JP2002170580A - Diaphragm for solid polymer type fuel battery - Google Patents

Diaphragm for solid polymer type fuel battery

Info

Publication number
JP2002170580A
JP2002170580A JP2000364136A JP2000364136A JP2002170580A JP 2002170580 A JP2002170580 A JP 2002170580A JP 2000364136 A JP2000364136 A JP 2000364136A JP 2000364136 A JP2000364136 A JP 2000364136A JP 2002170580 A JP2002170580 A JP 2002170580A
Authority
JP
Japan
Prior art keywords
membrane
cation exchange
exchange resin
fuel cell
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000364136A
Other languages
Japanese (ja)
Other versions
JP5059256B2 (en
Inventor
Takeo Kawahara
武男 河原
Kanji Sakata
勘治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2000364136A priority Critical patent/JP5059256B2/en
Publication of JP2002170580A publication Critical patent/JP2002170580A/en
Application granted granted Critical
Publication of JP5059256B2 publication Critical patent/JP5059256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer type fuel battery diaphragm of sufficient physical strength, low electric resistance, and low gas permeability. SOLUTION: The diaphragm for a solid polymer type fuel battery is provided which comprises a hydrocarbon positive ion exchange resin film whose parent material is a fluorine resin porous film which is processed to be hydrophilic, with the electric resistance in a sulfuric acid aqueous solution, 1 mol/L, preferred to be 0.20 Ω.cm2 or lower while the permeability of hydrogen gas being 3.0×10-8 cm3 (STP) cm.cm-2.s-1.cmHg-1 or below at 50 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池用隔膜、詳しくはフッ素系樹脂製多孔質膜を母材と
するイオン交換樹脂膜からなる固体高分子型燃料電池用
隔膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane for a polymer electrolyte fuel cell, and more particularly to a membrane for a polymer electrolyte fuel cell comprising an ion-exchange resin membrane whose base material is a fluororesin porous membrane.

【0002】[0002]

【従来の技術】燃料電池は、燃料と酸化剤とを連続的に
供給し、これらが反応した時の化学エネルギーを電力と
して取り出す発電システムである。燃料電池は、これに
用いる電解質の種類によって、動作温度が比較的低いリ
ン酸型、固体高分子型、高温で動作する溶融炭酸塩型、
固体電解質型と大別される。
2. Description of the Related Art A fuel cell is a power generation system that continuously supplies a fuel and an oxidizing agent and takes out chemical energy generated when they react as electric power. Depending on the type of electrolyte used for the fuel cell, the fuel cell has a relatively low operating temperature, a phosphoric acid type, a solid polymer type, a molten carbonate type operating at a high temperature,
It is roughly classified as a solid electrolyte type.

【0003】これらの中で、固体高分子型燃料電池は、
電解質として作用する固体高分子の隔膜の両面に触媒が
坦持されたガス拡散電極を接合し、一方のガス拡散電極
が存在する側の室(燃料室)に燃料である水素を、他方
のガス拡散電極が存在する側の室に酸化剤である酸素や
空気等の酸素含有ガスをそれぞれ供給し、両ガス拡散電
極間に外部負荷回路を接続することにより、燃料電池と
して作用させる。
[0003] Among them, the polymer electrolyte fuel cell is
A gas diffusion electrode carrying a catalyst is bonded to both sides of a solid polymer membrane acting as an electrolyte, and hydrogen, which is a fuel, is placed in a chamber (fuel chamber) where one gas diffusion electrode is present, and the other gas is diffused. An oxygen-containing gas such as oxygen or air, which is an oxidizing agent, is supplied to the chamber on the side where the diffusion electrode is present, and an external load circuit is connected between the two gas diffusion electrodes to function as a fuel cell.

【0004】こうした固体高分子型燃料電池の基本構造
を図1に示す。図中、(1)は電池隔壁、(2)は燃料
ガス流通孔、(3)は酸化剤ガス流通孔、(4)は燃料
室側ガス拡散電極、(5)は酸化剤室側ガス拡散電極、
(6)は固体高分子電解質膜を示す。この固体高分子型
燃料電池において、燃料室(7)では、供給された水素ガ
スからプロトン(水素イオン)と電子が生成し、このプ
ロトンは固体高分子電解質(6)内を伝導し、他方の酸
化剤室(8)に移動し、空気又は酸素ガス中の酸素と反
応して水を生成する。この時、燃料室側ガス拡散電極
(4)で生成した電子は、外部負荷回路を通じて酸化剤
室側ガス拡散電極(5)へと移動することにより電気エ
ネルギーが得られる。
FIG. 1 shows the basic structure of such a polymer electrolyte fuel cell. In the figure, (1) is a cell partition, (2) is a fuel gas flow hole, (3) is an oxidant gas flow hole, (4) is a fuel chamber side gas diffusion electrode, and (5) is an oxidant chamber side gas diffusion. electrode,
(6) shows a solid polymer electrolyte membrane. In this polymer electrolyte fuel cell, in the fuel chamber (7), protons (hydrogen ions) and electrons are generated from the supplied hydrogen gas, and the protons conduct in the polymer electrolyte (6), and the other protons. It moves to the oxidant chamber (8) and reacts with oxygen in the air or oxygen gas to produce water. At this time, the electrons generated in the fuel chamber side gas diffusion electrode (4) move to the oxidant chamber side gas diffusion electrode (5) through an external load circuit to obtain electric energy.

【0005】このような構造の固体高分子型燃料電池に
おいて、上記隔膜には、通常、陽イオン交換樹脂膜が使
用される。そして、この陽イオン交換樹脂膜には、電気
抵抗が小さいこと、保水性が高いこと、ガス透過性が低
いこと、長期の使用に対して安定であること、物理的な
強度が強いことなどが要求される。
In the polymer electrolyte fuel cell having such a structure, a cation exchange resin membrane is usually used for the membrane. The cation exchange resin membrane has low electrical resistance, high water retention, low gas permeability, stability for long-term use, and high physical strength. Required.

【0006】従来、固体高分子型燃料電池用隔膜として
使用される陽イオン交換樹脂膜として、パーフルオロカ
ーボンスルホン酸膜が主に使用されている。しかし、こ
の膜は、化学的安定性に優れているが、保水力が不十分
であるため陽イオン交換樹脂膜の乾燥が生じてプロトン
の伝導性が低下し易く、さらに物理的な強度も不十分で
あるために薄膜化による電気抵抗の低減が困難であっ
た。更にパーフルオロカーボンスルホン酸膜は高価であ
った。
Conventionally, a perfluorocarbon sulfonic acid membrane has been mainly used as a cation exchange resin membrane used as a membrane for a polymer electrolyte fuel cell. However, although this membrane is excellent in chemical stability, the water retention capacity is insufficient, so that the cation exchange resin membrane is dried, and the proton conductivity is likely to decrease, and the physical strength is also poor. Since it is sufficient, it is difficult to reduce the electric resistance by thinning. Further, the perfluorocarbon sulfonic acid membrane was expensive.

【0007】[0007]

【発明が解決しようとする課題】一方、特開平1−22
932号公報には、固体高分子型燃料電池用隔膜とし
て、超高分子量のポリオレフィン製多孔膜の空隙中に陽
イオン交換樹脂を充填してなる陽イオン交換樹脂膜が開
示され、その製造方法として、上記多孔質膜からなる母
材の空隙内に陽イオン交換樹脂を溶剤に溶解させて含浸
させ、その後、溶剤を除去させる方法や、陽イオン交換
基を導入可能な官能基を有する単量体を上記多孔質膜に
含浸させてから重合し、その後陽イオン交換基を導入す
る方法などが開示されている。
On the other hand, Japanese Patent Application Laid-Open No. 1-22
No. 932 discloses a cation exchange resin membrane in which the cation exchange resin is filled in voids of an ultra-high molecular weight polyolefin porous membrane as a polymer electrolyte fuel cell membrane. A method of dissolving and impregnating a cation exchange resin in a solvent in the pores of the base material composed of the porous membrane, and then removing the solvent or a monomer having a functional group capable of introducing a cation exchange group Is impregnated into the porous membrane, polymerized, and then a cation exchange group is introduced.

【0008】しかしながら、この陽イオン交換樹脂膜
は、物理的強度やはかなり良好であるものの、耐熱性が
今一歩十分ではなく、ガス拡散電極を陽イオン交換膜に
加熱圧着して設ける場合等において、膜が収縮して接着
不良が生じ易い問題があった。
[0008] However, although the cation exchange resin membrane has very good physical strength and good heat resistance, it is not enough at this time. In addition, there has been a problem that the film shrinks and adhesion failure easily occurs.

【0009】一方、物理的強度や耐熱性に優れた樹脂材
料としては、ポリテロラフルオロエチレンに代表される
フッ素樹脂が知られており、これを母材の素材樹脂に使
用した陽イオン交換樹脂膜が、例えば特開平6−290
32、特開平9−194609号公報等により知られて
いる。そして、これらの陽イオン交換樹脂膜は、いずれ
も、前記した陽イオン交換樹脂膜の製造方法の内、多孔
質膜からなる母材の空隙内に陽イオン交換樹脂を溶剤に
溶解させて含浸させ、その後溶剤を除去させる方法によ
り製造されている。
On the other hand, as a resin material having excellent physical strength and heat resistance, a fluororesin represented by polytetrafluoroethylene is known, and a cation exchange resin membrane using this as a base material resin is known. However, for example, Japanese Patent Application Laid-Open No. 6-290
32 and JP-A-9-194609. Then, any of these cation exchange resin membranes is prepared by dissolving the cation exchange resin in a solvent and impregnating the pores of the base material formed of the porous membrane in the method for producing a cation exchange resin membrane described above. And then removing the solvent.

【0010】ところが、こうした製造方法では、母材に
含浸させる陽イオン交換樹脂液が高粘度になるため、母
材の空隙部細部まで液が侵入し難く、さらに、含浸後に
溶剤が除去されるため体積変化も生じてしまい、母材の
空隙部細部まで密に陽イオン交換樹脂が充填され難いも
のであった。その結果、これらの陽イオン交換樹脂膜
は、ガスの透過性が大きく、前記燃料電池用隔膜として
使用した際には、燃料室の水素ガスが酸化室側に拡散す
ることを十分に抑えることが出来ず、大きな電池出力が
得られない問題があった。
However, in such a production method, the cation exchange resin liquid impregnated in the base material has a high viscosity, so that it is difficult for the liquid to penetrate into the voids of the base material, and the solvent is removed after the impregnation. The volume change also occurred, and it was difficult for the cation exchange resin to be densely filled into the voids of the base material. As a result, these cation exchange resin membranes have high gas permeability, and when used as the fuel cell diaphragm, can sufficiently suppress diffusion of hydrogen gas in the fuel chamber to the oxidation chamber side. There was a problem that it was not possible to obtain a large battery output.

【0011】また、こうしたフッ素系樹脂製多孔質膜を
使用して、これに、陽イオン交換基を導入可能な官能基
を有する単量体を下記する特定の手法により含浸させ重
合する方法により、電気抵抗が小さく、ガスの透過性が
極めて小さい陽イオン交換樹脂膜を得ることが提唱され
ている(特開平11−310649号公報)。しかし、
この方法では、上記単量体は通常、炭化水素系単量体が
使用され、フッ素樹脂との馴染みが良くないため、該単
量体をフッ素系樹脂製多孔質膜に、減圧脱気しながら含
浸させる必要性があり、操作が煩雑であった。また、こ
のようにして得られる陽イオン交換樹脂膜は、前記母材
と陽イオン交換樹脂相の馴染みが良くないことから、ガ
ス拡散電極と接合する際の乾燥や熱プレス工程、さらに
は電池の使用時において両者の密着性が低下していき、
前記優れたガス透過性は燃料電池の製造時にはかなり悪
化しているものであった。従って、燃料電池の使用開始
時から十分満足できるだけの電池出力は得られず、これ
は長期使用時における該電池出力の保持性の面でも、さ
らに改良の余地があった。
Further, by using such a fluororesin porous membrane and impregnating it with a monomer having a functional group capable of introducing a cation exchange group by a specific method described below, polymerization is carried out. It has been proposed to obtain a cation exchange resin membrane having low electric resistance and extremely low gas permeability (Japanese Patent Application Laid-Open No. H11-310649). But,
In this method, the above-mentioned monomer is usually a hydrocarbon-based monomer and is not well-adapted to a fluororesin. Therefore, the monomer is formed into a fluororesin porous membrane while degassing under reduced pressure. It was necessary to impregnate, and the operation was complicated. In addition, the cation exchange resin membrane obtained in this manner has a poor affinity between the base material and the cation exchange resin phase. At the time of use, the adhesion between both will decrease,
The excellent gas permeability was considerably deteriorated during the production of the fuel cell. Therefore, a sufficient battery output cannot be obtained from the start of use of the fuel cell, and there is room for further improvement in the retention of the battery output during long-term use.

【0012】以上から、十分な物理的強度を有し、電気
抵抗が小さく、且つガス透過性が低い、固体高分子型燃
料電池隔膜を開発することが大きな課題であった。
From the above, it has been a major problem to develop a polymer electrolyte fuel cell membrane having sufficient physical strength, low electric resistance, and low gas permeability.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を続けてきた。その結果、フッ
素系樹脂製多孔質膜を母材とし、電気抵抗が小さく、ガ
ス透過性が長期的にも増大しない固体高分子型燃料電池
用隔膜を開発することに成功し、本発明を完成するに至
った。
Means for Solving the Problems The present inventors have intensively studied to solve the above problems. As a result, we succeeded in developing a membrane for a polymer electrolyte fuel cell using a fluororesin porous membrane as a base material, and having a small electric resistance and a gas permeability that does not increase over the long term, and completed the present invention. I came to.

【0014】即ち、本発明は、親水化処理されたフッ素
系樹脂製多孔質膜を母材とする炭化水素系陽イオン交換
樹脂膜からなる固体高分子型燃料電池用隔膜である。
That is, the present invention is a membrane for a polymer electrolyte fuel cell comprising a hydrocarbon-based cation-exchange resin membrane whose base material is a hydrophilic fluoropolymer-based porous membrane.

【0015】また、本発明は、上記固体高分子型燃料電
池用隔膜が装着されてなる固体高分子型燃料電池も提供
する。
The present invention also provides a polymer electrolyte fuel cell provided with the above-mentioned membrane for a polymer electrolyte fuel cell.

【0016】[0016]

【発明の実施の形態】本発明において使用する陽イオン
交換樹脂膜は、親水化処理されたフッ素系樹脂製多孔質
膜を母材(基材)とする。即ち、炭化水素系陽イオン交
換樹脂は、上記フッ素系樹脂製多孔質膜の空隙部に充填
され、また、該母材表面に付着することにより、陽イオ
ン交換樹脂相を形成し陽イオン交換樹脂膜となってい
る。かかる陽イオン交換樹脂膜は、水和力の高い炭化水
素系イオン交換樹脂がフッ素系樹脂製多孔膜に分散して
付着した形態であり、フッ素系樹脂製多孔膜が親水化処
理されているために、その空隙部へのイオン交換樹脂の
充填性が極めて高く、その結果、水素ガスの透過係数が
極めて小さい。また、炭化水素系陽イオン交換樹脂と該
フッ素系樹脂製多孔膜との馴染みが良いため、両者の密
着性が強固であり、上記優れたガス透過性は、膜をガス
拡散電極と熱圧着したり、燃料電池に装着して長期使用
した後においても良好に保持される。
BEST MODE FOR CARRYING OUT THE INVENTION The cation exchange resin membrane used in the present invention is made of a hydrophilic fluoropolymer porous membrane as a base material (substrate). That is, the hydrocarbon-based cation exchange resin is filled in the voids of the fluororesin porous membrane and adheres to the surface of the base material to form a cation-exchange resin phase to form the cation-exchange resin. It is a membrane. Such a cation exchange resin membrane is a form in which a hydrocarbon ion exchange resin having high hydration power is dispersed and adhered to a fluororesin porous membrane, and the fluororesin porous membrane is subjected to a hydrophilic treatment. In addition, the filling properties of the ion exchange resin into the voids are extremely high, and as a result, the hydrogen gas permeability coefficient is extremely small. In addition, since the compatibility between the hydrocarbon-based cation exchange resin and the fluorine-based resin porous membrane is good, the adhesion between the two is strong, and the excellent gas permeability is obtained by thermocompression bonding the membrane with a gas diffusion electrode. Or after being used for a long time after being mounted on a fuel cell.

【0017】上記多孔質膜の原料樹脂であるフッ素系樹
脂としては、分子内に炭素−フッ素結合を多数有する公
知の熱可塑性樹脂が制限なく使用される。通常は、ポリ
オレフィンの水素原子の全てまたは大部分、好適にはそ
の水素原子の50モル%以上がフッ素原子によって置換
された構造のものが使用される。特に、その全てがフッ
素原子によって置換された構造のものを用いるのが最も
好ましい。本発明では、かかるフッ素樹脂を陽イオン交
換樹脂膜の母材として用いることにより、機械的強度、
化学的安定性、耐熱性に極めて優れた陽イオン交換樹脂
膜を得ることが可能になる。
As the fluororesin which is the raw material resin of the porous film, a known thermoplastic resin having a large number of carbon-fluorine bonds in a molecule can be used without any limitation. Usually, a polyolefin having a structure in which all or most of the hydrogen atoms, preferably at least 50 mol% of the hydrogen atoms, are replaced by fluorine atoms is used. In particular, it is most preferable to use those having a structure in which all of them are substituted by fluorine atoms. In the present invention, by using such a fluororesin as a base material of a cation exchange resin membrane, mechanical strength,
It becomes possible to obtain a cation exchange resin membrane having extremely excellent chemical stability and heat resistance.

【0018】好適に使用できるフッ素系樹脂を例示すれ
ば、ポリテトラフルオロエチレン(PTFE)、ポリク
ロロトリフルオロエチレン(CTFE)、ポリフッ化ビ
ニリデン(PVdF)、テトラフルオロエチレン−ヘキ
サフルオロプロピレン共重合体(FEP)、テトラフロ
オロエチレン−ペルフロオロアルキルビニルエーテル共
重合体(PFA)、テトラフルオロエチレン−エチレン
共重合体(ETFE)、クロロトリフルオロエチレン−
エチレン共重合体(ECTFE)等が挙げられる。この
うち、本発明では、ポリテトラフルオロエチレン(PT
FE)、テトラフルオロエチレン−ヘキサフルオロプロ
ピレン共重合体(FEP)が好ましく、特にポリテトラ
フルオロエチレン(PTFE)が好ましい。また、これ
らのフッ素系樹脂の重量平均分子量は、機械的強度の良
好さから10万以上が好ましい。
Examples of suitable fluororesins include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (CTFE), polyvinylidene fluoride (PVdF), and tetrafluoroethylene-hexafluoropropylene copolymer ( FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), chlorotrifluoroethylene-
Ethylene copolymer (ECTFE) and the like can be mentioned. Among them, in the present invention, polytetrafluoroethylene (PT
FE) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) are preferable, and polytetrafluoroethylene (PTFE) is particularly preferable. The weight average molecular weight of these fluororesins is preferably 100,000 or more from the viewpoint of good mechanical strength.

【0019】また、これらのフッ素系樹脂製多孔質膜
は、更に、ポリテトラフルオロエチレン繊維等などフッ
素系樹脂繊維の布状物によるバッキングが施されていて
も良い。
These fluororesin porous membranes may be further backed with a cloth of fluororesin fibers such as polytetrafluoroethylene fibers.

【0020】上記フッ素系脂製多孔質膜に形成される孔
の平均孔径は0.1〜5.0μm、好適には0.1〜
1.0μmであり、空隙率が30〜95%、より好まし
くは40〜90%のものが好ましい。平均孔径が0.1
μm以下の場合には電気抵抗が増大し、平均孔径が1.
0μm以上の場合には、機械的強度が低くなるおそれが
ある。また、空隙率が30%以下の場合には電気抵抗が
増大し、空隙率が95%以上の場合には機械的強度が低
くなるおそれがある。
The average pore size of the pores formed in the above-mentioned fluorine-based fat porous membrane is 0.1 to 5.0 μm, preferably 0.1 to 5.0 μm.
It is preferably 1.0 μm and has a porosity of 30 to 95%, more preferably 40 to 90%. Average pore size 0.1
When it is less than μm, the electric resistance increases, and the average pore diameter is 1.
If it is 0 μm or more, the mechanical strength may be low. When the porosity is 30% or less, the electric resistance increases, and when the porosity is 95% or more, the mechanical strength may decrease.

【0021】さらに、フッ素系樹脂製多孔膜は、電気抵
抗を低く抑えるという観点及び支持膜として必要な機械
的強度を付与するという観点から、通常5〜100μm
の厚みを有するものが好ましく、より好ましくは10〜
70μmを有するものがこのましい。
Further, the fluororesin porous membrane is usually 5 to 100 μm from the viewpoint of suppressing the electric resistance and imparting the mechanical strength required as a support film.
Is preferable, and more preferably 10 to
Those having a size of 70 μm are preferred.

【0022】これらのフッ素系樹脂製多孔質膜は、フッ
素系樹脂フィルムを公知の方法で多孔化したものが使用
される。例えば、特公昭42−13560、特公昭58
−25332等に記載された延伸法を用いて多孔化した
ものが好適に使用される。
As these porous films made of fluorine resin, those obtained by making a fluorine resin film porous by a known method are used. For example, Japanese Patent Publication Nos. 42-13560 and 58
What has been made porous by the stretching method described in US Pat.

【0023】本発明に使用されるフッ素系樹脂製多孔膜
を親水化処理する方法は、公知の方法が特に制限なく採
用される。例えば、フッ素系樹脂製多孔膜をコロナ放電
やプラズマ放電処置する/ガンマー線や電子線を照射す
る/アルカリ金属等の還元剤で処理する方法、フッ素系
樹脂製多孔膜にアルコール等の親水性有機溶媒を含浸さ
せた後、水で置換する方法、フッ素系界面活性剤の有機
溶液を含浸させた後、電子線照射や放射線架橋剤で架橋
・固定化する方法、親水性モノマーをグラフト重合或い
は含浸させて重合させる方法、親水性ポリマーの水溶液
を含浸させた後、電子線照射や架橋剤で架橋・固定化さ
せる方法等が一般的であるが、このうち親水性ポリマー
の水溶液を含浸させた後、電子線照射や架橋剤で架橋・
固定化させる方法が好ましく採用される。
As a method for hydrophilizing the fluororesin porous membrane used in the present invention, a known method is employed without any particular limitation. For example, corona discharge or plasma discharge treatment of a fluororesin porous membrane / irradiation with gamma rays or electron beams / treatment with a reducing agent such as an alkali metal, etc. After impregnating with a solvent, replacing with water, impregnating with an organic solution of a fluorinated surfactant, then crosslinking and fixing with an electron beam irradiation or radiation crosslinking agent, graft polymerization or impregnation of a hydrophilic monomer In general, a method of polymerizing and impregnating with an aqueous solution of a hydrophilic polymer, followed by electron beam irradiation or a method of crosslinking / fixing with a crosslinking agent, etc. Cross-linking by electron beam irradiation or cross-linking agent
The method of immobilization is preferably adopted.

【0024】親水化の程度としては、純水とフッ素系樹
脂製多孔膜との接触角が120°以下、より好ましく
は、60〜100°となる程度が好適である。また、水
に対する濡れ指数が30dyn/cm以上、より好まし
くは、40〜60dyn/cmであるのが好適である。
The degree of hydrophilization is preferably such that the contact angle between the pure water and the fluororesin porous membrane is 120 ° or less, more preferably 60 to 100 °. Further, it is preferable that the wetting index to water is 30 dyn / cm or more, more preferably 40 to 60 dyn / cm.

【0025】本発明において、上記親水化処理されたフ
ッ素系樹脂多孔質膜の空孔部や膜表面に存在させる陽イ
オン交換樹脂は、炭化水素系陽イオン交換樹脂である。
ここで、炭化水素系陽イオン交換樹脂は、陽イオン交換
基以外の全ての部分が炭化水素基で構成されているのが
好ましいが、それ以外に、炭素と水素とによって主鎖、
側鎖の大部分が形成されていれば使用できる。例えば、
上記主鎖及び側鎖を構成する炭素−炭素結合の合間にエ
ーテル結合、エステル結合、アミド結合、シロキサン結
合等により酸素、窒素、珪素、硫黄、ホウ素、リン等の
他の原子が少量介在しても良い。その量は、上記主鎖及
び側鎖を構成する原子数に対して40モル%以下、好適
には10モル%以下であるのが好ましい。
In the present invention, the cation exchange resin that is present in the pores and the surface of the hydrophilic fluororesin porous membrane is a hydrocarbon cation exchange resin.
Here, in the hydrocarbon-based cation exchange resin, it is preferable that all parts other than the cation exchange group are composed of a hydrocarbon group.
It can be used if most of the side chains are formed. For example,
A small amount of other atoms such as oxygen, nitrogen, silicon, sulfur, boron, and phosphorus are interposed between the carbon-carbon bonds constituting the main chain and the side chains by an ether bond, an ester bond, an amide bond, a siloxane bond, or the like. Is also good. The amount is preferably at most 40 mol%, more preferably at most 10 mol%, based on the number of atoms constituting the main chain and side chains.

【0026】また、上記主鎖及び側鎖に結合する陽イオ
ン交換基以外の基は、その全てが水素ある必要はなく少
量であれば塩素、臭素、フッ素、ヨウ素等の他の原子、
又は他の原子を含む置換基により置換されていても良
い。その置換量は、上記水素の30モル%以下、好適に
は10モル%以下、さらに好適には5モル%以下が置換
される量であるのが好ましい。
The groups other than the cation exchange groups bonded to the main chain and the side chains need not be all hydrogen, and if they are in small amounts, other atoms such as chlorine, bromine, fluorine, iodine, etc.
Alternatively, it may be substituted by a substituent containing another atom. The substitution amount is preferably such that 30 mol% or less, preferably 10 mol% or less, more preferably 5 mol% or less of the hydrogen is substituted.

【0027】陽イオン交換樹脂の陽イオン交換基として
は、水溶液中での負の電荷となりうる官能基なら特に限
定されるものではないが、具体的には、スルホン酸基、
カルボン酸基、ホスホン酸基等が挙げられ、このうちス
ルホン酸基が特に好ましい。
The cation exchange group of the cation exchange resin is not particularly limited as long as it is a functional group that can be negatively charged in an aqueous solution.
Examples thereof include a carboxylic acid group and a phosphonic acid group, among which a sulfonic acid group is particularly preferred.

【0028】本発明で使用する陽イオン交換樹脂膜は、
前記程度の薄い多孔質膜を母材として用いることが出来
るため、陽イオン交換容量等を調整することにより、1
mol/L−硫酸水溶液中の電気抵抗が0.20Ω・c
2以下、好適には0.10Ω・cm2以下の小さい値と
することが可能であり、こうした場合、固体高分子型燃
料電池用隔膜として有利である。
The cation exchange resin membrane used in the present invention comprises:
Since a porous membrane as thin as that described above can be used as a base material, by adjusting the cation exchange capacity and the like, 1
The electric resistance in a mol / L-sulfuric acid aqueous solution is 0.20Ω · c
m 2 , preferably 0.10 Ω · cm 2 or less. In such a case, it is advantageous as a membrane for a polymer electrolyte fuel cell.

【0029】本発明膜で使用する陽イオン交換樹脂膜
は、上記の如く電気抵抗が小さい膜とすることができる
と共に、母材の多孔質膜の空隙部への陽イオン交換樹脂
の充填性が高いため、そのガスの透過性を極めて小さく
することができる。即ち、50℃における水素ガスの透
過係数が3.0×10-8cm3(STP)・cm・cm-
2・s-1・cmHg-1以下、好適には0.5〜2.0×
10-8cm3(STP)・cm・cm-2・s-1・cmH
-1とすることが可能である。このように水素ガスの透
過係数が小さいため、該イオン交換樹脂膜からなる固体
高分子型燃料電池用隔膜は、供給した水素ガスが隔膜を
透過して酸素ガス中に拡散することを防止でき、高い出
力の電池が得られる。
The cation exchange resin membrane used in the membrane of the present invention can be a membrane having a small electric resistance as described above, and the filling property of the cation exchange resin into the voids of the porous membrane of the base material can be improved. Since it is high, the gas permeability can be extremely reduced. That is, the permeability coefficient of hydrogen gas at 50 ° C. is 3.0 × 10 −8 cm 3 (STP) · cm · cm
2 · s −1 · cmHg −1 or less, preferably 0.5 to 2.0 ×
10 -8 cm 3 (STP) · cm · cm -2 · s -1 · cmH
g −1 . Since the permeability coefficient of hydrogen gas is small in this way, the polymer electrolyte fuel cell membrane made of the ion exchange resin membrane can prevent the supplied hydrogen gas from diffusing into the oxygen gas through the membrane, A high output battery is obtained.

【0030】尚、上記水素ガスの透過係数を有する本発
明で使用する陽イオン交換樹脂膜は、50℃における酸
素ガスの透過係数としては、一般に2.0×10-8cm
3(STP)・cm・cm-2・s-1・cmHg-1以下、
更には0.3〜1.5×10 -8cm3(STP)・cm
・cm-2・s-1・cmHg-1の値を有している。従っ
て、上記の如く固体高分子型燃料電池の隔膜として用い
た場合には、酸素ガスの隔膜の透過も良好に防止でき
る。
The present invention having the above hydrogen gas permeability coefficient
The cation exchange resin membrane used in Ming
The gas transmission coefficient is generally 2.0 × 10-8cm
Three(STP) · cm · cm-2・ S-1・ CmHg-1Less than,
Furthermore, 0.3 to 1.5 × 10 -8cmThree(STP) cm
・ Cm-2・ S-1・ CmHg-1Has the value of Follow
And used as a membrane of a polymer electrolyte fuel cell as described above.
In this case, the penetration of oxygen gas through the diaphragm can be prevented well.
You.

【0031】さらに、本発明で使用する陽イオン交換樹
脂膜は、電気抵抗を上記範囲に保つ観点から、陽イオン
交換容量が0.2〜5.0mmol/g、好適には、
0.5〜3.0mmol/gであるのが好ましい。
Further, the cation exchange resin membrane used in the present invention has a cation exchange capacity of 0.2 to 5.0 mmol / g, preferably from the viewpoint of keeping the electric resistance in the above range.
It is preferably from 0.5 to 3.0 mmol / g.

【0032】また、乾燥によるプロトンの伝導性の低下
が生じ難いように、含水率は、30%以上、好適には4
0%以上であるのが好ましい。一般には含水率は30〜
90%程度で保持される。このような範囲の含水率を得
るためには、多孔質膜の空隙部に存在する陽イオン交換
樹脂の種類、陽イオン交換容量及び架橋度により制御す
ることが出来る。
The water content should be 30% or more, preferably 4%, so that the proton conductivity is not easily reduced by drying.
It is preferably at least 0%. Generally, the water content is 30 ~
It is kept at about 90%. In order to obtain a water content in such a range, the moisture content can be controlled by the type of cation exchange resin, cation exchange capacity, and degree of crosslinking existing in the voids of the porous membrane.

【0033】本発明において、以上の性状を有する陽イ
オン交換樹脂膜は、如何なる方法により製造しても良い
が、一般には、以下の方法により製造される。即ち、陽
イオン交換基が導入可能な官能基を有する炭化水素系単
量体または陽イオン交換基を有する炭化水素系単量体、
炭化水素系架橋性単量体および重合開始剤からなる単量
体組成物を親水化処理されたフッ素系樹脂製多孔質膜に
含浸させた後、該単量体組成物を重合し、必要に応じて
陽イオン交換基を導入する方法が挙げられる。
In the present invention, the cation exchange resin membrane having the above properties may be produced by any method, but is generally produced by the following method. That is, a hydrocarbon monomer having a functional group capable of introducing a cation exchange group or a hydrocarbon monomer having a cation exchange group,
After impregnating a monomer composition comprising a hydrocarbon-based crosslinkable monomer and a polymerization initiator into a hydrophilic fluoropolymer porous membrane, the monomer composition is polymerized, and A method of introducing a cation exchange group accordingly.

【0034】この製造方法において、陽イオン交換基が
導入可能な官能基を有する炭化水素系単量体または陽イ
オン交換基を有する炭化水素系単量体としては、従来公
知である陽イオン交換樹脂の製造において用いられてい
るものが特に限定されずに使用される。具体的には、陽
イオン交換基が導入可能な官能基を有する炭化水素系単
量体としては、スチレン、α−メチルスチレン、3−メ
チルスチレン、4−メチルスチレン、2,4−ジメチル
スチレン、p−tert−ブチルスチレン、α−ハロゲ
ン化スチレン、ビニルナフタレン等の芳香族ビニル化合
物が挙げられ、これらを1種又は2種以上使用すること
ができる。
In this production method, as a hydrocarbon monomer having a functional group into which a cation exchange group can be introduced or a hydrocarbon monomer having a cation exchange group, a conventionally known cation exchange resin is used. What is used in the production of is used without particular limitation. Specifically, examples of the hydrocarbon monomer having a functional group into which a cation exchange group can be introduced include styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, Examples thereof include aromatic vinyl compounds such as p-tert-butylstyrene, α-halogenated styrene, and vinylnaphthalene, and one or more of these can be used.

【0035】また、陽イオン交換基を有する炭化水素系
単量体としては、スチレンスルホン酸、ビニルスルホン
酸、α−ハロゲン化ビニルスルホン酸等のスルホン酸系
単量体、メタクリル酸、アクリル酸、無水マレイン酸等
のカルボン酸系単量体、ビニルリン酸等のホスホン酸系
単量体、それらの塩およびエステル類等が用いられる。
Examples of the hydrocarbon monomer having a cation exchange group include sulfonic acid monomers such as styrene sulfonic acid, vinyl sulfonic acid and α-halogenated vinyl sulfonic acid, methacrylic acid, acrylic acid, and the like. Carboxylic acid monomers such as maleic anhydride, phosphonic acid monomers such as vinyl phosphoric acid, salts and esters thereof, and the like are used.

【0036】また、炭化水素系架橋性単量体としては、
特に制限されるものではないが、例えば、ジビニルベン
ゼン類、ジビニルスルホン、ブタジエン、クロロプレ
ン、ジビニルビフェニル、トリビニルベンゼン等の多官
能性ビニル化合物、トリメチロールメタントリメタクリ
ル酸エステル、メチレンビスアクリルアミド、ヘキサメ
チレンジメタクリルアミド等の多官能性メタクリル酸誘
導体が用いられる。
The hydrocarbon-based crosslinkable monomers include:
Although not particularly limited, for example, divinylbenzenes, divinylsulfone, butadiene, chloroprene, divinylbiphenyl, polyfunctional vinyl compounds such as trivinylbenzene, trimethylolmethanetrimethacrylate, methylenebisacrylamide, hexamethylene A polyfunctional methacrylic acid derivative such as dimethacrylamide is used.

【0037】本発明では、上記各炭化水素系の単量体の
他に、必要に応じてこれらの単量体と共重合可能な他の
炭化水素系単量体や可塑剤類を添加しても良い。こうし
た他の炭化水素系単量体としては、例えば、スチレン、
アクリロニトリル、メチルスチレン、アクロレイン、メ
チルビニルケトン、ビニルビフェニル等が用いられる。
また、可塑剤類としては、ジブチルフタレート、ジオク
チルフタレート、ジメチルイソフタレート、ジブチルア
ジペート、トリエチルシトレート、アセチルトリブチル
シトレート、ジブチルセバケート等が用いられる。
In the present invention, in addition to the above-mentioned hydrocarbon monomers, if necessary, other hydrocarbon monomers and plasticizers copolymerizable with these monomers are added. Is also good. Such other hydrocarbon monomers include, for example, styrene,
Acrylonitrile, methyl styrene, acrolein, methyl vinyl ketone, vinyl biphenyl and the like are used.
As the plasticizer, dibutyl phthalate, dioctyl phthalate, dimethyl isophthalate, dibutyl adipate, triethyl citrate, acetyl tributyl citrate, dibutyl sebacate and the like are used.

【0038】上記重合に用いる重合開始剤としては、従
来公知のものが特に制限なく使用される。こうした重合
開始剤の具体例としては、オクタノイルパーオキシド、
ラウロイルパーオキシド、t−ブチルパーオキシ−2−
エチルヘキサノエート、ベンゾイルパーオキシド、t−
ブチルパーオキシイソブチレート、t−ブチルパーオキ
シラウレート、t−ヘキシルパーオキシベンゾエート、
ジ−t−ブチルパーオキシド等の有機過酸化物が用いら
れる。
As the polymerization initiator used in the above polymerization, conventionally known ones are used without any particular limitation. Specific examples of such a polymerization initiator include octanoyl peroxide,
Lauroyl peroxide, t-butylperoxy-2-
Ethylhexanoate, benzoyl peroxide, t-
Butyl peroxyisobutyrate, t-butyl peroxy laurate, t-hexyl peroxy benzoate,
An organic peroxide such as di-t-butyl peroxide is used.

【0039】本発明において、単量体組成物を構成する
各成分の配合割合は、本発明の目的を達成するために
は、一般には、陽イオン交換基が導入可能な官能基を有
する炭化水素系単量体または陽イオン交換基を有する炭
化水素系単量体100重量部に対して、炭化水素系架橋
性単量体を0.1〜50重量部、好適には1〜40重量
部、これらの単量体と共重合可能な他の炭化水素系単量
体を0〜100重量部、可塑剤類を添加する場合は上記
単量体に対して0〜50重量部使用するのが好適であ
る。また、重合開始剤は、陽イオン交換基が導入可能な
官能基を有する炭化水素系単量体または陽イオン交換基
を有する炭化水素系単量体100重量部に対して、0.
1〜20重量部、好適には0.5〜10重量部配合させ
るのが好ましい。
In the present invention, in order to achieve the object of the present invention, the mixing ratio of each component constituting the monomer composition is generally a hydrocarbon having a functional group into which a cation exchange group can be introduced. 0.1 to 50 parts by weight, preferably 1 to 40 parts by weight of the hydrocarbon-based crosslinkable monomer with respect to 100 parts by weight of the hydrocarbon-based monomer having a cation-exchange group or a system-based monomer. It is preferable to use 0 to 100 parts by weight of other hydrocarbon monomers copolymerizable with these monomers, and 0 to 50 parts by weight based on the above monomers when adding a plasticizer. It is. The polymerization initiator is used in an amount of 0.1 to 100 parts by weight of a hydrocarbon monomer having a functional group into which a cation exchange group can be introduced or 100 parts by weight of a hydrocarbon monomer having a cation exchange group.
It is preferable to mix 1 to 20 parts by weight, preferably 0.5 to 10 parts by weight.

【0040】母材である親水化処理されたフッ素系樹脂
製多孔質膜への上記単量体組成物の含浸方法は、特に限
定されるものではなく公知の方法を適宜に実施すればよ
い。大気圧下で含浸させただけでも、上記フッ素系樹脂
製多孔質膜は親水化処理されているため両者の馴染みが
よく、その空隙部細部まで単量体組成物は相当に高い充
填性で浸入する。従って、かかる含浸後、単量体組成物
を重合して得られる陽イオン交換樹脂膜は、前記本願発
明が特定するようなガス透過性が極めて低い性状の膜に
なる。
The method for impregnating the hydrophilic composition as the base material with the hydrophilic resin-containing porous membrane made of a fluororesin is not particularly limited, and a known method may be appropriately employed. Even if only impregnated under atmospheric pressure, the fluororesin porous membrane has been subjected to hydrophilic treatment, so that both are well-adapted, and the monomer composition penetrates into the voids with considerably high filling properties. I do. Therefore, after such impregnation, the cation exchange resin membrane obtained by polymerizing the monomer composition becomes a membrane having very low gas permeability as specified by the present invention.

【0041】本発明において、単量体組成物をより高い
充填性で充填させるためには、減圧脱気しながら含浸さ
せるのが好ましい。具体的には単量体組成物を、親水化
処理されたフッ素系樹脂製多孔質膜に減圧下で接触さ
せ、圧力を大気圧に戻すことで行うのが好ましい。例え
ば、フッ素系樹脂製多孔質膜を容器に入れ、真空ポンプ
で減圧状態にした後、単量体組成物を大気圧に戻るまで
容器に導入して浸漬させる方法、または、容器に入れた
単量体組成物にフッ素系樹脂製多孔質膜を浸漬し、真空
ポンプで孔中の気体を減圧脱気した後大気圧に戻す方法
等が挙げられる。減圧するときの圧力は、7.0kPa
〜作業温度下で単量体が沸騰するまでの圧力が好まし
く、特に2.0kPa〜0.1kPaの範囲から採択す
るのが好ましい。このような減圧脱気しながら含浸させ
る方法によれば、得られる陽イオン交換樹脂膜は、前記
水素ガスのガス透過係数が0.3〜1.5×10-8cm
3(STP)・cm・cm-2・s-1・cmHg-1の優れ
た値を有するものも得ることが可能である。
In the present invention, in order to fill the monomer composition with higher filling properties, it is preferable to impregnate while degassing under reduced pressure. Specifically, it is preferable that the monomer composition is brought into contact with a hydrophilized fluororesin porous membrane under reduced pressure, and the pressure is returned to atmospheric pressure. For example, a method in which a porous film made of a fluororesin is placed in a container, the pressure is reduced by a vacuum pump, and then the monomer composition is introduced into the container until it returns to the atmospheric pressure and is immersed, or A method in which a porous film made of a fluororesin is immersed in the monomer composition, the gas in the holes is degassed under reduced pressure by a vacuum pump, and then returned to the atmospheric pressure. The pressure when depressurizing is 7.0 kPa
The pressure until the monomer boils at the working temperature is preferable, and it is particularly preferable to adopt a pressure in the range of 2.0 kPa to 0.1 kPa. According to such a method of impregnating while degassing under reduced pressure, the obtained cation exchange resin membrane has a gas permeability coefficient of the hydrogen gas of 0.3 to 1.5 × 10 −8 cm.
3 (STP) · cm · cm −2 · s −1 · cmHg −1 can be obtained.

【0042】尚、単量体組成物の含浸時の温度は、25
℃以下が一般的であり、含浸時間は、通常、1秒〜60
秒の範囲で適宜選択すれば良い。
The temperature during the impregnation of the monomer composition is 25
° C or less, and the impregnation time is usually from 1 second to 60
What is necessary is just to select suitably in the range of seconds.

【0043】単量体組成物を上記フッ素系樹脂製多孔膜
に充填させた後重合する方法は、一般にポリエステル等
のフィルムに挟んで加圧下で常温から昇温する方法が好
ましい。こうした重合条件は、関与する重合開始剤の種
類、単量体組成物の組成等によって左右されるものであ
り、時に限定されるものではなく適宜選択すれば良い。
As a method of polymerizing the monomer composition after filling it in the above-mentioned fluororesin porous film, it is generally preferable to raise the temperature from room temperature under pressure while sandwiching a film of polyester or the like. Such polymerization conditions depend on the type of the involved polymerization initiator, the composition of the monomer composition, and the like, and are not limited at times but may be appropriately selected.

【0044】以上のように重合されて得られる膜状物
は、必要に応じてこれを、公知の例えばスルホン化、ク
ロルスルホン化、ホスホニウム化、加水分解等の処理に
より所望の陽イオン交換基を導入して、陽イオン交換樹
脂膜とすることができる。
The film-like material obtained by polymerization as described above may be optionally subjected to a known cation-exchange group by a known treatment such as sulfonation, chlorosulfonation, phosphoniumation or hydrolysis. It can be introduced into a cation exchange resin membrane.

【0045】本発明において、上記性状の陽イオン交換
樹脂膜は、固体高分子型燃料電池の隔膜として使用され
る。固体高分子型燃料電池は、公知の構造のものが何ら
制限も無く適用できる。通常は図1に示されるような構
造をしたものに適用されるのが一般的である。
In the present invention, the cation exchange resin membrane having the above properties is used as a membrane of a polymer electrolyte fuel cell. As the polymer electrolyte fuel cell, those having a known structure can be applied without any limitation. Usually, it is generally applied to one having a structure as shown in FIG.

【0046】[0046]

【発明の効果】本発明の固体高分子型燃料電池隔膜は、
電気抵抗が低く、且つ母材である親水化処理されたフッ
素系樹脂製多孔質膜の空隙部に陽イオン交換樹脂が細部
まで隙間なく充填されていることから、ガスの透過性が
極めて低い。また、フッ素系樹脂製多孔質膜が母材であ
ることから、寸法安定性、耐熱性、耐薬品性に優れる。
The polymer electrolyte fuel cell membrane of the present invention is
Since the electric resistance is low and the cation exchange resin is filled into the voids of the fluoropolymer porous membrane which has been subjected to the hydrophilic treatment as a base material without any gaps, the gas permeability is extremely low. Also, since the fluororesin porous membrane is the base material, it is excellent in dimensional stability, heat resistance and chemical resistance.

【0047】さらに、上記フッ素系樹脂製多孔質膜と陽
イオン交換樹脂との馴染みが良いことに起因して、両者
の密着性が極めて強固であり、このため前記の優れたガ
ス透過性は、膜をガス拡散電極と熱圧着したり、燃料電
池に装着して長期使用した後においても良好に保持され
る。
Further, due to the good compatibility between the fluorine-based resin porous membrane and the cation exchange resin, the adhesion between the two is extremely strong. The membrane is well held even after being thermocompression bonded to the gas diffusion electrode or attached to a fuel cell and used for a long time.

【0048】従って、かような性状を有する本発明の隔
膜を装着してなる固体高分子型燃料電池は、燃料および
酸化剤のクロスオーバーが抑制さえられ高い電池出力が
長期間安定的に得られる。
Therefore, in the polymer electrolyte fuel cell equipped with the membrane of the present invention having such properties, the crossover of the fuel and the oxidant is suppressed, and a high cell output can be stably obtained for a long period of time. .

【0049】[0049]

【実施例】本発明を更に具体的に説明するため、以下、
実施例及び比較例を掲げて説明するが、本発明はこれら
の実施例に限定されるものではない。 尚、実施例およ
び比較例に示す陽イオン交換樹脂膜の特性は、以下の方
法により測定した値を示す。 (1)単量体組成物の母材への含浸性 単量体組成物が入ったガラス容器にフッ素樹脂系多孔質
膜を浸漬した際において、フッ素樹脂系多孔質膜の表面
全域が単量体組成物で濡れるに要する時間を目視で観察
した。 (2)陽イオン交換容量;陽イオン交換樹脂膜を1mo
l/L−HClに10時間以上浸漬し、水素イオン型と
した後、1mol/L−NaClでナトリウムイオン型
に置換させ遊離した水素イオンを電位差滴定装置(CO
MTITE−900、平沼産業株式会社製)で定量した
(Amol)。
EXAMPLES In order to explain the present invention more specifically, the following will be described.
The present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples. The properties of the cation exchange resin membranes shown in Examples and Comparative Examples indicate values measured by the following methods. (1) Impregnating property of the monomer composition into the base material When the fluororesin-based porous membrane is immersed in a glass container containing the monomer composition, the entire surface of the fluororesin-based porous membrane has a single amount. The time required for wetting with the body composition was visually observed. (2) Cation exchange capacity: 1 mol of cation exchange resin membrane
After being immersed in 1 / L-HCl for at least 10 hours to form a hydrogen ion type, the hydrogen ions released by substitution with sodium ion type with 1 mol / L-NaCl are separated by a potentiometric titrator (CO
MTITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) (Amol).

【0050】次に、同じ陽イオン交換樹脂膜を60℃で
5時間減圧乾燥させその重量を測定した(Wg)。陽イ
オン交換容量は次式により求めた。 陽イオン交換容量=A×1000/W[mmol/g−
乾燥膜] (3)電気抵抗 白金電極を備えた2室セルの中央に陽イオン交換樹脂膜
を置き、セル内に25℃の3mol/L硫酸水溶液を満
たした。陽イオン交換樹脂膜の両側にはルギン管を設
け、塩橋により参照電極と液絡した。膜を挟んで100
mA/cm2の電流を流したときの電位(aV)と膜を
挟まずに100mA/cm2の電流を流したときの電位
(bV)を測定した。陽イオン交換樹脂膜の電気抵抗は
次式より求めた。 電気抵抗=1000×(a−b)/100[Ω・c
2] (4)含水率 陽イオン交換樹脂膜を1mol/L−HClに4時間以
上浸漬し、水素イオン型とし、イオン交換水で十分に水
洗した後、膜を取り出しキムワイプ等で表面の水分を拭
き取り湿潤時の重さ(Wg)を測定した。次に、膜を6
0℃で5時間減圧乾燥させ乾燥時の重さ(Dg)を測定
した。陽イオン交換樹脂膜の含水率は次式により求め
た。
Next, the same cation exchange resin membrane was dried under reduced pressure at 60 ° C. for 5 hours, and its weight was measured (Wg). The cation exchange capacity was determined by the following equation. Cation exchange capacity = A × 1000 / W [mmol / g−
Dry membrane] (3) Electric resistance A cation exchange resin membrane was placed in the center of a two-chamber cell provided with a platinum electrode, and the cell was filled with a 3 mol / L sulfuric acid aqueous solution at 25 ° C. Luggin tubes were provided on both sides of the cation exchange resin membrane, and liquid junction was performed with the reference electrode by a salt bridge. 100 across the membrane
mA / cm potential when a current of second current (aV) and the potential at a current of 100 mA / cm 2 with no intervening film (bV) was measured. The electrical resistance of the cation exchange resin membrane was determined by the following equation. Electric resistance = 1000 × (ab) / 100 [Ω · c
m 2 ] (4) Water content The cation exchange resin membrane was immersed in 1 mol / L-HCl for 4 hours or more to form a hydrogen ion type, washed sufficiently with ion-exchanged water, taken out of the membrane and taken out of the surface with Kimwipe or the like. Was wiped off and the wet weight (Wg) was measured. Next, membrane 6
It dried under reduced pressure at 0 degreeC for 5 hours, and measured the weight (Dg) at the time of drying. The water content of the cation exchange resin membrane was determined by the following equation.

【0051】含水率=1000×(W−D)/D[%] (5)水素ガス透過性 水素ガス透過係数の測定方法として、U字管式水銀マノ
メーター(JIS Z1707に準拠)によるガス透過
試験機を用いた。測定に用いた陽イオン交換樹脂膜は5
0℃において含水状態でガス透過試験機に装着した。ま
た、測定に用いたガスは、50℃において飽和温度に保
った酸素または水素を用いた。水素ガス透過係数は次式
により求めた。
Water content = 1000 × (WD) / D [%] (5) Hydrogen gas permeability As a method for measuring the hydrogen gas permeability coefficient, a gas permeability test using a U-tube mercury manometer (based on JIS Z1707). Machine was used. The cation exchange resin membrane used for the measurement was 5
It was mounted on a gas permeation tester at 0 ° C. in a water-containing state. The gas used for the measurement was oxygen or hydrogen maintained at a saturation temperature at 50 ° C. The hydrogen gas permeability coefficient was determined by the following equation.

【0052】なお、水素ガス透過係数は、陽イオン交換
樹脂膜の製造時だけでなく、陽イオン交換樹脂膜/ガス
拡散電極接合体の製造後においても、ガス拡散電極周縁
の陽イオン交換樹脂膜部分を用いて測定した。 P=(p/t)×(1/A)×{1/(Pa−Pb)} P:ガス透過係数 p:ガス透過量 t;測定時間 l:陽イオン交換樹脂膜厚み A:ガス透過面積 Pa:高圧側ガス圧力 Pb:低圧側ガス圧力 (6)燃料電池出力電圧 空隙率80%のカーボンペーパー上に、白金30重量%
の坦持のカーボンブラックと、スルホン化ポリスチレン
−ポリ(エチレン−ブチレン)−ポリスチレントリブロ
ック共重合体(陽イオン交換容量0.9)のアルコール
とジクロロエタンの5%溶液を混合したものを塗布し8
0℃で4時間減圧乾燥しガス拡散電極とした。
The hydrogen gas permeation coefficient is determined not only during the production of the cation exchange resin membrane but also after the production of the cation exchange resin membrane / gas diffusion electrode assembly. The measurement was performed using a portion. P = (p / t) × (1 / A) × {1 / (Pa−Pb)} P: Gas permeability coefficient p: Gas permeation amount t; Measurement time l: Cation exchange resin membrane thickness A: Gas permeation area Pa: high-pressure gas pressure Pb: low-pressure gas pressure (6) Fuel cell output voltage 30% by weight of platinum on carbon paper having a porosity of 80%
And a mixture of a carbon black supported by the above, an alcohol of a sulfonated polystyrene-poly (ethylene-butylene) -polystyrene triblock copolymer (cation exchange capacity: 0.9) and a 5% solution of dichloroethane, and applying the mixture.
It was dried under reduced pressure at 0 ° C. for 4 hours to obtain a gas diffusion electrode.

【0053】次に、測定する陽イオン交換樹脂膜の両面
に上記のガス拡散電極をセットし、150℃、圧力10
0kg/cm2の加圧下で100秒間熱プレスした後、
室温で2分間放置し、陽イオン交換樹脂膜/ガス拡散電
極接合体を得た。これを図1に示す燃料電池セルに組み
込み、圧力2気圧、燃料電池セル温度50℃、加湿温度
50℃、酸素流量と水素流量をそれぞれ200mL/m
in、400mL/minで発電試験を行ない、電流密
度0.3A/cm2におけるセルの端子電圧を測定し
た。 (7)耐熱性(収縮率) 50℃の乾燥機中で1時間予備乾燥させた測定用サンプ
ル膜を160℃の乾燥機中に30分放置した後、乾燥機
から取り出して寸法を測定し、以下の式により収縮率を
求めた。 S=100×(La−Lb)/La S:収縮率(%) La:50℃の乾燥機中で乾燥させた膜の長さ(cm) Lb:160℃の乾燥機中で30分放置した膜の長さ
(cm) (8)耐久性評価 上記出力電圧の測定後、50℃、電流密度0.3A/c
2の条件下で連続発電試験を行い、250時間後の出
力電圧を測定し、陽イオン交換樹脂膜の耐久性を評価し
た。
Next, the above gas diffusion electrodes were set on both sides of the cation exchange resin membrane to be measured,
After hot pressing under pressure of 0 kg / cm 2 for 100 seconds,
The mixture was left at room temperature for 2 minutes to obtain a cation exchange resin membrane / gas diffusion electrode assembly. This was assembled in the fuel cell shown in FIG. 1, and the pressure was 2 atm, the fuel cell temperature was 50 ° C., the humidification temperature was 50 ° C., and the oxygen flow rate and the hydrogen flow rate were each 200 mL / m.
A power generation test was performed at 400 mL / min in, and the terminal voltage of the cell at a current density of 0.3 A / cm 2 was measured. (7) Heat resistance (shrinkage rate) After leaving the sample film for measurement preliminarily dried in a dryer at 50 ° C. for 1 hour in a dryer at 160 ° C. for 30 minutes, it was taken out of the dryer and the dimensions were measured. The shrinkage was determined by the following equation. S = 100 × (La−Lb) / La S: shrinkage ratio (%) La: length of membrane dried in a dryer at 50 ° C. (cm) Lb: left in a dryer at 160 ° C. for 30 minutes Film length (cm) (8) Durability evaluation After measuring the output voltage, 50 ° C., current density 0.3 A / c
A continuous power generation test was performed under the conditions of m 2 , and the output voltage after 250 hours was measured to evaluate the durability of the cation exchange resin membrane.

【0054】実施例1〜6 表1に示した組成表に従って、各種単量体等を混合して
単量体組成物をそれぞれ得た。
Examples 1 to 6 In accordance with the composition table shown in Table 1, various monomers were mixed to obtain monomer compositions.

【0055】得られた単量体組成物400gを500m
Lのガラス容器に入れ、親水性ポリマーであるポリビニ
ルアルコールを含浸・塗布し、グルタルアルデヒドで架
橋・固定によって親水化処理されたポリテトラフルオロ
エチレン(PTFE)多孔質膜A、B、C(いずれも純
水接触角が80°、水に対する濡れ指数が52dyn/
cm:20cm×20cm)のそれぞれを大気圧下、2
5℃で10秒浸漬し、多孔質膜の空隙に単量体組成物を
充填した。また、その際に単量体組成物の母材への含浸
性を測定した。続いて、フッ素系樹脂製多孔質膜を単量
体組成物中から取り出し、100μmのポリエステルフ
ィルムを剥離剤としてフッ素系樹脂製多孔質膜の両側を
被覆した後、3kg/cm2の窒素加圧下、80℃5時
間加熱重合した。
[0055] 400 g of the obtained monomer composition was added to 500 m
L, and impregnated and coated with polyvinyl alcohol as a hydrophilic polymer, and cross-linked and fixed with glutaraldehyde to make polytetrafluoroethylene (PTFE) porous membranes A, B, and C (all of them) A pure water contact angle of 80 ° and a water wetting index of 52 dyn /
cm: 20 cm x 20 cm) under atmospheric pressure.
It was immersed at 5 ° C. for 10 seconds to fill the voids of the porous film with the monomer composition. At that time, the impregnation property of the base material of the monomer composition was measured. Then, take out the fluorine-based resin porous membrane from a monomer composition, after coating the both sides of the fluorine-based resin porous membrane of a polyester film of 100μm as a release agent, under a nitrogen pressure of 3 kg / cm 2 At 80 ° C. for 5 hours.

【0056】得られた膜状物を98%濃硫酸と純度90
%以上のクロロスルホン酸の1:1混合物中に40℃で
45分間浸漬し、スルホン酸型陽イオン交換樹脂膜を得
た。
The obtained film was subjected to 98% concentrated sulfuric acid and a purity of 90%.
% Of chlorosulfonic acid in a 1: 1 mixture at 40 ° C. for 45 minutes to obtain a sulfonic acid type cation exchange resin membrane.

【0057】これらのスルホン酸型陽イオン交換樹脂膜
の膜厚、陽イオン交換容量、電気抵抗、含水率、水素ガ
ス透過性、燃料電池出力電圧、耐熱性、耐久性を測定し
た。これらの結果を表2に示した。
The thickness, cation exchange capacity, electric resistance, water content, hydrogen gas permeability, fuel cell output voltage, heat resistance and durability of these sulfonic acid type cation exchange resin membranes were measured. Table 2 shows the results.

【0058】実施例7 実施例1と同じ単量体組成物400gを500mLのガ
ラス容器に入れ、実施例1と同じ親水化処理されたポリ
テロラフルオロエチレン(PTFE)多孔質膜Aを浸漬
した。また、その際に単量体組成物の母材への含浸性を
測定した。次に、ガラス容器を真空ポンプで0.7kP
aの圧力まで10分間減圧にして減圧脱気後、常圧に戻
して単量体組成物をポリテトラフルオロエチレン(PT
FE)多孔膜の空孔細部までより密に充填した。次いで
実施例1と同じ操作を行いスルホン酸型陽イオン交換樹
脂膜を得た。
Example 7 400 g of the same monomer composition as in Example 1 was placed in a 500 mL glass container, and the same hydrophilic polytetrafluoroethylene (PTFE) membrane A as in Example 1 was immersed. At that time, the impregnation property of the base material of the monomer composition was measured. Next, the glass container was 0.7 kP with a vacuum pump.
a for 10 minutes, and then degassed under reduced pressure.
FE) The pores of the porous membrane were more densely packed. Next, the same operation as in Example 1 was performed to obtain a sulfonic acid type cation exchange resin membrane.

【0059】これらのスルホン酸型陽イオン交換樹脂膜
の膜厚、陽イオン交換容量、電気抵抗、含水率、水素ガ
ス透過性、燃料電池出力電圧、耐熱性、耐久性を測定し
た。これらの結果を表2に示した。
The film thickness, cation exchange capacity, electric resistance, water content, hydrogen gas permeability, fuel cell output voltage, heat resistance and durability of these sulfonic acid type cation exchange resin membranes were measured. Table 2 shows the results.

【0060】比較例1〜2 実施例3及び6と同じ単量体組成物400gを500m
Lのガラス容器に入れ、ポリテトラフルオロエチレン
(PTFE)多孔質膜D(純水接触角が131°、水に
対する濡れ指数30dyn/cm)を浸漬した。また、
その際に単量体組成物の母材への含浸性を測定した。次
に、ガラス容器を真空ポンプで0.7kPaの圧力まで
10分間減圧にして減圧脱気した後、常圧にもどしてポ
リテトラフルオロエチレン(PTFE)多孔質膜の空孔
に単量体組成物を充填した。次いで実施例1と同じ操作
を行いスルホン酸型陽イオン交換樹脂膜を得た。
Comparative Examples 1 and 2 400 g of the same monomer composition as in Examples 3 and 6
In a glass container L, a polytetrafluoroethylene (PTFE) porous membrane D (pure water contact angle: 131 °, water wetting index: 30 dyn / cm) was immersed. Also,
At that time, the impregnation property of the monomer composition into the base material was measured. Next, the pressure of the glass container was reduced to 0.7 kPa by a vacuum pump for 10 minutes, and the pressure was reduced. Then, the pressure was returned to normal pressure, and the monomer composition was introduced into the pores of the polytetrafluoroethylene (PTFE) porous membrane. Was charged. Next, the same operation as in Example 1 was performed to obtain a sulfonic acid type cation exchange resin membrane.

【0061】これらのスルホン酸型陽イオン交換樹脂膜
の膜厚、陽イオン交換容量、電気抵抗、含水率、水素ガ
ス透過性、燃料電池出力電圧、耐熱性、耐久性を測定し
た。これらの結果を表2に示した。
The film thickness, cation exchange capacity, electric resistance, water content, hydrogen gas permeability, fuel cell output voltage, heat resistance and durability of these sulfonic acid type cation exchange resin membranes were measured. Table 2 shows the results.

【0062】比較例3 パーフルオロカーボンスルホン酸膜(市販品A)を用
い、比較例1と同様にしてスルホン酸型陽イオン交換樹
脂膜を得た。
Comparative Example 3 A sulfonic acid type cation exchange resin membrane was obtained in the same manner as in Comparative Example 1 using a perfluorocarbon sulfonic acid membrane (commercially available product A).

【0063】このスルホン酸型陽イオン交換樹脂膜の膜
厚、陽イオン交換容量、電気抵抗、含水率、水素ガス透
過性、燃料電池出力電圧、耐熱性、耐久性を測定した。
これらの結果を表2に示した。尚、ガス拡散電極は、ポ
リテトラフルオロエチレンで撥水化処理した空隙率80
%のカーボンペーパー上に、白金30重量%の坦持のカ
ーボンブラックと、パーフルオロカーボンスルホン酸樹
脂(陽イオン交換容量0.9)のアルコールと水の5%
溶液(アルドリッチ社製)を混合したものを塗布し80
℃で4時間減圧乾燥したものを用いた。
The film thickness, cation exchange capacity, electric resistance, water content, hydrogen gas permeability, fuel cell output voltage, heat resistance and durability of this sulfonic acid type cation exchange resin membrane were measured.
Table 2 shows the results. The gas diffusion electrode has a porosity of 80 treated with water repellency with polytetrafluoroethylene.
% Carbon paper, 30% by weight of supported carbon black, 5% of alcohol and water of perfluorocarbon sulfonic acid resin (cation exchange capacity 0.9).
A solution (Aldrich) was mixed and applied.
What was dried under reduced pressure at 4 ° C. for 4 hours was used.

【0064】[0064]

【表1】 [Table 1]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は固体高分子型燃料電池の基本構造を示す
概念図である。
FIG. 1 is a conceptual diagram showing a basic structure of a polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1;電池隔壁 2;燃料ガス流通孔 3;酸化剤ガス流通孔 4;燃料室側ガス拡散電極 5;酸化剤室側ガス拡散電極 6;固体高分子電解質 7;燃料室 8;酸化剤室 DESCRIPTION OF SYMBOLS 1; Battery partition wall 2; Fuel gas flow hole 3; Oxidant gas flow hole 4; Fuel chamber side gas diffusion electrode 5; Oxidant room side gas diffusion electrode 6; Solid polymer electrolyte 7;

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】親水化処理されたフッ素系樹脂製多孔質膜
を母材とする炭化水素系陽イオン交換樹脂膜からなる固
体高分子型燃料電池用隔膜。
1. A membrane for a polymer electrolyte fuel cell, comprising a hydrocarbon-based cation-exchange resin membrane whose base material is a hydrophilic membrane-processed fluororesin porous membrane.
【請求項2】1mol/L−硫酸水溶液中の電気抵抗が
0.20Ω・cm2以下であり、50℃における水素ガ
スの透過係数が3.0×10-8cm3(STP)cm・
cm-2・s-1・cmHg-1以下である請求項1記載の固
体高分子型燃料電池用隔膜。
2. The electric resistance in a 1 mol / L-sulfuric acid aqueous solution is 0.20 Ω · cm 2 or less, and the permeability coefficient of hydrogen gas at 50 ° C. is 3.0 × 10 −8 cm 3 (STP) cm ·
cm -2 · s at -1 · cmHg -1 or less claim 1, wherein the polymer electrolyte fuel cell membrane.
【請求項3】請求項1記載の固体高分子型燃料電池用隔
膜が装着されてなる固体高分子型燃料電池。
3. A polymer electrolyte fuel cell comprising the polymer electrolyte fuel cell diaphragm according to claim 1.
JP2000364136A 2000-11-30 2000-11-30 Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell Expired - Fee Related JP5059256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000364136A JP5059256B2 (en) 2000-11-30 2000-11-30 Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000364136A JP5059256B2 (en) 2000-11-30 2000-11-30 Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002170580A true JP2002170580A (en) 2002-06-14
JP5059256B2 JP5059256B2 (en) 2012-10-24

Family

ID=18835132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000364136A Expired - Fee Related JP5059256B2 (en) 2000-11-30 2000-11-30 Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5059256B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253147A (en) * 2002-12-24 2004-09-09 Ube Ind Ltd Manufacturing method of hybrid material, electrolyte film for fuel cell, electrolyte film/electrode junction, and fuel cell
JPWO2004030132A1 (en) * 2002-09-30 2006-01-26 旭硝子株式会社 ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND POLYMER POLYMER FUEL CELL
JP2006066174A (en) * 2004-08-26 2006-03-09 Nitto Denko Corp Electrolyte film for fuel cell with excellent acid resistance
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
JP2007095677A (en) * 2005-09-15 2007-04-12 Gm Global Technology Operations Inc Hydrophilic layer on flow field for water control in pem fuel cell
JP2008016287A (en) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd Ion conductive electrolyte membrane, energy device and cell of fuel cell using this

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054253A1 (en) * 2019-09-20 2021-03-25 東レ株式会社 Composite electrolyte membrane, electrolyte membrane having catalyst layer attached thereto, membrane-electrode composite, solid polymer-type fuel cell, and method for producing composite electrolyte membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296634A (en) * 1994-04-22 1995-11-10 Asahi Chem Ind Co Ltd Compound electrolytic film
JPH08259710A (en) * 1995-03-28 1996-10-08 Sumitomo Electric Ind Ltd Ion-exchange membrane
JPH09194609A (en) * 1996-01-25 1997-07-29 Sumitomo Electric Ind Ltd Ion-exchange membrane and its preparation
JPH11135137A (en) * 1997-10-31 1999-05-21 Asahi Glass Co Ltd Solid polyelectrolyte type methanol fuel cell
JPH11310649A (en) * 1998-04-28 1999-11-09 Tokuyama Corp Cation exchange membrane and its use
JP2002083514A (en) * 2000-09-06 2002-03-22 Nitto Denko Corp Proton conductive membrane or film and fuel cell using them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296634A (en) * 1994-04-22 1995-11-10 Asahi Chem Ind Co Ltd Compound electrolytic film
JPH08259710A (en) * 1995-03-28 1996-10-08 Sumitomo Electric Ind Ltd Ion-exchange membrane
JPH09194609A (en) * 1996-01-25 1997-07-29 Sumitomo Electric Ind Ltd Ion-exchange membrane and its preparation
JPH11135137A (en) * 1997-10-31 1999-05-21 Asahi Glass Co Ltd Solid polyelectrolyte type methanol fuel cell
JPH11310649A (en) * 1998-04-28 1999-11-09 Tokuyama Corp Cation exchange membrane and its use
JP2002083514A (en) * 2000-09-06 2002-03-22 Nitto Denko Corp Proton conductive membrane or film and fuel cell using them

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004030132A1 (en) * 2002-09-30 2006-01-26 旭硝子株式会社 ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND POLYMER POLYMER FUEL CELL
JP4857560B2 (en) * 2002-09-30 2012-01-18 旭硝子株式会社 Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP2004253147A (en) * 2002-12-24 2004-09-09 Ube Ind Ltd Manufacturing method of hybrid material, electrolyte film for fuel cell, electrolyte film/electrode junction, and fuel cell
JP2006066174A (en) * 2004-08-26 2006-03-09 Nitto Denko Corp Electrolyte film for fuel cell with excellent acid resistance
JP4670074B2 (en) * 2004-08-26 2011-04-13 日東電工株式会社 Fuel cell electrolyte membrane with excellent acid resistance
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
US7803495B2 (en) 2005-01-26 2010-09-28 Samsung Sdi Co., Ltd. Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
JP2007095677A (en) * 2005-09-15 2007-04-12 Gm Global Technology Operations Inc Hydrophilic layer on flow field for water control in pem fuel cell
US8211592B2 (en) 2005-09-15 2012-07-03 GM Global Technology Operations LLC Hydrophilic layer on flowfield for water management in PEM fuel cell
JP2008016287A (en) * 2006-07-05 2008-01-24 Nissan Motor Co Ltd Ion conductive electrolyte membrane, energy device and cell of fuel cell using this

Also Published As

Publication number Publication date
JP5059256B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4989226B2 (en) Membrane for fuel cell and manufacturing method thereof
JP4435560B2 (en) Ion exchange membrane and method for producing the same
JP5133896B2 (en) Membrane for polymer electrolyte fuel cell and membrane-electrode assembly
JPH11310649A (en) Cation exchange membrane and its use
JP4463351B2 (en) Membrane for solid polymer electrolyte fuel cell
JP2009193825A (en) Composite electrolyte membrane and its manufacturing method
EP2053679A1 (en) Reinforced electrolyte membrane for fuel cell, method for producing the same, membrane-electrode assembly for fuel cell and solid polymer fuel cell comprising the same
JP4719796B2 (en) Diaphragm for direct liquid fuel cell
JP3891820B2 (en) Ion exchange resin membrane
EP2017913B1 (en) Direct-liquid fuel cell and process for producing membrane for use in a direct-liquid fuel cell
JP5059256B2 (en) Method for producing membrane for polymer electrolyte fuel cell and membrane for polymer electrolyte fuel cell
JP2004014436A (en) Electrolyte film for fuel cell consisting of fluorine polymer ion exchange membrane
JP3967581B2 (en) Ion exchange resin membrane and method for producing the same
JP4883880B2 (en) Method for producing diaphragm for direct methanol fuel cell
JP2009170350A (en) Cation exchange membrane and its manufacturing method
WO2021192951A1 (en) Cation exchange membrane and method for producing same
JP4950539B2 (en) Diaphragm for direct liquid fuel cell
JP2007194019A (en) Cross-linked electrolyte film and its manufacturing method
JP2009187726A (en) Solid polyelectrolyte membrane, its manufacturing method, membrane electrode assembly for fuel cell, and fuel cell
JP5010857B2 (en) Method for manufacturing diaphragm for direct liquid fuel cell
JP5090007B2 (en) Diaphragm for direct liquid fuel cell and method for producing the same
JP2009093998A (en) Diaphragm for direct liquid fuel cell and its manufacturing method
JP4849892B2 (en) Method for manufacturing diaphragm for direct liquid fuel cell
JP4906366B2 (en) Method for manufacturing diaphragm for direct liquid fuel cell
JP2010073418A (en) Electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

LAPS Cancellation because of no payment of annual fees