JPH11135137A - Solid polyelectrolyte type methanol fuel cell - Google Patents

Solid polyelectrolyte type methanol fuel cell

Info

Publication number
JPH11135137A
JPH11135137A JP9301046A JP30104697A JPH11135137A JP H11135137 A JPH11135137 A JP H11135137A JP 9301046 A JP9301046 A JP 9301046A JP 30104697 A JP30104697 A JP 30104697A JP H11135137 A JPH11135137 A JP H11135137A
Authority
JP
Japan
Prior art keywords
methanol
negative ion
fuel cell
electrolyte
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9301046A
Other languages
Japanese (ja)
Inventor
Ichiro Terada
一郎 寺田
Masaru Yoshitake
優 吉武
Naoki Yoshida
直樹 吉田
Yasuhiro Kotsukiyou
康弘 国狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9301046A priority Critical patent/JPH11135137A/en
Publication of JPH11135137A publication Critical patent/JPH11135137A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a cross leak quantity, even if methanol is supplied through a gas phase and obtain a stable high output voltage by supporting a negative ion-exchanger by a porous membrane consisting of polyolefin or polyfluoro- olefin, and providing the obtained negative ion-exchange membrane as an electrolyte. SOLUTION: A negative ion exchanger is supported by a porous membrane consisting of a fiber cloth made of polyofefin or polyfluoro-olefin such as PP, polytetrafluoroethylene or the like. This negative ion exchanger is preferably 1.0 to 3.0 milli equivalent per g of dry negative ion exchanger, and for example, the negative ion exchange group introduced into (chloromethyl)styrene/ divinylbenzene copolymer or 4-vinylpyridine/divinylbenzene copolymer is employed. This negative ion-exchange membrane with superior heat resistance and alkaline resistive properties is employed as an electrolyte for a solid poly electrolyte methanol fuel cell, and thereby gas-phase supply of methanol is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型メタノール燃料電池に関する。
The present invention relates to a solid polymer electrolyte type methanol fuel cell.

【0002】[0002]

【従来の技術】メタノールを直接燃料として使用するメ
タノール燃料電池は、燃料が取り扱いやすく、安価であ
ることから家庭用や産業用の比較的小出力規模の電源と
して期待されている。
2. Description of the Related Art A methanol fuel cell using methanol directly as a fuel is expected to be used as a relatively small-output power source for home use and industrial use because of its easy handling and low cost.

【0003】メタノール−酸素燃料電池の理論出力電圧
は、水素燃料のものとほぼ同じ1.2V(25℃)であ
り、原理的には同様の特性が期待できる。このためメタ
ノールの陽極酸化反応については数多くの研究がなされ
ているが、充分な特性が得られていない。
The theoretical output voltage of a methanol-oxygen fuel cell is about 1.2 V (25 ° C.) which is almost the same as that of hydrogen fuel, and similar characteristics can be expected in principle. For this reason, many studies have been made on the anodic oxidation reaction of methanol, but sufficient characteristics have not been obtained.

【0004】この理由としては、充分な活性を有するメ
タノールの酸化触媒がいまだ見いだされていないこと、
通常電解質として用いられるイオン交換膜はメタノール
透過性が非常に高いため、メタノールの利用効率が低
く、かつ対極である空気極に到達したメタノールが空気
極表面で反応するため過電圧が増大し、出力電圧が低下
することなどが挙げられる。
[0004] The reason is that an oxidation catalyst for methanol having sufficient activity has not been found yet.
The ion exchange membrane, which is usually used as an electrolyte, has very high methanol permeability, so the methanol utilization efficiency is low, and methanol reaching the air electrode, which is the counter electrode, reacts on the surface of the air electrode. Is reduced.

【0005】上記問題点を解決する方法として、スルホ
ン酸基を有するパーフルオロカーボン重合体膜を用いた
電極−膜接合体を用い、反応温度を100℃以上に設定
し、メタノール極、空気極の反応速度を上げるととも
に、メタノールを気相で供給し膜のアノード側のメタノ
ール濃度を下げる方法が報告されているが、上記方法に
おいても充分な特性は得られていなかった。
As a method for solving the above problems, an electrode-membrane assembly using a perfluorocarbon polymer membrane having a sulfonic acid group is used, the reaction temperature is set to 100 ° C. or higher, and the reaction between the methanol electrode and the air electrode is performed. A method has been reported in which the rate is increased and methanol is supplied in the gas phase to lower the methanol concentration on the anode side of the membrane. However, sufficient characteristics have not been obtained with the above method.

【0006】また、電解質であるイオン交換膜が陽イオ
ン交換膜である場合は、供給したメタノールがメタノー
ル極で反応せず、電解質を通ってそのまま空気極に達す
る、いわゆるクロスリーク現象によるメタノールのクロ
スリーク量の増大、および空気極が酸性雰囲気であるこ
とによる過電圧の増大により、空気極の分極増大も顕著
である。
When the ion exchange membrane as an electrolyte is a cation exchange membrane, the supplied methanol does not react at the methanol electrode, but reaches the air electrode as it passes through the electrolyte. The increase in the amount of leakage and the increase in overvoltage due to the acidic atmosphere of the air electrode also significantly increase the polarization of the air electrode.

【0007】上記問題点を解決する手段として、陽イオ
ン交換膜の代わりに陰イオン交換膜を用い、アニオンを
カソードからアノードへと移動させることでメタノール
のクロスリーク量を減少させる方法も考えられるが、こ
の方法においては、従来の陰イオン交換膜は耐熱性が充
分でないため出力を高くできないこと、耐アルカリ性が
不充分であることなどの問題点がある。
As a means for solving the above problems, a method of using an anion exchange membrane instead of a cation exchange membrane and moving the anions from the cathode to the anode to reduce the amount of methanol cross leak can be considered. However, in this method, the conventional anion exchange membrane has problems such that the output cannot be increased due to insufficient heat resistance, and the alkali resistance is insufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、耐熱
性および耐アルカリ性に優れた陰イオン交換膜を使用し
た、高出力のメタノール燃料電池を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-output methanol fuel cell using an anion exchange membrane having excellent heat resistance and alkali resistance.

【0009】[0009]

【課題を解決するための手段】本発明は、電解質が、ポ
リオレフィンまたはポリフルオロオレフィンからなる多
孔性膜に、陰イオン交換体が支持された陰イオン交換膜
であることを特徴とする固体高分子電解質型メタノール
燃料電池を提供する。
According to the present invention, there is provided a solid polymer wherein the electrolyte is an anion exchange membrane in which an anion exchanger is supported on a porous membrane made of polyolefin or polyfluoroolefin. An electrolyte type methanol fuel cell is provided.

【0010】[0010]

【発明の実施の形態】本発明のメタノール燃料電池は、
イオン交換膜を電解質とする固体高分子型燃料電池であ
り、典型的には、上記電解質と、上記電解質の両面に接
合されたガス拡散電極とからなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The methanol fuel cell of the present invention
It is a polymer electrolyte fuel cell using an ion exchange membrane as an electrolyte, and typically comprises the above-mentioned electrolyte and gas diffusion electrodes joined to both sides of the above-mentioned electrolyte.

【0011】本発明のメタノール燃料電池を構成する電
解質は、ポリオレフィンまたはポリフルオロオレフィン
からなる多孔性膜に、陰イオン交換体が支持された陰イ
オン交換膜である。
[0011] The electrolyte constituting the methanol fuel cell of the present invention is an anion exchange membrane in which an anion exchanger is supported on a porous membrane made of polyolefin or polyfluoroolefin.

【0012】多孔性膜としては、耐熱性、耐アルカリ性
の観点から、ポリオレフィンまたはポリフルオロオレフ
ィンが用いられる。具体的にはポリオレフィンとして
は、ポリエチレン、ポリプロピレン等が例示されるが、
耐熱性が特に優れることからポリプロピレンが好ましく
用いられる。
As the porous film, polyolefin or polyfluoroolefin is used from the viewpoint of heat resistance and alkali resistance. Specifically, examples of the polyolefin include polyethylene and polypropylene.
Since heat resistance is particularly excellent, polypropylene is preferably used.

【0013】また、ポリフルオロオレフィンとしては、
フッ素原子を1個以上有するオレフィンの重合体が使用
できる。具体的にはポリテトラフルオロエチレン(PT
FE)やポリクロロトリフルオロエチレン、ポリフッ化
ビニリデン、エチレン/テトラフルオロエチレン共重合
体、テトラフルオロエチレン/ヘキサフルオロプロピレ
ン共重合体などが例示されるが、なかでもPTFE、エ
チレン/テトラフルオロエチレン共重合体、テトラフル
オロエチレン/ヘキサフルオロプロピレン共重合体は、
耐熱性および耐アルカリ性が特に優れることから好まし
い。
Further, as the polyfluoroolefin,
An olefin polymer having one or more fluorine atoms can be used. Specifically, polytetrafluoroethylene (PT
FE), polychlorotrifluoroethylene, polyvinylidene fluoride, ethylene / tetrafluoroethylene copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, etc., among which PTFE, ethylene / tetrafluoroethylene copolymer Merging, tetrafluoroethylene / hexafluoropropylene copolymer,
It is preferable because heat resistance and alkali resistance are particularly excellent.

【0014】多孔性膜の厚みは、強度、取り扱い性およ
び膜抵抗の観点から、5〜200μm、特には30〜8
0μmであるのが好ましい。また、多孔性膜の電流遮蔽
率は、小さいほど好ましいが、具体的には50%以下、
特には20%以下であるのが好ましい。多孔性膜の形態
としては特に限定されないが、織布または不織布が用い
られ、特には織布が好ましく用いられる。織布は平織、
斜文織、朱子織、からみ織などいずれの織り方のものも
使用できる。
The thickness of the porous membrane is from 5 to 200 μm, especially from 30 to 8 from the viewpoints of strength, handleability and membrane resistance.
It is preferably 0 μm. Further, the current blocking ratio of the porous film is preferably as small as possible, but specifically, 50% or less,
In particular, it is preferably at most 20%. The form of the porous membrane is not particularly limited, but a woven or nonwoven fabric is used, and a woven fabric is particularly preferably used. The woven fabric is plain weave,
Any weaving method such as oblique weave, satin weave, leno weave can be used.

【0015】また、本発明における電解質としては、メ
タノールのクロスリーク量を低減させる目的から、陰イ
オン交換体が支持されてなるものが用いられる。具体的
には、(クロロメチル)スチレン/ジビニルベンゼン共
重合体、または4−ビニルピリジン/ジビニルベンゼン
の共重合体に、陰イオン交換基が導入されてなる陰イオ
ン交換体が好ましい。上記(クロロメチル)スチレン
は、o体、m体、p体、またはこれらの混合物のいずれ
であってもよい。また、上記ジビニルベンゼンもo体、
m体、p体、またはこれらの混合物のいずれであっても
よい。ジビニルベンゼンに基づく重合単位を有する共重
合体は、架橋構造を有することから、陰イオン交換体の
強度を大きくできる。
As the electrolyte used in the present invention, an electrolyte supported by an anion exchanger is used for the purpose of reducing the amount of methanol cross leak. Specifically, an anion exchanger obtained by introducing an anion exchange group into a (chloromethyl) styrene / divinylbenzene copolymer or a copolymer of 4-vinylpyridine / divinylbenzene is preferable. The (chloromethyl) styrene may be any of an o-form, an m-form, a p-form, or a mixture thereof. In addition, the above-mentioned divinylbenzene is also o-form,
Any of the m-form, the p-form, and a mixture thereof may be used. The copolymer having a polymerized unit based on divinylbenzene has a cross-linked structure, and thus can increase the strength of the anion exchanger.

【0016】ジビニルベンゼンに基づく重合単位を有す
る共重合体に、(クロロメチル)スチレンに基づく重合
単位、または4−ビニルピリジンに基づく重合単位を導
入することにより、陰イオン交換基を容易に導入でき
る。
By introducing a polymerization unit based on (chloromethyl) styrene or a polymerization unit based on 4-vinylpyridine to a copolymer having a polymerization unit based on divinylbenzene, an anion exchange group can be easily introduced. .

【0017】上記共重合体は、イオン交換容量の制御等
の目的からスチレンに基づく重合単位、4−エチルスチ
レンに基づく重合単位などを含有していてもよい。上記
共重合体が、((クロロメチル)スチレンまたは4−ビ
ニルピリジン)/ジビニルベンゼン/スチレン共重合体
であるとき、該重合体の組成比は重量比で、((クロロ
メチル)スチレンまたは4−ビニルピリジン):ジビニ
ルベンゼン:スチレン=20〜90:5〜40:0〜6
0であるのが好ましい。スチレンに基づく重合単位の組
成比が上記範囲より大きい場合は、イオン交換容量が小
さくなり膜抵抗が大きくなるので好ましくない。また、
ジビニルベンゼンに基づく重合単位の組成比が上記範囲
より大きいと膜抵抗が増大し、小さいと機械的強度が低
下するので好ましくない。
The above-mentioned copolymer may contain a polymerization unit based on styrene, a polymerization unit based on 4-ethylstyrene and the like for the purpose of controlling the ion exchange capacity and the like. When the copolymer is ((chloromethyl) styrene or 4-vinylpyridine) / divinylbenzene / styrene copolymer, the composition ratio of the polymer is expressed by weight ratio of ((chloromethyl) styrene or 4-vinylpyridine). Vinylpyridine): divinylbenzene: styrene = 20-90: 5-40: 0-6
It is preferably 0. When the composition ratio of the polymerization unit based on styrene is larger than the above range, the ion exchange capacity is reduced and the membrane resistance is increased, which is not preferable. Also,
When the composition ratio of the polymerization unit based on divinylbenzene is larger than the above range, the film resistance increases, and when the composition ratio is small, the mechanical strength decreases, which is not preferable.

【0018】また、前記重合体へ導入する陰イオン交換
基としては、強塩基性であるものが好ましく、具体的に
は、4級アンモニウム基またはピリジニウム基が好まし
く用いられる。また、前記重合体への陰イオン交換基の
導入方法としては、既知の方法が使用でき、クロロメチ
ルスチレンに基づく重合単位を導入する場合は、第3ア
ミンのアルコール溶液中に前記重合体を一定時間浸漬す
る方法、4−ビニルピリジンに基づく重合単位を導入す
る場合はハロゲン化炭化水素溶剤に前記重合体を浸漬す
る方法などが用いられる。
The anion exchange group to be introduced into the polymer is preferably a strongly basic one, and specifically, a quaternary ammonium group or a pyridinium group is preferably used. As a method for introducing an anion exchange group into the polymer, a known method can be used. When polymerizing units based on chloromethylstyrene are introduced, the polymer is kept in an alcohol solution of a tertiary amine. For example, a method of immersing the polymer in a halogenated hydrocarbon solvent when introducing a polymerization unit based on 4-vinylpyridine is used.

【0019】陰イオン交換体のイオン交換容量は、乾燥
陰イオン交換体1gあたり1.0〜3.0ミリ当量、特
には1.5〜2.5ミリ当量、であるのが好ましい。イ
オン交換容量が上記範囲内である場合は、膜抵抗が低
く、かつ膜強度が大きく、メタノール透過量も少なくな
るので好ましい。
The ion exchange capacity of the anion exchanger is preferably 1.0 to 3.0 milliequivalents, more preferably 1.5 to 2.5 milliequivalents per gram of the dry anion exchanger. When the ion exchange capacity is within the above range, the membrane resistance is low, the membrane strength is large, and the amount of methanol permeation is also small, which is preferable.

【0020】多孔性膜上に陰イオン交換体を支持させる
方法としては、陰イオン交換体ポリマー溶液を多孔性膜
上にコーティングする方法、モノマーを多孔性膜に含浸
させた後、重合させる方法などが挙げられるが、充分な
機械的強度を有する陰イオン交換膜を得るためには、モ
ノマーを多孔性膜に含浸させた後、重合させる方法が好
ましく用いられる。
As a method for supporting the anion exchanger on the porous membrane, a method of coating an anion exchanger polymer solution on the porous membrane, a method of impregnating the porous membrane with a monomer, and then polymerizing the same. However, in order to obtain an anion exchange membrane having sufficient mechanical strength, a method of impregnating a porous membrane with a monomer and then polymerizing the porous membrane is preferably used.

【0021】なお、多孔性膜として用いられるポリオレ
フィンやポリフルオロオレフィンは、クロロメチルスチ
レン、4−ビニルピリジン、ジビニルベンゼンまたはス
チレンなどのモノマーや、それらのポリマーとの親和性
が小さいため、通常の加熱による重合のみでは機械的強
度が不充分な場合がある。この場合は、多孔性膜にγ線
や電子線などの電離性放射線照射処理を行った後、モノ
マーを含浸させて重合させる方法、または、多孔性膜に
モノマーを含浸した状態で電離性放射線を照射して一部
を重合させた後、残部を加熱重合させる方法などを用い
るのが好ましい。
The polyolefin or polyfluoroolefin used as the porous membrane has a low affinity for monomers such as chloromethylstyrene, 4-vinylpyridine, divinylbenzene and styrene, and polymers thereof, so that it can be used for ordinary heating. Mechanical polymerization alone may result in insufficient mechanical strength. In this case, after the porous film is subjected to ionizing radiation irradiation treatment such as γ-rays or electron beams, a method of impregnating and polymerizing the monomer, or a method of ionizing radiation while the porous film is impregnated with the monomer. It is preferable to use a method of polymerizing a part by irradiation and then heating and polymerizing the remaining part.

【0022】上記のようにして製造された陰イオン交換
膜の厚みは、10〜200μm、特には30〜80μm
であるのが好ましい。本発明のメタノール燃料電池に使
用する電極は、通常の既知の手法にしたがって製造でき
る。たとえば、メタノール極または空気極としての活性
を付与する触媒を、PTFEなどの疎水性樹脂結着材で
保持し、多孔質体のシート状のガス拡散電極とすること
が好ましい。また、ガス拡散電極を構成する材料を含む
分散混合液の噴霧、塗布、ろ過などの方法により製造で
きる。
The thickness of the anion exchange membrane produced as described above is 10 to 200 μm, particularly 30 to 80 μm.
It is preferred that The electrode used in the methanol fuel cell of the present invention can be manufactured according to a commonly known method. For example, it is preferable that a catalyst that imparts activity as a methanol electrode or an air electrode is held by a hydrophobic resin binder such as PTFE to form a porous sheet-shaped gas diffusion electrode. Further, it can be produced by a method such as spraying, coating, or filtering a dispersion mixture containing a material constituting the gas diffusion electrode.

【0023】電極用の触媒としては従来より知られてい
るものを使用できる。例えば、メタノール極用の触媒と
しては白金触媒、白金−ルテニウム合金、白金−スズ合
金などの合金触媒、またはこれらの触媒の微粒子をカー
ボンなどの担体上に分散担持させた担持触媒などが挙げ
られる。空気極用の触媒は、メタノール極と同様の白金
触媒、白金合金系触媒、担持触媒などが用いられる。
Conventionally known catalysts for electrodes can be used. For example, the catalyst for the methanol electrode includes a platinum catalyst, an alloy catalyst such as a platinum-ruthenium alloy, a platinum-tin alloy, or a supported catalyst in which fine particles of these catalysts are dispersed and supported on a carrier such as carbon. As the catalyst for the air electrode, a platinum catalyst, a platinum alloy-based catalyst, a supported catalyst, or the like similar to the methanol electrode is used.

【0024】電極と陰イオン交換膜との接合体の製造方
法としては、陰イオン交換膜上にガ電極を直接形成する
方法、PTFEフィルムなどの基材上に一旦電極を層状
に形成した後にこれを陰イオン交換膜に転写する方法、
電極と陰イオン交換膜とをホットプレスする方法、接着
液により密着して形成させる方法など種々の方法を適用
できる。
The method for producing a bonded body of an electrode and an anion exchange membrane includes a method of directly forming a gas electrode on an anion exchange membrane, and a method of forming an electrode once on a base material such as a PTFE film and then forming the electrode. Transfer to an anion exchange membrane,
Various methods can be applied, such as a method of hot pressing the electrode and the anion exchange membrane, and a method of forming the electrode and the anion exchange membrane in close contact with an adhesive.

【0025】[0025]

【作用】本発明における電解質は陰イオン交換膜であ
り、通電時にはカソードからアノードに向かってアニオ
ンが移動するため、陽イオン交換膜を使用したときに生
じると考えられている、プロトンの移動に伴う水および
メタノールの移動が起こらないと考えられる。また、多
孔性膜として用いるポリオレフィンやポリフルオロオレ
フィンは耐熱性に優れており、燃料電池セルにメタノー
ルを気体で供給できるため、液体で供給する場合よりメ
タノールの透過性を低減できると考えられる。さらに上
記多孔性膜は耐アルカリ性に優れるため、空気極の過電
圧が低くなり、安定して高出力の電圧が得られる。
The electrolyte in the present invention is an anion exchange membrane, and the anions move from the cathode to the anode during energization. Therefore, it is considered that the anion exchange membrane is generated when the cation exchange membrane is used. It is believed that no water and methanol migration occurs. In addition, polyolefin and polyfluoroolefin used as the porous membrane are excellent in heat resistance and can supply methanol to the fuel cell as a gas, so that it is considered that the permeability of methanol can be reduced as compared with the case where the liquid is supplied as a liquid. Further, since the porous film has excellent alkali resistance, the overvoltage of the air electrode is reduced, and a high output voltage can be stably obtained.

【0026】[0026]

【実施例】以下、本発明を実施例(例1、例2)および
比較例(例3、例4)により説明するが、本発明は必ず
しもこれらに限定されない。
EXAMPLES Hereinafter, the present invention will be described with reference to Examples (Examples 1 and 2) and Comparative Examples (Examples 3 and 4), but the present invention is not necessarily limited to these.

【0027】<例1>室温、窒素雰囲気下にて、厚さ6
0μm、面積1m2 のポリプロピレン織布(平織、電流
遮蔽率20%)に、γ線を15kGy照射した。スチレ
ン25重量部、(クロロメチル)スチレン55重量部、
ジビニルベンゼン20重量部のモノマー混合液に、NB
Rゴム10重量部、重合開始剤である過酸化ベンゾイル
2重量部を加えた。この混合液50gを前記織布に含
浸、担持させて25℃にて24時間グラフト重合を行っ
た後、60℃で10時間、さらに90℃で3時間重合を
行った。得られた重合体膜を濃度1モル/リットルのト
リメチルアミンのメタノール溶液に40℃で36時間浸
漬し、陰イオン交換膜を得た。なお、この陰イオン交換
膜における陰イオン交換体のイオン交換容量は、乾燥陰
イオン交換体1gあたり2.2ミリ当量であった。
Example 1 At room temperature under a nitrogen atmosphere, a thickness of 6
Γ-rays were irradiated at 15 kGy to a 0 μm, 1 m 2 area polypropylene woven fabric (plain weave, current shielding ratio 20%). 25 parts by weight of styrene, 55 parts by weight of (chloromethyl) styrene,
NB was added to a monomer mixture of 20 parts by weight of divinylbenzene.
10 parts by weight of R rubber and 2 parts by weight of benzoyl peroxide as a polymerization initiator were added. After impregnating and supporting 50 g of this mixed solution on the woven fabric and performing graft polymerization at 25 ° C. for 24 hours, polymerization was performed at 60 ° C. for 10 hours and further at 90 ° C. for 3 hours. The obtained polymer membrane was immersed in a methanol solution of trimethylamine at a concentration of 1 mol / liter at 40 ° C. for 36 hours to obtain an anion exchange membrane. The ion exchange capacity of the anion exchanger in this anion exchange membrane was 2.2 meq / g of the dried anion exchanger.

【0028】<例2>厚さ50μmのPTFEの織布
(平織、電流遮蔽率5%)を、スチレン25重量部、4
−ビニルピリジン50重量部、ジビニルベンゼン25重
量部のモノマー混合液に、NBRゴム10重量部、過酸
化ベンゾイル2重量部を添加した混合液を含浸させた。
これに、室温、窒素雰囲気下にて、γ線を25kGy照
射してグラフト重合させた後、60℃で10時間、さら
に90℃で3時間加熱重合を行い重合を完結させた。得
られた重合体膜を、ヨウ化メチルのヘキサン溶液(濃度
10重量%)に35℃にて48時間浸漬し、陰イオン交
換膜を得た。なお、この陰イオン交換膜における陰イオ
ン交換体のイオン交換容量は、乾燥陰イオン交換体1g
あたり2.4ミリ当量であった。
<Example 2> A 50 μm-thick PTFE woven cloth (plain weave, current shielding ratio 5%) was mixed with 25 parts by weight of styrene,
A mixture of 50 parts by weight of vinylpyridine and 25 parts by weight of divinylbenzene was impregnated with a mixture of 10 parts by weight of NBR rubber and 2 parts by weight of benzoyl peroxide.
This was irradiated with 25 kGy of γ-ray at room temperature under a nitrogen atmosphere to carry out graft polymerization, and then heat polymerization was performed at 60 ° C. for 10 hours and further at 90 ° C. for 3 hours to complete the polymerization. The obtained polymer membrane was immersed in a hexane solution of methyl iodide (concentration: 10% by weight) at 35 ° C. for 48 hours to obtain an anion exchange membrane. The ion exchange capacity of the anion exchanger in this anion exchange membrane was 1 g of dry anion exchanger.
2.4 meq.

【0029】<例3>ポリプロピレンの代わりに、厚さ
80μmのポリ塩化ビニルの織布(平織、電流遮蔽率2
0%)を用いた以外は例1と同様にして陰イオン交換膜
を得た。
Example 3 Instead of polypropylene, a woven fabric of polyvinyl chloride having a thickness of 80 μm (plain weave, current shielding ratio: 2)
0%) to obtain an anion exchange membrane in the same manner as in Example 1.

【0030】<例4>電解質として、パーフルオロカー
ボンスルホン酸イオン交換膜(デュポン社製品名:ナフ
ィオン117)を用いた。
Example 4 A perfluorocarbon sulfonic acid ion exchange membrane (Dupont product name: Nafion 117) was used as an electrolyte.

【0031】[評価結果]電解質としては、例1、例2
で作製した陰イオン交換膜を使用した。アノード電極と
しては、芳香族ポリエーテルスルホンと芳香族ポリチオ
エーテルスルホンとの共重合体のクロロメチル化物をア
ミン化して得られる陰イオン交換樹脂で被覆された白金
−ルビジウム合金触媒が、白金量が見かけ表面積あたり
2mg/cm2 になるように作製され、電極有効面積が
10cm2 であるガス拡散電極を用いた。カソード電極
としては、上記陰イオン交換樹脂で被覆された白金触媒
が白金量が見かけ表面積あたり1mg/cm2 となるよ
うに作製され、電極有効面積が10cm2 であるガス拡
散電極をカソード電極を用いた。ホットプレス法にて上
記陰イオン交換膜、アノード電極、およびカソード電極
を接合し、電極−膜の接合体を作製した。
[Evaluation Results] As electrolytes, Examples 1 and 2 were used.
The anion exchange membrane prepared in the above was used. As the anode electrode, a platinum-rubidium alloy catalyst coated with an anion exchange resin obtained by aminating a chloromethylated product of a copolymer of aromatic polyethersulfone and aromatic polythioethersulfone has an apparent platinum content. A gas diffusion electrode prepared so as to have a surface area of 2 mg / cm 2 and an electrode effective area of 10 cm 2 was used. As the cathode electrode, a platinum catalyst coated with the anion exchange resin was prepared so that the amount of platinum became 1 mg / cm 2 per apparent surface area, and a gas diffusion electrode having an effective electrode area of 10 cm 2 was used as the cathode electrode. Was. The anion exchange membrane, the anode electrode, and the cathode electrode were joined by a hot press method to produce an electrode-membrane assembly.

【0032】また、電解質として、例3で作製した陰イ
オン交換膜または例4で作製した陽イオン交換膜を使用
し、アノード電極およびカソード電極に用いた触媒をナ
フィオン117と同組成のカチオン交換樹脂にて被覆し
たものとした以外は、上記製法と同様にして、電極−膜
の接合体を作製した。
The anion exchange membrane prepared in Example 3 or the cation exchange membrane prepared in Example 4 was used as the electrolyte, and the catalyst used for the anode and cathode was a cation exchange resin having the same composition as Nafion 117. An electrode-membrane assembly was produced in the same manner as in the above-mentioned production method, except that it was coated with.

【0033】得られた上記接合体を、それぞれ一対のリ
ブ付きセパレータの間にはさんで、燃料電池セルを組み
立てた。酸化剤ガスである空気を、130℃に保持した
加湿器を介して燃料電池セルに供給し、燃料ガスである
20重量%のメタノール水溶液を、140℃に保持した
気化室を介してガス化させて燃料電池セルに供給し、3
気圧、セル温度130℃にて発電試験を実施した。表1
に電流密度100mA/cm2 での出力電圧を示す。
A fuel cell was assembled by sandwiching the obtained assembly between a pair of ribbed separators. Air as an oxidizing gas is supplied to the fuel cell via a humidifier maintained at 130 ° C., and a 20% by weight aqueous methanol solution as a fuel gas is gasified through a vaporization chamber maintained at 140 ° C. Supply to the fuel cell
A power generation test was performed at an atmospheric pressure and a cell temperature of 130 ° C. Table 1
Shows the output voltage at a current density of 100 mA / cm 2 .

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】耐熱性および耐アルカリ性に優れたポリ
オレフィンまたはポリフルオロオレフィンの多孔性膜
に、陰イオン交換体を支持させることにより、メタノー
ルの気相供給が可能となり、メタノールのクロスリーク
量が低減され、安定して高出力電圧が得られる固体高分
子電解質型メタノール燃料電池が得られる。
According to the present invention, by supporting an anion exchanger on a porous membrane of polyolefin or polyfluoroolefin excellent in heat resistance and alkali resistance, the gaseous phase of methanol can be supplied, and the amount of methanol cross leak is reduced. As a result, a solid polymer electrolyte type methanol fuel cell capable of stably obtaining a high output voltage is obtained.

フロントページの続き (72)発明者 国狭 康弘 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内Continued on the front page (72) Inventor Yasuhiro Kunisaka 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa-ken Asahi Glass Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電解質が、ポリオレフィンまたはポリフル
オロオレフィンからなる多孔性膜に、陰イオン交換体が
支持された陰イオン交換膜であることを特徴とする固体
高分子電解質型メタノール燃料電池。
1. A solid polymer electrolyte methanol fuel cell, wherein the electrolyte is an anion exchange membrane in which an anion exchanger is supported on a porous membrane made of polyolefin or polyfluoroolefin.
【請求項2】陰イオン交換体のイオン交換容量が乾燥陰
イオン交換体1gあたり1.0〜3.0ミリ当量である
請求項1記載の固体高分子電解質型メタノール燃料電
池。
2. The solid polymer electrolyte type methanol fuel cell according to claim 1, wherein the ion exchange capacity of the anion exchanger is 1.0 to 3.0 meq / g of the dried anion exchanger.
【請求項3】多孔性膜が、ポリプロピレン、ポリテトラ
フルオロエチレン、エチレン/テトラフルオロエチレン
共重合体、またはテトラフルオロエチレン/ヘキサフル
オロプロピレン共重合体からなる織布である請求項1ま
たは2記載の固体高分子電解質型メタノール燃料電池。
3. The method according to claim 1, wherein the porous membrane is a woven fabric made of polypropylene, polytetrafluoroethylene, ethylene / tetrafluoroethylene copolymer, or tetrafluoroethylene / hexafluoropropylene copolymer. Solid polymer electrolyte type methanol fuel cell.
【請求項4】陰イオン交換体が、(クロロメチル)スチ
レン/ジビニルベンゼン共重合体または4−ビニルピリ
ジン/ジビニルベンゼン共重合体に、陰イオン交換基が
導入されてなる陰イオン交換体である請求項1、2また
は3記載の固体高分子電解質型メタノール燃料電池。
4. An anion exchanger wherein an anion exchange group is introduced into a (chloromethyl) styrene / divinylbenzene copolymer or a 4-vinylpyridine / divinylbenzene copolymer. The solid polymer electrolyte type methanol fuel cell according to claim 1, 2 or 3.
JP9301046A 1997-10-31 1997-10-31 Solid polyelectrolyte type methanol fuel cell Pending JPH11135137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9301046A JPH11135137A (en) 1997-10-31 1997-10-31 Solid polyelectrolyte type methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9301046A JPH11135137A (en) 1997-10-31 1997-10-31 Solid polyelectrolyte type methanol fuel cell

Publications (1)

Publication Number Publication Date
JPH11135137A true JPH11135137A (en) 1999-05-21

Family

ID=17892218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9301046A Pending JPH11135137A (en) 1997-10-31 1997-10-31 Solid polyelectrolyte type methanol fuel cell

Country Status (1)

Country Link
JP (1) JPH11135137A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
WO2002021619A1 (en) * 2000-09-01 2002-03-14 Hitachi, Ltd. Solid polymer electrolytic fuel cell
JP2002083612A (en) * 2000-09-07 2002-03-22 Takehisa Yamaguchi Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method
JP2002170580A (en) * 2000-11-30 2002-06-14 Tokuyama Corp Diaphragm for solid polymer type fuel battery
WO2004030132A1 (en) * 2002-09-30 2004-04-08 Asahi Glass Company, Limited Electrolyte film, process for producing the same, and solid polymer type fuel cell
WO2006028292A1 (en) * 2004-09-10 2006-03-16 Tokuyama Corporation Separation membrane for fuel battery and process for producing the same
WO2007072842A1 (en) 2005-12-20 2007-06-28 Tokuyama Corporation Electrolyte membrane-electrode membrane assembly for solid polymer fuel cell, process for producing the electrolyte membrane-electrode membrane assembly, and fuel cell comprising the electrolyte membrane-electrode membrane assembly
CN100342574C (en) * 2004-06-30 2007-10-10 三星Sdi株式会社 Polymer electrolyte membrane for fuel cell and method for preparing the same
WO2008004567A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Solid polymer electrolyte membrane and fuel cell
JP2008171620A (en) * 2007-01-10 2008-07-24 Fujitsu Ltd Anion exchange electrolyte composition, solid electrolyte membrane, and fuel cell
WO2008120675A1 (en) 2007-03-30 2008-10-09 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same
WO2008149950A1 (en) 2007-06-05 2008-12-11 Tokuyama Corporation Hydrocarbon elastomer capable of oh type anion exchange, use thereof, and process for producing the same
JP2008300215A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Fuel cell
WO2009025291A1 (en) 2007-08-23 2009-02-26 Tokuyama Corporation Separation membrane for direct liquid fuel cell and method for producing the same
WO2009051101A1 (en) 2007-10-15 2009-04-23 Tokuyama Corporation Separation membrane for fuel cell
WO2009081841A1 (en) 2007-12-21 2009-07-02 Tokuyama Corporation Separation membrane for solid polymer fuel cell and separation membrane-catalyst electrode assembly
WO2009081931A1 (en) 2007-12-25 2009-07-02 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same
WO2009081812A1 (en) 2007-12-21 2009-07-02 Tokuyama Corporation Solid polymer electrolyte fuel cell membrane
WO2009096473A1 (en) 2008-01-29 2009-08-06 Tokuyama Corporation Diaphragm for fuel cell and process for producing the same
WO2010021158A1 (en) * 2008-08-22 2010-02-25 国立大学法人東京工業大学 Oh- conductor and process for producing the oh- conductor
WO2010041641A1 (en) 2008-10-06 2010-04-15 株式会社トクヤマ Method for producing anion exchange membrane for solid polymer electrolyte-type fuel cell
WO2010055889A1 (en) 2008-11-14 2010-05-20 株式会社トクヤマ Anion-exchange membrane and method for producing same
WO2010073753A1 (en) 2008-12-22 2010-07-01 株式会社トクヤマ Separation membrane for fuel cell, and method for production thereof
KR20110014172A (en) 2008-06-05 2011-02-10 가부시키가이샤 도쿠야마 Method for producing ion conductivity-imparting agent for catalyst electrode layer of anion-exchange membrane fuel cell
JP2011138786A (en) * 2011-02-09 2011-07-14 Toshiba Corp Membrane electrode composite, fuel cell using the same, and method for operating the fuel cell
JP2011523178A (en) * 2008-06-04 2011-08-04 セルエラ, インコーポレイテッド Alkaline membrane fuel cell and apparatus and method for supplying water to the same
WO2012032999A1 (en) * 2010-09-08 2012-03-15 シャープ株式会社 Membrane electrode assembly and alkaline fuel cell
JP2012079619A (en) * 2010-10-05 2012-04-19 Tokuyama Corp Barrier membrane for solid polymer fuel cell and production method therefor
US8329766B2 (en) 2005-02-24 2012-12-11 Japan Atomic Energy Agency Functional membrane and production method thereof, and electrolyte membrane for use in fuel cell and production method thereof
JP2013037891A (en) * 2011-08-08 2013-02-21 Tokuyama Corp Catalyst, and direct methanol fuel cell electrode including the same
JP2013186989A (en) * 2012-03-07 2013-09-19 Japan Atomic Energy Agency Anion conducting electrolyte membrane and method for producing the same
US8628889B2 (en) 2008-10-10 2014-01-14 Tokuyama Corporation Operating method of anion-exchange membrane-type fuel cell
WO2014013879A1 (en) 2012-07-20 2014-01-23 株式会社トクヤマ Catalyst layer for anion-exchange membrane fuel cells, membrane-electrode assembly, anion-exchange membrane fuel cell using membrane-electrode assembly, and method for operating anion-exchange membrane fuel cell
WO2014103335A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
WO2014103338A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Method for producing anion exchange membrane, membrane-electrode assembly for fuel cells, and fuel cell
WO2015092883A1 (en) * 2013-12-18 2015-06-25 日新電機 株式会社 Redox flow battery
WO2015166650A1 (en) * 2014-05-01 2015-11-05 日東電工株式会社 Anion exchange membrane having low swelling properties, production method therefor, and fuel cell using same
JP2017107805A (en) * 2015-12-11 2017-06-15 日東電工株式会社 Electrolyte membrane, method of manufacturing the same, and membrane-electrode assembly for fuel cell equipped with electrolyte membrane

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344791B1 (en) 1999-03-08 2008-03-18 Toudai Tlo, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
WO2002021619A1 (en) * 2000-09-01 2002-03-14 Hitachi, Ltd. Solid polymer electrolytic fuel cell
JP2002083612A (en) * 2000-09-07 2002-03-22 Takehisa Yamaguchi Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method
JP2002170580A (en) * 2000-11-30 2002-06-14 Tokuyama Corp Diaphragm for solid polymer type fuel battery
JPWO2004030132A1 (en) * 2002-09-30 2006-01-26 旭硝子株式会社 ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND POLYMER POLYMER FUEL CELL
US7749629B2 (en) 2002-09-30 2010-07-06 Asahi Glass Company, Limited Electrolyte membrane, process for its production and polymer electrolyte fuel cell
WO2004030132A1 (en) * 2002-09-30 2004-04-08 Asahi Glass Company, Limited Electrolyte film, process for producing the same, and solid polymer type fuel cell
JP4857560B2 (en) * 2002-09-30 2012-01-18 旭硝子株式会社 Method for producing electrolyte membrane for polymer electrolyte fuel cell
CN100342574C (en) * 2004-06-30 2007-10-10 三星Sdi株式会社 Polymer electrolyte membrane for fuel cell and method for preparing the same
JP4989226B2 (en) * 2004-09-10 2012-08-01 株式会社トクヤマ Membrane for fuel cell and manufacturing method thereof
JPWO2006028292A1 (en) * 2004-09-10 2008-05-08 株式会社トクヤマ Membrane for fuel cell and manufacturing method thereof
WO2006028292A1 (en) * 2004-09-10 2006-03-16 Tokuyama Corporation Separation membrane for fuel battery and process for producing the same
US7868051B2 (en) 2004-09-10 2011-01-11 Tokuyama Corporation Separation membrane for fuel battery and process for producing the same
US8329766B2 (en) 2005-02-24 2012-12-11 Japan Atomic Energy Agency Functional membrane and production method thereof, and electrolyte membrane for use in fuel cell and production method thereof
WO2007072842A1 (en) 2005-12-20 2007-06-28 Tokuyama Corporation Electrolyte membrane-electrode membrane assembly for solid polymer fuel cell, process for producing the electrolyte membrane-electrode membrane assembly, and fuel cell comprising the electrolyte membrane-electrode membrane assembly
WO2008004567A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Solid polymer electrolyte membrane and fuel cell
JP2008171620A (en) * 2007-01-10 2008-07-24 Fujitsu Ltd Anion exchange electrolyte composition, solid electrolyte membrane, and fuel cell
WO2008120675A1 (en) 2007-03-30 2008-10-09 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same
JP2008300215A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Fuel cell
WO2008149950A1 (en) 2007-06-05 2008-12-11 Tokuyama Corporation Hydrocarbon elastomer capable of oh type anion exchange, use thereof, and process for producing the same
WO2009025291A1 (en) 2007-08-23 2009-02-26 Tokuyama Corporation Separation membrane for direct liquid fuel cell and method for producing the same
US20110250525A1 (en) * 2007-08-23 2011-10-13 Tokuyama Corporation Separation membrane for direct liquid fuel cell and method for producing the same
EP2214240A4 (en) * 2007-10-15 2010-11-10 Tokuyama Corp Separation membrane for fuel cell
JP2009099309A (en) * 2007-10-15 2009-05-07 Tokuyama Corp Separation membrane for fuel cell
WO2009051101A1 (en) 2007-10-15 2009-04-23 Tokuyama Corporation Separation membrane for fuel cell
JPWO2009081841A1 (en) * 2007-12-21 2011-05-06 株式会社トクヤマ Membrane for polymer electrolyte fuel cell, and membrane-catalyst electrode assembly
US8440366B2 (en) 2007-12-21 2013-05-14 Tokuyama Corporation Solid polymer electrolyte fuel cell membrane with anion exchange membrane
KR20100106980A (en) 2007-12-21 2010-10-04 가부시끼가이샤 도꾸야마 Separation membrane for solid polymer fuel cell and separation membrane-catalyst electrode assembly
US9153830B2 (en) 2007-12-21 2015-10-06 Tokuyama Corporation Separation membrane for solid polymer fuel cell and separation membrane-catalyst electrode assembly
WO2009081812A1 (en) 2007-12-21 2009-07-02 Tokuyama Corporation Solid polymer electrolyte fuel cell membrane
WO2009081841A1 (en) 2007-12-21 2009-07-02 Tokuyama Corporation Separation membrane for solid polymer fuel cell and separation membrane-catalyst electrode assembly
JP5301466B2 (en) * 2007-12-21 2013-09-25 株式会社トクヤマ Membrane for polymer electrolyte fuel cell, and membrane-catalyst electrode assembly
WO2009081931A1 (en) 2007-12-25 2009-07-02 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same
WO2009096473A1 (en) 2008-01-29 2009-08-06 Tokuyama Corporation Diaphragm for fuel cell and process for producing the same
JP2011523178A (en) * 2008-06-04 2011-08-04 セルエラ, インコーポレイテッド Alkaline membrane fuel cell and apparatus and method for supplying water to the same
KR20110014172A (en) 2008-06-05 2011-02-10 가부시키가이샤 도쿠야마 Method for producing ion conductivity-imparting agent for catalyst electrode layer of anion-exchange membrane fuel cell
WO2010021158A1 (en) * 2008-08-22 2010-02-25 国立大学法人東京工業大学 Oh- conductor and process for producing the oh- conductor
WO2010041641A1 (en) 2008-10-06 2010-04-15 株式会社トクヤマ Method for producing anion exchange membrane for solid polymer electrolyte-type fuel cell
US8399154B2 (en) 2008-10-06 2013-03-19 Tokuyama Corporation Method for producing an anion-exchange membrane for a solid polymer electrolyte type fuel cell
US8628889B2 (en) 2008-10-10 2014-01-14 Tokuyama Corporation Operating method of anion-exchange membrane-type fuel cell
WO2010055889A1 (en) 2008-11-14 2010-05-20 株式会社トクヤマ Anion-exchange membrane and method for producing same
WO2010073753A1 (en) 2008-12-22 2010-07-01 株式会社トクヤマ Separation membrane for fuel cell, and method for production thereof
WO2012032999A1 (en) * 2010-09-08 2012-03-15 シャープ株式会社 Membrane electrode assembly and alkaline fuel cell
JP2012079619A (en) * 2010-10-05 2012-04-19 Tokuyama Corp Barrier membrane for solid polymer fuel cell and production method therefor
JP2011138786A (en) * 2011-02-09 2011-07-14 Toshiba Corp Membrane electrode composite, fuel cell using the same, and method for operating the fuel cell
JP2013037891A (en) * 2011-08-08 2013-02-21 Tokuyama Corp Catalyst, and direct methanol fuel cell electrode including the same
JP2013186989A (en) * 2012-03-07 2013-09-19 Japan Atomic Energy Agency Anion conducting electrolyte membrane and method for producing the same
WO2014013879A1 (en) 2012-07-20 2014-01-23 株式会社トクヤマ Catalyst layer for anion-exchange membrane fuel cells, membrane-electrode assembly, anion-exchange membrane fuel cell using membrane-electrode assembly, and method for operating anion-exchange membrane fuel cell
WO2014103338A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Method for producing anion exchange membrane, membrane-electrode assembly for fuel cells, and fuel cell
JP2014143197A (en) * 2012-12-28 2014-08-07 Nitto Denko Corp Method for producing anion exchange membrane, membrane-electrode assembly for fuel cell, and fuel cell
WO2014103335A1 (en) * 2012-12-28 2014-07-03 日東電工株式会社 Fuel cell membrane-electrode assembly and method for manufacturing same, and fuel cell
US9620802B2 (en) 2012-12-28 2017-04-11 Nitto Denko Corporation Fuel cell membrane electrode assembly and method for producing the same, and fuel cell
WO2015092883A1 (en) * 2013-12-18 2015-06-25 日新電機 株式会社 Redox flow battery
JPWO2015092883A1 (en) * 2013-12-18 2017-03-16 日新電機株式会社 Redox flow battery
WO2015166650A1 (en) * 2014-05-01 2015-11-05 日東電工株式会社 Anion exchange membrane having low swelling properties, production method therefor, and fuel cell using same
JP2017107805A (en) * 2015-12-11 2017-06-15 日東電工株式会社 Electrolyte membrane, method of manufacturing the same, and membrane-electrode assembly for fuel cell equipped with electrolyte membrane
WO2017098732A1 (en) * 2015-12-11 2017-06-15 日東電工株式会社 Electrolyte membrane, method for producing same, and electrolyte membrane-equipped membrane-electrode assembly for fuel cell
US10637087B2 (en) 2015-12-11 2020-04-28 Nitto Denko Corporation Electrolyte membrane, method for producing the same, and membrane-electrode assembly for fuel cells that includes electrolyte membrane

Similar Documents

Publication Publication Date Title
JPH11135137A (en) Solid polyelectrolyte type methanol fuel cell
US5164060A (en) Ion exchange membrane having increased efficiency in proton exchange processes
US5395705A (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
US5656386A (en) Electrochemical cell with a polymer electrolyte and process for producing these polymer electrolytes
KR101217947B1 (en) Separation Membrane for Fuel Battery and Process for Producing the Same
JP5039563B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE MEMBRANE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL HAVING THE SAME
JP2000331693A (en) Solid polymer type fuel cell
JPH11144745A (en) Solid high molecular electrolyte type methanol fuel cell
WO2007004716A1 (en) Separating membrane for fuel cell
JP2002528867A (en) Method for producing solid polymer electrolyte membrane
JPH11288727A (en) Solid high polymer fuel cell film/electrode junction body
US5302269A (en) Ion exchange membrane/electrode assembly having increased efficiency in proton exchange processes
JP4719796B2 (en) Diaphragm for direct liquid fuel cell
US11970589B2 (en) Composite proton conductive membranes
JPH0620710A (en) Manufacture of gas diffusion electrode for fuel cell
EP0662249B1 (en) Ion exchange membrane having increased efficiency in proton exchange processes
JP2004186120A (en) Solid polymer electrolyte, solid polymer electrolyte membrane, and fuel cell
JP4810726B2 (en) Method for producing solid polymer electrolyte
JPH07296634A (en) Compound electrolytic film
JPH06342667A (en) High molecular type fuel cell
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
US20040209965A1 (en) Process for preparing a solid polymer electrolyte membrane
JPH0750170A (en) Ion exchange membrane for fuel cell, junction body and fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP2001160408A (en) Solid polymer electrolyte fuel cell