WO2008004567A1 - Solid polymer electrolyte membrane and fuel cell - Google Patents

Solid polymer electrolyte membrane and fuel cell Download PDF

Info

Publication number
WO2008004567A1
WO2008004567A1 PCT/JP2007/063343 JP2007063343W WO2008004567A1 WO 2008004567 A1 WO2008004567 A1 WO 2008004567A1 JP 2007063343 W JP2007063343 W JP 2007063343W WO 2008004567 A1 WO2008004567 A1 WO 2008004567A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
electrolyte membrane
solid polymer
monomer
vinyl monomer
Prior art date
Application number
PCT/JP2007/063343
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Kurokawa
Yoshihiro Gocho
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to JP2008523700A priority Critical patent/JPWO2008004567A1/en
Publication of WO2008004567A1 publication Critical patent/WO2008004567A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/06Copolymers with vinyl aromatic monomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid polymer electrolyte membrane and a fuel cell excellent in proton conductivity and methanol permeation blocking properties.
  • PEFC polymer electrolyte fuel cell
  • DMFC direct methanol fuel cell
  • an electrochemical reaction occurs by supplying methanol to the negative electrode side and oxygen or air to the positive electrode side. Is generated.
  • a hydrated perfluorocarbon sulfonic acid (hereinafter referred to as PFS) polymer for example, Nafion [registered trademark]
  • PFS hydrated perfluorocarbon sulfonic acid
  • a hydrated PFS polymer membrane has a high affinity with water, and has a theoretical limit to methanol permeation prevention properties as soon as it permeates methanol.
  • As a means of reducing the methanol crossover of PFS polymer hydrated membranes it is conceivable to combine different materials based on PFS polymer hydrated membranes. However, such a composite significantly reduced the high ionic conductivity of the original PFS polymer hydrated membrane.
  • a naphthyl (registered trademark) membrane is impregnated with arlin to form polyaline, thereby exhibiting the same ionic conductivity as the naphth ion (registered trademark) membrane.
  • the permeation amount of methanol per unit time can be suppressed to about 1 Z3 as compared with a naphthion (registered trademark) membrane (for example, see Patent Document 1).
  • the use of the above membrane as an electrolyte membrane for DMFC is still inadequate in terms of methanol permeation blocking properties.
  • the expensive naphthion (registered trademark) film is further processed, the number of steps becomes complicated and the film becomes more expensive.
  • an acidic monomer is graft-polymerized on a porous membrane (for example, see Patent Document 2), and a matrix monomer, an ion exchange monomer and an alignment monomer are copolymerized (for example, a patent).
  • Reference 3 those in which an acidic or basic monomer is graft-polymerized on a porous membrane and an inorganic filler is further added (for example, see Patent Document 4), those in which a porous membrane is filled with a cation exchange resin (for example, Patent Document 5), and polymers obtained by doping acid with a polymer of acroaminotetrazole or butyrazole (for example, see Patent Document 6) are also disclosed.
  • Non-Patent Document 1 polysilamine was doped with phosphoric acid (see Non-Patent Document 2), polyacrylamide was sulfuric acid, Or phosphoric acid doped (see Non-patent Document 3), Polybenzimidazole doped with phosphoric acid (see Patent Document 7), Sulfony-polyether sulfone with polybenzimidazole added (Non-patent) (Refer to Reference 4.)
  • Non-Patent Document 1 polysilamine was doped with phosphoric acid
  • Patent Document 3 polyacrylamide was sulfuric acid, Or phosphoric acid doped
  • Patent Document 7 Polybenzimidazole doped with phosphoric acid
  • Patent Document 7 Sulfony-polyether sulfone with polybenzimidazole added (Non-patent) (Refer to Reference 4.)
  • there are many problems such as the dopant flowing down and not showing sufficient ionic conductivity.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-81220
  • Patent Document 2 Patent WO00,54351
  • Patent Document 3 Japanese Patent Laid-Open No. 11-302410
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-157862
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2001-135328
  • Patent Document 6 JP-A-2005-71961
  • Patent Document 7 Japanese Patent Publication No. 11-503262
  • Non-Patent Document 2 K. Tsuruhara, M. Rikukawa, K. Sassemble, N. Ogata, Y. Nagasaki, and M. Kato, E lectrochim Acta, 45, 1391 (2000)
  • Non-Patent Document 3 W. Wieczorek and J.R. Stevens, Polymer, 38, 2057 (1997)
  • Non-Patent Document 4 J. Kerrer, A. Ullrich, F. Meier and T. Harig, Solid State Ionics, 125, 243 (19
  • the present invention was made in order to solve the current problems of the PFS polymer hydration film, the PFS modified film, and various electrolyte films as the solid polymer electrolyte film for DMFC as described above.
  • Another object of the present invention is to provide a solid polymer electrolyte membrane excellent in methanol permeation-preventing property while maintaining high proton conductivity, and a fuel cell including the solid polymer electrolyte membrane.
  • the present invention is as follows.
  • At least one of a vinyl monomer having a basic group and a crosslinkable vinyl monomer has an aromatic ring or a heterocyclic ring, and these monomers are impregnated into a polyolefin porous membrane and polymerized, followed by sulfonation.
  • a solid polymer electrolyte membrane obtained by treatment.
  • the solid polymer electrolyte membrane according to the above item 1 which is a vinyl monomer having 2 basic groups and having 2 bullypyridine or 4 vinyl pyridine.
  • the molar ratio of the charge when impregnating the vinyl monomer having a basic group and the crosslinkable vinyl monomer (the number of moles of a bull monomer having a basic group) 2.
  • the polymer electrolyte membrane according to 1 above, wherein the number of moles of monomer) force ranges from 20Z80 to 90Z10.
  • 100 parts by mass of the polyolefin porous membrane contains 30 to L00 parts by mass of a polymer component composed of the basic monomer-containing monomer, the cross-linkable butyl monomer, and the third monomer. 8. The solid polymer electrolyte membrane according to 7 above.
  • a fuel cell comprising the solid polymer electrolyte membrane according to 1 above, and a positive electrode and a negative electrode sandwiching the solid polymer electrolyte membrane.
  • FIG. 1 is a schematic configuration diagram showing an example of a fuel cell using a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane of the present invention is obtained by impregnating a polyolefin porous membrane with a vinyl monomer having a basic group and a crosslinkable butyl monomer, followed by polymerization and then sulfonation treatment. Obtained. At least one of the vinyl monomer having a basic group and the crosslinkable vinyl monomer has an aromatic ring or a heterocyclic ring.
  • Examples of the vinyl monomer having a basic group include acrylamide, arylamine, berylpyrrolidone, belimidazole, aminoacrylamide, belaminosulfone, bilyridine, dimethylaminoethyl (meth) acrylate and beercaprolatatam. , Berylcarbazole, vinyldiaminotriazine, ethyleneimine, and the like that contain a nitrogen atom in the molecule.
  • 2-bulupyridine, 4-bulupyridine or a mixture thereof is preferable.
  • crosslinkable butyl monomer examples include dibutyl benzene, tetraethylene glycol dimetatalylate, methylene bisacrylamide, ethylene glycol dimetatalylate, diethylene glycol dimetatalylate, triethylene glycol dimetatalylate, and nonaethylene.
  • examples include dibule compounds such as glycol dimetatalylate. In particular, dibulene benzene is preferred.
  • At least one of the vinyl monomer having a basic group and the cross-linkable vinyl monomer has an aromatic ring or a heterocyclic ring.
  • a third monomer copolymerizable with these monomers and a solvent may be added as necessary.
  • Examples of the third monomer include styrene, urnaphthalene, sodium acrylamide-butyrylsulfonate, sodium vinylsulfonate, and the like.
  • Examples of the solvent include toluene, xylene, dimethyl sulfoxide, dimethylformamide, alcohols, and the like.
  • a so-called plasticizer can also be used as a solvent.
  • powers such as tributyl acetyl citrate, dibutyl phthalate, dioctyl phthalate, dibutyl adipate, and tributyl daricerol are not limited to these. What is necessary is just to select suitably considering a boiling point, a viscosity, the impregnation property to a polyolefin membrane, etc.
  • the molar ratio of the charge when impregnating the vinyl monomer having a basic group and the crosslinkable vinyl monomer (the number of moles of the bull monomer having a basic group) The number of moles) is preferably in the range of 20/80 to 90/10. By being in the strong range, good film-forming property is shown, and good proton conductivity and excellent methanol permeation-preventing property can be expressed through a sulfone cocoon process described later.
  • the molar ratio is more preferably in the range of 70/30 to 40/60, more preferably in the range of 60Z40 to 50Z50.
  • the ratio of the total number of moles (Q) and the third monomer (Q) to the number of moles (R) of the crosslinkable butyl monomer, that is, (P + Q) ZR is in the range of 20 ⁇ 80 to 90 ⁇ 10, and the base It is preferable that the molar ratio (PZQ) of the butyl monomer having a functional group and the third monomer is in the range of 10Z90 to 99Zl.
  • Copolymerization of a vinyl monomer having a basic group and a crosslinkable butyl monomer can be initiated by heat, light, electron beam, or the like.
  • a radical polymerization initiator, a cationic polymerization initiator or a cation polymerization initiator can be used.
  • a radical polymerization initiator is preferred.
  • peroxide compounds with high hydrogen abstraction ability are used, in addition to the polymerization reaction between the butyl monomer having a basic group and the crosslinkable butyl monomer, a crosslinked structure is also formed with the porous membrane made of polyolefin.
  • a radical initiator for example, an organic peracid salt described in a catalog of Nippon Oil & Fats Co., Ltd. can be used.
  • t-butyl peroxide 2-ethylhexyl carbonate and benzoyl peroxide are preferable.
  • the addition amount of the polymerization initiator depends on the polymerization conditions, but is 0.001 to 10 parts by weight, preferably 0.01 to 5 parts by weight, more preferably 100 parts by weight of the total amount of raw material monomers used. Is 0.05 to 2 parts by weight.
  • the polymerization temperature is 0 ° C to 120 ° C, preferably 20 ° C to 100 ° C, more preferably 30 ° C to 80 ° C. Consider the monomer composition, physical properties of the resulting polymer, process time, etc. And choose as appropriate.
  • polyolefin is used as a raw material for the porous membrane used in the present invention.
  • forces including polyethylene, polypropylene, polystyrene and the like are not limited to these.
  • polyethylene particularly preferably ultrahigh molecular weight polyethylene is used. I can.
  • the weight average molecular weight of the polyolefin is 50,000 or more, preferably 1 million or more, more preferably 5 million or more.
  • the average pore diameter of the porous porous polyolefin membrane used in the present invention is 0.001 to 5 ⁇ m, preferably 0.001 to 1 / ⁇ ⁇ , and more preferably 0.00 to 0.05. It is.
  • the porosity of the polyolefin porous membrane used in the present invention is 20 to 60%, preferably 30 to 50%, more preferably 35 to 45%.
  • the thickness of the porous polyolefin membrane used in the present invention is usually 1 to 300 m, preferably 5 to: LOO ⁇ m, more preferably 10 to 50 ⁇ m.
  • the air permeability of the polyolefin porous membrane used in the present invention is 100 to 900 seconds ZlOOml, preferably 150 to 750 seconds ZlOOml, more preferably 200 to 650 seconds ZlOOml.
  • porous membrane made of polyolefin used in the present invention examples include Hypore (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd., Solpore (registered trademark), Solfil (registered trademark), Mitsui Examples include ESPOAR (registered trademark) manufactured by Gaku Co., Ltd., SETILA (registered trademark) manufactured by TonenGeneral Sekiyu KK, and YUPO (registered trademark) manufactured by YUPO Corporation.
  • the polyolefin porous membrane used in the present invention is preferably hydrophilized prior to impregnation described later!
  • a known method can be applied to the hydrophilization treatment, and the hydrophilization treatment is not limited.
  • the permeability of the raw material monomer to the porous membrane can be further enhanced in the impregnation described later.
  • the polyolefin porous membrane is impregnated with a raw material composition containing a butyl monomer having a basic group, a cross-linkable vinyl monomer, and a polymerization initiator.
  • the impregnation treatment is performed by a known method and is not limited.
  • a porous membrane made of polyolefin is immersed in the raw material composition, and is sandwiched between release films such as PET to remove excess raw material composition.
  • release films such as PET
  • the impregnation treatment is usually performed under normal temperature and normal pressure, but may be performed under pressure or under reduced pressure as necessary.
  • polymerization is performed.
  • the impregnated porous membrane is sandwiched between glass plates through the above release film and polymerized by heating in a nitrogen atmosphere.
  • the polymerization conditions may be appropriately selected in consideration of the type of polymerization initiator and the composition of the raw material composition.
  • the film obtained by polymerization is immersed in a commonly used solvent such as acetone and methanol to remove the solvent and unreacted substances, and then dried.
  • a commonly used solvent such as acetone and methanol
  • sulfonation treatment After drying, sulfonation treatment is performed.
  • a general method using fuming sulfuric acid or black sulfuric acid can be applied to the sulfonation treatment.
  • the rate of weight increase due to sulfonation treatment ((weight of polymer after sulfonation treatment-weight of polymer before sulfonation treatment) Z weight of polymer before sulfonation treatment X 100) is in the range of 10-80% preferable. Within this range, the balance of proton conductivity, methanol permeation blocking property and mechanical strength of the solid polymer electrolyte membrane can be maintained.
  • the weight increase rate due to the sulfonation treatment is more preferably 20 to 70%, particularly preferably 30 to 60%.
  • a solid polymer electrolyte membrane in which an acidic group and a basic group coexist, more specifically, an acidic group and a basic group.
  • a solid polymer membrane can be obtained in which salts are formed within and between molecules of acidic and basic groups.
  • the PFS polymer membrane is a force that requires water to intervene because protons are transferred in the form of hydrogen ions.
  • the Grotthuss Mechanism does not require water between the salts in the electrolyte membrane of the present invention. Protons are thought to be transmitted. Therefore, protons are transferred smoothly between adjacent salts toward the negative electrode and the positive electrode.
  • the salt since the salt has higher affinity with water than methanol, it exhibits excellent methanol permeation-preventing properties. By this action, water generated on the positive electrode side by power generation can be guided to the negative electrode side, and power generation can be continued by supplementing water necessary for the reaction on the negative electrode side. As a result, it is possible to use high-concentration methanol as fuel, which is extremely difficult with conventional PFS polymer membranes.
  • the gas diffusion layer 3 may be provided on the surfaces of the positive electrode 2a and the negative electrode 2b. By this gas diffusion layer 3, gases such as methanol and oxygen used for power generation are diffused and uniformly distributed on the surfaces of the positive electrode 2a and the negative electrode 2b.
  • the proton conductivity of the solid polymer electrolyte membrane of the present invention was measured using an impedance analyzer SI1260 manufactured by Solartron, UK, at 25 ° C and 100% humidity, 3 hours after the sample was mounted in the measurement cell. High frequency impedance measurements were made. Next, the direct current component R was read from the Col Col plot, and the proton conductivity ( ⁇ cm 2 ) was calculated.
  • the methanol permeation rate of the solid polymer electrolyte membrane of the present invention was measured according to the following method.
  • the obtained solid polymer electrolyte membrane was sandwiched in the center of the communication tube, 100 ml of 30% methanol aqueous solution was charged on one side, and 100 ml of ion exchange water on the other side, and immersed in a constant temperature water bath at 40 ° C. After 3 hours, methanol permeating into the water side was quantified by gas chromatography and the methanol permeation rate (mg / cm 2 / min) was calculated.
  • the obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried.
  • the obtained film was a uniform translucent film with no repellent spots.
  • the membrane is then immersed in fuming sulfuric acid (SO concentration: 2 to 3 wt%) and reacted at 60 ° C for 90 minutes.
  • SO concentration 2 to 3 wt%
  • a polyethylene porous membrane that has been hydrophilized by corona discharge treatment (“Hypore N9420G” (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd.) is impregnated with the monomer solution B, sandwiched between PET films, and further sandwiched between glass plates.
  • the reaction was carried out at 80 ° C for 20 hours in a nitrogen atmosphere.
  • the obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried.
  • the obtained film was a uniform translucent film with no repellent spots.
  • the membrane is then immersed in fuming sulfuric acid (SO concentration: 2 to 3 wt%) and reacted at 60 ° C for 90 minutes.
  • SO concentration 2 to 3 wt%
  • the obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried.
  • the obtained film was a uniform translucent film with no repellent spots.
  • the membrane is then immersed in fuming sulfuric acid (SO concentration: 3-4 wt%) and reacted at 70 ° C for 85 minutes.
  • SO concentration 3-4 wt%
  • a polyethylene porous membrane that has been hydrophilized by corona discharge treatment (“Hypore NA635" (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd.) is impregnated with the monomer solution C, sandwiched between PET films, and further sandwiched between glass plates.
  • the reaction was carried out in a nitrogen atmosphere for 20 hours at 80 ° C.
  • the obtained film was a uniform translucent film with no repellency spots.
  • the obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried.
  • the membrane is then immersed in fuming sulfuric acid (SO concentration: 2 to 3 wt%) and reacted at 70 ° C for 30 minutes.
  • SO concentration 2 to 3 wt%
  • the fuel cell assembly kit manufactured by Chemix Co., Ltd. Pem Master PEM— 004DM incorporates the solid polymer electrolyte membrane obtained in Example 1 instead of the naphthion (registered trademark) membrane, and 30% methanol is used as the fuel tank. (Volume: 4 ml). As a result, power was generated until the fuel was exhausted, and the motor was rotated.
  • a negative electrode catalyst prepared by mixing a carbon material carrying a ruthenium monoplatinum catalyst and a perfluorosulfonic acid ion-exchanged resin (manufactured by DuPont, Nafion (registered trademark)) and applying it to a carbon paper.
  • a positive electrode side catalyst layer prepared by mixing a layer, and a carbon material carrying a platinum catalyst and a perfluorosulfonic acid ion exchange resin (manufactured by DuPont, Naphion (registered trademark)) and applying it to carbon paper,
  • a fuel cell was fabricated by sandwiching the solid polymer electrolyte membrane obtained in Example 1 with these two catalyst layers. When the temperature of the fuel cell was kept at 40 ° C., 10% methanol was supplied to the negative electrode side and air was supplied to the positive electrode side, a maximum output of 34 mWZcm 2 was obtained.
  • a carbon paper carrying a ruthenium monoplatinum catalyst and a perfluorosulfonic acid ion-exchanged resin (manufactured by DuPont, Nafion (registered trademark)) solution are mixed to obtain a carbon paper.
  • the produced positive electrode side catalyst layer was produced, and a fuel cell was produced by sandwiching a naphthion 117 (registered trademark) membrane between these two catalyst layers. When the temperature of this fuel cell was kept at 40 ° C., 10% methanol was supplied to the negative electrode side and air was supplied to the positive electrode side, the maximum output llmWZcm 2 was obtained.
  • the solid polymer electrolyte membrane of the present invention has both high proton conductivity and excellent methanol permeation inhibiting properties.
  • the electrolyte membrane is useful for fuel cells such as DMFC and PEFC.
  • the production of the solid polymer electrolyte membrane of the present invention is simple and can be produced at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a solid polymer electrolyte membrane which is excellent in methanol impermeability, while maintaining high proton conductivity. Also disclosed is a fuel cell comprising such a solid polymer electrolyte membrane. Specifically disclosed is a solid polymer electrolyte membrane which is obtained by impregnating a polyolefin porous membrane with a vinyl monomer having a basic group and a crosslinkable vinyl monomer, at least one of which monomers has an aromatic ring or a heterocyclic ring, then polymerizing the monomers, and then subjecting the resulting membrane to a sulfonation treatment. Also specifically disclosed is a fuel cell comprising the solid polymer electrolyte membrane, and a positive electrode and a negative electrode sandwiching the solid polymer electrolyte membrane.

Description

明 細 書  Specification
固体高分子電解質膜および燃料電池  Solid polymer electrolyte membrane and fuel cell
技術分野  Technical field
[0001] 本発明は、プロトン伝導性及びメタノール透過阻止性に優れた固体高分子電解膜 および燃料電池に関する。  TECHNICAL FIELD [0001] The present invention relates to a solid polymer electrolyte membrane and a fuel cell excellent in proton conductivity and methanol permeation blocking properties.
背景技術  Background art
[0002] 近年、次世代型クリーンエネルギー源として燃料電池が重要な地位を占めつつあ る。燃料電池のうち、固体高分子型燃料電池 (以下、 PEFCという)は、固体高分子 電解質膜を挟んでアノード及び力ソードの両電極が配置されたものである。例えば、 燃料としてメタノールが使用される直接メタノール型燃料電池(以下、 DMFCという) の場合、負極側にメタノールを、正極側には酸素または空気を供給することにより電 気化学反応を起こさせて電気を発生させるものである。  In recent years, fuel cells are occupying an important position as next-generation clean energy sources. Among the fuel cells, a polymer electrolyte fuel cell (hereinafter referred to as PEFC) has both an anode and a force sword arranged with a solid polymer electrolyte membrane in between. For example, in the case of a direct methanol fuel cell (hereinafter referred to as DMFC) that uses methanol as the fuel, an electrochemical reaction occurs by supplying methanol to the negative electrode side and oxygen or air to the positive electrode side. Is generated.
[0003] 高出力、高エネルギー密度という特性を保持し、かつ小型で軽量な燃料電池を実 現するために、高!ヽプロトン伝導性を有する固体高分子電解質膜の開発が行なわれ ている。 DMFCに使用される固体高分子電解質膜には、高いイオン伝導性を保持し つつ燃料用メタノールの透過阻止性、すなわち、固体高分子電解質膜のアノード側 力も力ソード側への燃料用メタノールの透過(クロスオーバー)の低減が要求される。  [0003] In order to realize a small and lightweight fuel cell that maintains the characteristics of high output and high energy density, it is high!ヽ Development of solid polymer electrolyte membranes with proton conductivity. The solid polymer electrolyte membrane used in the DMFC has high ionic conductivity while preventing permeation of methanol for fuel, that is, the anode side force of the solid polymer electrolyte membrane is also permeated to the sword side. Reduction of (crossover) is required.
[0004] 従来、パーフルォロカーボンスルホン酸(以下、 PFSという)系高分子(例えばナフィ オン [登録商標])を水和したものが、高いイオン伝導性を有するため、固体高分子電 解質膜として広く使用 '検討されている。し力しながら、水和した PFS系高分子膜は、 水との親和性の高 、メタノールを透過させやすぐメタノール透過阻止性に原理的な 限界を有して 、る。 PFS系高分子水和膜のメタノールのクロスオーバーを低減する手 段として、 PFS系高分子水和膜をベースにして異種材料を複合することが考えられる 。しかし、このような複合は、本来の PFS系高分子水和膜の有する高いイオン伝導性 を著しく低下させるものであった。  [0004] Conventionally, a hydrated perfluorocarbon sulfonic acid (hereinafter referred to as PFS) polymer (for example, Nafion [registered trademark]) has high ionic conductivity, so that a solid polymer electrolyte is used. Widely used as a membrane. However, a hydrated PFS polymer membrane has a high affinity with water, and has a theoretical limit to methanol permeation prevention properties as soon as it permeates methanol. As a means of reducing the methanol crossover of PFS polymer hydrated membranes, it is conceivable to combine different materials based on PFS polymer hydrated membranes. However, such a composite significantly reduced the high ionic conductivity of the original PFS polymer hydrated membrane.
[0005] これらの問題点を解決する方法として、ナフイオン (登録商標)膜にァ-リンを含浸さ せポリア-リンとすることで、ナフイオン (登録商標)膜と同程度のイオン伝導性を示し ながら、ナフイオン (登録商標)膜に比べて単位時間当たりのメタノールの透過量を 1 Z3程度に抑えられることが開示されている(例えば、特許文献 1参照)。しかし、上記 膜を DMFC用電解質膜として使用するには、メタノール透過阻止性の点で未だ不十 分である。また、高価なナフイオン (登録商標)膜に更に加工を加えるため、工程数が 多く煩雑になり一段と高価格な膜となってしまう。 [0005] As a method for solving these problems, a naphthyl (registered trademark) membrane is impregnated with arlin to form polyaline, thereby exhibiting the same ionic conductivity as the naphth ion (registered trademark) membrane. However, it is disclosed that the permeation amount of methanol per unit time can be suppressed to about 1 Z3 as compared with a naphthion (registered trademark) membrane (for example, see Patent Document 1). However, the use of the above membrane as an electrolyte membrane for DMFC is still inadequate in terms of methanol permeation blocking properties. Further, since the expensive naphthion (registered trademark) film is further processed, the number of steps becomes complicated and the film becomes more expensive.
[0006] また、多孔質膜に酸性モノマーをグラフト重合させて 、るもの(例えば、特許文献 2 参照)、マトリックスモノマーとイオン交換系モノマーと配向系モノマーとを共重合させ たもの (例えば、特許文献 3参照)、多孔質膜に酸性または塩基性モノマーをグラフト 重合し更に無機フィラーを添加するもの (例えば、特許文献 4参照)、多孔質膜に陽ィ オン交換樹脂が充填されたもの(例えば、特許文献 5参照)、ァクロアミノテトラゾール やビュルトリァゾールの重合物に酸をドープしたもの(例えば、特許文献 6参照)等も 開示されている。 [0006] In addition, an acidic monomer is graft-polymerized on a porous membrane (for example, see Patent Document 2), and a matrix monomer, an ion exchange monomer and an alignment monomer are copolymerized (for example, a patent). Reference 3), those in which an acidic or basic monomer is graft-polymerized on a porous membrane and an inorganic filler is further added (for example, see Patent Document 4), those in which a porous membrane is filled with a cation exchange resin (for example, Patent Document 5), and polymers obtained by doping acid with a polymer of acroaminotetrazole or butyrazole (for example, see Patent Document 6) are also disclosed.
[0007] これより先に、ポリエチレンィミンに硫酸、またはリン酸をドープした例(非特許文献 1 参照)、ポリシラミンにリン酸をドープしたもの(非特許文献 2参照)、ポリアクリルアミド に硫酸、またはリン酸をドープしたもの(非特許文献 3参照)、ポリべンズイミダゾール にリン酸をドープした例(特許文献 7参照)、スルホンィ匕ポリエーテルスルホンにポリべ ンズイミダゾールを添加したもの(非特許文献 4参照)があるが、ドープ剤が流れ落ち る、十分なイオン伝導性を示さな 、等問題点を多く有して ヽる。  [0007] Prior to this, polyethyleneimine was doped with sulfuric acid or phosphoric acid (see Non-Patent Document 1), polysilamine was doped with phosphoric acid (see Non-Patent Document 2), polyacrylamide was sulfuric acid, Or phosphoric acid doped (see Non-patent Document 3), Polybenzimidazole doped with phosphoric acid (see Patent Document 7), Sulfony-polyether sulfone with polybenzimidazole added (Non-patent) (Refer to Reference 4.) However, there are many problems such as the dopant flowing down and not showing sufficient ionic conductivity.
特許文献 1:特開 2001-81220号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-81220
特許文献 2:特許 WO00,54351  Patent Document 2: Patent WO00,54351
特許文献 3:特開平 11-302410号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-302410
特許文献 4:特開 2003 - 157862号公報  Patent Document 4: Japanese Patent Laid-Open No. 2003-157862
特許文献 5:特開 2001— 135328号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2001-135328
特許文献 6:特開 2005-71961号公報  Patent Document 6: JP-A-2005-71961
特許文献 7:特表平 11― 503262号公報  Patent Document 7: Japanese Patent Publication No. 11-503262
特干文献 1 : D.Schoolmann,O.Trinquent,ana J .-C . Lassegues , Electrochim Acta,j7, 1619(1992)  Special Reference 1: D. Schoolmann, O. Trinquent, ana J.-C. Lassegues, Electrochim Acta, j7, 1619 (1992)
非特許文献 2: K.Tsuruhara,M.Rikukawa,K.Sunui,N.Ogata,Y.Nagasaki,and M.Kato, E lectrochim Acta,45, 1391(2000) Non-Patent Document 2: K. Tsuruhara, M. Rikukawa, K. Sunui, N. Ogata, Y. Nagasaki, and M. Kato, E lectrochim Acta, 45, 1391 (2000)
非特許文献 3 :W.Wieczorek and J.R.Stevens, Polymer,38,2057(1997)  Non-Patent Document 3: W. Wieczorek and J.R. Stevens, Polymer, 38, 2057 (1997)
非特許文献 4 :J.Kerrer,A.Ullrich,F.Meier and T.Harig, Solid State Ionics, 125,243(19 Non-Patent Document 4: J. Kerrer, A. Ullrich, F. Meier and T. Harig, Solid State Ionics, 125, 243 (19
99) 99)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上述のような DMFC用固体高分子電解質膜としての PFS系高分子水 和膜、 PFS改質膜、及び各種電解質膜の現状問題点を解決するためになされたも のであり、高いプロトン伝導性を保持しつつ、メタノール透過阻止性に優れた固体高 分子電解質膜および該固体高分子電解質膜を具備する燃料電池を提供することを 目的とする。 [0008] The present invention was made in order to solve the current problems of the PFS polymer hydration film, the PFS modified film, and various electrolyte films as the solid polymer electrolyte film for DMFC as described above. Another object of the present invention is to provide a solid polymer electrolyte membrane excellent in methanol permeation-preventing property while maintaining high proton conductivity, and a fuel cell including the solid polymer electrolyte membrane.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは上記課題にっ ヽて鋭意研究した結果、塩基性基を有するビニルモノ マーと架橋性ビニルモノマーとを、ポリオレフイン製多孔質膜に含浸後重合し、更に スルホン酸基(一 SO H)を導入することによって得られる固体高分子電解質膜が、 [0009] As a result of intensive studies on the above problems, the present inventors have impregnated a porous monomer made of polyolefin with a vinyl monomer having a basic group and a crosslinkable vinyl monomer, followed by polymerization. (1) SO H) to obtain a solid polymer electrolyte membrane,
3  Three
高いイオン伝導性を保持しつつメタノール透過阻止性を改善することを見出し本発 明に至った。すなわち本発明は、以下のとおりである。  The inventors have found that the methanol permeation-preventing property can be improved while maintaining high ionic conductivity, leading to the present invention. That is, the present invention is as follows.
[0010] 1. 塩基性基を有するビニルモノマーおよび架橋性ビニルモノマーの少なくともいず れかが芳香環または複素環を有し、これらのモノマーをポリオレフイン製多孔質膜に 含浸させ重合した後スルホン化処理して得られる固体高分子電解質膜。 [0010] 1. At least one of a vinyl monomer having a basic group and a crosslinkable vinyl monomer has an aromatic ring or a heterocyclic ring, and these monomers are impregnated into a polyolefin porous membrane and polymerized, followed by sulfonation. A solid polymer electrolyte membrane obtained by treatment.
2. 前記塩基性基を有するビニルモノマー力 2 ビュルピリジン又は 4 ビニルピリ ジンである上記 1記載の固体高分子電解質膜。  2. The solid polymer electrolyte membrane according to the above item 1, which is a vinyl monomer having 2 basic groups and having 2 bullypyridine or 4 vinyl pyridine.
3. 前記架橋性ビュルモノマーが、ジビニルイ匕合物である上記 1記載の固体高分子 電解質膜。  3. The solid polymer electrolyte membrane according to 1 above, wherein the crosslinkable bull monomer is a divinyl compound.
4. 前記ジビニル化合物が、ジビュルベンゼンである上記 3記載の固体高分子電解 質膜。  4. The solid polymer electrolyte membrane as described in 3 above, wherein the divinyl compound is dibutenebenzene.
5. 前記塩基性基を有するビニルモノマーと前記架橋性ビニルモノマーとを含浸す る際の仕込みのモル比(塩基性基を有するビュルモノマーのモル数 Z架橋性ビュル モノマーのモル数)力 20Z80〜90Z10の範囲である上記 1記載の固体高分子電 解質膜。 5. The molar ratio of the charge when impregnating the vinyl monomer having a basic group and the crosslinkable vinyl monomer (the number of moles of a bull monomer having a basic group) 2. The polymer electrolyte membrane according to 1 above, wherein the number of moles of monomer) force ranges from 20Z80 to 90Z10.
6. 前記スルホンィ匕処理による重量増加率が 10〜80%の範囲である上記 1記載の 固体高分子電解質膜。  6. The solid polymer electrolyte membrane according to 1 above, wherein the weight increase rate due to the sulfonating treatment is in the range of 10 to 80%.
7. 前記塩基性基を有するビニルモノマーと前記架橋性ビニルモノマーとを含浸す る際に、さらに、これらモノマーと共重合可能な第 3のモノマーをカ卩えてなる上記 1に 記載の固体高分子電解質膜。  7. The solid polymer according to 1 above, wherein, when impregnating the vinyl monomer having a basic group and the crosslinkable vinyl monomer, a third monomer copolymerizable with these monomers is further included. Electrolyte membrane.
8. 前記第 3のモノマーが、スチレン、ビュルナフタレン、アクリルアミド -t-ブチルス ルホン酸ナトリウム、およびビュルスルホン酸ナトリウムの少なくともいずれ力からなる 上記 7に記載の固体高分子電解質膜。  8. The solid polymer electrolyte membrane according to 7 above, wherein the third monomer is composed of at least any one of styrene, bullnaphthalene, acrylamide-sodium t-butylsulfonate, and sodium bulesulfonate.
9. 前記ポリオレフイン製多孔質膜がポリエチレン製多孔質膜である上記 1記載の固 体高分子電解質膜。  9. The solid polymer electrolyte membrane according to 1 above, wherein the polyolefin porous membrane is a polyethylene porous membrane.
10. 前記ポリオレフイン製多孔質膜が親水化処理されたものである上記 1または上 記 9に記載の固体高分子電解質膜。  10. The solid polymer electrolyte membrane according to 1 or 9 above, wherein the polyolefin porous membrane is hydrophilized.
11. 前記ポリオレフイン製多孔質膜 100質量部に対し、前記塩基性基を有するビ- ルモノマーと前記架橋性ビュルモノマーとからなるポリマー成分が 30〜100質量部 含有されてなる上記 1に記載の固体高分子電解質膜。  11. The solid according to 1 above, wherein the polymer component comprising the beryl monomer having a basic group and the crosslinkable butyl monomer is contained in an amount of 30 to 100 parts by mass with respect to 100 parts by mass of the polyolefin porous membrane. Polymer electrolyte membrane.
12. 前記ポリオレフイン製多孔質膜 100質量部に対し、前記塩基性基を有するビ- ルモノマーと前記架橋性ビュルモノマーと前記第 3のモノマーとからなるポリマー成 分が 30〜: L00質量部含有されてなる上記 7に記載の固体高分子電解質膜。  12. 100 parts by mass of the polyolefin porous membrane contains 30 to L00 parts by mass of a polymer component composed of the basic monomer-containing monomer, the cross-linkable butyl monomer, and the third monomer. 8. The solid polymer electrolyte membrane according to 7 above.
13. 上記 1記載の固体高分子電解質膜と、該固体高分子電解質膜を挟む正極及 び負極とを備える燃料電池。  13. A fuel cell comprising the solid polymer electrolyte membrane according to 1 above, and a positive electrode and a negative electrode sandwiching the solid polymer electrolyte membrane.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]固体高分子電解質膜を用いた燃料電池の一例を示す構成概略図である。  FIG. 1 is a schematic configuration diagram showing an example of a fuel cell using a solid polymer electrolyte membrane.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] (固体高分子電解質膜)  [0012] (Polymer electrolyte membrane)
本発明の固体高分子電解質膜は、ポリオレフイン製多孔質膜に、塩基性基を有す るビニルモノマーと架橋性ビュルモノマーとを含浸させ重合した後スルホン化処理し て得られる。上記塩基性基を有するビニルモノマーおよび架橋性ビニルモノマーの 少なくとも ヽずれかは、芳香環または複素環を有して 、る。 The solid polymer electrolyte membrane of the present invention is obtained by impregnating a polyolefin porous membrane with a vinyl monomer having a basic group and a crosslinkable butyl monomer, followed by polymerization and then sulfonation treatment. Obtained. At least one of the vinyl monomer having a basic group and the crosslinkable vinyl monomer has an aromatic ring or a heterocyclic ring.
[0013] 塩基性基を有するビニルモノマーとしては、例えば、アクリルアミド、ァリルァミン、ビ -ルピロリドン、ビュルイミダゾール、アミノアクリルアミド、ビュルアミノスルホン、ビ- ルビリジン、ジメチルアミノエチル (メタ)アタリレート、ビ-ルカプロラタタム、ビ-ルカ ルバゾール、ビニルジアミノトリアジン、エチレンイミン等分子内に窒素原子を含有す るものが挙げられる。特に 2 ビュルピリジン、 4 ビュルピリジンまたはこれらの混合 物が好ましい。  [0013] Examples of the vinyl monomer having a basic group include acrylamide, arylamine, berylpyrrolidone, belimidazole, aminoacrylamide, belaminosulfone, bilyridine, dimethylaminoethyl (meth) acrylate and beercaprolatatam. , Berylcarbazole, vinyldiaminotriazine, ethyleneimine, and the like that contain a nitrogen atom in the molecule. In particular, 2-bulupyridine, 4-bulupyridine or a mixture thereof is preferable.
[0014] 架橋性ビュルモノマーとしては、例えば、ジビュルベンゼン、テトラエチレングリコー ルジメタタリレート、メチレンビスアクリルアミド、エチレングリコールジメタタリレート、ジ エチレングリコールジメタタリレート、トリエチレングリコールジメタタリレート、ノナェチレ ングリコールジメタタリレート等のジビュル化合物が挙げられる。特にジビュルべンゼ ンが好ましい。  [0014] Examples of the crosslinkable butyl monomer include dibutyl benzene, tetraethylene glycol dimetatalylate, methylene bisacrylamide, ethylene glycol dimetatalylate, diethylene glycol dimetatalylate, triethylene glycol dimetatalylate, and nonaethylene. Examples include dibule compounds such as glycol dimetatalylate. In particular, dibulene benzene is preferred.
なお、塩基性基を有するビニルモノマーおよび架橋性ビニルモノマーの少なくとも いずれかは、芳香環または複素環を有するものとする。  Note that at least one of the vinyl monomer having a basic group and the cross-linkable vinyl monomer has an aromatic ring or a heterocyclic ring.
[0015] 上記した塩基性基を有するビニルモノマーおよび架橋性ビニルモノマー以外にも 必要に応じて、これらモノマーと共重合可能な第 3のモノマー、溶媒 (可塑剤を含む) を加えてもよい。 In addition to the vinyl monomer having a basic group and the crosslinkable vinyl monomer, a third monomer copolymerizable with these monomers and a solvent (including a plasticizer) may be added as necessary.
[0016] 第 3のモノマーとしては、例えば、スチレン、ビュルナフタレン、アクリルアミド- -ブ チルスルホン酸ナトリウム、ビニルスルホン酸ナトリウム等が挙げられる。  [0016] Examples of the third monomer include styrene, urnaphthalene, sodium acrylamide-butyrylsulfonate, sodium vinylsulfonate, and the like.
[0017] 溶媒としては、例えば、トルエン、キシレン、ジメチルスルホキシド、ジメチルホルムァ ミド、アルコール類等が挙げられる。  [0017] Examples of the solvent include toluene, xylene, dimethyl sulfoxide, dimethylformamide, alcohols, and the like.
[0018] また、本発明においては、溶媒としていわゆる可塑剤を用いることもできる。例えば 、ァセチルクェン酸トリブチル、ジブチルフタレート、ジォクチルフタレート、ジブチル アジペート、トリブチルダリセロール等が挙げられる力 これらに限定されるものではな い。沸点、粘度、ポリオレフイン膜への含浸性等を考慮して適宜選択すればよい。  In the present invention, a so-called plasticizer can also be used as a solvent. For example, powers such as tributyl acetyl citrate, dibutyl phthalate, dioctyl phthalate, dibutyl adipate, and tributyl daricerol are not limited to these. What is necessary is just to select suitably considering a boiling point, a viscosity, the impregnation property to a polyolefin membrane, etc.
[0019] 塩基性基を有するビニルモノマーと、架橋性ビニルモノマーとを含浸する際の仕込 みのモル比(塩基性基を有するビュルモノマーのモル数 Z架橋性ビュルモノマーの モル数)が 20/80〜90/10の範囲にあることが好ましい。力かる範囲にあることで、 良好な製膜性が示され、後述するスルホンィ匕工程を経ることにより良好なプロトン伝 導性と優れたメタノール透過阻止性を発現させることができる。上記モル比は、 70/ 30〜40/60の範囲であることがより好ましぐ 60Z40〜50Z50の範囲であること 力 Sさらに好ましい。 [0019] The molar ratio of the charge when impregnating the vinyl monomer having a basic group and the crosslinkable vinyl monomer (the number of moles of the bull monomer having a basic group) The number of moles) is preferably in the range of 20/80 to 90/10. By being in the strong range, good film-forming property is shown, and good proton conductivity and excellent methanol permeation-preventing property can be expressed through a sulfone cocoon process described later. The molar ratio is more preferably in the range of 70/30 to 40/60, more preferably in the range of 60Z40 to 50Z50.
[0020] 上記第 3のモノマーを加える場合には、塩基性基を有するビュルモノマーのモル数  [0020] When the third monomer is added, the number of moles of butyl monomer having a basic group
(Ρ)および第 3のモノマーのモル数(Q)の合計と、架橋性ビュルモノマーのモル数 ( R)との比、すなわち(P + Q) ZRが 20Ζ80〜90Ζ10の範囲で、かつ、塩基性基を 有するビュルモノマーと第 3のモノマーのモル比(PZQ)が 10Z90〜99Zlの範囲 にあることが好ましい。  The ratio of the total number of moles (Q) and the third monomer (Q) to the number of moles (R) of the crosslinkable butyl monomer, that is, (P + Q) ZR is in the range of 20Ζ80 to 90Ζ10, and the base It is preferable that the molar ratio (PZQ) of the butyl monomer having a functional group and the third monomer is in the range of 10Z90 to 99Zl.
[0021] 塩基性基を有するビニルモノマーと架橋性ビュルモノマーとの共重合は、熱、光、 電子線等により開始することができる。熱による重合の場合は、ラジカル重合開始剤 、カチオン重合開始剤又はァ-オン重合開始剤が使用できる。好ましくはラジカル重 合開始剤である。特に、水素引抜能の高いパーオキサイドィ匕合物を用いると、塩基 性基を有するビュルモノマーと架橋性ビュルモノマーとの間での重合反応に加え、ポ リオレフイン製多孔質膜とも架橋構造を形成するため、得られる固体高分子電解質膜 の強度及び耐久性が向上し好ましい。このようなラジカル開始剤としては、例えば、 日本油脂株式会社のカタログ記載の有機過酸ィ匕物等が使用できる。特に t ブチル パーォキシ 2—ェチルへキシルカーボネート、ベンゾィルパーオキサイドが好適で ある。  [0021] Copolymerization of a vinyl monomer having a basic group and a crosslinkable butyl monomer can be initiated by heat, light, electron beam, or the like. In the case of polymerization by heat, a radical polymerization initiator, a cationic polymerization initiator or a cation polymerization initiator can be used. A radical polymerization initiator is preferred. In particular, when peroxide compounds with high hydrogen abstraction ability are used, in addition to the polymerization reaction between the butyl monomer having a basic group and the crosslinkable butyl monomer, a crosslinked structure is also formed with the porous membrane made of polyolefin. Therefore, the strength and durability of the obtained solid polymer electrolyte membrane are improved, which is preferable. As such a radical initiator, for example, an organic peracid salt described in a catalog of Nippon Oil & Fats Co., Ltd. can be used. In particular, t-butyl peroxide 2-ethylhexyl carbonate and benzoyl peroxide are preferable.
[0022] 重合開始剤の添加量は重合条件にもよるが、用いる原料モノマーの合計量 100重 量部に対して 0. 001〜 10重量部、好ましくは 0. 01〜5重量部、さらに好ましくは 0. 05〜2重量部である。重合温度は、 0°C〜120°C、好ましくは 20°C〜100°C、さらに 好ましくは 30°C〜80°Cである力 モノマー組成、得られる重合物の物性、工程時間 等を考慮して適宜選択すればょ ヽ。  [0022] The addition amount of the polymerization initiator depends on the polymerization conditions, but is 0.001 to 10 parts by weight, preferably 0.01 to 5 parts by weight, more preferably 100 parts by weight of the total amount of raw material monomers used. Is 0.05 to 2 parts by weight. The polymerization temperature is 0 ° C to 120 ° C, preferably 20 ° C to 100 ° C, more preferably 30 ° C to 80 ° C. Consider the monomer composition, physical properties of the resulting polymer, process time, etc. And choose as appropriate.
[0023] 本発明にお 、て用いる多孔質膜の原料榭脂としては、ポリオレフインが用いられる。  In the present invention, polyolefin is used as a raw material for the porous membrane used in the present invention.
具体的には、ポリエチレン、ポリプロピレン、ポリスチレン等が挙げられる力 これらに 限定されない。好ましくはポリエチレン、特に好ましくは超高分子量ポリエチレンが用 いられる。 Specifically, forces including polyethylene, polypropylene, polystyrene and the like are not limited to these. Preferably polyethylene, particularly preferably ultrahigh molecular weight polyethylene is used. I can.
[0024] ポリオレフインの重量平均分子量は、 5万以上、好ましくは 100万以上、より好ましく は 500万以上である。  [0024] The weight average molecular weight of the polyolefin is 50,000 or more, preferably 1 million or more, more preferably 5 million or more.
[0025] 本発明で用いるポリオレフイン製多孔質膜の孔の平均孔径は 0. 001-5 μ m、好 ましく ίま 0. 01〜1 /ζ πι、より好ましく ίま 0. 05〜0. である。  [0025] The average pore diameter of the porous porous polyolefin membrane used in the present invention is 0.001 to 5 μm, preferably 0.001 to 1 / ζ πι, and more preferably 0.00 to 0.05. It is.
[0026] 本発明で用いるポリオレフイン製多孔質膜の空隙率は 20〜60%、好ましくは 30〜 50%、より好ましくは 35〜45%である。  [0026] The porosity of the polyolefin porous membrane used in the present invention is 20 to 60%, preferably 30 to 50%, more preferably 35 to 45%.
[0027] 本発明で用いるポリオレフイン製多孔質膜の厚みは、通常 1〜300 m、好ましくは 5〜: LOO μ m、より好ましくは 10〜50 μ mである。  [0027] The thickness of the porous polyolefin membrane used in the present invention is usually 1 to 300 m, preferably 5 to: LOO μm, more preferably 10 to 50 μm.
[0028] 本発明で用いるポリオレフイン製多孔質膜の透気度は、 100〜900秒 ZlOOml、 好ましくは 150〜 750秒 Z 1 OOml、より好ましくは 200〜650秒 Z 1 OOmlである。  [0028] The air permeability of the polyolefin porous membrane used in the present invention is 100 to 900 seconds ZlOOml, preferably 150 to 750 seconds ZlOOml, more preferably 200 to 650 seconds ZlOOml.
[0029] 本発明で用いるポリオレフイン製多孔質膜としては、例えば、旭化成ケミカルズ株式 会社製のハイポア (登録商標)、帝人ソルフィル株式会社製のソルポア (登録商標)、 ソルフィル (登録商標)、三井ィ匕学株式会社製のエスポアール (登録商標)、東燃ゼネ ラル石油株式会社製のセティーラ (登録商標)、ュポ 'コーポレーション製のュポ (登 録商標)等が挙げられる。  [0029] Examples of the porous membrane made of polyolefin used in the present invention include Hypore (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd., Solpore (registered trademark), Solfil (registered trademark), Mitsui Examples include ESPOAR (registered trademark) manufactured by Gaku Co., Ltd., SETILA (registered trademark) manufactured by TonenGeneral Sekiyu KK, and YUPO (registered trademark) manufactured by YUPO Corporation.
[0030] また、本発明で用いるポリオレフイン製多孔質膜は後述する含浸に先立ち、親水化 処理が施されて!/、ることが好ま 、。親水化処理は公知の方法が適用でき限定され ないが、例えば、コロナ放電処理、プラズマ照射処理、硫酸処理等により親水化でき る。こうした親水化処理により後述する含浸において、原料モノマーの多孔質膜への 浸透性を一層高めることができる。  [0030] In addition, the polyolefin porous membrane used in the present invention is preferably hydrophilized prior to impregnation described later! A known method can be applied to the hydrophilization treatment, and the hydrophilization treatment is not limited. By such a hydrophilization treatment, the permeability of the raw material monomer to the porous membrane can be further enhanced in the impregnation described later.
[0031] 上記ポリオレフイン製多孔質膜に、塩基性基を有するビュルモノマー、架橋性ビ- ルモノマー、重合開始剤を含む原料組成物を含浸する。含浸処理は公知の方法に より行なわれ限定されない。例えば、上記原料組成物にポリオレフイン製多孔質膜を 浸漬し、 PET等の離型フィルム等に挟んでカゝら余分の原料組成物を除去する。例え ば、ローラー等をかけることにより余分の原料糸且成物の除去と同時に必要十分量の 原料組成液を多孔質膜の細部にまで充填できる。含浸処理は通常、常温常圧下で 行なうが、必要に応じて加圧下又は減圧下で行なってもよい。 [0032] 含浸処理後、重合を行なう。含浸処理した多孔質膜を上記の離型フィルムを介して ガラス板に挟み、窒素雰囲気下で加熱重合する。重合条件は重合開始剤の種類や 上記原料組成物の組成を考慮して適宜選択すれば良い。 [0031] The polyolefin porous membrane is impregnated with a raw material composition containing a butyl monomer having a basic group, a cross-linkable vinyl monomer, and a polymerization initiator. The impregnation treatment is performed by a known method and is not limited. For example, a porous membrane made of polyolefin is immersed in the raw material composition, and is sandwiched between release films such as PET to remove excess raw material composition. For example, by applying a roller or the like, it is possible to fill the details of the porous membrane with a necessary and sufficient amount of the raw material composition liquid at the same time as the removal of excess raw material yarns and components. The impregnation treatment is usually performed under normal temperature and normal pressure, but may be performed under pressure or under reduced pressure as necessary. [0032] After the impregnation treatment, polymerization is performed. The impregnated porous membrane is sandwiched between glass plates through the above release film and polymerized by heating in a nitrogen atmosphere. The polymerization conditions may be appropriately selected in consideration of the type of polymerization initiator and the composition of the raw material composition.
[0033] 重合して得られた膜は、アセトン、メタノール等の一般的に使用される溶剤に浸漬し て溶媒や未反応物を除去した後、乾燥する。 [0033] The film obtained by polymerization is immersed in a commonly used solvent such as acetone and methanol to remove the solvent and unreacted substances, and then dried.
[0034] 乾燥後、スルホン化処理を行なう。スルホン化処理には発煙硫酸やクロ口硫酸等を 用いる一般的な方法が適用できる。スルホンィ匕処理による重量増加率((スルホンィ匕 処理後の重合体の重量ースルホン化処理前の重合体の重量) Zスルホン化処理前 の重合体の重量 X 100)は、 10〜80%の範囲が好ましい。この範囲内であれば、固 体高分子電解質膜のプロトン伝導性、メタノール透過阻止性及び機械的強度のバラ ンスを保つことができる。スルホン化処理による重量増加率はより好ましくは 20〜70 %、特に好ましくは 30〜60%の範囲である。 [0034] After drying, sulfonation treatment is performed. A general method using fuming sulfuric acid or black sulfuric acid can be applied to the sulfonation treatment. The rate of weight increase due to sulfonation treatment ((weight of polymer after sulfonation treatment-weight of polymer before sulfonation treatment) Z weight of polymer before sulfonation treatment X 100) is in the range of 10-80% preferable. Within this range, the balance of proton conductivity, methanol permeation blocking property and mechanical strength of the solid polymer electrolyte membrane can be maintained. The weight increase rate due to the sulfonation treatment is more preferably 20 to 70%, particularly preferably 30 to 60%.
[0035] 上記スルホン化処理により塩基性基を有する重合体中にスルホン酸基が導入され るため、酸性基と塩基性基とが共存する固体高分子電解質膜、より詳しくは酸性基と 塩基性基とが共存するため酸性基と塩基性基による分子内、分子間で塩を形成した 固体高分子膜が得られる。 PFS系高分子膜は、ヒドロ-ゥムイオンの形でプロトンが 伝達されるために水の介在を必須とする力 本発明の電解質膜中の塩同士では水を 必要としないグロットス機構(Grotthuss Mechanism)によってプロトンが伝達されると考 えられる。従って、隣接する塩間でプロトンの伝達が負極力 正極に向かってスムー ズに行なわれる。また、該塩はメタノールよりも水との親和性が高いため優れたメタノ ール透過阻止性を発現する。この作用により、発電によって正極側で発生した水を 負極側に導き、負極側の反応で必要な水を補って発電を継続することができる。その 結果、これまでの PFS系高分子膜では極めて困難である高濃度メタノールを燃料と して使用することが可能となる。  [0035] Since a sulfonic acid group is introduced into the polymer having a basic group by the sulfonation treatment, a solid polymer electrolyte membrane in which an acidic group and a basic group coexist, more specifically, an acidic group and a basic group. As a result, a solid polymer membrane can be obtained in which salts are formed within and between molecules of acidic and basic groups. The PFS polymer membrane is a force that requires water to intervene because protons are transferred in the form of hydrogen ions. The Grotthuss Mechanism does not require water between the salts in the electrolyte membrane of the present invention. Protons are thought to be transmitted. Therefore, protons are transferred smoothly between adjacent salts toward the negative electrode and the positive electrode. Further, since the salt has higher affinity with water than methanol, it exhibits excellent methanol permeation-preventing properties. By this action, water generated on the positive electrode side by power generation can be guided to the negative electrode side, and power generation can be continued by supplementing water necessary for the reaction on the negative electrode side. As a result, it is possible to use high-concentration methanol as fuel, which is extremely difficult with conventional PFS polymer membranes.
[0036] 上記のようにして、プロトン伝導度(25°C)がナフイオン (登録商標)と同程度の固体 高分子電解質膜を得ることができる。  [0036] As described above, a solid polymer electrolyte membrane having proton conductivity (25 ° C) similar to that of naphthion (registered trademark) can be obtained.
[0037] また、メタノール透過速度(40°C、 30%メタノール水溶液)力 ¾mgZcm2Zmin以 下の固体高分子電解質膜を得ることができる。 [0038] (燃料電池) [0037] In addition, a solid polymer electrolyte membrane having a methanol permeation rate (40 ° C, 30% aqueous methanol solution) power of ¾ mgZcm 2 Zmin or less can be obtained. [0038] (Fuel cell)
図 1に示すように、本発明の固体高分子電解質膜 1を、正極 2aおよび負極 2bとで 挟むことにより、高いイオン伝導性を保持しつつ、メタノール透過阻止性に優れた燃 料電池が得られる。また、正極 2aおよび負極 2bの表面には、ガス拡散層 3を設けて もよい。このガス拡散層 3により、発電に使用されるメタノール、酸素等のガスが、正極 2aおよび負極 2bの表面において拡散されて均一に分布する。  As shown in FIG. 1, by sandwiching the solid polymer electrolyte membrane 1 of the present invention between the positive electrode 2a and the negative electrode 2b, a fuel cell excellent in methanol permeation-preventing property while maintaining high ionic conductivity is obtained. It is done. Further, the gas diffusion layer 3 may be provided on the surfaces of the positive electrode 2a and the negative electrode 2b. By this gas diffusion layer 3, gases such as methanol and oxygen used for power generation are diffused and uniformly distributed on the surfaces of the positive electrode 2a and the negative electrode 2b.
[0039] 以下に実施例を挙げて本発明を更に具体的に説明する力 本発明はこれら実施 例により限定されるものではない。プロトン伝導度及びメタノール透過速度の測定に ついては、次のようにして行なった。  [0039] The ability to describe the present invention more specifically with reference to the following examples The present invention is not limited to these examples. Measurement of proton conductivity and methanol permeation rate was performed as follows.
[0040] (プロトン伝導度測定)  [0040] (Proton conductivity measurement)
本発明の固体高分子電解質膜のプロトン伝導度の測定は、英国ソーラトロン社製 のインピーダンスアナライザー SI1260型を用い、 25°C、湿度 100%で、試料を測定 用セルに装着してから 3時間後に高周波インピーダンス測定を行なった。次に、 Col Colプロットより直流成分 Rを読み取り、プロトン伝導度( Ω cm2)を算出した。 The proton conductivity of the solid polymer electrolyte membrane of the present invention was measured using an impedance analyzer SI1260 manufactured by Solartron, UK, at 25 ° C and 100% humidity, 3 hours after the sample was mounted in the measurement cell. High frequency impedance measurements were made. Next, the direct current component R was read from the Col Col plot, and the proton conductivity (Ωcm 2 ) was calculated.
[0041] (メタノール透過速度測定)  [0041] (Measurement of methanol permeation rate)
本発明の固体高分子電解質膜のメタノール透過速度の測定は、次のような方法に 従った。得られた固体高分子電解質膜を連通管の中央に挟み、片方に 30%メタノー ル水溶液 100mlを、もう片方にイオン交換水 100mlを仕込み、 40°Cの恒温水槽に 浸した。 3時間経過後、水側に浸透してくるメタノールをガスクロマトグラフにより定量 し、メタノール透過速度(mg/cm2/min)を算出した。 The methanol permeation rate of the solid polymer electrolyte membrane of the present invention was measured according to the following method. The obtained solid polymer electrolyte membrane was sandwiched in the center of the communication tube, 100 ml of 30% methanol aqueous solution was charged on one side, and 100 ml of ion exchange water on the other side, and immersed in a constant temperature water bath at 40 ° C. After 3 hours, methanol permeating into the water side was quantified by gas chromatography and the methanol permeation rate (mg / cm 2 / min) was calculated.
[0042] (実施例 1)  [Example 1]
2 ビュルピリジン 31. 53g (0. 3mol)、 55%-ジビュルベンゼン(溶剤:混合キシレ ン) 47. 35g (0. 2mol)と t—ブチルパーォキシ—2 ェチルへキシルカーボネート 2 . 87g (0. 012mol)【こ セチノレクェン酸トリブチノレ 11. 83gをカ卩免均一【こした。これ をモノマー溶液 Aと呼ぶ。  2 Butylpyridine 31. 53 g (0.3 mol), 55% -dibutenebenzene (solvent: mixed xylene) 47. 35 g (0.2 mol) and t-butylperoxy-2-ethylhexyl carbonate 2.87 g (0.012 mol) ) 【This cetinolequenate tribubutinole 11. 83g was uniformly removed. This is called monomer solution A.
予めコロナ放電処理によって親水化しておいたポリエチレン製多孔質膜 (旭化成ケ ミカルズ株式会社"ハイポア N9420G" (登録商標)にモノマー溶液 Aを含浸させ、 P ETフィルムで挟み、更にガラス板で挟んで、窒素雰囲気下、 80°Cで 20時間反応さ せた。 Polyethylene porous membrane (Asahi Kasei Chemicals Co., Ltd. “Hypore N9420G” (registered trademark)) impregnated with monomer solution A, hydrophilicized beforehand by corona discharge treatment, sandwiched between PET films, and further sandwiched between glass plates, Reacted at 80 ° C for 20 hours under nitrogen atmosphere Let
得られた膜をアセトンに浸漬して未反応物やァセチルクェン酸トリブチル、キシレン 等を除き、その後十分乾燥させた。得られた膜はハジキゃ斑が見られず、均一な半 透明膜であった。  The obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried. The obtained film was a uniform translucent film with no repellent spots.
次にこの膜を、発煙硫酸 (SO濃度: 2〜3wt%)に浸漬し、 60°Cで 90分間反応さ  The membrane is then immersed in fuming sulfuric acid (SO concentration: 2 to 3 wt%) and reacted at 60 ° C for 90 minutes.
3  Three
せた。得られた膜に付着した硫酸を水で良く洗浄した。光沢のある黒褐色の膜が得ら れた。このスルホンィ匕処理による重量増加率は 38%であった。  Let Sulfuric acid adhering to the obtained membrane was thoroughly washed with water. A glossy black-brown film was obtained. The weight increase rate due to the sulfonating treatment was 38%.
このようにして得られた固体高分子電解質膜のプロトン伝導度及びメタノール透過 速度を測定したところ、夫々 0. 2 Q
Figure imgf000011_0001
1. 2mgZcm2Zminであった。
When the proton conductivity and methanol permeation rate of the solid polymer electrolyte membrane thus obtained were measured, 0.2 Q
Figure imgf000011_0001
1. was 2mgZcm 2 Zmin.
[0043] (実施例 2) [0043] (Example 2)
2—ビュルピリジン 15. 77g (0. 15mol)、 55%-ジビュルベンゼン(溶剤:混合キシ レン) 47. 35g (0. 2mol)、スチレンモノマー 20. 84g (0. 2mol)と t—ブチルバーオ キシ一 2—ェチルへキシルカーボネート 3. 13g (0. 013mol)をァセチルクェン酸トリ ブチル 12. 59gに溶解させた。これをモノマー溶液 Bと呼ぶ。  2-Burpyridine 15.77g (0.15mol), 55% -Dibutenebenzene (solvent: mixed xylene) 47.35g (0.2mol), styrene monomer 20.84g (0.2mol) and t-butyl butadiene 1.13 g (0.013 mol) of 2-ethylhexyl carbonate was dissolved in 12.59 g of tributyl acetyl citrate. This is called monomer solution B.
予めコロナ放電処理によって親水化しておいたポリエチレン製多孔質膜 (旭化成ケ ミカルズ株式会社製"ハイポア N9420G" (登録商標)にモノマー溶液 Bを含浸させ、 PETフィルムで挟み、更にガラス板で挟んで、窒素雰囲気下、 80°Cで 20時間反応さ せた。  A polyethylene porous membrane that has been hydrophilized by corona discharge treatment ("Hypore N9420G" (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd.) is impregnated with the monomer solution B, sandwiched between PET films, and further sandwiched between glass plates. The reaction was carried out at 80 ° C for 20 hours in a nitrogen atmosphere.
得られた膜をアセトンに浸漬して未反応物やァセチルクェン酸トリブチル、キシレン 等を除き、その後十分乾燥させた。得られた膜はハジキゃ斑が見られず、均一な半 透明膜であった。  The obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried. The obtained film was a uniform translucent film with no repellent spots.
次にこの膜を、発煙硫酸 (SO濃度: 2〜3wt%)に浸漬し、 60°Cで 90分間反応さ  The membrane is then immersed in fuming sulfuric acid (SO concentration: 2 to 3 wt%) and reacted at 60 ° C for 90 minutes.
3  Three
せた。得られた膜に付着した硫酸を水で良く洗浄した。光沢のある黒褐色の膜が得ら れた。このスルホンィ匕処理による重量増加率は 40%であった。  Let Sulfuric acid adhering to the obtained membrane was thoroughly washed with water. A glossy black-brown film was obtained. The rate of weight increase due to this sulfone treatment was 40%.
このようにして得られた固体高分子電解質膜のプロトン伝導度、及びメタノール透 過速度を測定したところ、夫々 0. 2 Q
Figure imgf000011_0002
0. 8mgZcm2Zminであった。
The proton conductivity and methanol permeation rate of the solid polymer electrolyte membrane thus obtained were measured.
Figure imgf000011_0002
0.8 mgZcm 2 Zmin.
[0044] (実施例 3) [0044] (Example 3)
4—ビュルピリジン 32. 90g (0. 3mol)、 55%-ジビュルベンゼン(溶剤:混合キシレ ン) 49. 30g (0. 2mol)と t—ブチルパーォキシ—2 ェチルへキシルカーボネート 3 . 00g (0. 012mol)【こ セチノレクェン酸トリブチノレ 17. 80gをカ卩免均一【こした。これ をモノマー溶液 Cと呼ぶ。 4-Bulupyridine 32.90g (0.3 mol), 55% -dibutenebenzene (solvent: mixed xyle 49.30 g (0.2 mol) and t-butylperoxy-2-ethylhexyl carbonate 3.00 g (0.012 mol) [Tributinole cetinolecate] 17.80 g was uniformly distributed. This is called monomer solution C.
予めコロナ放電処理によって親水化しておいたポリエチレン製多孔質膜 (旭化成ケ ミカルズ株式会社"ハイポア N9420G" (登録商標)にモノマー溶液 Aを含浸させ、 P ETフィルムで挟み、更にガラス板で挟んで、窒素雰囲気下、 80°Cで 20時間反応さ せた。  Polyethylene porous film (Asahi Kasei Chemicals Co., Ltd. "Hypore N9420G" (registered trademark) impregnated with monomer solution A, hydrophilicized beforehand by corona discharge treatment, sandwiched between PET films, and further sandwiched between glass plates, The reaction was carried out at 80 ° C for 20 hours in a nitrogen atmosphere.
得られた膜をアセトンに浸漬して未反応物やァセチルクェン酸トリブチル、キシレン 等を除き、その後十分乾燥させた。得られた膜はハジキゃ斑が見られず、均一な半 透明膜であった。  The obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried. The obtained film was a uniform translucent film with no repellent spots.
次にこの膜を、発煙硫酸 (SO濃度: 3〜4wt%)に浸漬し、 70°Cで 85分間反応さ  The membrane is then immersed in fuming sulfuric acid (SO concentration: 3-4 wt%) and reacted at 70 ° C for 85 minutes.
3  Three
せた。得られた膜に付着した硫酸を水で良く洗浄した。光沢のある黒褐色の膜が得ら れた。このスルホンィ匕処理による重量増加率は 48%であった。 Let Sulfuric acid adhering to the obtained membrane was thoroughly washed with water. A glossy black-brown film was obtained. The weight increase rate by this sulfone treatment was 48%.
このようにして得られた固体高分子電解質膜のプロトン伝導度及びメタノール透過 速度を測定したところ、夫々 0. 3 Q
Figure imgf000012_0001
2. OmgZcm2Zminであった。
The proton conductivity and methanol permeation rate of the solid polymer electrolyte membrane thus obtained were measured.
Figure imgf000012_0001
2. OmgZcm 2 Zmin.
(実施例 4) (Example 4)
4 ビュルピリジン 20. 4g (0. 19mol)、 55%-ジビュルベンゼン(溶剤、混合キシ レン) 70. 9g (0. 3mol)、スチレンモノマー 40. 4g (0. 39mol)と t—ブチルパーォキ シ— 2 ェチルへキシルカーボネート 5. 0g (0. 02mol)をァセチルクェン酸トリブチ ル 15. Ogに溶解させた。これをモノマー溶液 Dと呼ぶ。  4 Butylpyridine 20.4g (0.19mol), 55% -Dibutylbenzene (solvent, mixed xylene) 70.9g (0.3mol), Styrene monomer 40.4g (0.39mol) and t-butyl peroxide 2 Ethylhexyl carbonate 5.0 g (0.02 mol) was dissolved in acetyl acetyl citrate 15. Og. This is called monomer solution D.
予めコロナ放電処理によって親水化しておいたポリエチレン製多孔質膜 (旭化成ケ ミカルズ株式会社製"ハイポア NA635" (登録商標)にモノマー溶液 Cを含浸させ、 P ETフィルムで挟み、更にガラス板で挟んで、窒素雰囲気下、 80°Cで 20時間反応さ せた。得られた膜はハジキゃ斑が見られず、均一な半透明膜であった。  A polyethylene porous membrane that has been hydrophilized by corona discharge treatment ("Hypore NA635" (registered trademark) manufactured by Asahi Kasei Chemicals Co., Ltd.) is impregnated with the monomer solution C, sandwiched between PET films, and further sandwiched between glass plates. The reaction was carried out in a nitrogen atmosphere for 20 hours at 80 ° C. The obtained film was a uniform translucent film with no repellency spots.
得られた膜をアセトンに浸漬して未反応物やァセチルクェン酸トリブチル、キシレン 等を除き、その後十分乾燥させた。  The obtained film was immersed in acetone to remove unreacted materials, tributyl acetyl citrate, xylene and the like, and then sufficiently dried.
次にこの膜を、発煙硫酸 (SO濃度: 2〜3wt%)に浸漬し、 70°Cで 30分間反応さ  The membrane is then immersed in fuming sulfuric acid (SO concentration: 2 to 3 wt%) and reacted at 70 ° C for 30 minutes.
3  Three
せた。得られた膜に付着した硫酸を水で良く洗浄した。光沢のある黒褐色の膜が得ら れた。このスルホンィ匕処理による重量増加率は 34%であった。 Let Sulfuric acid adhering to the obtained membrane was thoroughly washed with water. A glossy black-brown film is obtained It was. The weight increase rate by this sulfone treatment was 34%.
このようにして得られた固体高分子電解質膜のプロトン伝導度、及びメタノール透 過速度を測定したところ、夫々 0. 4 Q
Figure imgf000013_0001
0. 6mgZcm2Zminであった。
The proton conductivity and methanol permeation rate of the solid polymer electrolyte membrane thus obtained were measured.
Figure imgf000013_0001
0.6 mgZcm 2 Zmin.
[0046] (実施例 5) [Example 5]
(株)ケミックス社製燃料電池組み立てキット Pem Master PEM— 004DMに、 ナフイオン (登録商標)膜の代わりに、実施例 1で得られた固体高分子電解質膜を組 み込み、 30%メタノールを燃料タンク (容量: 4ml)に供給した。その結果、燃料がなく なるまでの間発電し、モーターを回転させた。  The fuel cell assembly kit manufactured by Chemix Co., Ltd. Pem Master PEM— 004DM incorporates the solid polymer electrolyte membrane obtained in Example 1 instead of the naphthion (registered trademark) membrane, and 30% methanol is used as the fuel tank. (Volume: 4 ml). As a result, power was generated until the fuel was exhausted, and the motor was rotated.
[0047] (実施例 6) [Example 6]
ルテニウム一白金触媒を担持した炭素材料及びパーフルォロスルホン酸イオン交 換榭脂 (デュポン株式会社製、ナフイオン (登録商標) )溶液を混合しカーボンぺーパ 一に塗布して作製した負極側触媒層、及び白金触媒を担持した炭素材料及びパー フルォロスルホン酸イオン交換榭脂 (デュポン株式会社製、ナフイオン (登録商標) ) 溶液を混合しカーボンペーパーに塗布して作製した正極側触媒層を作製し、これら 二つの触媒層で、実施例 1で得られた固体高分子電解質膜を挟んで燃料電池を作 製した。この燃料電池の温度を 40°Cに保ち、負極側に 10%メタノールを、また正極 側に空気を供給したところ、最高出力 34mWZcm2を得た。 A negative electrode catalyst prepared by mixing a carbon material carrying a ruthenium monoplatinum catalyst and a perfluorosulfonic acid ion-exchanged resin (manufactured by DuPont, Nafion (registered trademark)) and applying it to a carbon paper. A positive electrode side catalyst layer prepared by mixing a layer, and a carbon material carrying a platinum catalyst and a perfluorosulfonic acid ion exchange resin (manufactured by DuPont, Naphion (registered trademark)) and applying it to carbon paper, A fuel cell was fabricated by sandwiching the solid polymer electrolyte membrane obtained in Example 1 with these two catalyst layers. When the temperature of the fuel cell was kept at 40 ° C., 10% methanol was supplied to the negative electrode side and air was supplied to the positive electrode side, a maximum output of 34 mWZcm 2 was obtained.
[0048] (比較例 1) [0048] (Comparative Example 1)
パーフルォロスルホン酸イオン交換膜 (デュポン株式会社製、ナフイオン 117 (登録 商標))のプロトン伝導度及びメタノール透過速度を測定したところ、夫々 0. 4 Q cm2 、 4. 8mgZ cm / minであつに。 Measurement of proton conductivity and methanol permeation rate of perfluorosulfonic acid ion exchange membrane (DuPont, Nafion 117 (registered trademark)) was 0.4 Q cm 2 and 4.8 mgZ cm / min, respectively. At once.
[0049] (比較例 2) [0049] (Comparative Example 2)
パーフルォロスルホン酸イオン交換膜 (デュポン株式会社製、ナフイオン 112 (登録 商標))のプロトン伝導度及びメタノール透過速度を測定したところ、夫々 0. 1 Ω cm2 、 6. 8mgZ cm / minであつに。 The proton conductivity and methanol permeation rate of perfluorosulfonic acid ion exchange membrane (DuPont, Nafion 112 (registered trademark)) were measured, and 0.1 Ωcm 2 and 6.8 mgZ cm / min, respectively. At once.
[0050] (比較例 3) [0050] (Comparative Example 3)
ルテニウム一白金触媒を担持した炭素材料及びパーフルォロスルホン酸イオン交 換榭脂 (デュポン株式会社製、ナフイオン (登録商標) )溶液を混合しカーボンぺーパ 一に塗布して作製した負極側触媒層、及び白金触媒を担持した炭素材料及びパー フルォロスルホン酸イオン交換榭脂 (デュポン株式会社製、ナフイオン (登録商標) ) 溶液を混合しカーボンペーパーに塗布して作製した正極側触媒層を作製し、これら 二つの触媒層で、ナフイオン 117(登録商標)膜を挟んで燃料電池を作製した。この 燃料電池の温度を 40°Cに保ち、負極側に 10%メタノールを、また正極側に空気を供 給したところ、最高出力 llmWZcm2を得た。 A carbon paper carrying a ruthenium monoplatinum catalyst and a perfluorosulfonic acid ion-exchanged resin (manufactured by DuPont, Nafion (registered trademark)) solution are mixed to obtain a carbon paper. A negative electrode side catalyst layer prepared by coating the same, a carbon material carrying a platinum catalyst and a perfluorosulfonic acid ion exchange resin (manufactured by DuPont, Nafion (registered trademark)) solution were mixed and applied to carbon paper. The produced positive electrode side catalyst layer was produced, and a fuel cell was produced by sandwiching a naphthion 117 (registered trademark) membrane between these two catalyst layers. When the temperature of this fuel cell was kept at 40 ° C., 10% methanol was supplied to the negative electrode side and air was supplied to the positive electrode side, the maximum output llmWZcm 2 was obtained.
産業上の利用可能性 Industrial applicability
本発明の固体高分子電解質膜は、高いプロトン伝導性と優れたメタノール透過阻 止性を併せ持つ。該電解質膜は、 DMFCや PEFCなどの燃料電池用として有用で ある。また、本発明の固体高分子電解質膜の製造は簡便であり、安価に製造すること ができる。  The solid polymer electrolyte membrane of the present invention has both high proton conductivity and excellent methanol permeation inhibiting properties. The electrolyte membrane is useful for fuel cells such as DMFC and PEFC. Moreover, the production of the solid polymer electrolyte membrane of the present invention is simple and can be produced at low cost.

Claims

請求の範囲 The scope of the claims
[I] 塩基性基を有するビニルモノマーおよび架橋性ビニルモノマーの少なくとも 、ずれ 力が芳香環または複素環を有し、これらのモノマーをポリオレフイン製多孔質膜に含 浸させ重合した後スルホン化処理して得られる固体高分子電解質膜。  [I] At least one of a vinyl monomer having a basic group and a crosslinkable vinyl monomer has an aromatic ring or a heterocyclic ring, and these monomers are impregnated in a porous polyolefin membrane and polymerized, followed by sulfonation treatment. A solid polymer electrolyte membrane obtained.
[2] 前記塩基性基を有するビニルモノマー力 2 -ビニルピリジン又は 4 -ビニルピリジ ンである請求項 1記載の固体高分子電解質膜。  [2] The solid polymer electrolyte membrane according to [1], wherein the basic monomer-containing vinyl monomer is 2-vinylpyridine or 4-vinylpyridine.
[3] 前記架橋性ビニルモノマー力 ジビニルイ匕合物である請求項 1記載の固体高分子 電解質膜。 [3] The solid polymer electrolyte membrane according to [1], which is a crosslinkable vinyl monomer strength divinyl compound.
[4] 前記ジビ-ルイ匕合物が、ジビュルベンゼンである請求項 3記載の固体高分子電解 質膜。  [4] The solid polymer electrolyte membrane according to [3], wherein the Jibi-Louis compound is dibulebenzene.
[5] 前記塩基性基を有するビニルモノマーと前記架橋性ビュルモノマーとを含浸する 際の仕込みのモル比(塩基性基を有するビュルモノマーのモル数 Z架橋性ビニルモ ノマーのモル数)力 20Z80〜90Z10の範囲である請求項 1記載の固体高分子電 解質膜。  [5] The molar ratio of the charge when impregnating the vinyl monomer having the basic group and the crosslinkable bull monomer (number of moles of the bull monomer having basic group Z number of moles of the crosslinkable vinyl monomer) force 20Z80 to The solid polymer electrolyte membrane according to claim 1, which is in the range of 90Z10.
[6] 前記スルホンィ匕処理による重量増加率が 10〜80%の範囲である請求項 1記載の 固体高分子電解質膜。  6. The solid polymer electrolyte membrane according to claim 1, wherein the rate of weight increase due to the sulfonating treatment is in the range of 10 to 80%.
[7] 前記塩基性基を有するビニルモノマーと前記架橋性ビュルモノマーとを含浸する 際に、さらに、これらモノマーと共重合可能な第 3のモノマーをカ卩えてなる請求項 1に 記載の固体高分子電解質膜。  [7] When impregnating the vinyl monomer having a basic group and the crosslinkable butyl monomer, a solid monomer according to claim 1, further comprising a third monomer copolymerizable with these monomers. Molecular electrolyte membrane.
[8] 前記第 3のモノマーが、スチレン、ビュルナフタレン、アクリルアミド- -ブチルスルホ ン酸ナトリウム、およびビュルスルホン酸ナトリウムの少なくともいずれかからなる請求 項 7に記載の固体高分子電解質膜。 8. The solid polymer electrolyte membrane according to claim 7, wherein the third monomer is composed of at least one of styrene, bullnaphthalene, acrylamide-sodium butyl sulfonate, and sodium bule sulfonate.
[9] 前記ポリオレフイン製多孔質膜がポリエチレン製多孔質膜である請求項 1記載の固 体高分子電解質膜。 9. The solid polymer electrolyte membrane according to claim 1, wherein the polyolefin porous membrane is a polyethylene porous membrane.
[10] 前記ポリオレフイン製多孔質膜が親水化処理されたものである請求項 1または 9に 記載の固体高分子電解質膜。  [10] The solid polymer electrolyte membrane according to [1] or [9], wherein the polyolefin porous membrane is hydrophilized.
[II] 前記ポリオレフイン製多孔質膜 100質量部に対し、前記塩基性基を有するビュルモ ノマーと前記架橋性ビニルモノマーとからなるポリマー成分が 30〜: LOO質量部含有 されてなる請求項 1に記載の固体高分子電解質膜。 [II] 100 parts by mass of the polyolefin porous membrane contains 30 to: LOO parts by mass of a polymer component composed of the butyl monomer having the basic group and the crosslinkable vinyl monomer. 2. The solid polymer electrolyte membrane according to claim 1, wherein
[12] 前記ポリオレフイン製多孔質膜 100質量部に対し、前記塩基性基を有するビュルモ ノマーと前記架橋性ビニルモノマーと前記第 3のモノマーとからなるポリマー成分が 3[12] For 100 parts by mass of the polyolefin porous membrane, 3 polymer components composed of the butyl monomer having the basic group, the crosslinkable vinyl monomer, and the third monomer are included.
0〜 100質量部含有されてなる請求項 7に記載の固体高分子電解質膜。 The solid polymer electrolyte membrane according to claim 7, which is contained in an amount of 0 to 100 parts by mass.
[13] 請求項 1記載の固体高分子電解質膜と、該固体高分子電解質膜を挟む正極及び 負極とを備える燃料電池。 13. A fuel cell comprising the solid polymer electrolyte membrane according to claim 1, and a positive electrode and a negative electrode sandwiching the solid polymer electrolyte membrane.
PCT/JP2007/063343 2006-07-06 2007-07-04 Solid polymer electrolyte membrane and fuel cell WO2008004567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008523700A JPWO2008004567A1 (en) 2006-07-06 2007-07-04 Solid polymer electrolyte membrane and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-186532 2006-07-06
JP2006186532 2006-07-06

Publications (1)

Publication Number Publication Date
WO2008004567A1 true WO2008004567A1 (en) 2008-01-10

Family

ID=38894534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063343 WO2008004567A1 (en) 2006-07-06 2007-07-04 Solid polymer electrolyte membrane and fuel cell

Country Status (2)

Country Link
JP (1) JPWO2008004567A1 (en)
WO (1) WO2008004567A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135137A (en) * 1997-10-31 1999-05-21 Asahi Glass Co Ltd Solid polyelectrolyte type methanol fuel cell
JP2004217921A (en) * 2002-12-26 2004-08-05 Tokuyama Corp Ion exchange membrane and its producing method
JP2005032535A (en) * 2003-07-11 2005-02-03 Tokuyama Corp Junction element
JP2005032536A (en) * 2003-07-11 2005-02-03 Tokuyama Corp Method of manufacturing junction element
JP2005332800A (en) * 2004-04-23 2005-12-02 Sekisui Chem Co Ltd Proton conductive film for direct methanol fuel cell
JP2006164628A (en) * 2004-12-03 2006-06-22 Toagosei Co Ltd Electrolyte film and fuel cell
JP2006160837A (en) * 2004-12-03 2006-06-22 Toagosei Co Ltd Method for preparation of electrolyte membrane
JP2006172765A (en) * 2004-12-13 2006-06-29 Toagosei Co Ltd Continuously manufacturing method of electrolyte membrane
JP2006172764A (en) * 2004-12-13 2006-06-29 Toagosei Co Ltd Manufacturing method of electrolyte film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135137A (en) * 1997-10-31 1999-05-21 Asahi Glass Co Ltd Solid polyelectrolyte type methanol fuel cell
JP2004217921A (en) * 2002-12-26 2004-08-05 Tokuyama Corp Ion exchange membrane and its producing method
JP2005032535A (en) * 2003-07-11 2005-02-03 Tokuyama Corp Junction element
JP2005032536A (en) * 2003-07-11 2005-02-03 Tokuyama Corp Method of manufacturing junction element
JP2005332800A (en) * 2004-04-23 2005-12-02 Sekisui Chem Co Ltd Proton conductive film for direct methanol fuel cell
JP2006164628A (en) * 2004-12-03 2006-06-22 Toagosei Co Ltd Electrolyte film and fuel cell
JP2006160837A (en) * 2004-12-03 2006-06-22 Toagosei Co Ltd Method for preparation of electrolyte membrane
JP2006172765A (en) * 2004-12-13 2006-06-29 Toagosei Co Ltd Continuously manufacturing method of electrolyte membrane
JP2006172764A (en) * 2004-12-13 2006-06-29 Toagosei Co Ltd Manufacturing method of electrolyte film

Also Published As

Publication number Publication date
JPWO2008004567A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US7534515B2 (en) Acid-base proton conducting polymer blend membrane
Luo et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery
EP1630890B1 (en) Polymer electrolyte membrane and fuel cell employing the same
US8372558B2 (en) Highly proton-conductive polymer electrolyte membranes that excel in mechanical strength and a process for producing the same
KR102466595B1 (en) Highly reinforced ionomer membranes for high selectivity and high strength
US20070166592A1 (en) Polymer electrolyte membrane, method of preparing the same and fuel cell employing the same
Gloukhovski et al. Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide
JP2010538416A (en) Proton conducting polymer electrolyte membranes used in polymer fuel cells
CA2686279A1 (en) Production method for an electrode structure for a solid polymer fuel cell
KR100914340B1 (en) Highly proton conductive crosslinked vinylsulfonic acid polymer electrolyte composite membranes and its preparation method for polymer electrolyte fuel cells
Higa et al. Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly (vinyl alcohol-b-styrene sulfonic acid)
EP3229302A1 (en) Polymer electrolyte membrane
Kuzume et al. Characterisation of PAMPS–PSS pore-filling membrane for direct methanol fuel cell
JP3896105B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL
JP5189394B2 (en) Polymer electrolyte membrane
JP2005327703A (en) Solid polyelectrolyte, solid polymer gel film, solid polyelectrolyte film, and fuel cell
Othman et al. Recent development of polymer electrolyte membranes for direct methanol fuel cell application–a review
EP2053673A1 (en) Electrode for fuel cell, method for producing the same, and fuel cell
KR20220145751A (en) Novel aliphatic chain-containing poly(alkyl-aryl piperidinium) ionomer, anion exchange membrane, composite membrane and method for preparing the same
WO2008004567A1 (en) Solid polymer electrolyte membrane and fuel cell
KR100880092B1 (en) Surface modification of hydrocarbon-based polymer electrolyte membrane
JP2007115535A (en) Electrolyte film and its manufacturing method
JP2006024552A (en) Solid polyelectrolyte membrane and fuel cell
KR20110090051A (en) Branched and sulfonated copolymer containing perfluorocyclobutane rings, preparation method thereof and electrolyte membrane using the same
Choudhury et al. Studies on the Preparation and Characterization of Poly (vinyl alcohol-co-styrenesulfonicacid)-Based Proton Exchange Membranes for Direct Methanol Fuel Cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523700

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768113

Country of ref document: EP

Kind code of ref document: A1