JP2008071706A - Method of manufacturing electrolyte membrane - Google Patents

Method of manufacturing electrolyte membrane Download PDF

Info

Publication number
JP2008071706A
JP2008071706A JP2006251516A JP2006251516A JP2008071706A JP 2008071706 A JP2008071706 A JP 2008071706A JP 2006251516 A JP2006251516 A JP 2006251516A JP 2006251516 A JP2006251516 A JP 2006251516A JP 2008071706 A JP2008071706 A JP 2008071706A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
liquid
proton
vinyl monomer
crosslinking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006251516A
Other languages
Japanese (ja)
Other versions
JP5036263B2 (en
Inventor
Hiroshi Tajima
洋 田島
Daisuke Narishima
大介 成嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006251516A priority Critical patent/JP5036263B2/en
Publication of JP2008071706A publication Critical patent/JP2008071706A/en
Application granted granted Critical
Publication of JP5036263B2 publication Critical patent/JP5036263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing, without providing a poor appearance, an electrolyte membrane with a copolymer of a liquid proton dissociative monomer and a liquid cross-linking agent densely filled in a porous base material layer, superiorly having low fuel permeability and high proton conductivity. <P>SOLUTION: This method of manufacturing the electrolyte membrane comprises impregnating and copolymerizing into a hydrophobic porous base material a mixed liquid containing a liquid proton dissociative vinyl monomer and a substantially water-insolusible cross-linking agent having at least two carbon-carbon double bonds in one molecule. This mixed liquid has a water content of 0.5% and less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池、特に固体高分子型燃料電池及び直接液体燃料型燃料電池に関する。   The present invention relates to a fuel cell, and more particularly to a polymer electrolyte fuel cell and a direct liquid fuel fuel cell.

燃料電池用電解質膜として、スルホン酸基をはじめとする、プロトン解離性基を有するポリマーからなる電解質膜が知られている。なかでも、(i)燃料電池内で生成する水や、メタノールなどの液体燃料への膨潤や溶解が抑制され、(ii)燃料透過性が抑制され、(iii)高いプロトン伝導性を有する電解質膜へのニーズが高い。
近年、上記(i)〜(iii)を解決する目的で、ポリオレフィンやポリイミドを基材とする、水や液体燃料に実質的に膨潤、溶解することのない、疎水性の多孔質基材にプロトン解離性官能基含有ポリマーを充填した電解質膜が開発されている。なかでも、充填するプロトン解離性官能基含有ポリマーの水や液体燃料への膨潤や溶解を分子レベルで抑え、より一層上記(i)〜(iii)を向上させる目的で、プロトン解離性官能基とともに架橋構造を有するポリマーが充填された電解質膜が開発されている。
As an electrolyte membrane for a fuel cell, an electrolyte membrane made of a polymer having a proton dissociable group such as a sulfonic acid group is known. Among them, (i) swelling and dissolution in liquid fuel such as water and methanol generated in the fuel cell are suppressed, (ii) fuel permeability is suppressed, and (iii) an electrolyte membrane having high proton conductivity. The need for is high.
In recent years, for the purpose of solving the above (i) to (iii), a proton is applied to a hydrophobic porous substrate which is based on polyolefin or polyimide and does not substantially swell or dissolve in water or liquid fuel. An electrolyte membrane filled with a dissociative functional group-containing polymer has been developed. Among them, together with the proton-dissociating functional group, for the purpose of suppressing the swelling and dissolution of the proton-dissociable functional group-containing polymer to be filled in water or liquid fuel at the molecular level and further improving the above (i) to (iii) An electrolyte membrane filled with a polymer having a crosslinked structure has been developed.

例えば、特許文献1には、スルホン酸基含有ビニルモノマーを含む溶液を多孔性基材に含浸させた後、これを重合する工程を含む電解質膜の製造方法において、前記スルホン酸基含有ビニルモノマーとして、純度90%以上のビニルスルホン酸及び/又はその塩を80モル%以上含有するとともに、前記溶液中のビニルスルホン酸及び/又はその塩の濃度を35重量%以上とすることを特徴とする、電解質膜及びその製造方法が記載されている。しかし、特許文献1において、スルホン酸基含有ビニルモノマー中に使用される、ビニルスルホン酸は、水などの溶媒を必要とするその塩であってもよく、スルホン酸基含有ビニルモノマーをプロトン解離性液状モノマーに限定していないため、燃料透過性を一層改善する余地があると考えられる。また、イオン交換容量の大きいビニルスルホン酸ポリマーが含水膨張するため、多孔質基材、特に実質的に重量平均分子量が50万以下のポリオレフィンのみからなる多孔質基材を、変形させることにより発生する外観不良を回避する方法については何ら記載がない。
特開2006−216531号公報
For example, in Patent Document 1, in a method for manufacturing an electrolyte membrane including a step of impregnating a porous substrate with a solution containing a sulfonic acid group-containing vinyl monomer and then polymerizing the solution, the sulfonic acid group-containing vinyl monomer is And containing 80 mol% or more of vinylsulfonic acid and / or its salt with a purity of 90% or more, and the concentration of vinylsulfonic acid and / or its salt in the solution is 35 wt% or more, An electrolyte membrane and a method for manufacturing the same are described. However, in Patent Document 1, the vinyl sulfonic acid used in the sulfonic acid group-containing vinyl monomer may be a salt thereof that requires a solvent such as water. Since it is not limited to a liquid monomer, it is considered that there is room for further improvement in fuel permeability. Further, since the vinyl sulfonic acid polymer having a large ion exchange capacity is swelled with water, it is generated by deforming a porous substrate, particularly a porous substrate consisting essentially of a polyolefin having a weight average molecular weight of 500,000 or less. There is no description about how to avoid the appearance defect.
JP 2006-216531 A

発明者らは、上記の課題を解決すべく検討を行い、均一混合液を形成する、特定の組み合わせの、プロトン解離性液状モノマーと液状架橋剤が、実質的に溶媒を含むことなく容易に疎水性の多孔質基材へ充填、重合され、該多孔質基材内にプロトン解離性液状モノマーと液状架橋剤のコポリマーとして密に充填され、低EWでかつ低含水率の電解質膜が得られ、際立った低燃料透過性と高プロトン伝導性が発現することを見出し、先に特許出願した(特願2006−9648号)。しかしながら、本発明者らが更に検討を進めたところ、前記方法では、電解質の充填時に多孔質基材が変形し外観不良を発生し、得られた電解質膜を燃料電池に使用する際に、電極との接触不良が懸念されるという問題があった。
本発明の目的は外観不良の少ない電解質膜を提供することである。更には、多孔質基材内に電解質が密に充填され、燃料透過性が低く、プロトン伝導性の高い、外観不良の少ない電解質膜を提供することにある。
The inventors have studied to solve the above problems, and a specific combination of proton dissociable liquid monomer and liquid cross-linking agent that form a homogeneous mixed solution is easily hydrophobic without substantially containing a solvent. A porous porous substrate, polymerized, and densely packed into the porous substrate as a copolymer of a proton dissociable liquid monomer and a liquid cross-linking agent to obtain an electrolyte membrane having a low EW and a low water content, It was found that outstanding low fuel permeability and high proton conductivity were developed, and a patent application was filed earlier (Japanese Patent Application No. 2006-9648). However, as a result of further investigation by the present inventors, in the above method, when the electrolyte is filled, the porous base material is deformed to cause poor appearance, and when the obtained electrolyte membrane is used for a fuel cell, an electrode is used. There was a problem that there was a concern about poor contact with.
An object of the present invention is to provide an electrolyte membrane with few appearance defects. It is another object of the present invention to provide an electrolyte membrane in which a porous substrate is densely filled with an electrolyte, fuel permeability is low, proton conductivity is high, and appearance is small.

本発明者等は、上記の課題を解決すべく検討を行った結果、本発明を完成するに至った。
すなわち、本発明は以下の通りである。
(1)液状プロトン解離性ビニルモノマーと、一分子中に少なくとも二つの炭素−炭素二重結合を有する実質的に水に溶解しない架橋剤とを含有する混合液を疎水性多孔質基材に含浸、重合する電解質膜の製造方法であって、該混合液の含水率が0.5%以下であることを特徴とする電解質膜の製造方法。
(2)架橋剤が液状である、上記(1)の電解質膜の製造方法。
(3)液状プロトン解離性ビニルモノマーがビニルスルホン酸である、上記(1)又は(2)の電解質膜の製造方法。
(4)架橋剤が、更にN−C=O結合を有する、上記(1)〜(3)いずれかの電解質膜の製造方法。
(5)架橋剤がトリアリルイソシアヌレートである、上記(1)〜(4)いずれかの電解質膜の製造方法。
(6)疎水性多孔質基材が、実質的に、重量平均分子量が50万以下のポリオレフィンのみからなる、上記(1)〜(5)いずれかの電解質膜の製造方法。
As a result of studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention is as follows.
(1) A hydrophobic porous substrate is impregnated with a mixed solution containing a liquid proton-dissociable vinyl monomer and a crosslinking agent having at least two carbon-carbon double bonds in one molecule and not substantially soluble in water. A method for producing an electrolyte membrane to be polymerized, wherein the water content of the mixed solution is 0.5% or less.
(2) The method for producing an electrolyte membrane according to (1), wherein the cross-linking agent is liquid.
(3) The method for producing an electrolyte membrane according to (1) or (2) above, wherein the liquid proton dissociable vinyl monomer is vinyl sulfonic acid.
(4) The method for producing an electrolyte membrane according to any one of (1) to (3), wherein the crosslinking agent further has an N—C═O bond.
(5) The method for producing an electrolyte membrane according to any one of (1) to (4), wherein the crosslinking agent is triallyl isocyanurate.
(6) The method for producing an electrolyte membrane according to any one of the above (1) to (5), wherein the hydrophobic porous substrate is substantially composed only of a polyolefin having a weight average molecular weight of 500,000 or less.

本発明の電解質膜の製造方法により、プロトン解離性液状モノマーと架橋剤のコポリマーが該多孔質基材内に密に充填され、際立った低燃料透過性と高プロトン伝導性を備えた電解質膜を、外観不良を発生させることなく製造することが可能となる。本発明の製造方法により得られた電解質膜は、燃料電池、特に固体高分子型燃料電池や、直接メタノール型燃料電池をはじめとする直接燃料型燃料電池に好適に使用可能である。   By the electrolyte membrane production method of the present invention, a proton dissociable liquid monomer and a cross-linking agent copolymer are closely packed in the porous substrate, and an electrolyte membrane having outstanding low fuel permeability and high proton conductivity is obtained. Thus, it is possible to manufacture without causing appearance defects. The electrolyte membrane obtained by the production method of the present invention can be suitably used for fuel cells, particularly solid polymer fuel cells and direct fuel fuel cells including direct methanol fuel cells.

以下本発明を具体的に説明する。本発明において、電解質膜は、液状プロトン解離性ビニルモノマーと、一分子中に少なくとも二つの炭素―炭素二重結合を有する実質的に水に溶解しない架橋剤とを含有する、含水率が0.5%以下の混合液を作成し、これを疎水性多孔質基材に含浸、重合することにより製造される。
本発明において、液状プロトン解離性ビニルモノマーは、分子内に少なくとも一つの炭素−炭素二重結合(C=C結合)と、例えばスルホン酸基、ホスホン酸基、硫酸基、リン酸基、カルボン酸基から選択される、少なくとも一つプロトン解離性官能基を有する液状のビニルモノマーである。
The present invention will be specifically described below. In the present invention, the electrolyte membrane contains a liquid proton dissociable vinyl monomer and a cross-linking agent that has at least two carbon-carbon double bonds in one molecule and is substantially insoluble in water, and has a water content of 0. It is produced by preparing a mixed solution of 5% or less, impregnating and polymerizing this into a hydrophobic porous substrate.
In the present invention, the liquid proton dissociable vinyl monomer includes at least one carbon-carbon double bond (C═C bond) in the molecule, such as a sulfonic acid group, a phosphonic acid group, a sulfuric acid group, a phosphoric acid group, and a carboxylic acid. It is a liquid vinyl monomer having at least one proton dissociable functional group selected from the group.

本発明において、液状とは、30℃で液状であることをいう。該液状プロトン解離性ビニルモノマーの粘度は、均一混合液として使用される際に、該電解質膜前駆体への良好な含浸性を保つため、40℃で100000cP以下、より好ましくは10000cP以下、更に好ましくは1000cP以下であることが好ましい。ここで、粘度は円錐平板型回転粘度計(E型回転粘度計、ローター回転数50rpm)により測定されるものである。
このような液状解離性ビニルモノマーの例として、ビニルスルホン酸、ビニルホスホン酸、アクリル酸、メタクリル酸、ビニル酢酸等が好ましく用いられる。中でも、プロトン解離性官能基あたりの分子量が小さく、かつプロトン解離性官能基のプロトンが解離しやすい、ビニルスルホン酸を使用すると、イオン交換容量が大きく、高いプロトン伝導性を有する電解質膜が得られるので、特に好ましい。
In the present invention, “liquid” means liquid at 30 ° C. The viscosity of the liquid proton dissociable vinyl monomer is 100000 cP or less, more preferably 10000 cP or less, more preferably 10,000 cP or less at 40 ° C. in order to maintain good impregnation to the electrolyte membrane precursor when used as a homogeneous mixed solution. Is preferably 1000 cP or less. Here, the viscosity is measured by a conical plate type rotational viscometer (E type rotational viscometer, rotor rotational speed 50 rpm).
As examples of such liquid dissociable vinyl monomers, vinyl sulfonic acid, vinyl phosphonic acid, acrylic acid, methacrylic acid, vinyl acetic acid and the like are preferably used. In particular, when vinyl sulfonic acid is used, which has a small molecular weight per proton-dissociable functional group and protons of the proton-dissociable functional group are easily dissociated, an electrolyte membrane having a large ion exchange capacity and high proton conductivity can be obtained. Therefore, it is particularly preferable.

本発明では、必要に応じて、これらの液状プロトン解離性ビニルモノマーを複数種類併用してもよい。また、必要に応じて、液状プロトン解離性ビニルモノマーに、例えば、アクリルアミド−2−メチルプロパンスルホン酸に例示される固体プロトン解離性ビニルモノマーを、液状プロトン解離性ビニルモノマーに溶解しうる範囲内で少量併用してもよい。
本発明において、架橋剤は、分子内に少なくとも二つの炭素―炭素二重結合(C=C結合)を有し、実質的に水に溶解しない架橋剤である。架橋剤は、30℃で液状であることが好ましく、粘度は、均一混合液として使用される際に、疎水性多孔質基材への良好な含浸性を保つため、40℃で100000cP以下、より好ましくは10000cP以下、更に好ましくは1000cP以下の液状であることが好ましい。ここで、粘度は前述の方法により測定される。該架橋剤は、該液状プロトン解離性ビニルモノマーと均一混合液を形成し、かつ実質的に水に溶解しないものであれば特に限定されるものではない。架橋剤は、疎水性多孔質基材に単独でぬれ性を有することが好ましい。例えば、該液状プロトン解離性ビニルモノマーとして、好ましい例であるビニルスルホン酸を使用する場合、好ましくは分子内に少なくとも二つのC=C二重結合と、N−C=O結合を有する液状架橋剤、より好ましくはトリアリルイソシアヌレートが使用可能である。
In the present invention, if necessary, a plurality of these liquid proton dissociable vinyl monomers may be used in combination. Further, if necessary, in the liquid proton dissociable vinyl monomer, for example, a solid proton dissociable vinyl monomer exemplified by acrylamide-2-methylpropanesulfonic acid may be dissolved in the liquid proton dissociable vinyl monomer. A small amount may be used together.
In the present invention, the crosslinking agent is a crosslinking agent having at least two carbon-carbon double bonds (C═C bond) in the molecule and substantially not soluble in water. The cross-linking agent is preferably liquid at 30 ° C., and the viscosity is 100000 cP or less at 40 ° C. in order to maintain good impregnation into the hydrophobic porous substrate when used as a homogeneous mixed solution. The liquid is preferably 10000 cP or less, more preferably 1000 cP or less. Here, the viscosity is measured by the method described above. The crosslinking agent is not particularly limited as long as it forms a uniform mixed solution with the liquid proton dissociable vinyl monomer and does not substantially dissolve in water. The cross-linking agent preferably has wettability alone on the hydrophobic porous substrate. For example, when vinyl sulfonic acid which is a preferred example is used as the liquid proton dissociable vinyl monomer, a liquid crosslinking agent preferably having at least two C═C double bonds and N—C═O bonds in the molecule. More preferably, triallyl isocyanurate can be used.

混合液中の液状プロトン解離性ビニルモノマーと液状架橋剤の量比は、該電解質膜の膜燃料透過性やプロトン伝導性に影響する、該電解質膜のイオン交換容量及び含水率や、該電解質膜を製造する際に液状プロトン解離性ビニルモノマーと液状架橋剤が均一混合液を形成しうる混合比で決まるもので、特に限定されるものではない。例えば、該液状プロトン解離性ビニルモノマーとして、好ましい例であるビニルスルホン酸を使用する場合、該液状架橋剤として、好ましい例であるトリアリルイソシアヌレートを使用する場合、該ビニルモノマーと該架橋剤の混合重量比は、混合液の均一性、疎水性多孔質基材への含浸性の点から、好ましくは40/60〜70/30である。   The quantity ratio of the liquid proton dissociable vinyl monomer and the liquid crosslinking agent in the mixed solution affects the membrane fuel permeability and proton conductivity of the electrolyte membrane, the ion exchange capacity and water content of the electrolyte membrane, and the electrolyte membrane. The liquid proton dissociable vinyl monomer and the liquid cross-linking agent are determined by a mixing ratio capable of forming a uniform mixed solution, and are not particularly limited. For example, when vinyl sulfonic acid which is a preferred example is used as the liquid proton dissociable vinyl monomer, when triallyl isocyanurate which is a preferred example is used as the liquid crosslinking agent, the vinyl monomer and the crosslinking agent The mixing weight ratio is preferably 40/60 to 70/30 from the viewpoint of the uniformity of the mixed solution and the impregnation property to the hydrophobic porous substrate.

本発明では、液状プロトン解離性ビニルモノマーと架橋剤の混合液の含水率が0.5%以下である。含水率が0.5%以下であることにより、(i)単独では親水性が強く疎水性多孔質基材に含浸されない該液状プロトン解離性ビニルモノマーを、電解質膜形成後脱落すると考えられる、溶媒や界面活性剤を併用することなく疎水性多孔質基材に含浸させることができ、液状プロトン解離性ビニルモノマーと架橋剤の緻密な電解質重合体を形成し、結果得られる電解質膜の水素透過性やメタノール透過性を抑制できる効果だけでなく、(ii)該液状プロトン解離性ビニルモノマーと該架橋剤が重合後、含水膨張により疎水性多孔質基材、特に実質的に重量平均分子量が50万以下のポリオレフィンのみからなる疎水性多孔質基材が変形破壊し、得られる電解質膜に外観不良が発生するのを防止する効果があると考えられる。含水率は好ましくは0.4%以下である。   In the present invention, the water content of the liquid mixture of the liquid proton dissociable vinyl monomer and the crosslinking agent is 0.5% or less. A solvent that has a water content of 0.5% or less, and (i) the liquid proton-dissociable vinyl monomer, which is highly hydrophilic by itself and not impregnated in the hydrophobic porous substrate, is considered to drop off after the formation of the electrolyte membrane. Can be impregnated into a hydrophobic porous substrate without using a surfactant or a surfactant, forming a dense electrolyte polymer of a liquid proton dissociable vinyl monomer and a crosslinking agent, and the resulting electrolyte membrane's hydrogen permeability And (ii) after the polymerization of the liquid proton-dissociable vinyl monomer and the cross-linking agent, the hydrous expansion causes a hydrophobic porous substrate, particularly a weight average molecular weight of substantially 500,000. It is considered that the hydrophobic porous substrate made of only the following polyolefin is deformed and broken, and has an effect of preventing the appearance failure of the resulting electrolyte membrane. The water content is preferably 0.4% or less.

混合液の均一性は、液状プロトン解離性ビニルモノマーと架橋剤の組み合わせを工夫することにより、一層向上できる。例えば、先述の通り、該液状プロトン解離性ビニルモノマーとして、好ましい例であるビニルスルホン酸を使用する場合、架橋剤として、好ましい例であるN−C=O結合を有する液状のトリアリルイソシアヌレートを使用することが好ましい。また必要に応じて、混合液の含水率が0.5%以下の範囲で、該液状プロトン解離性ビニルモノマーに溶解可能な、少なくとも一つの炭素−炭素二重結合(C=C結合)を有する非解離性モノマーや、固体状プロトン解離性ビニルモノマーを、非解離性モノマーが解離性液状モノマーの重量を超えない範囲で混合液に少量溶解させ、共重合して併用してもよい。   The uniformity of the mixed liquid can be further improved by devising a combination of a liquid proton dissociable vinyl monomer and a crosslinking agent. For example, as described above, when vinyl sulfonic acid which is a preferable example is used as the liquid proton dissociable vinyl monomer, a liquid triallyl isocyanurate having an N—C═O bond which is a preferable example is used as a crosslinking agent. It is preferable to use it. Further, if necessary, it has at least one carbon-carbon double bond (C═C bond) that is soluble in the liquid proton-dissociable vinyl monomer within a range where the water content of the mixed liquid is 0.5% or less. A small amount of a non-dissociable monomer or a solid proton-dissociable vinyl monomer may be dissolved in a mixed solution in a range in which the non-dissociable monomer does not exceed the weight of the dissociable liquid monomer, and copolymerized and used together.

混合液は、液状プロトン解離性ビニルモノマーと架橋剤を主成分とすることが好ましく、50wt%以上含有すること、更には80wt%以上、更に好ましくは90wt%以上含有することが好ましい。
混合液は、得られる電解質膜のメタノール透過性を低く保つため、実質的に水以外のアルコール類をはじめとする有機溶剤等の溶媒を含有しないことが好ましい。
本発明において、疎水性多孔質基材は、例えば、ポリオレフィン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド等の、水や液体燃料に実質的に膨潤、溶解することのない、疎水性のポリマーからなり、三次元網目構造を有する通気性の多孔質基材である。好ましくは、ポリエチレン、ポリプロピレンに代表されるポリオレフィン系ポリマー及びコポリマーや、ポリフッ化ビニリデンポリマー及びコポリマーを主成分とするものである。得られる電解質膜のハンドリング性と、プロトン伝導性を燃料電池用電解質膜として好ましい範囲に保つため、疎水性多孔質基材の厚みは、好ましくは5〜100μm、より好ましくは10〜60μmであり、気孔率は好ましくは、25〜70%が好ましく、より好ましくは30〜55%であり、厚み25μm換算透気度は好ましくは200〜900秒/100cc、より好ましくは300〜800秒/100ccである。含浸重合させる液状プロトン解離性ビニルモノマーと架橋剤のコポリマーの含水膨張を抑えるために、多孔質膜を構成するポリマーの重量平均分子量が25万以上であり、二軸方向に3×3〜10×10倍、更には5×5〜10×10倍延伸処理がなされた強度の高いものであることが好ましい。更に、重量平均分子量が25万以上50万以下のポリオレフィンのみからなることが、疎水性多孔質基材の生産性や、得られる電解質膜のプロトン伝導性やメタノール透過性の安定性などの観点から好ましい。
The mixed solution preferably contains a liquid proton-dissociable vinyl monomer and a crosslinking agent as main components, preferably 50 wt% or more, more preferably 80 wt% or more, and still more preferably 90 wt% or more.
In order to keep the methanol permeability of the obtained electrolyte membrane low, the mixed solution preferably does not substantially contain a solvent such as an organic solvent including alcohols other than water.
In the present invention, the hydrophobic porous substrate is made of a hydrophobic polymer that does not substantially swell or dissolve in water or liquid fuel, such as polyolefin, polyvinylidene fluoride, polytetrafluoroethylene, and polyimide. It is a breathable porous substrate having a three-dimensional network structure. Preferably, the main component is a polyolefin polymer or copolymer represented by polyethylene or polypropylene, or a polyvinylidene fluoride polymer or copolymer. The thickness of the hydrophobic porous substrate is preferably 5 to 100 μm, more preferably 10 to 60 μm, in order to keep the handling property and proton conductivity of the obtained electrolyte membrane in a preferable range as an electrolyte membrane for a fuel cell. The porosity is preferably 25 to 70%, more preferably 30 to 55%, and the 25 μm-thickness air permeability is preferably 200 to 900 seconds / 100 cc, more preferably 300 to 800 seconds / 100 cc. . In order to suppress the hydrous expansion of the copolymer of the liquid proton dissociable vinyl monomer and the crosslinking agent to be impregnated, the polymer constituting the porous membrane has a weight average molecular weight of 250,000 or more, and 3 × 3 to 10 × in the biaxial direction. It is preferable that it is a thing with high intensity | strength in which the extending | stretching process was made 10 times, and also 5 * 5-10 * 10 times. Furthermore, it consists only of polyolefin having a weight average molecular weight of 250,000 or more and 500,000 or less from the viewpoint of productivity of the hydrophobic porous substrate, stability of proton conductivity and methanol permeability of the obtained electrolyte membrane, and the like. preferable.

本発明において、混合液は、例えば、(I)高エネルギー線を照射された電解質膜前駆体に直接、あるいは、(II)さらにラジカル重合開始剤が溶解した均一混合液として、該疎水性多孔質基材に含浸、重合されることにより、該液状プロトン解離性ビニルモノマーと、該液状架橋剤の重合体となり、該疎水性多孔質基材に充填される。
(I)法で使用可能な高エネルギー線として、例えば、プラズマ、紫外線、電子線、γ線等、公知の高エネルギー線が使用可能である。これらの高エネルギー線は、該電解質膜前駆体を励起させ、反応開始点を生成させ、これと該モノマー液が反応するため、重合開始剤を使用しなくても、該モノマー液の重合体が形成される。
In the present invention, the hydrophobic liquid is, for example, (I) the hydrophobic porous material directly in the electrolyte membrane precursor irradiated with high energy rays, or (II) as a homogeneous mixed liquid in which a radical polymerization initiator is further dissolved. By impregnating and polymerizing the base material, a polymer of the liquid proton dissociable vinyl monomer and the liquid cross-linking agent is formed, and the hydrophobic porous base material is filled.
As the high energy rays that can be used in the method (I), known high energy rays such as plasma, ultraviolet rays, electron beams, and γ rays can be used. These high energy rays excite the electrolyte membrane precursor to generate a reaction initiation point, which reacts with the monomer liquid, so that the polymer of the monomer liquid can be obtained without using a polymerization initiator. It is formed.

(II)法で使用可能なラジカル重合開始剤として、公知のラジカル重合法の技術を使用することができる。具体例としては、熱開始重合、紫外線等の光開始重合等が挙げられる。熱開始重合のラジカル重合開始剤の具体例とし、一般的に熱開始重合に利用されている、過酸エステル、ベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド等の有機過酸化物等が挙げられる。
ラジカル系光重合開始剤の具体例としては、一般に紫外線重合に利用されている、ベンゾインエーテル系開始剤、アセトフェノン系開始剤、ベンゾフェノン系開始剤、チオキサントン系開始剤、ベンジル、キノン、チオアクリドンおよびこれらの誘導体等が挙げられる。これらラジカル重合開始剤は、単独で用いてもよく、また、二種類以上を併用してもよい。重合開始剤は、重合開始剤を含めた均一混合液の含水率を0.5%以下に抑えるために、均一混合液へ直接溶解できることが好ましい。また、重合開始剤の使用量は、均一混合液中の、液状プロトン解離性ビニルモノマーと架橋剤の合計100重量部に対して、0.001〜5wt%、更には0.01〜3wt%の必要最小限量であることが好ましい。
As a radical polymerization initiator usable in the method (II), a known radical polymerization technique can be used. Specific examples include heat-initiated polymerization and photoinitiated polymerization such as ultraviolet rays. Specific examples of radical polymerization initiators for thermal initiation polymerization include organic peroxides such as peroxide esters, benzoyl peroxide, and di-t-butyl peroxide, which are generally used for thermal initiation polymerization. .
Specific examples of radical photopolymerization initiators include benzoin ether initiators, acetophenone initiators, benzophenone initiators, thioxanthone initiators, benzyl, quinone, thioacridone, and those generally used for ultraviolet polymerization. Derivatives and the like. These radical polymerization initiators may be used alone or in combination of two or more. It is preferable that the polymerization initiator can be directly dissolved in the homogeneous mixed solution in order to suppress the water content of the homogeneous mixed solution including the polymerization initiator to 0.5% or less. The amount of the polymerization initiator used is 0.001 to 5 wt%, further 0.01 to 3 wt% with respect to a total of 100 parts by weight of the liquid proton dissociable vinyl monomer and the crosslinking agent in the uniform mixed solution. The minimum amount is preferable.

下記実施例、比較例にて本発明を説明する。尚本実施例は発明の範囲を限定するものではない。
(1)含水率の測定
容量滴定方式カールフィッシャー水分計(京都電子工業株式会社製)を用いて、カールフィッシャー法により、疎水性多孔質基材に充填する直前の均一混合液の含水率を測定した。
(2)プロトン伝導性の測定
40℃、水中における膜面方向のプロトン伝導度(S/cm)を、4端子法により、電気化学測定システム「1280Z」(商標、ソーラトロン社製)を用いて、測定した交流インピーダンスから求め、この値を膜厚み(cm)で割り、プロトン伝導性(S/cm)とした。
(3)メタノール透過性の測定
フロー式ガス・蒸気・液体透過率測定装置「GTR−20XFAC」(商標、GTRテック株式会社製)を用いて、膜を40℃に制御されたチャンバー内のセルにセットし、1.54cmの膜の上面に30wt%メタノール水溶液を循環させ、膜の下面に乾燥ヘリウムを流し、メタノールを浸透気化させた。膜下面に流したヘリウムを、ガスサンプラーを設けた六方バルブにより一定間隔でサンプリングし、ガスクロマトグラフでヘリウム中のメタノール量を定量した。メタノール量の経時変化を追跡し、一定になった時点のメタノール量から、メタノール透過性を求めた。
(4)気孔率の測定
10cm角のサンプルをとり、その体積と質量から次式を用いて計算した。
気孔率(%)=(体積(cm)−質量(g)/ポリマーの密度)/体積(cm)×100
(5)透気度の測定
JIS−P−8117に準拠し、25℃で測定した。
The following examples and comparative examples illustrate the present invention. Note that this example does not limit the scope of the invention.
(1) Measurement of moisture content Using a volumetric titration Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd.), measure the moisture content of the homogeneous mixture just before filling the hydrophobic porous substrate by the Karl Fischer method. did.
(2) Measurement of proton conductivity The proton conductivity (S / cm) in the direction of the membrane surface in water at 40 ° C. was measured by the 4-terminal method using an electrochemical measurement system “1280Z” (trademark, manufactured by Solartron). It calculated | required from the measured alternating current impedance, and divided | segmented this value by membrane thickness (cm), and it was set as proton conductivity (S / cm < 2 >).
(3) Measurement of methanol permeability Using a flow type gas / vapor / liquid permeability measuring device “GTR-20XFAC” (trademark, manufactured by GTR Tech Co., Ltd.), the membrane is placed in a cell in a chamber controlled at 40 ° C. A 30 wt% aqueous methanol solution was circulated on the upper surface of the 1.54 cm 2 membrane, and dry helium was allowed to flow through the lower surface of the membrane to vaporize methanol. The helium flowed on the lower surface of the membrane was sampled at regular intervals by a hexagonal valve equipped with a gas sampler, and the amount of methanol in the helium was quantified with a gas chromatograph. The change in the amount of methanol over time was followed, and the methanol permeability was determined from the amount of methanol when the amount became constant.
(4) Measurement of porosity A 10 cm square sample was taken and calculated from its volume and mass using the following formula.
Porosity (%) = (volume (cm 3 ) −mass (g) / polymer density) / volume (cm 3 ) × 100
(5) Measurement of air permeability It measured at 25 degreeC based on JIS-P-8117.

[実施例1]
液状プロトン解離性モノマーであるビニルスルホン酸(粘度:7cP)50重量部、液状架橋剤であるトリアリルイソシアヌレート(粘度:100cP)50重量部、光重合開始剤0.1重量部からなる、実質的に溶媒を含まない均一混合液を作成した。該均一混合液の含水率は0.1%であった。該均一混合液に窒素バブリングを行った後、疎水性の多孔質基材である、ポリエチレン多孔質膜(厚み38μm、気孔率43%、透気度610秒/100cc、重量平均分子量28万)を浸漬し、該均一混合液を該微多孔膜に含浸させた。これを該均一混合液から引き上げ、ポリエチレン袋に密封し、余分な該均一混合液を除き、石英ガラス板ではさんだ後、高圧水銀ランプを15分間照射し、該微多孔膜中に含浸されたビニルスルホン酸とトリアリルイソシアヌレートを重合させ、さらにこれを50℃のオーブンに24時間保管し、重合を完了させた。最後に、得られた膜を取り出し、水洗を行い、膜表面に付着した余分な電解質を取り除くことにより、電解質膜を作成した。本電解質膜のプロトン伝導性は11S/cm、メタノール透過性は4kg/m日で、多孔質基材の変形による外観不良は認められなかった。
[Example 1]
It consists of 50 parts by weight of vinyl sulfonic acid (viscosity: 7 cP) as a liquid proton dissociable monomer, 50 parts by weight of triallyl isocyanurate (viscosity: 100 cP) as a liquid crosslinking agent, and 0.1 part by weight of a photopolymerization initiator. Thus, a uniform mixed solution containing no solvent was prepared. The water content of the homogeneous mixed solution was 0.1%. After nitrogen bubbling was performed on the uniform mixed solution, a porous polyethylene membrane (thickness 38 μm, porosity 43%, air permeability 610 sec / 100 cc, weight average molecular weight 280,000), which is a hydrophobic porous substrate, was obtained. It was immersed and the microporous membrane was impregnated with the uniform mixed solution. This is pulled up from the homogeneous mixture, sealed in a polyethylene bag, removed from the excess homogeneous mixture, sandwiched by a quartz glass plate, irradiated with a high pressure mercury lamp for 15 minutes, and impregnated into the microporous film. The sulfonic acid and triallyl isocyanurate were polymerized and further stored in an oven at 50 ° C. for 24 hours to complete the polymerization. Finally, the obtained membrane was taken out, washed with water, and an excess electrolyte adhered to the membrane surface was removed to prepare an electrolyte membrane. The electrolyte membrane had a proton conductivity of 11 S / cm 2 and a methanol permeability of 4 kg / m 2 days, and no poor appearance due to deformation of the porous substrate was observed.

[実施例2]
均一混合液の含水率を0.4%とする以外は、実施例1と同様の方法で電解質膜を作成した。本電解質膜のプロトン伝導性は11S/cm、メタノール透過性は5kg/m日で、多孔質基材の変形による外観不良は認められなかった。
[Example 2]
An electrolyte membrane was prepared in the same manner as in Example 1 except that the water content of the uniform mixed solution was 0.4%. The electrolyte membrane had a proton conductivity of 11 S / cm 2 and a methanol permeability of 5 kg / m 2 days. No poor appearance due to deformation of the porous substrate was observed.

[比較例1]
均一混合液の含水率を0.6%とする以外は、実施例1と同様の方法で電解質膜を作成した。本電解質膜のプロトン伝導性は11S/cm、メタノール透過性は5kg/m日であったが、多孔質基材の変形による泡状の外観不良が認められた。
[Comparative Example 1]
An electrolyte membrane was prepared in the same manner as in Example 1 except that the water content of the uniform mixed solution was 0.6%. The proton conductivity of the electrolyte membrane was 11 S / cm 2 and the methanol permeability was 5 kg / m 2 days. However, a bubble-like appearance defect due to deformation of the porous substrate was observed.

本発明の架橋電解質膜は燃料電池、特に固体高分子型燃料電池や、直接メタノール型燃料電池をはじめとする直接燃料型燃料電池に好適に使用可能である。   The crosslinked electrolyte membrane of the present invention can be suitably used for fuel cells, particularly solid polymer fuel cells and direct fuel fuel cells including direct methanol fuel cells.

Claims (6)

液状プロトン解離性ビニルモノマーと、一分子中に少なくとも二つの炭素−炭素二重結合を有する実質的に水に溶解しない架橋剤とを含有する混合液を疎水性多孔質基材に含浸、重合する電解質膜の製造方法であって、該混合液の含水率が0.5%以下であることを特徴とする電解質膜の製造方法。 A hydrophobic porous substrate is impregnated and polymerized with a mixed solution containing a liquid proton-dissociable vinyl monomer and a crosslinking agent having at least two carbon-carbon double bonds in one molecule and substantially not soluble in water. A method for producing an electrolyte membrane, wherein the water content of the mixed solution is 0.5% or less. 架橋剤が液状である、請求項1記載の電解質膜の製造方法。 The method for producing an electrolyte membrane according to claim 1, wherein the crosslinking agent is liquid. 液状プロトン解離性ビニルモノマーがビニルスルホン酸である、請求項1又は2に記載の電解質膜の製造方法。 The method for producing an electrolyte membrane according to claim 1 or 2, wherein the liquid proton dissociable vinyl monomer is vinyl sulfonic acid. 架橋剤が、更にN−C=O結合を有する、請求項1〜3のいずれか1項に記載の電解質膜の製造方法。 The method for producing an electrolyte membrane according to claim 1, wherein the crosslinking agent further has an N—C═O bond. 架橋剤がトリアリルイソシアヌレートである、請求項1〜4のいずれか1項に記載の電解質膜の製造方法。 The manufacturing method of the electrolyte membrane of any one of Claims 1-4 whose crosslinking agent is triallyl isocyanurate. 疎水性多孔質基材が、実質的に、重量平均分子量が50万以下のポリオレフィンのみからなる、請求項1〜5のいずれか1項に記載の電解質膜の製造方法。 The method for producing an electrolyte membrane according to any one of claims 1 to 5, wherein the hydrophobic porous substrate substantially comprises only a polyolefin having a weight average molecular weight of 500,000 or less.
JP2006251516A 2006-09-15 2006-09-15 Manufacturing method of electrolyte membrane Expired - Fee Related JP5036263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251516A JP5036263B2 (en) 2006-09-15 2006-09-15 Manufacturing method of electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251516A JP5036263B2 (en) 2006-09-15 2006-09-15 Manufacturing method of electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2008071706A true JP2008071706A (en) 2008-03-27
JP5036263B2 JP5036263B2 (en) 2012-09-26

Family

ID=39293107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251516A Expired - Fee Related JP5036263B2 (en) 2006-09-15 2006-09-15 Manufacturing method of electrolyte membrane

Country Status (1)

Country Link
JP (1) JP5036263B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032302A (en) * 2004-07-22 2006-02-02 Toagosei Co Ltd Electrolyte film and fuel cell using the electrolyte film
JP2006164628A (en) * 2004-12-03 2006-06-22 Toagosei Co Ltd Electrolyte film and fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032302A (en) * 2004-07-22 2006-02-02 Toagosei Co Ltd Electrolyte film and fuel cell using the electrolyte film
JP2006164628A (en) * 2004-12-03 2006-06-22 Toagosei Co Ltd Electrolyte film and fuel cell

Also Published As

Publication number Publication date
JP5036263B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US7344791B1 (en) Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
US8026016B2 (en) Polymer electrolyte membrane and fuel cell employing the same
JP2002083612A (en) Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method
JP5319067B2 (en) Polymer electrolyte crosslinked by E-beam
WO2006046620A1 (en) Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP4463351B2 (en) Membrane for solid polymer electrolyte fuel cell
JP2009193825A (en) Composite electrolyte membrane and its manufacturing method
JP2005251539A (en) Proton conductor
JPH11310649A (en) Cation exchange membrane and its use
CN100431678C (en) Surface hydrophilicity modification process for separating fluoric polymer film
JP4986219B2 (en) Electrolyte membrane
JP4247571B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP4979236B2 (en) Cross-linked electrolyte membrane and method for producing the same
JP5036263B2 (en) Manufacturing method of electrolyte membrane
CN115411454B (en) Lithium battery diaphragm and preparation method thereof
Abdrashitov et al. Synthesis and transport properties of proton-conducting membranes based on polyvinylidene fluoride films with introduced and sulfonated polystyrene
JP2009170350A (en) Cation exchange membrane and its manufacturing method
JP4561214B2 (en) Electrolyte membrane
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2007280688A (en) Diaphragm for direct liquid type fuel cell
JP2002170580A (en) Diaphragm for solid polymer type fuel battery
JP4969083B2 (en) Electrolyte membrane and fuel cell
JP2014522434A (en) High water content membrane
JP2010282863A (en) Solid polymer electrolyte membrane, and method of manufacturing the same
JP4860237B2 (en) Composite electrolyte membrane and fuel cell using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees