃料電池(固体高分子形燃料電池)は、当該膜の両面に酸化、還元触媒を有する反応層(電極)を形成した構造を有している。固体高分子形燃料電池においては燃料極において、水素分子がプロトンと電子に分解される反応が起き、発生した電子は電線を通って電気部品を作動させて酸素極側に運ばれ、酸素極においては酸素とプロトンと燃料極から電線を通って運ばれてきた電子から水が生成する。また直接メタノール形燃料電池(DMFC、Direct Methanol Fuel Cell)においては燃料極にはメタノールと水が供給され、膜近傍の触媒によってメタノールと水を反応させてプロトンを取り出す。これらの燃料電池には通常ポリパーフルオロアルキルスルホン酸からなる電解質膜が使用される。   Fuel cells, a type of electrochemical device that uses polymer electrolyte membranes, have recently gained attention as low-pollution automotive power sources and high-efficiency power generation methods due to the remarkable improvement in performance due to the development of electrolyte membranes and catalyst technology. . A fuel cell (polymer electrolyte fuel cell) using a polymer electrolyte membrane has a structure in which reaction layers (electrodes) having oxidation and reduction catalysts are formed on both sides of the membrane. In a polymer electrolyte fuel cell, a reaction occurs in which hydrogen molecules are decomposed into protons and electrons at the fuel electrode, and the generated electrons are transported to the oxygen electrode side by operating electrical components through electric wires. Water is generated from oxygen, protons, and electrons carried from the fuel electrode through electric wires. In a direct methanol fuel cell (DMFC, Direct Methanol Fuel Cell), methanol and water are supplied to the fuel electrode, and protons are extracted by reacting methanol and water with a catalyst in the vicinity of the membrane. In these fuel cells, an electrolyte membrane made of polyperfluoroalkylsulfonic acid is usually used.

しかしながら、ポリパーフルオロアルキルスルホン酸膜は、DMFC等の溶液状燃料を直接電池セルに供給する燃料電池に用いると、メタノール等の燃料が膜を通過してしまいエネルギーロスが生じるという問題があり、またメタノール等の燃料により膨潤して膜面積が大きく変化するため、電極と膜の接合部が剥がれる等の不具合を生じ易く、燃料濃度が上げられないという問題もある。また、フッ素原子を有することで材料自体の価格が高く、製造工程が複雑で生産性が低いため非常に高価であるという経済的問題もある。   However, when a polyperfluoroalkylsulfonic acid membrane is used in a fuel cell that directly supplies a solution fuel such as DMFC to a battery cell, there is a problem that fuel such as methanol passes through the membrane and energy loss occurs. In addition, since the membrane area is greatly changed by swelling with a fuel such as methanol, there is a problem that the fuel concentration cannot be increased because the junction between the electrode and the membrane is easily peeled off. In addition, since it has fluorine atoms, there is an economic problem that the material itself is expensive, and the manufacturing process is complicated and the productivity is low.

このため、DMFCとしたときのメタノール透過を抑制し、しかも安価な炭化水素骨格からなる高分子電解質膜が求められていた。本発明者等による特許文献1において開示された燃料電池用電解質膜は、多孔性基材に安価なプロトン伝導性ポリマーを充填してなるもので、多孔性基材がポリイミド、架橋ポリエチレン等、外力に対して変形し難い材料から形成されるため、孔内に充填されたプロトン伝導性ポリマーのメタノール水溶液による過度な膨潤を防ぐことができ、その結果、メタノールの透過を抑制することができるものである。   For this reason, there has been a demand for a polymer electrolyte membrane made of a hydrocarbon skeleton, which suppresses methanol permeation when DMFC is used. The electrolyte membrane for fuel cells disclosed in Patent Document 1 by the present inventors is formed by filling a porous base material with an inexpensive proton conductive polymer, and the porous base material is polyimide, crosslinked polyethylene, etc. In contrast, the proton conductive polymer filled in the pores can be prevented from excessive swelling due to the methanol aqueous solution, and as a result, the permeation of methanol can be suppressed. is there.

このような電解質膜はメタノール透過を抑制できることが特徴であるが、完全に透過を抑えることはできていない。また本発明者らが検討したところ、膜電極接合体(MEA)としたときに電極が接している部分の外側からもメタノールが透過していることが明らかになった。すなわち通常のDMFCはMEAを電池に組み込む際に図1で示すように電極とガスケットの境界部分に隙間(6)ができるため、ガスや燃料が隙間部分に直接流れ込んだり、カーボンペーパーやカーボンクロス等で構成された電極から染み出して電解質膜に直接接触し易く、ここから燃料やガスが反対の極へ透過することがあった。またこの隙間を狭くして電極とガスケットが接触する状態にするとメタノールの透過量は減少するが、境界部から毛管現象等の作用によって透過していた。   Such an electrolyte membrane is characterized in that methanol permeation can be suppressed, but permeation cannot be completely suppressed. Further, as a result of studies by the present inventors, it was found that methanol was permeated from the outside of the portion in contact with the electrode when a membrane electrode assembly (MEA) was formed. That is, a normal DMFC has a gap (6) at the boundary between the electrode and gasket as shown in FIG. 1 when the MEA is assembled in the battery, so that gas or fuel flows directly into the gap, carbon paper, carbon cloth, etc. It oozes out from the electrode composed of the electrode and easily comes into direct contact with the electrolyte membrane, from which fuel and gas may permeate to the opposite electrode. Further, when this gap is narrowed so that the electrode and the gasket are in contact with each other, the permeation amount of methanol is reduced, but it is permeated from the boundary portion by an action such as capillary action.

このような電解質膜をそのままDMFCとして電圧が低下するまで長期間運転し、燃料電池内部の膜を詳細に検討したところ、図1の10に相当する電解質膜が電極で挟まれた発電に寄与している部分は図2で示すように多孔性基材の細孔部に充填された電解質ポリマーは十分保持されていた。これに比べて、図1の11の部分に相当する電極の外側部分は劣化が早く、この部分では図3で示したように電解質ポリマーが多孔性基材の細孔部から抜け出て、燃料や酸化剤が膜を透過し易くなるという問題があることがわかった。   When such an electrolyte membrane is operated as a DMFC for a long time until the voltage drops, and the membrane inside the fuel cell is examined in detail, it contributes to power generation in which the electrolyte membrane corresponding to 10 in FIG. 1 is sandwiched between electrodes. As shown in FIG. 2, the electrolyte polymer filled in the pores of the porous substrate was sufficiently retained. Compared to this, the outer portion of the electrode corresponding to the portion 11 in FIG. 1 deteriorates quickly, and the electrolyte polymer escapes from the pores of the porous substrate as shown in FIG. It has been found that there is a problem that the oxidant easily passes through the membrane.

また、特許文献2において多孔性基材の空孔に電解質を充填した電解質膜とガスケットを一体化することが提案されているが、この場合は電解質内部の水が蒸発してガスケットと電解質膜の隙間が剥がれたりすることを防止する目的であって、本発明における提案の一形態であるガスケットと電極の隙間をなくすことは記載されておらず、電解質膜の劣化を防ぐという目的とは異なるものである。   Further, in Patent Document 2, it has been proposed to integrate an electrolyte membrane filled with electrolyte in pores of a porous substrate and a gasket. In this case, water in the electrolyte evaporates and the gasket and the electrolyte membrane are separated. The purpose is to prevent the gap from peeling off, and it is not described that the gap between the gasket and the electrode, which is one form of the proposal in the present invention, is not described, and is different from the purpose of preventing the deterioration of the electrolyte membrane. It is.

特許文献3において、電解質膜を作成する際に多孔部と非多孔部に分けておく方法が記載されているが、その作成方法は微細孔そのものをフォトリソグラフにより形成するのであって多孔性基材の材質が感光性材料に限定され、かつ生産性に問題があった。   Patent Document 3 describes a method in which an electrolyte membrane is divided into a porous portion and a non-porous portion. However, the method for forming an electrolyte membrane is that a micropore itself is formed by photolithography, which is a porous substrate. The material is limited to a photosensitive material and has a problem in productivity.

特許文献4において、MEAを作成する際に電極部分をくり抜いた形状のホットメルト層付きカバーシートフィルムを電極からはみ出した電解質膜と張り合わせる方法が提案されているが、多孔性基材に電解質ポリマーを充填した電解質膜に言及するものではなく、電解質膜のしわをなくしてしわの部分からガスが漏れ出さないようにしたものである。   Patent Document 4 proposes a method of laminating a cover sheet film with a hot-melt layer formed by hollowing out an electrode portion when forming an MEA with an electrolyte membrane protruding from the electrode. The electrolyte membrane is not referred to, but the wrinkles of the electrolyte membrane are eliminated so that the gas does not leak out from the wrinkled portion.

特開2002−83612号公報JP 2002-83612 A 特開2003−229140号公報JP 2003-229140 A WO2002/059996号公報WO2002 / 059996 特開平11−45729号公報JP-A-11-45729

本発明は、上記のような多孔性基材の細孔内へ電解質ポリマーを充填した構造の燃料電池用電解質膜をDMFCへ応用した場合の燃料の透過を抑制し、さらに耐久性が低いという問題点を解消し、生産性が高く安価な電解質膜を提供すべく検討を行なったものである。   The present invention has a problem that the permeation of fuel is suppressed and the durability is low when the electrolyte membrane for a fuel cell having a structure in which the electrolyte polymer is filled in the pores of the porous substrate as described above is applied to DMFC. In order to eliminate this point, the present inventors have studied to provide an electrolyte membrane that is highly productive and inexpensive.

本発明者等は、上記の課題を解決すべく鋭意検討した結果、多孔性基材の細孔に電解質ポリマーとしてイオン交換基を有するポリマーを充填してなる電解質膜の内、1対の電極で挟まれた発電に寄与する部分のみをイオン伝導部とし、その周辺を非イオン伝導部とすることで、不要な燃料クロスオーバーを抑制すると同時に燃料電池として運転した場合の耐久性を向上させうることを見出した。また電解質膜内に非イオン伝導部を形成しなくても、MEAを燃料電池に組み込む際にガスケットと電極の境界部を非イオン伝導性ポリマーで埋めることによっても同様の効果が得られることを見出して本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have made a pair of electrodes out of an electrolyte membrane formed by filling a pore of a porous substrate with a polymer having an ion exchange group as an electrolyte polymer. Only the part that contributes to the sandwiched power generation is made into an ionic conduction part, and its periphery is made into a non-ion conduction part, so that unnecessary fuel crossover can be suppressed and at the same time the durability when operated as a fuel cell can be improved. I found. Further, it has been found that the same effect can be obtained by filling the boundary between the gasket and the electrode with a nonionic conductive polymer when the MEA is incorporated into the fuel cell without forming the nonionic conductive portion in the electrolyte membrane. The present invention has been completed.

本発明の電解質膜は、従来用いられてきた炭化水素系電解質ポリマーを多孔性基材に充填させてなる電解質膜を使用していた際に問題となっていたメタノール透過を抑制でき、かつ耐久性の問題を向上させたものである。このため本発明の電解質膜は、燃料電池としての出力特性と耐久性を併せ持ち燃料電池等用途として極めて有用である。   The electrolyte membrane of the present invention can suppress methanol permeation, which has been a problem when using an electrolyte membrane in which a porous base material is filled with a conventionally used hydrocarbon-based electrolyte polymer, and is durable. This is an improvement of the problem. Therefore, the electrolyte membrane of the present invention has both output characteristics and durability as a fuel cell and is extremely useful for applications such as a fuel cell.

以下本発明を詳細に説明する。
本発明の電解質膜および燃料電池は、多孔性基材の細孔にイオン交換基を有するポリマー(電解質ポリマー)を充填してなる高分子電解質膜を燃料電池に使用したときの燃料のクロスオーバーを抑制し、かつ従来の同様の電解質膜および燃料電池に比べて耐久性が向上するものである。
The present invention will be described in detail below.
The electrolyte membrane and the fuel cell of the present invention provide a crossover of fuel when a polymer electrolyte membrane formed by filling a pore of a porous substrate with a polymer having an ion exchange group (electrolyte polymer) is used for a fuel cell. In addition, the durability is improved as compared with the conventional electrolyte membrane and fuel cell.

本発明で用いる多孔性基材は、メタノールおよび水に対して実質的に膨潤しない材料であることが好ましく、特に乾燥時に比べて水による湿潤時の面積変化が少ないか、ほとんどないことが望ましい。多孔性基材をメタノールまたは水に浸したときの面積増加率は、浸漬時間や温度によって変化するが、本発明では25℃における純水に1時間浸漬したときの面積増加率が、乾燥時に比較して最大でも20%以下であることが好ましい。   The porous substrate used in the present invention is preferably a material that does not substantially swell with respect to methanol and water, and it is desirable that there is little or almost no change in area when wetted with water, especially when dry. The area increase rate when the porous substrate is immersed in methanol or water varies depending on the immersion time and temperature. In the present invention, the area increase rate when immersed in pure water at 25 ° C. for 1 hour is compared with that at the time of drying. Therefore, it is preferably 20% or less at the maximum.

多孔性基材の材質としてポリオレフィン系のポリマーが化学的に安定、かつ延伸法により微細な空孔を有する基材を連続製造することが可能であり好ましい。また加熱により空孔を閉塞させることが容易であるため、非イオン伝導部を形成するために、多孔性基材の細孔を閉塞させる工程が容易にできる点でも好ましく、特に延伸ポリオレフィン、架橋ポリオレフィン、延伸後架橋されたポリオレフィンからなるものは強度などの機械的物性が良好で好ましい。   As the material of the porous substrate, a polyolefin-based polymer is chemically stable, and a substrate having fine pores can be continuously produced by a stretching method, which is preferable. In addition, since it is easy to close the pores by heating, it is also preferable in that the step of closing the pores of the porous base material can be easily performed in order to form the nonionic conductive portion. Those made of polyolefin which has been cross-linked after stretching are preferred because of good mechanical properties such as strength.

本発明で用いる多孔性基材の空孔率は、5〜95%が好ましく、さらに好ましくは5〜90%、特に好ましくは20〜60%である。また平均孔径は0.001〜100μmの範囲にあることが好ましく、さらに好ましくは0.01〜1μmの範囲である。空孔率が小さすぎると面積当たりのイオン交換基が少なすぎて燃料電池としては出力が低くなり、大きすぎると膜強度が低下し好ましくない。基材の厚さは200μm以下が好ましく、より好ましくは1〜150μm、さらに好ましくは5〜100μm、特に好ましくは10〜50μmである。膜厚が薄すぎると膜強度が低下しメタノールの透過量も増え、厚すぎると膜抵抗が大きくなりすぎ燃料電池の出力が低いため何れも好ましくない。   The porosity of the porous substrate used in the present invention is preferably 5 to 95%, more preferably 5 to 90%, and particularly preferably 20 to 60%. Moreover, it is preferable that an average hole diameter exists in the range of 0.001-100 micrometers, More preferably, it is the range of 0.01-1 micrometer. If the porosity is too small, the number of ion exchange groups per area is too small and the output of the fuel cell is low, and if it is too large, the membrane strength decreases, which is not preferable. The thickness of the substrate is preferably 200 μm or less, more preferably 1 to 150 μm, still more preferably 5 to 100 μm, and particularly preferably 10 to 50 μm. If the film thickness is too thin, the film strength decreases and the amount of permeated methanol also increases. If the film thickness is too thick, the film resistance becomes too large and the output of the fuel cell is low, which is not preferable.

本発明においては燃料電池用MEAにしたときに電極で挟まれる部分がイオン伝導性を有しており、イオン伝導部は多孔性基材の細孔内にイオン交換基を有するポリマーを充填してなる。このような構造を形成する方法は二通りあり、その一つは電解質膜そのものをイオン伝導部と非イオン伝導部に分けて作成する方法であり、二つ目は全面がイオン伝導性を有している電解質膜を用いるが電極で挟まれる部分以外などの所定パターンを非イオン伝導性ポリマーで保護する方法である。   In the present invention, when the fuel cell MEA is formed, the portion sandwiched between the electrodes has ion conductivity, and the ion conduction portion is filled with a polymer having an ion exchange group in the pores of the porous substrate. Become. There are two methods for forming such a structure, one of which is to make the electrolyte membrane itself divided into an ionic conduction part and a non-ion conduction part, and the second is that the entire surface has ionic conductivity. This is a method of protecting a predetermined pattern such as a portion other than a portion sandwiched between electrodes with a non-ion conductive polymer.

電解質膜をイオン伝導部と非イオン伝導部に分けて作成する場合、その方法としては、多孔性基材のなかで、非イオン伝導部にしたい部分に相当する個所を予め非イオン伝導性ポリマーで充填しておくか塗布または融着する方法、並びに細孔を閉塞する方法などを用いることができる。非イオン伝導性ポリマーで充填した電解質膜を電池に組み込んだ場合の断面図を図4に示す。電解質膜の中で電極とガスケットの隙間に相当する部分には非イオン伝導部があり、この部分における燃料のクロスオーバーはほとんど起こらなくなる。
非イオン伝導部に充填する非イオン伝導性ポリマーはイオン交換基を含んでいないか、含んでいても微量で実質的にイオン導電性を示さないものである。また疎水性であることが好ましい。
When the electrolyte membrane is prepared by dividing it into an ionic conductive part and a non-ionic conductive part, the method is to use a non-ionic conductive polymer in advance in the part corresponding to the part to be the non-ionic conductive part in the porous substrate. A method of filling or coating or fusing, a method of closing pores, and the like can be used. FIG. 4 shows a cross-sectional view when an electrolyte membrane filled with a nonionic conductive polymer is incorporated in a battery. A portion corresponding to the gap between the electrode and the gasket in the electrolyte membrane has a non-ion conducting portion, and fuel crossover hardly occurs in this portion.
The non-ion conductive polymer filled in the non-ion conductive part does not contain an ion exchange group, or even if it contains a small amount, it does not substantially exhibit ionic conductivity. Moreover, it is preferable that it is hydrophobic.

非イオン伝導部にしたい部分を非イオン伝導性ポリマーで充填する方法としては、紫外線等の活性エネルギー線照射により非イオン伝導性ポリマーとなる活性エネルギー線硬化性化合物を充填した後に所定のパターンとなるように露光現像して多孔性基材を露出させた後、閉塞していない細孔内に電解質ポリマーを形成する方法が挙げられる。また、加熱により溶融可能な非イオン伝導性ポリマーを溶融させて、多孔性基材の所定パターンに塗布するか、あるいはシート状で孔の開いていない非イオン伝導ポリマーを多孔性基材の所定パターンに積層して加熱圧着する方法などが挙げられる。あるいは多孔性基材の融点付近の温度で所定パターンに加熱して細孔部を閉塞させる方法などを用いることができる。   As a method of filling the nonionic conductive part with a nonionic conductive polymer, a predetermined pattern is obtained after filling with an active energy ray-curable compound that becomes a nonionic conductive polymer by irradiation of active energy rays such as ultraviolet rays. Thus, after exposing and developing to expose the porous substrate, there is a method of forming an electrolyte polymer in the pores that are not closed. In addition, a nonionic conductive polymer that can be melted by heating is melted and applied to a predetermined pattern of a porous substrate, or a nonionic conductive polymer that is not in the form of a sheet is formed into a predetermined pattern of a porous substrate. And a method of laminating and thermocompression bonding. Alternatively, a method of closing the pores by heating in a predetermined pattern at a temperature near the melting point of the porous substrate can be used.

上記方法の内、加熱により溶融可能な非イオン伝導性ポリマーを溶融させて所定パターンに塗布するか、あるいはシート状の非イオン伝導ポリマーを多孔性基材の所定パターンに積層して加熱圧着する方法では、ホットメルト接着剤やポリエチレンフィルムなどが好ましく使用でき、ポリオレフィン系ホットメルト接着剤(例えば商品名PPET、東亞合成株式会社製)が好ましく使用できる。   Among the above methods, a nonionic conductive polymer that can be melted by heating is melted and applied in a predetermined pattern, or a sheet-like nonionic conductive polymer is laminated on a predetermined pattern of a porous substrate and thermocompression bonded Then, a hot melt adhesive or a polyethylene film can be preferably used, and a polyolefin hot melt adhesive (for example, trade name PPET, manufactured by Toagosei Co., Ltd.) can be preferably used.

一方、多孔性基材の所定パターンに非イオン伝導性ポリマーとなりうる化合物を含浸させ重合する場合は、活性エネルギー線硬化性化合物(以下、光硬化性樹脂という)を用いてフォトリソ法によりパターンを形成することが好ましい。単純に塗布などの方法で多孔性基材の所定パターンだけにモノマーを充填させた場合には、毛管現象によって後から電解質ポリマーを充填するべき部分にもモノマーがしみこんで必要な形状を得ることが困難である。このため光硬化性樹脂を利用する方法が好ましく使用できる。光硬化性樹脂はフォトレジストなど様々な用途に用いられているが、例えばアクリル樹脂などのラジカル重合型、エポキシ、オキセタン、ビニルエーテル樹脂などのカチオン重合型がありいずれも好ましく使用できる。光硬化性樹脂を用いる場合は、一旦多孔性基材全体に含浸させておき、フォトマスクなどを用いて電解質ポリマーを充填する場所に相当する部分に光が当たらないようにして紫外線などの活性エネルギー線を照射して必要部分を硬化させる。次いで活性エネルギー線が当たらず未硬化な部分を溶剤などを用いて溶解現像して電解質ポリマーを充填する場所に相当する多孔性基材を露出させる。   On the other hand, when impregnating a porous substrate with a compound that can become a non-ion conductive polymer for polymerization, a pattern is formed by a photolithographic method using an active energy ray curable compound (hereinafter referred to as a photocurable resin). It is preferable to do. When the monomer is filled only in a predetermined pattern of the porous substrate by a method such as coating, the monomer may soak into the portion to be filled with the electrolyte polymer later by capillary action to obtain the necessary shape. Have difficulty. For this reason, the method using a photocurable resin can be used preferably. The photo-curable resin is used for various applications such as a photoresist. For example, a radical polymerization type such as an acrylic resin and a cationic polymerization type such as an epoxy, oxetane, and a vinyl ether resin can be preferably used. When using a photo-curing resin, impregnate the entire porous substrate once, and use a photomask or the like to prevent the light from hitting the part corresponding to the place where the electrolyte polymer is filled, such as active energy such as ultraviolet rays. Irradiate the line to cure the necessary parts. Next, the porous substrate corresponding to the place where the electrolyte polymer is filled is exposed by dissolving and developing the uncured portion that is not exposed to the active energy ray using a solvent or the like.

このようにして細孔が充填または閉塞された部分と多孔性部分が混在する基材を作成しておき、多孔性部分に電解質ポリマーを充填するか電解質ポリマーの前駆体を充填後に重合させることにより、イオン伝導部と非イオン伝導部を持つ電解質膜が得られる。   In this way, by creating a base material in which a porous portion is mixed with a porous portion or a porous portion, and filling the porous portion with an electrolyte polymer or polymerizing the electrolyte polymer precursor after filling An electrolyte membrane having an ionic conduction part and a non-ion conduction part is obtained.

電解質ポリマーを多孔性基材の空孔部分へ充填する方法は特に限定しないが、電解質ポリマーを溶剤に溶解したものを充填し、溶剤を揮発除去させることで充填する方法。あるいはポリマー前駆体を多孔性基材に含浸させ、その後に重合させることによって得ることができる。その際、充填する電解質前駆体は必要に応じて重合開始剤、触媒、硬化剤、界面活性剤等を含んでいてもよい。   The method of filling the electrolyte polymer into the pores of the porous substrate is not particularly limited, but a method of filling the electrolyte polymer by dissolving it in a solvent and removing the solvent by volatilization. Alternatively, it can be obtained by impregnating a porous substrate with a polymer precursor and then polymerizing it. At that time, the electrolyte precursor to be filled may contain a polymerization initiator, a catalyst, a curing agent, a surfactant, and the like, if necessary.

また多孔性基材と内部に充填した電解質ポリマーの間に化学的な結合を形成して電解質膜の耐久性を高める目的で、多孔性基材を放射線、電子線、紫外線等の照射、またはプラズマ、オゾン、コロナ放電の処理のいずれかまたはその組み合わせにより処理して用いても良い。   Also, for the purpose of improving the durability of the electrolyte membrane by forming a chemical bond between the porous substrate and the electrolyte polymer filled inside, the porous substrate is irradiated with radiation, electron beams, ultraviolet rays, etc., or plasma , Ozone, corona discharge treatment or a combination thereof may be used.

多孔性基材の細孔内に充填する電解質ポリマーが充填前から重合されている場合、プロトン伝導性を有する電解質ポリマーであればいずれも使用できるが、好ましい例としては、芳香族ポリスルホン、芳香族ポリエーテルケトンなどのベンゼン環をスルホン化して得られる電解質ポリマーなどを挙げることができる。   When the electrolyte polymer filled in the pores of the porous substrate is polymerized before filling, any electrolyte polymer having proton conductivity can be used. Preferred examples include aromatic polysulfone, aromatic Examples thereof include an electrolyte polymer obtained by sulfonating a benzene ring such as polyether ketone.

また多孔性基材の細孔内に充填する電解質ポリマーが、充填前はモノマーや架橋剤などのポリマー前駆体(以下、単に「ポリマー前駆体」という。)であって、これを細孔内部へ充填した後に重合して電解質ポリマーとする場合、本発明で使用されるポリマー前駆体の成分であるイオン交換基含有モノマーとしては、プロトン酸性基含有モノマーが燃料電池用電解質膜とした際の性能が良く好ましい。このモノマーは、一分子中に重合可能な官能基とプロトン酸を有する化合物である。その具体例としては、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンホスホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、ビニルスルホン酸、イソプレンスルホン酸、(メタ)アクリル酸、マレイン酸、クロトン酸、ビニルホスホン酸、酸性リン酸基含有(メタ)アクリレート等が挙げられる。
また、イオン交換基に変換し得る官能基を有するモノマーは、上記化合物の塩、無水物、エステル等である。使用するモノマーの酸残基が塩、無水物、エステル等の誘導体となっている場合は重合後にプロトン酸型にすることでプロトン伝導性を付与することができる。
また、重合後にイオン交換基を導入可能な部位を有するモノマーとしては、スチレン、α―メチルスチレン、クロロメチルスチレン、t-ブチルスチレン等のベンゼン環含有モノマーが好ましく使用できる。これらにイオン交換基を導入する方法はクロロスルホン酸、濃硫酸、三酸化硫黄等のスルホン化剤でスルホン化する方法等が挙げられる。
なお、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」を、「(メタ)アリル」は「アリルおよび/またはメタリル」を、「(メタ)アクリレート」は「アクリレートおよび/またはメタクリレート」を示している。
これらの化合物のうち、スルホン酸基含有ビニル化合物またはリン酸基含有ビニル化合物がプロトン伝導性に優れるため好ましく、2−メチルプロパン−2−(メタ)アクリルアミドスルホン酸が、高い重合性を有しており更に好ましい。
The electrolyte polymer filled in the pores of the porous substrate is a polymer precursor such as a monomer or a cross-linking agent (hereinafter simply referred to as “polymer precursor”) before filling, and this is introduced into the pores. When the electrolyte polymer is polymerized after filling, the ion-exchange group-containing monomer, which is a component of the polymer precursor used in the present invention, has the performance when the proton acidic group-containing monomer is used as an electrolyte membrane for a fuel cell. Well preferred. This monomer is a compound having a polymerizable functional group and a protonic acid in one molecule. Specific examples thereof include 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acrylamide-2-methylpropanephosphonic acid, styrenesulfonic acid, (meth) allylsulfonic acid, vinylsulfonic acid, isoprene. Examples thereof include sulfonic acid, (meth) acrylic acid, maleic acid, crotonic acid, vinylphosphonic acid, acidic phosphoric acid group-containing (meth) acrylate and the like.
Moreover, the monomer which has a functional group which can be converted into an ion exchange group is a salt, an anhydride, an ester or the like of the above compound. When the acid residue of the monomer to be used is a derivative such as a salt, an anhydride, or an ester, proton conductivity can be imparted by forming a protonic acid type after polymerization.
Further, as a monomer having a site capable of introducing an ion exchange group after polymerization, a benzene ring-containing monomer such as styrene, α-methylstyrene, chloromethylstyrene, or t-butylstyrene can be preferably used. Examples of the method for introducing an ion exchange group into these include a method of sulfonation with a sulfonating agent such as chlorosulfonic acid, concentrated sulfuric acid and sulfur trioxide.
“(Meth) acryl” means “acryl and / or methacryl”, “(meth) allyl” means “allyl and / or methallyl”, and “(meth) acrylate” means “acrylate and / or methacrylate”. ing.
Among these compounds, a sulfonic acid group-containing vinyl compound or a phosphoric acid group-containing vinyl compound is preferable because of excellent proton conductivity, and 2-methylpropane-2- (meth) acrylamide sulfonic acid has high polymerizability. More preferred.

本発明で使用されるポリマー前駆体としては、イオン交換基含有モノマーに架橋剤を配合した混合物が好ましい。架橋剤として使用可能な化合物は、一分子中に重合可能な官能基を2個以上有するものであり、上記のプロトン酸性基含有モノマー若しくはその塩等と配合して重合することによってポリマー中に架橋点を形成し、ポリマーを不溶不融の3次元網目構造とすることができる。
その具体例としては、N,N’−メチレンビス(メタ)アクリルアミド、N,N’−エチレンビス(メタ)アクリルアミド、N,N’−プロピレンビス(メタ)アクリルアミド、N,N’−ブチレンビス(メタ)アクリルアミド、トリ(メタ)アクリロイルホルマール、ビス(メタ)アクリルアミドピペラジン、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジビニルベンゼン、ビスフェノールジ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、テトラアリルオキシエタン、トリアリルアミン、N,N,N’,N’テトラアリル−1,4−ジアミノブタン、トリアリルイソシアヌレート、ジアリルオキシ酢酸塩等が挙げられる。また、1分子中に重合性二重結合とその他の架橋反応が可能な官能基を併せ持つ化合物を用いても良い。このような化合物としてはN−メチロールアクリルアミド、N−メトキシメチルアクリルアミド、N−ブトキシメチルアクリルアミドなどが挙げられ、重合性二重結合のラジカル重合を行った後で加熱して縮合反応などを起こさせて架橋するか、ラジカル重合と同時に加熱を行って同様の架橋反応を起こさせることができる。
また架橋性官能基は、炭素炭素二重結合を有するものに限るものではなく、重合反応速度が遅いという点で劣るものの、2官能以上のエポキシ化合物、ヒドロキシメチル基を有するフェニル基等も使用することができる。エポキシ化合物を使用する場合はポリマー中のカルボキシル基等の酸と反応して架橋させたり、ポリマー前駆体に第三成分として水酸基等を有する共重合可能な化合物を添加しておいてもよい。これらの架橋剤は単独で使用することも、必要に応じて2種類以上を併用することも可能である。
As a polymer precursor used by this invention, the mixture which mix | blended the crosslinking agent with the ion exchange group containing monomer is preferable. A compound that can be used as a crosslinking agent has two or more polymerizable functional groups in one molecule, and is crosslinked in the polymer by blending with the above proton acidic group-containing monomer or a salt thereof for polymerization. Dots are formed, and the polymer can be made into an insoluble and infusible three-dimensional network structure.
Specific examples thereof include N, N′-methylenebis (meth) acrylamide, N, N′-ethylenebis (meth) acrylamide, N, N′-propylenebis (meth) acrylamide, and N, N′-butylenebis (meth). Acrylamide, tri (meth) acryloyl formal, bis (meth) acrylamide piperazine, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, divinylbenzene, bisphenol di ( (Meth) acrylate, isocyanuric acid di (meth) acrylate, tetraallyloxyethane, triallylamine, N, N, N ′, N′tetraallyl-1,4-diaminobutane, triallyl isocyanurate Diallyloxyacetic acid salts and the like. Moreover, you may use the compound which has a polymerizable double bond and the functional group which can perform another crosslinking reaction in 1 molecule. Examples of such compounds include N-methylol acrylamide, N-methoxymethyl acrylamide, N-butoxymethyl acrylamide, and the like. After radical polymerization of a polymerizable double bond, heating is performed to cause a condensation reaction. It is possible to cause the same crosslinking reaction by crosslinking or heating simultaneously with radical polymerization.
In addition, the crosslinkable functional group is not limited to those having a carbon-carbon double bond, but is inferior in that the polymerization reaction rate is slow, but a bifunctional or higher epoxy compound, a phenyl group having a hydroxymethyl group, etc. are also used. be able to. When an epoxy compound is used, it may be crosslinked by reacting with an acid such as a carboxyl group in the polymer, or a copolymerizable compound having a hydroxyl group or the like as a third component may be added to the polymer precursor. These cross-linking agents can be used alone or in combination of two or more as required.

本発明で使用されるポリマー前駆体には、重合体の膨潤性を調整するため等、必要に応じてプロトン酸性基を有しない第三の共重合成分を配合することができる。第三成分としては本発明で用いる、イオン交換基含有モノマーおよび架橋剤と共重合が可能であれば特に限定しないが、(メタ)アクリロニトリル、(メタ)アクリル酸エステル類、(メタ)アクリルアミド類、マレイミド類、スチレン類、有機酸ビニル類、アリル化合物、メタリル化合物等が挙げられる。   The polymer precursor used in the present invention can be blended with a third copolymer component having no proton acidic group, if necessary, for adjusting the swelling property of the polymer. The third component is not particularly limited as long as it can be copolymerized with the ion exchange group-containing monomer and the crosslinking agent used in the present invention, but (meth) acrylonitrile, (meth) acrylic acid esters, (meth) acrylamides, Maleimides, styrenes, organic acid vinyls, allyl compounds, methallyl compounds and the like can be mentioned.

本発明において、多孔性基材の細孔内部にてポリマー前駆体の中のイオン交換基含有モノマーを重合させる方法は紫外線、可視光、電子線などの活性エネルギー線の照射や加熱による重合であるが、一旦重合した後に必要に応じて加熱または紫外線の照射等により後硬化工程を加えても良い。
加熱重合の際に使用可能な、熱開始重合、レドックス開始重合のラジカル重合開始剤としては、次のようなものが挙げられる。
2,2’−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ化合物;過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、過酸化ベンゾイル、クメンヒドロパーオキサイド、ジ−t−ブチルパーオキサイド等の過酸化物;上記過酸化物と、亜硫酸塩、重亜硫酸塩、チオ硫酸塩、ホルムアミジンスルフィン酸、アスコルビン酸等の還元剤とを組み合わせたレドックス開始剤;2,2’−アゾビス−(2−アミジノプロパン)二塩酸塩、アゾビスシアノ吉草酸等のアゾ系ラジカル重合開始剤。これらラジカル重合開始剤は、単独で用いてもよく、また、二種類以上を併用してもよい。
In the present invention, the method of polymerizing the ion-exchange group-containing monomer in the polymer precursor inside the pores of the porous substrate is polymerization by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, or heating. However, after polymerization, a post-curing step may be added by heating or irradiation with ultraviolet rays if necessary.
Examples of the radical polymerization initiator for heat-initiated polymerization and redox-initiated polymerization that can be used in the heat polymerization include the following.
Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride; ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide, di-t-butylperoxide A peroxide such as oxide; a redox initiator in which the above-mentioned peroxide is combined with a reducing agent such as sulfite, bisulfite, thiosulfate, formamidinesulfinic acid, ascorbic acid; 2,2′-azobis- Azo radical polymerization initiators such as (2-amidinopropane) dihydrochloride and azobiscyanovaleric acid. These radical polymerization initiators may be used alone or in combination of two or more.

上記重合手段の中では、重合反応の制御がし易く、比較的簡便なプロセスで生産性良く所望の電解質膜が得られる点で、紫外線による光開始重合が望ましい。更に光開始重合させる場合には、ラジカル系光重合開始剤を、モノマー、その溶液または分散液中に予め溶解若しくは分散させておくことがより好ましい。
ラジカル系光重合開始剤としては、一般に紫外線重合に利用されているベンゾイン、ベンジル、アセトフェノン、ベンゾフェノン、チオキサントン、チオアクリドンおよびこれらの誘導体等が挙げられ、具体的には、ベンゾフェノン系として、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4−ベンゾイル−4‘−メチルジフェニルサルファイド、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、4−ベンゾイル−N,N−ジメチル−N−[2−(1−オキシ−2−プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4−ベンゾイルベンジル)トリメチルアンモニウムクロリド、4,4’−ジメチルアミノベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン等;チオキサントン系としてチオキサントン、2−クロロチオキサントン、2,4−ジエチルチオキサントン、2−エチルチオキサントン等;チオアクリドン系としてチオアクリドン等;ベンゾイン系としてベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル等;アセトフェノン系としてアセトフェノン、プロピオフェノン、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モンフォリノプロパン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−(2−ヒドロキシエトキシ)−フェニル)−2−ヒドロキシジ−2−メチル−1−プロパン−1−オン等;ベンジル等のベンジル系化合物が挙げられる。
Among the above-described polymerization means, photoinitiated polymerization with ultraviolet rays is desirable because the polymerization reaction is easily controlled and a desired electrolyte membrane can be obtained with a relatively simple process and high productivity. In the case of further photoinitiating polymerization, the radical photopolymerization initiator is more preferably dissolved or dispersed in advance in a monomer, a solution or dispersion thereof.
Examples of radical photopolymerization initiators include benzoin, benzyl, acetophenone, benzophenone, thioxanthone, thioacridone, and derivatives thereof generally used for ultraviolet polymerization. Specifically, as benzophenone series, o-benzoylbenzoate Acid methyl, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4 -Benzoyl-N, N-dimethyl-N- [2- (1-oxy-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride, 4,4'-dimethylaminobenzophenone , 4,4'-di Thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2-ethylthioxanthone, etc .; thioacridone, thioacridone, etc .; benzoin, benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin ethyl ether Benzoin isobutyl ether and the like; acetophenone, acetophenone, propiophenone, diethoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- ( 4- (Methylthio) phenyl) -2-monfolinopropane-1,2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) bu Thanone-1, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxydi-2-methyl-1-propane-1 -On and the like; benzylic compounds such as benzyl are mentioned.

これら光重合開始剤の使用量は、イオン交換基含有モノマーおよび第三成分の不飽和モノマーの総質量に対して0.001〜1質量%が好ましく、更に好ましくは0.001〜0.5質量%、特に好ましくは0.01〜0.5質量%である。またこれらの内、ベンゾフェノン、チオキサントン、チオアクリドン等の芳香族ケトン系ラジカル重合開始剤は炭素水素結合から水素を引き抜くことによってラジカルを発生することができるため多孔性基材としてポリオレフィン等の有機材料と併用すると基材表面と充填させたポリマーとの間に化学結合を形成することができ好ましい。   The amount of these photopolymerization initiators used is preferably 0.001 to 1 mass%, more preferably 0.001 to 0.5 mass%, based on the total mass of the ion-exchange group-containing monomer and the third component unsaturated monomer. %, Particularly preferably 0.01 to 0.5% by mass. Of these, aromatic ketone radical polymerization initiators such as benzophenone, thioxanthone, and thioacridone can generate radicals by extracting hydrogen from carbon-hydrogen bonds, so they can be used in combination with organic materials such as polyolefins as porous substrates. Then, a chemical bond can be formed between the base material surface and the filled polymer, which is preferable.

本発明において多孔性基材にポリマー前駆体を含浸する際は、モノマー、架橋剤、必要に応じて重合開始剤等を混合し液状にして溶液または分散液とする方が、充填が容易となり好ましい。ポリマー前駆体が低粘度の液体である場合はそのまま含浸に用いることもできるが、濃度を10〜90%の溶液とするのが好ましく、20〜70%の溶液とするのが更に好ましい。
また使用する成分に水に難溶のものが含まれる場合は水の一部または全部を有機溶剤に置き換えてもよいが、有機溶剤を使用する場合は電極を接合する前に有機溶剤を全て取り除く必要があるため水溶液の方が好ましい。このように溶液状にして含浸する理由は、水あるいは溶剤に溶解して含浸に用いることにより微細な孔を有する多孔性基材への含浸が行い易くなることと、予め膨潤したゲルを細孔内に作ることによって、製造した電解質膜を燃料電池にした場合に水あるいはメタノールが細孔内の重合体を膨潤させすぎて重合体が抜け落ちるのを防止する効果があるためである。
In the present invention, when the porous substrate is impregnated with the polymer precursor, it is preferable that a monomer, a cross-linking agent, and a polymerization initiator, if necessary, are mixed to form a liquid or a solution or dispersion because filling becomes easier. . When the polymer precursor is a low-viscosity liquid, it can be used for impregnation as it is, but a concentration of 10 to 90% is preferable, and a solution of 20 to 70% is more preferable.
In addition, if the components used are insoluble in water, some or all of the water may be replaced with an organic solvent, but when using an organic solvent, remove all the organic solvent before joining the electrodes. An aqueous solution is preferred because it is necessary. The reason for impregnation in the form of a solution in this way is that it is easy to impregnate a porous substrate having fine pores by dissolving in water or a solvent and using it for impregnation, and that a pre-swollen gel is removed from the pores. This is because, when the produced electrolyte membrane is made into a fuel cell, it has an effect of preventing the polymer from falling off due to excessive swelling of the polymer in the pores by water or methanol.

また含浸作業をより行い易くする目的で、多孔性基材の親水化処理、ポリマー前駆体への界面活性剤の添加、あるいは含浸中における超音波の照射も行うことができる。   For the purpose of facilitating the impregnation operation, hydrophilic treatment of the porous substrate, addition of a surfactant to the polymer precursor, or ultrasonic irradiation during the impregnation can be performed.

多孔性基材にポリマー前駆体を含浸した後にフィルムで挟むと、含浸したポリマー前駆体が多孔性基材の細孔から脱落することが防止され、重合後に均一な電解質膜を得ることができる。ポリマー前駆体がラジカル重合性である場合には、ラジカル重合を阻害する空気中の酸素を遮断する効果もある。このようなフィルムの材質は特に限定しないが、プラスチック等が使用できる。好ましくはPET、ポリエチレン、ポリプロピレン、セロファン、ポリカーボネート、ポリ塩化ビニリデン等のプラスチックフィルムである。これらのフィルムはシリコーン等の剥離剤で表面を処理していても良い。   When the porous substrate is impregnated with the polymer precursor and then sandwiched between the films, the impregnated polymer precursor is prevented from falling off the pores of the porous substrate, and a uniform electrolyte membrane can be obtained after polymerization. When the polymer precursor is radically polymerizable, it also has an effect of blocking oxygen in the air that inhibits radical polymerization. The material of such a film is not particularly limited, but plastic or the like can be used. Preferred are plastic films such as PET, polyethylene, polypropylene, cellophane, polycarbonate, and polyvinylidene chloride. The surface of these films may be treated with a release agent such as silicone.

本発明の方法で作成した電解質膜は、特に直接メタノール形燃料電池に好ましく用いることができる。このような燃料電池に電解質膜を用いる際は白金に代表される触媒を付与した2枚の電極間に電解質膜を挟んで加熱プレス等によって一体化した電解質膜電極接合体(MEA)とし、燃料電池セルに組み込んで使用することは広く知られており、本発明による電解質膜も同様の方法によってMEAを作成し、燃料電池セルに組み込んで使用することができる。   The electrolyte membrane prepared by the method of the present invention can be preferably used particularly for a direct methanol fuel cell. When an electrolyte membrane is used in such a fuel cell, an electrolyte membrane electrode assembly (MEA) is obtained by sandwiching the electrolyte membrane between two electrodes provided with a catalyst typified by platinum and integrated by a heating press or the like. It is widely known to be used by being incorporated in a battery cell, and the electrolyte membrane according to the present invention can also be used by preparing an MEA by a similar method and incorporating it in a fuel cell.

本発明において、前述のように電解質膜そのものをイオン伝導部と非イオン伝導部に分けずに同様の効果、すなわちMEAとした場合に電極で挟まれた部分以外から燃料が透過して電池性能や燃料利用効率を下げたり、燃料が直接接触することで細孔内部の電解質が脱落して貫通孔ができる現象を防ぐ効果を得るための方法を挙げる。その一つは、MEAを電池に組み込む際に少なくともMEAの片側において、図5にその断面図を示したように電極とガスケットの間の隙間を燃料や酸化剤に対して耐久性のある非イオン伝導性ポリマーで埋めるものである。また図6にその断面図を示したようにガスケットを張り合わせる前にMEAの電極外部にはみ出した電解質膜の片面または両面に燃料や酸化剤に対して耐久性のある非イオン伝導性ポリマーを張り合わせるか塗布することもできる。   In the present invention, as described above, the electrolyte membrane itself is not divided into an ionic conduction part and a non-ion conduction part, and the same effect, that is, when MEA is used, the fuel permeates from other than the part sandwiched between the electrodes, Examples of methods for reducing the fuel utilization efficiency and preventing the phenomenon that the electrolyte inside the pores fall off due to direct contact with the fuel to form through holes are given. One is that when the MEA is incorporated into a battery, at least on one side of the MEA, the gap between the electrode and gasket is a non-ion that is durable against fuel and oxidant as shown in the cross-sectional view of FIG. It is filled with a conductive polymer. In addition, as shown in the cross-sectional view of FIG. 6, a nonionic conductive polymer that is durable against fuel and oxidant is attached to one or both sides of the electrolyte membrane that protrudes outside the MEA electrode before attaching the gasket. Or can be applied.

電極とガスケットの間の隙間を埋めたり、もしくはガスケットを張り合わせる前の段階でMEAの電極外部にはみ出した電解質膜の片面または両面に張り合わせるか塗布する非イオン伝導性ポリマーとしては疎水性のものが好ましく、その例としてフッ素系シール剤(例えば、旭硝子(株)製、商品名エイトシール)、シリコーンRTVゴム、エポキシ樹脂のような架橋反応を伴うタイプ、熱溶融性ポリマー(ホットメルトポリマー)のように熱溶融させたものを冷却して固化するタイプが好ましく使用できる。この中では架橋性ポリマーとして特にシリコーンRTVゴム(例えば信越化学工業(株)製、商品名KE42)、熱溶融性ポリマーとしてポリオレフィン系ホットメルト接着剤(例えば東亞合成(株)製、商品名PPET)は燃料や酸化剤に対して耐久性が高く水や燃料の透過も少ないため燃料電池用途として好適に使用できる。   Hydrophobic nonionic conductive polymer that is applied to one side or both sides of the electrolyte membrane that fills the gap between the electrode and gasket, or protrudes outside the MEA electrode before the gasket is attached. Examples thereof include fluorine-based sealants (for example, trade name Eight Seal manufactured by Asahi Glass Co., Ltd.), silicone RTV rubbers, types with a crosslinking reaction such as epoxy resins, and hot melt polymers (hot melt polymers). A type in which the heat-melted product is cooled and solidified can be preferably used. Among them, silicone RTV rubber (for example, trade name KE42 manufactured by Shin-Etsu Chemical Co., Ltd.) as a crosslinkable polymer, and polyolefin-based hot melt adhesive (for example, product name PPET manufactured by Toagosei Co., Ltd.) as a heat-meltable polymer. Can be suitably used as a fuel cell application because of its high durability against fuel and oxidant and little permeation of water and fuel.

熱溶融性ポリマーを使用する場合その軟化温度はJISK2207に規定されるR&B軟化温度で80℃〜200℃の範囲の物が好ましく使用できる。さらには100〜170℃の範囲が好ましい。DMFCは80℃以下で使用される場合が多く軟化温度が低すぎると電池内部で溶融して流路を塞いだりするため好ましくなく、軟化温度が高すぎると加工温度が高くなりすぎて電解質膜が劣化するためいずれも好ましくない。   When using a heat-meltable polymer, the softening temperature is preferably the R & B softening temperature specified in JIS K2207 in the range of 80 ° C to 200 ° C. Furthermore, the range of 100-170 degreeC is preferable. DMFC is often used at 80 ° C. or lower, and if the softening temperature is too low, it is not preferable because it melts inside the battery and closes the flow path. If the softening temperature is too high, the processing temperature becomes too high and the electrolyte membrane becomes Neither is preferred because it deteriorates.

本発明の電解質膜は電極で挟まれた部分のみがイオン伝導性を有し、電極外は疎水性の非イオン伝導部であるのが好ましいが、その境界部分では非イオン伝導部が電極の下にわずかにもぐりこんでいるか、非イオン伝導部を形成するポリマーが電極の端部にわずかに浸透しているとよりいっそう燃料クロスオーバーが抑制され好ましい。この場合電極と非イオン伝導部の重なり幅が広すぎると電極触媒が無駄になる部分が増えて好ましくなく。重なり幅が狭ければ重なっている部分の触媒も発電に寄与できるので、重なり幅は2mm以下とするのが良い。   In the electrolyte membrane of the present invention, it is preferable that only the portion sandwiched between the electrodes has ionic conductivity and the outside of the electrode is a hydrophobic nonionic conductive portion, but at the boundary portion, the nonionic conductive portion is below the electrode. If the polymer forming the non-ion conducting portion is slightly penetrated into the end portion of the electrode, the fuel crossover is further suppressed. In this case, if the overlapping width of the electrode and the non-ion conducting portion is too wide, the portion where the electrode catalyst is wasted increases, which is not preferable. If the overlap width is narrow, the overlapping catalyst can also contribute to power generation, so the overlap width is preferably 2 mm or less.

これらの方法により、電極外に漏れ出した燃料は電解質を充填した部分に直接接触せず、また細孔内部の電解質が抜け出すこともできないため、電池性能を長期にわたり維持することができる。
なお、本発明の電解質膜は、前記境界部分、即ち電極の外周とガスケットとの接線付近のみを帯状に非イオン伝導部としてもよい。これにより、膜とガスケットの界面から浸透する液によるガスケットの劣化を防止することができる。
By these methods, the fuel leaking out of the electrode does not directly contact the portion filled with the electrolyte, and the electrolyte inside the pores cannot escape, so that the battery performance can be maintained for a long time.
In the electrolyte membrane of the present invention, only the boundary portion, that is, the vicinity of the tangent line between the outer periphery of the electrode and the gasket may be formed into a non-ion conducting portion in a strip shape. Thereby, deterioration of the gasket by the liquid which permeates from the interface between the membrane and the gasket can be prevented.

本発明の方法で作成した電解質膜または燃料電池は、燃料電池に組み込んで発電する際に電極で挟まれた部分だけが燃料と接し、それ以外の膜部分は電解質ポリマーを含まないか、脂非イオン伝導性ポリマーで保護されているために燃料が接触しない。このため電極外部から燃料がカソード側に染み出して電池性能を下げたり、電解質膜の細孔に充填された電解質が細孔内部から脱落して貫通し、アノード側とカソード側の燃料と酸化剤が直接混ざることを防ぐことができる。   When the electrolyte membrane or fuel cell prepared by the method of the present invention is assembled in a fuel cell and generates power, only the portion sandwiched between the electrodes is in contact with the fuel, and the other membrane portion does not contain an electrolyte polymer or is non-greasy. The fuel does not come into contact because it is protected by an ion conducting polymer. For this reason, fuel oozes from the outside of the electrode to the cathode side to lower the cell performance, or the electrolyte filled in the pores of the electrolyte membrane drops from the inside of the pores and penetrates, and the fuel and oxidant on the anode side and cathode side Can be prevented from mixing directly.

(実施例1)
多孔性基材として延伸法によって作成した架橋ポリエチレン多孔膜(厚さ16μm、空孔率40%、平均孔径約0.1μm)を用意した。次に2−アクリルアミド−2−メチルプロパンスルホン酸50g、N,N’−メチレンビスアクリルアミド5g、界面活性剤0.005g、紫外線ラジカル重合開始剤0.005g、水50gからなるポリマー前駆体溶液に、前記多孔性膜を浸漬し当該溶液を充填させた。次いで、多孔性基材を溶液から引き上げた後、厚さが50μmのPETフィルム2枚で挟んだ。次にPETフィルムの上から高圧水銀ランプを用いて片面1000mJ/cm2ずつ両面に紫外線を照射し、ポリマー前駆体を重合させた。次にこのPETフィルムをはがし、蒸留水で洗浄し電解質膜を得た。
この膜を1対の電極(正方形で1辺の長さ22mm)で挟み120℃でホットプレスをすることでMEAを作成し、さらに電極の部分を1辺24mmの正方形にくり抜いたシリコーンゴム製ガスケット2枚で挟んだ。さらにシリコーンゴム製ガスケットと電極の間にできた隙間に、一液型RTVゴム(信越化学工業(株)製、商品名KE42)を埋め込み、RTVゴムが硬化するまで放置した。これを燃料電池に組み込んで1日10時間ずつ運転し、電圧変化を追跡したところ合計運転時間500時間での電圧低下率と、電池内部における燃料極側から酸素極側へのメタノール透過量を測定した結果を表1にまとめた。
Example 1
A crosslinked polyethylene porous membrane (thickness 16 μm, porosity 40%, average pore diameter about 0.1 μm) prepared by a stretching method was prepared as a porous substrate. Next, in a polymer precursor solution consisting of 50 g of 2-acrylamido-2-methylpropanesulfonic acid, 5 g of N, N′-methylenebisacrylamide, 0.005 g of a surfactant, 0.005 g of an ultraviolet radical polymerization initiator, and 50 g of water, The porous membrane was immersed and filled with the solution. Next, after lifting the porous substrate from the solution, it was sandwiched between two 50 μm thick PET films. Next, ultraviolet rays were irradiated on both sides of the PET film using a high-pressure mercury lamp on each side at 1000 mJ / cm 2 to polymerize the polymer precursor. Next, this PET film was peeled off and washed with distilled water to obtain an electrolyte membrane.
This membrane is sandwiched between a pair of electrodes (square, 22 mm long) and hot-pressed at 120 ° C. to create an MEA, and the electrode part is further cut into a square of 24 mm on each side. I sandwiched it between two sheets. Further, a one-component RTV rubber (manufactured by Shin-Etsu Chemical Co., Ltd., trade name KE42) was embedded in the gap formed between the silicone rubber gasket and the electrode, and left until the RTV rubber was cured. This was installed in a fuel cell and operated for 10 hours a day, and the change in voltage was tracked. As a result, the voltage drop rate at a total operation time of 500 hours and the amount of methanol permeated from the fuel electrode side to the oxygen electrode side inside the cell were measured. The results are summarized in Table 1.

(実施例2)
多孔性基材として延伸法によって作成した架橋ポリエチレン多孔膜(厚さ16μm、空孔率40%、平均孔径約0.1μm)を用意した。この基材について用いる電極よりわずかに小さい一辺が21.5mmとなる正方形の形状を残し、外側部分を約140℃に加熱したヒートシーラーで挟んで細孔を閉塞させた。残った多孔質部分に実施例1と同様にして電解質ポリマーを充填し電解質膜を得た。この膜の電解質充填部分にちょうど重なるように1対の電極(正方形で1辺の長さ22mm)で電解質膜を挟みMEAを作成し、さらに電極の部分を1辺24mmの正方形にくり抜いたシリコーンゴム製ガスケット2枚で挟んだ。このMEAについて実施例1と同様の評価を行った結果を表1にまとめた。
(Example 2)
A crosslinked polyethylene porous membrane (thickness 16 μm, porosity 40%, average pore diameter about 0.1 μm) prepared by a stretching method was prepared as a porous substrate. The pores were closed by sandwiching the outer portion with a heat sealer heated to about 140 ° C., leaving a square shape with a side slightly smaller than the electrode used for this substrate being 21.5 mm. The remaining porous portion was filled with an electrolyte polymer in the same manner as in Example 1 to obtain an electrolyte membrane. Silicone rubber in which an electrolyte membrane is sandwiched between a pair of electrodes (square, 22 mm long) so that it just overlaps the electrolyte-filled portion of this membrane, and the electrode portion is cut into a square of 24 mm on each side It was sandwiched between two gaskets. The results of evaluation similar to Example 1 for this MEA are summarized in Table 1.

(実施例3)
多孔性基材として延伸法によって作成した架橋ポリエチレン多孔膜(厚さ16μm、空孔率40%、平均孔径約0.1μm)を用意した。次にキシリレンジオキセタン(東亞合成(株)製、商品名アロンオキセタンOXT−121)1g、ジオキセタン(東亞合成(株)製、商品名アロンオキセタンOXT−221)1g、カチオン重合触媒0.1gの混合液に上記多孔膜を浸しオキセタン樹脂混合液を含浸した。これをPETフィルムで挟み、その上に1辺が21.5mmの正方形黒色パターンを形成したフォトマスクをかぶせ、その上から高圧水銀ランプを用いて2000mJ/cm2の紫外線照射を行った。フォトマスクとPETフィルムを取り去り、オキセタン樹脂を充填重合した多孔膜をアセトンで洗浄すると、紫外線が当たらなかった1辺22mmの正方形部分のみ元の多孔質膜が露出し、それ以外の部分は充填したオキセタン樹脂が硬化して孔が塞がれた。この露出した多孔質部分に実施例1と同様にして電解質ポリマーを充填し電解質膜を得た。この膜の電解質ポリマー充填部分にちょうど重なるようにして1対の電極(正方形で1辺の長さ22mm)で電解質膜を挟みMEAを作成し、さらに電極の部分を1辺24mmの正方形にくり抜いたシリコーンゴム製ガスケット2枚で挟んだ。このMEAについて実施例1と同様の評価を行った結果を表1にまとめた。
(Example 3)
A crosslinked polyethylene porous membrane (thickness 16 μm, porosity 40%, average pore diameter about 0.1 μm) prepared by a stretching method was prepared as a porous substrate. Next, 1 g of xylylene oxetane (manufactured by Toagosei Co., Ltd., trade name Aron Oxetane OXT-121), 1 g of dioxetane (manufactured by Toagosei Co., Ltd., trade name Aron Oxetane OXT-221), and 0.1 g of cationic polymerization catalyst are mixed. The porous membrane was immersed in the liquid and impregnated with the oxetane resin mixed liquid. This was sandwiched between PET films, and a photomask on which a square black pattern with a side of 21.5 mm was formed was placed thereon, and ultraviolet irradiation at 2000 mJ / cm 2 was performed from above using a high-pressure mercury lamp. When the photomask and the PET film were removed, and the porous film filled with oxetane resin and polymerized was washed with acetone, the original porous film was exposed only in the square part with a side of 22 mm that was not exposed to ultraviolet rays, and the other part was filled. The oxetane resin hardened and the holes were plugged. The exposed porous portion was filled with an electrolyte polymer in the same manner as in Example 1 to obtain an electrolyte membrane. An MEA was created by sandwiching the electrolyte membrane with a pair of electrodes (square, 22 mm long) so that it overlaps with the electrolyte polymer-filled portion of this membrane, and the electrode portion was further cut into a square with a side of 24 mm. It was sandwiched between two silicone rubber gaskets. The results of evaluation similar to Example 1 for this MEA are summarized in Table 1.

(実施例4)
実施例1で作成した電解質膜に電極を張り合わせる際に、予め厚さ約0.05mmに成型し、1辺が22mmの正方形のパターンをくり抜いたシート状のホットメルト接着剤(東亞合成(株)製、商品名PPET2109、R&B軟化点140℃)2枚のくり抜き部分が重なるようにして電解質膜を挟んだ。更にその上下から1辺22mmの正方形の形状で触媒を塗布した1辺が23mmのカーボンペーパー製電極で挟みホットプレスをしてMEAを作成した。その際カーボンペーパーの端部とホットメルト接着剤の重なり部分は融着していた。さらに電極の部分を1辺24mmの正方形にくり抜いたシリコーンゴム製ガスケット2枚で挟んで燃料電池に組み込み評価を行った。このMEAについて実施例1と同様の評価を行った結果を表1にまとめた。
Example 4
When the electrodes were bonded to the electrolyte membrane prepared in Example 1, a sheet-like hot melt adhesive (Toagosei Co., Ltd.) formed in advance to a thickness of about 0.05 mm and hollowed out with a square pattern of 22 mm on one side. ), Trade name PPET2109, R & B softening point 140 ° C.) The electrolyte membrane was sandwiched so that the two cut-out portions overlapped. Further, from above and below, a MEA was prepared by sandwiching a catalyst in the form of a square with a side of 22 mm and sandwiching it with a carbon paper electrode with a side of 23 mm and hot pressing. At that time, the overlapping portion of the end portion of the carbon paper and the hot melt adhesive was fused. Further, the electrode portion was sandwiched between two silicone rubber gaskets that were cut out into a square with a side of 24 mm, and evaluation was performed in a fuel cell. The results of evaluation similar to Example 1 for this MEA are summarized in Table 1.

(比較例1)
実施例1で作成した電解質膜を1対の電極(正方形で1辺の長さ22mm)で挟み120℃でホットプレスをすることでMEAを作成し、さらに電極の部分を1辺24mmの正方形にくり抜いたシリコーンゴム製ガスケット2枚で挟んだ。これを燃料電池に組み込んで実施例1と同様の評価を行った結果を表1にまとめた。実施例に比べ燃料極から空気極へのメタノール透過量が多く、連続運転したときの電圧低下も大きかった。
(Comparative Example 1)
The MEA was created by sandwiching the electrolyte membrane prepared in Example 1 with a pair of electrodes (square and 22 mm in length) and hot pressing at 120 ° C., and the electrode part was made into a square with a side of 24 mm. It was sandwiched between two silicone rubber gaskets. Table 1 summarizes the results of evaluations similar to those of Example 1 incorporated in a fuel cell. Compared to the Examples, the amount of methanol permeated from the fuel electrode to the air electrode was large, and the voltage drop during continuous operation was large.

(作成した膜の評価方法)
(1.メタノール透過性の評価)
文献「Methanol Transport Through Nafion Membranes」(Journal of The Electrochemical Society、2000年、147巻、2号、p.466−474、米国電気化学会、Xiaoming Ren他著)に示される方法でメタノール透過量を測定した。それぞれのMEAを燃料電池に組み込み、一方の極に1mol/lのメタノール水溶液を流し、他方の極には窒素を流した状態で電池を50℃に保った。次にメタノール極に負極、窒素を流している側に正極をつないで電圧を上げていき、このときに流れる電流値をモニターした。電流値は約0.5V付近から上昇しはじめ、0.7〜1.0V付近で一定値となるため、一定値となった電流値を比較した。すなわち、電圧を上げていくと窒素側の極に漏れてきたメタノールが酸化されてプロトンと電子を放出するため、観測した電流値が高いほど漏れたメタノールが多いことを示す。
(Evaluation method of the created film)
(1. Evaluation of methanol permeability)
A method described in the literature "Methanol Transport Through Nafion Embranes" (Journal of The Electronic Society, 2000, 147, No. 2, p. 466-474, by the American Electrochemical Society, Xiaming Ren et al.) did. Each MEA was incorporated in a fuel cell, and a 1 mol / l aqueous methanol solution was flowed to one electrode, and nitrogen was flowed to the other electrode, and the cell was kept at 50 ° C. Next, the negative electrode was connected to the methanol electrode, and the positive electrode was connected to the nitrogen flow side to increase the voltage, and the current value flowing at this time was monitored. The current value began to rise from around 0.5V and became constant around 0.7 to 1.0V, so the current values that became constant were compared. That is, as the voltage is increased, methanol leaking to the nitrogen side electrode is oxidized and releases protons and electrons, so that the higher the observed current value, the more methanol leaked.

(燃料電池の性能評価方法)
(1.MEAの作成)
酸素極用に白金担持カーボン(田中貴金属工業(株)製:TEC10E50E)、および燃料極用に白金ルテニウム合金担持カーボン(田中貴金属工業(株)製:TEC61E54)をそれぞれ用い、これらの触媒粉末に高分子電解質溶液(デュポン社製:ナフィオン5%溶液)とポリテトラフルオロエチレンディスパージョンを配合し、水を適宜加えて攪拌して反応層用塗料を得た。これをスクリーン印刷法でカーボンペーパー(東レ(株)製:TGP−H−060)の片面に印刷し乾燥して電極とした。その際酸素極側は白金量が1mg/cm2、燃料極側は白金とルテニウムの総量が3mg/cm2とした。実施例および比較例に特に記載のない限り、これらを電解質膜の中央部に塗料面を内側にして重ね合せ、120℃で加熱プレスし燃料電池用膜電極接合体(MEA)を作成した。これを燃料電池単セルに組み込んで運転し、性能を確認した。
(2.燃料電池評価)
実施例および比較例で作成したMEAをDMFC単セルに組み込んだ際の運転条件は次のとおり。燃料を3mol/lメタノール水溶液、酸化剤を純酸素とした。セル温度は50℃とした。電子負荷器により電流を変化させ電流−電圧特性を測定し、電流×電圧であらわされる出力の最大値を求め、各電解質膜の性能の比較は最高出力により比較し表1にまとめた。また1mol/lの燃料を用い、セル温度60℃で0.1A/cm2の負荷をかけながら1日10時間の間欠運転を行い、合計300時間運転を行った後の電圧維持率を調べて表1にまとめた。
(Fuel cell performance evaluation method)
(1. Creation of MEA)
Platinum-supported carbon (Tanaka Kikinzoku Co., Ltd .: TEC10E50E) is used for the oxygen electrode, and platinum ruthenium alloy-supported carbon (Tanaka Kikinzoku Kogyo Co., Ltd .: TEC61E54) is used for the fuel electrode. A molecular electrolyte solution (manufactured by DuPont: Nafion 5% solution) and polytetrafluoroethylene dispersion were blended, and water was appropriately added and stirred to obtain a reaction layer coating material. This was printed on one side of carbon paper (manufactured by Toray Industries, Inc .: TGP-H-060) by screen printing and dried to obtain an electrode. At that time, the platinum amount on the oxygen electrode side was 1 mg / cm 2 , and the total amount of platinum and ruthenium on the fuel electrode side was 3 mg / cm 2 . Unless otherwise specified in the Examples and Comparative Examples, these were superposed on the center of the electrolyte membrane with the paint surface inside, and heated and pressed at 120 ° C. to prepare a fuel cell membrane electrode assembly (MEA). This was installed in a single fuel cell and operated to confirm the performance.
(2. Fuel cell evaluation)
The operating conditions when the MEAs created in the examples and comparative examples are incorporated in a DMFC single cell are as follows. The fuel was a 3 mol / l aqueous methanol solution, and the oxidant was pure oxygen. The cell temperature was 50 ° C. Current-voltage characteristics were measured by changing the current with an electronic loader, and the maximum value of the output expressed as current × voltage was determined. Comparison of the performance of each electrolyte membrane was compared by the maximum output and summarized in Table 1. In addition, using 1 mol / l of fuel, intermittent operation for 10 hours a day while applying a load of 0.1 A / cm 2 at a cell temperature of 60 ° C., and examining the voltage maintenance rate after a total of 300 hours of operation. The results are summarized in Table 1.

Figure 2006164628
Figure 2006164628

本発明の電解質膜およびこれを用いた燃料電池は、優れた出力特性と耐久性を併せ持ちかつ燃料利用効率が高いため、DMFC用途として極めて有用である。 The electrolyte membrane of the present invention and a fuel cell using the electrolyte membrane are extremely useful for DMFC applications because they have excellent output characteristics and durability and high fuel utilization efficiency.

多孔性基材に電解質ポリマーを充填して製造した電解質膜を使用した直接メタノール形燃料電池を示す断面図。1 is a cross-sectional view showing a direct methanol fuel cell using an electrolyte membrane manufactured by filling a porous substrate with an electrolyte polymer. 図1で示される構造の燃料電池における電極と電極で挟まれた電解質膜の断面図。長時間運転し性能が低下しても樹脂が充填されたままである。Sectional drawing of the electrolyte membrane pinched | interposed between the electrodes in the fuel cell of the structure shown by FIG. Even if it is operated for a long time and the performance deteriorates, the resin remains filled. 図1で示される構造の燃料電池における電極とガスケットの隙間部分に相当する電解質膜の断面図。長時間運転して性能が低下した状態を示す断面図。電解質ポリマーが脱落し、空孔部分が多くできている。FIG. 2 is a cross-sectional view of an electrolyte membrane corresponding to a gap portion between an electrode and a gasket in the fuel cell having the structure shown in FIG. 1. Sectional drawing which shows the state which carried out long time and the performance fell. The electrolyte polymer has fallen off and there are many voids. 図1の電解質膜に相当する部分において電極で挟持される部分以外を非イオン伝導性ポリマーで充填するか、同じく電極で挟持される部分以外の多孔性基材を熱溶融させて細孔を閉塞させた状態を示す断面図。The portion corresponding to the electrolyte membrane in FIG. 1 is filled with a nonionic conductive polymer except for the portion sandwiched by the electrodes, or the porous substrate other than the portion sandwiched by the electrodes is also thermally melted to close the pores. Sectional drawing which shows the state made to do. 図1の電極とガスケットの間にできた隙間を非イオン伝導性ポリマーで充填した状態を示す断面図Sectional drawing which shows the state which filled the clearance gap formed between the electrode and gasket of FIG. 1 with the nonionic conductive polymer. 図1の電極が接触している部分以外の電解質膜上に非イオン伝導性ポリマーを塗布もしくは張り合わせた状態を示す断面図Sectional drawing which shows the state which apply | coated or bonded nonionic conductive polymer on the electrolyte membrane other than the part which the electrode of FIG. 1 is contacting

符号の説明Explanation of symbols

1a 酸化剤ガス流路
1b 燃料流路
2 カーボン部材
3 ガスケット
4a カソード側触媒付き電極
4b アノード側触媒付き電極
5 電解質膜
6 ガスケットと電極の間にできた隙間
7 非イオン伝導性ポリマー
8 多孔性基材に非イオン伝導性ポリマーを充填するか細孔部を閉塞して非イオン伝導 性とした部分。
9 非イオン伝導性ポリマー
10 電極で挟まれた部分の電解質膜
11 電極とガスケットの隙間部分の電解質膜
12 多孔性基材
13 電解質ポリマー
14 電解質ポリマーが脱落してできた空孔部
DESCRIPTION OF SYMBOLS 1a Oxidant gas flow path 1b Fuel flow path 2 Carbon member 3 Gasket 4a Electrode with cathode side catalyst 4b Electrode with anode side catalyst 5 Electrolyte membrane 6 Gap formed between gasket and electrode 7 Nonionic conductive polymer 8 Porous group A part that is filled with a non-ion conductive polymer or is made non-ion conductive by closing the pores.
9 Non-ion conductive polymer 10 Electrolyte membrane 11 sandwiched between electrodes Electrolyte membrane 12 in gap between electrode and gasket Porous substrate 13 Electrolyte polymer 14 Porosity formed by dropping electrolyte polymer

Claims (10)

所定パターンの非イオン伝導部を形成してなることを特徴とする、多孔性基材の細孔内が電解質ポリマーで充填された電解質膜。 An electrolyte membrane in which pores of a porous base material are filled with an electrolyte polymer, wherein a non-ion conducting portion having a predetermined pattern is formed. 所定パターンの非イオン伝導部の形成が、多孔性基材の細孔内が電解質ポリマーで充填されてなる電解質膜の片面もしくは両面に、所定のパターンで非イオン伝導性ポリマーを塗布または融着させる方法によるものである請求項1の電解質膜。 In the formation of the non-ion conductive portion of a predetermined pattern, the non-ion conductive polymer is applied or fused in a predetermined pattern on one or both surfaces of the electrolyte membrane in which the pores of the porous substrate are filled with the electrolyte polymer. The electrolyte membrane according to claim 1, which is obtained by a method. 非イオン伝導性ポリマーが、架橋性ポリマーまたは熱溶融性ポリマーであることを特徴とする請求項1または2の電解質膜。 The electrolyte membrane according to claim 1 or 2, wherein the non-ion conductive polymer is a crosslinkable polymer or a heat-meltable polymer. 多孔性基材の細孔を所定のパターンで熱溶融して閉塞させ、閉塞しない細孔に電解質ポリマーを充填させてなる請求項1の電解質膜。 2. The electrolyte membrane according to claim 1, wherein the pores of the porous substrate are thermally melted and closed in a predetermined pattern, and the electrolyte polymer is filled in the pores that are not closed. 活性エネルギー線硬化性化合物を用い、次の工程により得られた請求項1の電解質膜。
1)多孔性基材の細孔内に、重合後に非イオン導電性となり得る活性エネルギー線硬化性化合物を充填する工程。
2)所定のパターンに活性エネルギー線を照射して前記化合物を重合させる工程。
3)未重合部分の前記化合物を溶剤で溶解除去して多孔性基材を露出させる工程。
4)露出した多孔性基材の細孔内へ電解質ポリマーを充填するか、または電解質ポリマー前駆体を充填した後に電解質ポリマーとする工程。
The electrolyte membrane of Claim 1 obtained by the following process using an active energy ray hardening compound.
1) A step of filling active energy ray-curable compounds that can become nonionic conductive after polymerization into the pores of a porous substrate.
2) A step of polymerizing the compound by irradiating a predetermined pattern with active energy rays.
3) A step of exposing the porous substrate by dissolving and removing the compound in the unpolymerized portion with a solvent.
4) A step of filling the electrolyte polymer into the pores of the exposed porous substrate or filling the electrolyte polymer precursor and then forming the electrolyte polymer.
多孔性基材が、ポリオレフィンを延伸して得られたものであることを特徴とする請求項1乃至5の電解質膜。 6. The electrolyte membrane according to claim 1, wherein the porous substrate is obtained by stretching polyolefin. 非イオン伝導部を形成する所定パターンが、当該電解質膜の両面に電極を接触若しくは張り合わせて、膜電極接合体または燃料電池とする際に、電極と接触若しくは張り合わせた部分の外側部分および/または境界部分であることを特徴とする請求項1乃至6の電解質膜。 When the predetermined pattern forming the non-ion conducting part is in contact with or bonded to both surfaces of the electrolyte membrane to form a membrane electrode assembly or a fuel cell, the outer part and / or the boundary of the contacted or bonded part with the electrode The electrolyte membrane according to claim 1, which is a portion. 非イオン伝導部を形成する所定パターンが、当該電解質膜の両面に電極を接触若しくは張り合わせ、その周囲にガスケットを配置して燃料電池とする際に、電極の外周部とガスケットとの境界部分であることを特徴とする請求項1乃至7の電解質膜。 The predetermined pattern forming the non-ion conducting part is a boundary part between the outer peripheral part of the electrode and the gasket when the electrode is brought into contact with or bonded to both surfaces of the electrolyte membrane and a gasket is arranged around the electrode. 8. The electrolyte membrane according to claim 1, wherein: 請求項1乃至8の電解質膜の両面に電極を接触若しくは張り合わせ、その周囲にガスケットを配置してなる燃料電池において、電極の外周部とガスケットとの境界部分には、電解質膜の非イオン伝導部が接するようにしてなることを特徴とする燃料電池。 9. A fuel cell in which an electrode is contacted or bonded to both surfaces of an electrolyte membrane according to claim 1 and a gasket is arranged around the electrode, and a non-ion conducting portion of the electrolyte membrane is provided at a boundary portion between the outer periphery of the electrode and the gasket. A fuel cell, wherein the fuel cell is in contact with each other. 多孔性基材の細孔内が電解質ポリマーで充填されてなる電解質膜の両面に電極を接触若しくは張り合わせ、その周囲にガスケットを配置させてなる燃料電池において、前記電解質膜の電極外周部およびガスケットとの境界部分と接触する部分に非イオン伝導性ポリマーを塗布または融着させて、或いは電極外周部とガスケットとの境界部分に非イオン伝導性ポリマーを充填してなることを特徴とする燃料電池。
In a fuel cell in which electrodes are brought into contact with or bonded to both surfaces of an electrolyte membrane in which pores of a porous substrate are filled with an electrolyte polymer, and a gasket is disposed around the electrodes, an outer peripheral portion of the electrode of the electrolyte membrane and a gasket A fuel cell, wherein a nonionic conductive polymer is applied or fused to a portion in contact with a boundary portion of the electrode, or a nonionic conductive polymer is filled in a boundary portion between an electrode outer peripheral portion and a gasket.
JP2004351722A 2004-12-03 2004-12-03 Electrolyte film and fuel cell Pending JP2006164628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351722A JP2006164628A (en) 2004-12-03 2004-12-03 Electrolyte film and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351722A JP2006164628A (en) 2004-12-03 2004-12-03 Electrolyte film and fuel cell

Publications (1)

Publication Number Publication Date
JP2006164628A true JP2006164628A (en) 2006-06-22

Family

ID=36666406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351722A Pending JP2006164628A (en) 2004-12-03 2004-12-03 Electrolyte film and fuel cell

Country Status (1)

Country Link
JP (1) JP2006164628A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004567A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Solid polymer electrolyte membrane and fuel cell
JP2008071706A (en) * 2006-09-15 2008-03-27 Asahi Kasei Chemicals Corp Method of manufacturing electrolyte membrane
JP2008117775A (en) * 2006-11-03 2008-05-22 Gm Global Technology Operations Inc Improved edge design for eptfe reinforcement film for pem fuel cell
JP2010102987A (en) * 2008-10-24 2010-05-06 Kaneka Corp Polymer electrolyte membrane, and utilization of the same
CN107004879A (en) * 2014-11-25 2017-08-01 庄信万丰燃料电池有限公司 Film seal assembly

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232248A (en) * 1985-04-04 1986-10-16 Canon Inc Method for forming optical pattern
JPS62254101A (en) * 1986-04-28 1987-11-05 Canon Inc Glass substrate
JPS62256731A (en) * 1986-05-01 1987-11-09 Canon Inc Production of optical element
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Seal structure for high polymer electrolyte type fuel cell and its manufacture
JPH10154521A (en) * 1996-09-24 1998-06-09 Matsushita Electric Ind Co Ltd Solid high polymer type fuel cell
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2003123792A (en) * 2001-10-09 2003-04-25 Toray Ind Inc Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
WO2003096455A2 (en) * 2002-05-09 2003-11-20 The Board Of Trustees Of The Leland Stanford Junior University Improved fuel cell
JP2004273285A (en) * 2003-03-10 2004-09-30 Toray Ind Inc Solid polyelectrolyte, manufacturing method thereof, and solid polymer fuel cell using the same
JP2004296278A (en) * 2003-03-27 2004-10-21 Ube Ind Ltd Small fuel cell and electrolyte film
JP2004335119A (en) * 2003-04-30 2004-11-25 Toagosei Co Ltd Electrolyte film and fuel cell using the electrolyte film
JP2004536428A (en) * 2001-07-18 2004-12-02 テル−アビブ・ユニバーシテイ・フユーチヤー・テクノロジー・デベロツプメント・エル・ピー Fuel cell with proton conducting membrane and with improved water and fuel management

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232248A (en) * 1985-04-04 1986-10-16 Canon Inc Method for forming optical pattern
JPS62254101A (en) * 1986-04-28 1987-11-05 Canon Inc Glass substrate
JPS62256731A (en) * 1986-05-01 1987-11-09 Canon Inc Production of optical element
JPH0845517A (en) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk Seal structure for high polymer electrolyte type fuel cell and its manufacture
JPH10154521A (en) * 1996-09-24 1998-06-09 Matsushita Electric Ind Co Ltd Solid high polymer type fuel cell
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2004536428A (en) * 2001-07-18 2004-12-02 テル−アビブ・ユニバーシテイ・フユーチヤー・テクノロジー・デベロツプメント・エル・ピー Fuel cell with proton conducting membrane and with improved water and fuel management
JP2003123792A (en) * 2001-10-09 2003-04-25 Toray Ind Inc Polymer electrolyte film, its manufacturing method, and solid polymer fuel cell using the same
WO2003096455A2 (en) * 2002-05-09 2003-11-20 The Board Of Trustees Of The Leland Stanford Junior University Improved fuel cell
JP2006501602A (en) * 2002-05-09 2006-01-12 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Improved fuel cell
JP2004273285A (en) * 2003-03-10 2004-09-30 Toray Ind Inc Solid polyelectrolyte, manufacturing method thereof, and solid polymer fuel cell using the same
JP2004296278A (en) * 2003-03-27 2004-10-21 Ube Ind Ltd Small fuel cell and electrolyte film
JP2004335119A (en) * 2003-04-30 2004-11-25 Toagosei Co Ltd Electrolyte film and fuel cell using the electrolyte film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004567A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Solid polymer electrolyte membrane and fuel cell
JPWO2008004567A1 (en) * 2006-07-06 2009-12-03 三菱瓦斯化学株式会社 Solid polymer electrolyte membrane and fuel cell
JP2008071706A (en) * 2006-09-15 2008-03-27 Asahi Kasei Chemicals Corp Method of manufacturing electrolyte membrane
JP2008117775A (en) * 2006-11-03 2008-05-22 Gm Global Technology Operations Inc Improved edge design for eptfe reinforcement film for pem fuel cell
JP2010102987A (en) * 2008-10-24 2010-05-06 Kaneka Corp Polymer electrolyte membrane, and utilization of the same
CN107004879A (en) * 2014-11-25 2017-08-01 庄信万丰燃料电池有限公司 Film seal assembly
JP2018502422A (en) * 2014-11-25 2018-01-25 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited Membrane sealing assembly
CN107004879B (en) * 2014-11-25 2020-06-05 庄信万丰燃料电池有限公司 Membrane seal assembly

Similar Documents

Publication Publication Date Title
US20090004548A1 (en) Electrolyte Membrane, Method for Producing Membrane Electrode Assembly, and Fuel Cell
TW200832792A (en) Process for producing a membrane-electrode assembly
JP5702093B2 (en) Polymer membrane composition for fuel cell, polymer membrane produced using the same, membrane-electrode assembly containing the same, and fuel cell
US20090068530A1 (en) Membrane electrode assembly and direct liquid fuel cell
JP4284463B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP4847577B2 (en) Membrane-electrode bonding agent, proton conductive membrane with bonding layer, membrane-electrode assembly, polymer electrolyte fuel cell, and method for producing membrane-electrode assembly
US20060127727A1 (en) Polymer electrolyte and fuel cell employing the same
JP2008542978A (en) Diffusion medium, fuel cell, and system using fuel cell as power source
JPWO2005091409A1 (en) Electrolyte membrane and fuel cell
WO2005076396A1 (en) Electrolyte film and fuel cell using the electrolyte film
KR100709220B1 (en) Polymer electrolyte membrane for fuel cell, preparing method thereof and fuel cell system comprising same
JP2006164628A (en) Electrolyte film and fuel cell
JP2007048543A (en) Electrolyte film and direct liquid fuel type fuel cell
US20090233143A1 (en) Membrane Electrode Assembly, Process for Producing Same, and Direct Methanol Fuel Cell
JP4192730B2 (en) Continuous production method of functional membrane
JP5044894B2 (en) Proton conducting electrolyte membrane for polymer electrolyte fuel cell, method for producing proton conducting electrolyte membrane, and polymer electrolyte fuel cell
JP2004253183A (en) Manufacturing method of electrolyte membrane, and fuel cell
JP4561214B2 (en) Electrolyte membrane
JP2006331848A (en) Proton conductive electrolyte membrane and manufacturing method thereof, and polymer electrolyte fuel cell
JP4525329B2 (en) Continuous production method of electrolyte membrane
JP2005268032A (en) Polymer electrolyte membrane, its evaluation method, and fuel cell
JP6856003B2 (en) Fuel cell manufacturing method
JP2008108723A (en) Membrane electrode assembly and its manufacturing method
JP2008189864A (en) Manufacturing method of functional film
JP2007048551A (en) Electrolyte membrane for direct liquid fuel type fuel cell, and direct liquid fuel type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809