JP2005032536A - Method of manufacturing junction element - Google Patents

Method of manufacturing junction element Download PDF

Info

Publication number
JP2005032536A
JP2005032536A JP2003195502A JP2003195502A JP2005032536A JP 2005032536 A JP2005032536 A JP 2005032536A JP 2003195502 A JP2003195502 A JP 2003195502A JP 2003195502 A JP2003195502 A JP 2003195502A JP 2005032536 A JP2005032536 A JP 2005032536A
Authority
JP
Japan
Prior art keywords
ion exchange
electrode
polymerizable monomer
membrane
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003195502A
Other languages
Japanese (ja)
Inventor
Kenji Fukuda
憲二 福田
Kazuyuki Sadasue
和幸 貞末
Takenori Isomura
武範 磯村
Kanji Sakata
勘治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2003195502A priority Critical patent/JP2005032536A/en
Publication of JP2005032536A publication Critical patent/JP2005032536A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture a junction element with high joining property of an ion exchange membrane to use as the junction of the separator and the electrode layer preventing output drop of a fuel cell even after a long use using an ion exchange membrane mainly comprising a crosslinked ion exchange resin with high dimensional stability, high heat resistance, and high methanol permeability suitable for the junction in an electrochemical device such as a direct methanol fuel cell. <P>SOLUTION: An electron conductive material such as a sheet formed by molding catalyst carrying carbon black or metal mesh is brought into contact with at least one surface of a base material such as a porous film impregnated with polymerizable monomers such as styrene, and while contact is kept, the polymerizable monomers are polymerized. If necessary, an ion exchange group such as a sulfonic group is introduced in a polymer of the polymerizable monomers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種の電池、電気化学式センサー、電気化学式空気清浄器、除湿機等に使用されるイオン交換膜と電極との接合体、特に直接メタノール型燃料電池用として好適に使用されるイオン交換膜と触媒電極との接合体の製造方法に関する。
【0002】
【従来の技術】
燃料電池は、燃料と酸化剤とを連続的に供給し、これらが反応したときの化学エネルギーを電力として取り出す発電システムである。燃料電池は、これに用いる電解質の種類によって、動作温度が比較的低いアルカリ型、リン酸型、固体高分子電解質型と、高温で動作する溶融炭酸塩型、固体酸化物電解質型とに大別される。
【0003】
これらの中で、固体高分子型燃料電池は、一般的に電解質として作用する固体高分子の隔膜の両面に触媒が坦持されたガス拡散電極を接合し、一方のガス拡散電極が存在する側の室(燃料室)に水素ガスあるいはメタノール等からなる燃料を、他方のガス拡散電極が存在する側の室に酸化剤である酸素や空気等の酸素含有ガスをそれぞれ供給し、両ガス拡散電極間に外部負荷回路を接続することにより、燃料電池として作用させる。中でも、メタノールを直接燃料として用いる直接メタノール型燃料電池は、燃料が液体であることからその取り扱いやすさに加え、安価な燃料ということで、特に携帯機器用の比較的小出力規模の電源として期待されている。
【0004】
こうした直接メタノール型燃料電池の基本構造を図1に示す。図中、(1)は電池隔壁、(2)は燃料流通孔、(3)は酸化剤ガス流通孔、(4)は燃料室側拡散電極、(5)は酸化剤室側ガス拡散電極、(6)は固体高分子電解質膜を示す。この直接メタノール型燃料電池において、燃料室(7)に供給されたメタノールから燃料室側拡散電極(4)においてプロトン(水素イオン)と電子が生成し、このプロトンは固体高分子電解質(6)内を伝導し、他方の酸化剤室(8)に移動し、空気又は酸素ガス中の酸素と反応して水を生成する。この時、燃料室側拡散電極(4)で生成した電子は、外部負荷回路を通じて酸化剤室側ガス拡散電極(5)へと移動することにより電気エネルギーが得られる。
【0005】
通常、このような構造の直接メタノール型燃料電池においては、上記固体高分子電解質膜として陽イオン交換膜が使用される。そして、この陽イオン交換膜には、電気抵抗が小さいこと、保水性が高いこと、長期の使用に対して安定であること、物理的な強度が強いことなどが要求される。従来、このような陽イオン交換膜としては、パーフルオロカーボンスルホン酸膜が主に使用されている。しかし、この膜は、化学的な安定性には優れているが、保水力が不十分であるため陽イオン交換膜の乾燥が生じてプロトンの伝導性が低下し易く、さらに物理的な強度も不十分であるために薄膜化による電気抵抗の低減が困難であった。またイオン交換膜をメタノールが透過してしまう、いわゆるメタノールクロスオーバーが発生しやすいという問題もあった。更に、パーフルオロカーボンスルホン酸膜は高価であった(例えば非特許文献1、2参照)。
【0006】
これらの問題点を解決するため、ポリエチレン等からなる多孔質フィルムを基材とし、イオン交換樹脂としてポリスチレンスルホン酸等の炭化水素系のイオン交換樹脂を用いて形成されたイオン交換膜を用いることが提案されている。この場合には、寸法安定性や耐熱性、あるいは機械的強度を良好なものとするために、炭化水素系のイオン交換樹脂としては架橋型のものが用いられる場合が多い(例えば、特許文献1、2参照)。
【0007】
一方前記の通り、固体高分子電解質型燃料電池においては、メタノール等の燃料から電気を取り出すための燃料室側拡散電極及び酸化剤室側ガス拡散電極(以下、これらを併せて単に触媒電極とも言う)の存在が不可欠である。燃料質側拡散電極においては、燃料を酸化し電子が取り出されるが、この反応の際には同時にプロトンが生じる。このプロトンは、隔膜である陽イオン交換膜を通って酸化剤室側ガス拡散電極に移動し、そこで酸化剤と反応して水へと変換される。プロトンの移動を良好なものとし、連続的に電子(電気)を取り出すためには、燃料が酸化される部位にプロトン伝導性を有する物質が接触していることが不可欠であり、通常、触媒電極は、該反応を促進するための白金等の触媒、導電性カーボン等の生じた電子が移動することの可能な電子導電性物質、及び陽イオン交換樹脂等のプロトンが移動することの可能な陽イオン伝導性物質で形成されている。従って、プロトンの移動を容易なものとし、良好な電池性能を得るためには、触媒電極部分の陽イオン交換樹脂、隔膜である陽イオン交換膜各々のイオン伝導性のみならず、これらの材料間のイオン伝導性が極めて重要である。
【0008】
従来、隔膜としてパーフルオロカーボンスルホン酸膜を用いた場合には、触媒電極部分の陽イオン交換樹脂としてもパーフルオロカーボンスルホン酸樹脂を用い、この樹脂と触媒を坦持させたカーボン並びに希釈溶剤とからなるペーストを、隔膜を構成するパーフルオロカーボンスルホン酸に塗布、乾燥後、ホットプレスすることにより触媒電極部分と隔膜部分の間のイオン伝導性は充分なものを得ることができた(例えば、特許文献3)。これは、用いられているパーフルオロカーボンスルホン酸樹脂が熱可塑性であるため、ホットプレスにより熱融着を起こして一体化するためであると考えられる。
【0009】
しかしながら、本発明者の検討によれば、隔膜を構成するイオン交換膜における樹脂として、前記したような架橋型のイオン交換樹脂を採用すると、以下のような問題が生じることが明らかとなった。即ち、イオン交換膜上に触媒電極部分を形成するために、前記のようなペーストを塗布、乾燥し、さらにホットプレスするという同様の操作をおこなっても、十分な融着がおこらず、このため、触媒電極部分と隔膜部分の接合性が不十分なものとなってしまう。なお、これはイオン交換膜における樹脂が架橋型のものであるためであると推測される。そして、接合性が不十分なゆえに、イオン伝導性もまた劣るものとなってしまう。また、製造初期の段階で比較的良好なイオン伝導性を有すものができたとしても、使用状態、即ち、メタノールに浸漬された状態で維持することにより、徐々に接合性が低下していき、比較的短期間で、触媒電極部分がイオン交換膜部分から剥離してしまう場合が多い。
【非特許文献1】
「固体高分子型燃料電池の開発と応用」、株式会社エヌ・ティー・エス、2000年4月28日発行、p.33−41
【非特許文献2】
特許庁技術調査課、「燃料電池に関する技術動向調査」、特許庁、平成13年5月31日発行、p.16
【特許文献1】
特開平11−335473号公報
【特許文献2】
特開2001−135328号公報
【特許文献3】
特開平6−150937号公報
【0010】
【発明が解決しようとする課題】
従って、寸法安定性、耐熱性、機械的強度、メタノール非透過性等に優れた架橋型のイオン交換樹脂を主とするイオン交換膜を用いた場合でも、電極部分とイオン交換膜部分の接合性に優れ、直接メタノール型燃料電池用として使用可能な膜−触媒電極接合体の製造方法が求められていた。
【0011】
【課題を解決するための手段】
本発明者等は、上記目的に鑑み鋭意研究を行ってきた。そして本発明者らは、イオン交換膜と触媒電極との接合体の製造方法において、イオン交換膜部分の形成と、このイオン交換膜部分と電極層との接合を同時に行う方法が上記問題点の解決に効果があるのではないかと考え、さらに検討を進めた結果、本発明を完成した。
【0012】
即ち、本発明は、重合性単量体を含浸させた基材の少なくとも一方の表面に電子導電性物質を接触させ、次いで該接触を保った状態で重合性単量体を重合させることを特徴とする膜−電極接合体の製造方法である。
【0013】
また他の発明は、重合性単量体を含浸させることの可能な基材の少なくとも一方の表面に電子導電性物質を接触させ、次いで、該接触を保った状態で基材に重合性単量体を含浸させ、その後、重合性単量体を重合させることを特徴とする膜−電極接合体の製造方法である。
【0014】
【発明の実施の形態】
上記本発明の製造方法においてはいずれも、重合性単量体を重合させる前に、電子導電性物質と接触させ、その後、該重合性単量体を重合させる。この際、重合性単量体を含浸させて保持するための基材がないと、電気化学的デバイス等として利用する際に必要な、電子導電性を有さない層の形成ができず膜−電極接合体とはならなくなったり、あるいは該層の厚さが不均一となるなどの問題が生じる。
【0015】
当該基材としては、重合性単量体を含浸させることが可能な空隙部を有す膜状(シート状、フィルム状あるいは板状を含む。以下、同じ)の物であれば特に制限されないが、一般にイオン交換膜の基材として用いられる物であることが好ましい。このようなイオン交換膜の基材としては、多孔質フィルム、不織紙、織布、不織布、紙、無機膜等が挙げられ、材質としても熱可塑性樹脂組成物、熱硬化性樹脂組成物あるいは無機物でも又はそれらの混合物でも構わないが、その製造が容易であるばかりでなく後述する重合性単量体の重合体との密着強度が高く、さらに柔軟性に富むという点から、熱可塑性樹脂組成物であることが好ましい。当該熱可塑性樹脂組成物としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテン、4−メチル−1−ペンテン、5−メチル−1−ヘプテン等のα−オレフィンの単独重合体または共重合体等のポリオレフィン樹脂;ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−オレフィン共重合体等の塩化ビニル径樹脂;ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフロオロエチレン−ペルフロオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−エチレン共重合体等のフッ素径樹脂;ナイロン6、ナイロン66等のポリアミド樹脂等が例示される。これらのなかでも、機械的強度、化学的安定性、耐薬品性に優れ、さらに一般に重合性単量体との馴染みが特によいことから、ポリオレフィン樹脂を用いるのが好ましい。ポリオレフィン樹脂としては、ポリエチレン又はポリプロピレン樹脂が特に好ましく、ポリエチレン樹脂が最も好ましい。
【0016】
さらに表面が平滑で電子導電性物質と広範囲で接触させやすく、また強度に優れる点で多孔質フィルム、特にポリオレフィン樹脂製の多孔質フィルムであることが好ましく、ポリエチレン樹脂製の多孔質フィルムであることが最も好ましい。
【0017】
このような多孔質フィルムとしては、その有する細孔の平均孔径は0.005〜5.0μm、特に0.01〜2.0μmであることが好ましく、空隙率(気孔率とも呼ばれる)は20〜95%、特に30〜90%であるのが好ましく、透気度(JIS P−8117)は1500秒以下、特に1000秒以下であるのが好ましい。また、その厚みは得られるイオン交換膜を薄くすることができ、かつ充分な強度が得られるように5〜150μmであることが好ましく、10〜120μmがより好ましく、15〜50μmが特に好ましい。
【0018】
このような多孔質フィルムは、例えば特開平9−212964号公報、特開2002−338721号公報等に記載の方法によって得ることもできるし、あるいは、市販品(例えば、旭化成「ハイポア」、宇部興産「ユーポア」、東燃タピルス「セテラ」、日東電工「エクセポール」、三井化学「ハイレット」等)として入手することも可能である。
【0019】
本発明においては、上記のような基材に対して重合性単量体を含浸させる。当該重合性単量体としては、得られる膜−電極接合体の用途に応じ適宜選択すればよく、公知の如何なる重合性単量体でも良いが、重合が容易で、また得られる重合体が耐酸・耐アルカリ性、電気化学的な安定性等に優れる点で、ビニル系の重合性単量体であることが好ましい。当該ビニル系の重合性単量体を具体的に例示すると、スチレン、α−メチルスチレン、ビニルトルエン、2,4−ジメチルスチレン、p−tert−ブチルスチレン、α−ハロゲン化スチレン、ビニルナフタレン、ビニルピリジン、ビニルイミダゾール、スチレンスルホン酸等の単官能の芳香族ビニル化合物類;(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリルアミド−2−メチルプロパンスルホン酸等の単官能(メタ)アクリル酸類又はその誘導体類;ビニルホスホン酸、無水マレイン酸等のその他のビニル化合物類等の単官能の重合性単量体;ジビニルベンゼン、ジビニルビフェニル、トリビニルベンゼン等の多官能の芳香族ビニル化合物;トリメチロールメタントリメタクリル酸エステル、メチレンビスアクリルアミド、ヘキサメチレンジメタクリルアミド等の多官能(メタ)アクリル酸誘導体類;あるいはブタジエン、クロロプレン、ジビニルスルホン等のその他の多官能の重合性単量体(以下、これら多官能の重合性単量体を架橋剤とも称す)が挙げられる。(なお本発明においては、特に断らない限り、単一種の重合性単量体、複数種の重合性単量体の混合物のいずれも、単に重合性単量体と称す。)
これら重合性単量体は単独で用いても、複数の種類のものを併用しても良いが、他の方法によっては、本発明が目的とする高い接合強度を有する膜−電極接合体の製造が困難な点で、少なくとも一種の架橋剤を含み、重合性単量体の重合体が架橋型となるものが好ましい。
【0020】
さらに、後述するイオン交換性基、特に強酸性のイオン交換性基の導入が容易で、また、耐酸・耐アルカリ性、電気化学的安定性に特に優れる点で、芳香族ビニル化合物類を用いることが好ましい。この場合、単官能の芳香族ビニル化合物類を主とし、全重合性単量体中0.1〜30モル%程度の架橋剤(特に多官能性の芳香族ビニル化合物)を配合した重合性単量体の混合物が好ましい。
【0021】
また本発明において、基材に含浸させる重合性単量体には、重合開始剤が混合されていることが好ましい。当該重合開始剤としては、上記したような重合性単量体を重合させることが可能な重合開始剤であれば特に制限されることはなく、具体的には、オクタノイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキシド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ヘキシルパーオキシベンゾエート、ジ−t−ブチルパーオキシド等の有機過酸化物が挙げられる。該重合開始剤の配合量は、重合性単量体の重合に際して用いる公知の範囲でよく、一般的には、重合性単量体100質量部に対して0.01〜10質量部程度である。
【0022】
さらにまた必要に応じて、溶媒、可塑剤、充填剤等、重合性単量体の重合によりイオン交換樹脂を製造する際の公知の添加剤が混合されていてもよい。
【0023】
本発明における電子導電性物質としては、公知の如何なる電子導電性物質でもよく、具体的な材質としては、金、銀、銅、白金、チタン、ロジウム、ルテニウム、イリジウム、パラジウム、オスミウム、ニッケル、鉄等の金属又は合金類;酸化スズ、酸化インジウム、インジウム−スズ複合酸化物等の金属酸化物粒子;導電性カーボン(炭素)、導電性有機高分子等が挙げられる。また、その形状も特に制限されるわけではないが、得られる膜−電極接合体を燃料電池用として用いることを考慮すると、重合性単量体が浸透可能な空隙部(特に、膜の表裏両面に連通した空隙部)を有する膜状の薄い状態に形成されたものであることが好ましい。
【0024】
当該空隙部を有する膜状の電子導電性物質は、上記のような材質からなる電子導電性物質の粉末及び/又は長繊維を押し固めたり、一旦溶媒を加えてスラリーとし、該スラリーを印刷法、ドクターブレード法等によりポリエステルフィルムなどに薄く塗布、乾燥させる方法により製造できる。この場合には、得られる膜状の電子導電性物質の賦形性を高めるために結着剤をスラリーに配合することが好ましい。当該電子導電性物質の粉末としては、不定形のものや、球状のもの、短繊維状のもの、薄片状のものなど、その目的に合わせて適宜選択すればよい。さらに、電子導電性物質の長繊維を織ったり、又は部分的に融着させたりするなどして布状あるいはメッシュ状の形状としたものでも良い。さらに金属薄板等に機械的方法等で多数の孔を形成させてメッシュ状としたものも使用できる。電子導電性物質を膜状にした場合のその厚さは、得られる膜−電極接合体の使用目的に合わせて適宜設定すれば良いが、例えば、燃料電池用の膜−電極接合体として用いる場合には、0.1〜300μmが好適である。
【0025】
なお、上記電子導電性物質は、粉末や繊維として種々のものが商業的に入手可能であり、これらを上記した方法でシート状に形成してもよいし、あるいは、カーボンペーパー、金属メッシュ等としてシート状に形成されたものを商業的に入手し、それらをそのまま用いても良い。
【0026】
本発明の製造方法により得られる膜−電極接合体を、燃料電池用の電極接合体として用いる場合には、上記のような電子導電性物質のなかでも、導電性カーボン又は、導電性カーボンに電極反応の触媒となる物質(金属触媒など)を坦持させたものが好ましい。なお、導電性カーボンに触媒を坦持させたものも商業的に種々のものが入手可能であるし、あるいは、特開2002−329500号公報、特開2002−100373号公報、特開平7−246336号公報等に記載の方法で製造しても良い。むろん、膜−電極接合体における電極部分が触媒機能を有している必要がなく単に電子導電性のみを求める場合には、触媒を坦持させたものを用いる必要がなく、この場合には、粉末成分を用いるよりもカーボンペーパー、金属メッシュ等を用いた方が作業性が向上する場合がある。
【0027】
前述したように、本発明の製造方法においては、上記導電性物質を、重合性単量体の重合前に、該重合性単量体と接触させる。この接触の方法としては、(1)前記した基材に重合性単量体を含浸させ、ついで、この重合性単量体が含浸した基材の少なくとも一方の面を、電子導電性物質と接触させる方法(第一の方法)、(2)先に基材の少なくとも一方の面と電子導電性物質とを接触させ、その接触を保った状態で基材に重合性単量体を含浸させる方法(第二の方法)のいずれでも良い。
【0028】
第一の方法において、基材に重合性単量体を含浸させる方法は特に限定されず、上記重合性単量体及び必要に応じて配合されている任意成分の溶液あるいはスラリー(以下、併せて重合性単量体溶液と称す)を調製し、この重合性単量体溶液を基材へ塗布やスプレーしたり、あるいは基材を重合性単量体溶液中へ浸漬したりする方法が例示される。このような方法により、基材の有する空隙(細孔)内に重合性単量体が浸透していく。その操作が容易で、また均一性が高い点で、基材を重合性単量体溶液中へ浸漬する方法が好ましい。その浸漬時間は基材の種類や重合性単量体溶液の組成にもよるが、一般的には0.1秒〜十数分である。
【0029】
第一の方法においては、このようにして製造された重合性単量体(及びその他の浸透可能な任意成分)が含浸した基材の有する表裏両面のうちの少なくとも一方の面を、電子導電性物質と接触させる。この接触により、基材の有する間隙内及び/又は基材の表面に存在する重合性単量体(及びその他任意成分)が、電子導電性物質同士の間隙、あるいは電子導電性物質自体が有する間隙部分に浸透していく。この場合、本発明の製造方法によって得られる膜−電極接合体として、片面のみに電子導電性物質を含む層を有するものとしたい場合には、基材の片面のみに電子導電性物質を接触させればよいし、両面に電子導電性物質を含む層を有するものとしたい場合には、基材の両面に電子導電性物質を接触させればよい。なお、両面に電子導電性物質を含む層を有するものとする場合には、各々の面に接触させる電子導電性物質として異なるものを用いても構わない。
【0030】
この接触の方法も特に限定されるものではないが、操作性に優れ、均質のものを安定して製造できる点で特に好ましい代表的な方法について具体的に述べると以下の通りである。
【0031】
即ち、前記したような空隙部を有する電子導電性物質の膜状物を、ポリエステルフィルム等の表面が平滑で、かつ重合性単量体と反応しない材質の面上で形成するか、あるいは別途製造したものをこのようなポリエステルフィルム等に貼付しておく。この電子導電性物質の膜状物のポリエステルフィルム等とは接していない面と、上記したような方法で製造した重合性単量体を含浸させた基材とを張り合わせるようにして接触させる。片面にのみ電子導電性物質を含む層を形成させたい場合には、他方の面には単なる(電子導電性物質の膜状物が存在しない)ポリエステルフィルム等を用いればよい。このようにして得られたサンドイッチ構造の積層体に対しては、余剰の重合性単量体を除去し、また厚さを均一にするために適度な圧力をかけて押し挟むことが好ましい。この際の圧力としては、用いた基材や電子導電性物質の膜状物が大きく変形したり、崩壊したりしない一方で、充分な密着性を保持する程度に適宜設定すればよい。
【0032】
本発明の第二の方法では、上記第一の方法とは逆に、基材と電子導電性物質をさせた後、重合性単量体溶液を基材に含浸させる。この方法においても、単に順序が異なるのみで、他は上記第一の方法と同様に操作すればよい。
【0033】
基材へ重合性単量体を含浸させる操作の際に、電子導電性物質の膜状物やポリエステルフィルム等が邪魔にならず、より操作が簡単な点で、第一の方法がより好ましい。
【0034】
本発明の製造方法においては、第一、第二の方法いずれにおいても、ついで重合性単量体を重合させる。当該重合の方法は特に限定されるものではなく、用いた重合性単量体に応じ公知の重合方法を採用すればよい。一般的には、前記過酸化物からなる重合開始剤を用い、加熱により重合させる方法が、その操作が容易で、また比較的均一に重合させることができ好ましい。重合に際しては、酸素による重合阻害を防止し、また表面の平滑性を得、さらにはより高い接合強度を得るために、前記したようなポリエステル等のフィルムにより覆い、圧力を付与した状態でそのまま重合させることがより好ましい。熱重合により重合させる場合の重合温度は特に制限されず、用いた過酸化物に応じ公知の条件を適宜選択して適用すればよいが、一般的には50〜150℃程度、好ましくは60〜120℃程度である。なお、重合性単量体溶液中に溶媒が含まれている場合には、重合に先立って該溶媒を除去しておくことも可能である。
【0035】
上記したような本発明の製造方法により得られる膜−電極接合体はその使用目的に応じそのまま用いても良いが、燃料電池等に用いる場合には、一般的には重合性単量体の重合体に対しイオン交換性基を導入して用いる。
【0036】
当該イオン交換性基を具体的に例示すると、陽イオン交換基として、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられ、陰イオン交換基としては、1〜3級アミノ基、4級アンモニウム基、ピリジル基、イミダゾール基、4級ピリジニウム基、4級イミダゾリウム基等が挙げられる。
【0037】
これらイオン交換性基の導入方法は、公知のイオン交換樹脂の製造方法に従って行えばよく、例えば、重合性単量体として主としてスチレンを用いた場合には、三酸化硫黄やクロルスルホン酸、発煙硫酸、濃硫酸と接触させ、その後必要に応じて加水分解することによりスルホン酸基を導入することができる。また、重合性単量体としてメタクリル酸エステルを用いた場合には、該エステル部分を加水分解することにより、カルボン酸基を導入することができる。
【0038】
イオン交換性基の導入量が多いほど、得られる膜−電極接合体の電気的性能が優れたものになるが、通常、イオン交換膜と電極層全体の総イオン交換容量が0.3〜5.0mmol/g程度で、電極層のみのイオン交換容量は0.1〜3.0mmol/g程度であれば充分である。イオン交換性基の導入量もまた、反応における基質濃度や反応温度、時間を制御するなど公知の方法により制御できる。
【0039】
上記のような方法で得られた膜−電極接合体は、通常、電子導電性物質の形状等によっても大きく変化するが、白金黒電極で接合体を挟んで行った交流インピーダンス法による接合体抵抗で1〜500Ω・cm、電極層表面の電気抵抗(以下、電極面抵抗という)で0.005〜100kΩ/cmとなり、さらに、接合体作成直後でも、直接メタノール型燃料電池に組み込んで例えば250時間の連続発電を行った後でも、JISK−5400のXカットテープ法に準拠したテープ剥離試験にて8〜10点の剥離強度を示すなどしており、燃料電池用の膜−電極接合体に限らず、電気化学的センサー、空気清浄機、除湿機等における膜−電極接合体として好適に使用できる。
【0040】
【実施例】
本発明を更に具体的に説明するため、以下、実施例及び比較例を掲げて説明するが、本発明はこれらの実施例に限定されるものではない。尚、実施例および比較例に示すイオン交換膜−電極接合体の特性は、以下の方法により測定した値を示す。
【0041】
1)イオン交換容量
電極接合体を1mol/l−HCl水溶液に10時間以上浸漬する。その後、陽イオン交換膜の場合には、1mol/l−NaCl水溶液でイオン交換基の対イオンを水素イオンからナトリウムイオンに置換させ、遊離した水素イオンを水酸化ナトリウム水溶液を用いて電位差滴定装置(COMTITE−900、平沼産業株式会社製)で定量した(Amol)。一方、陰イオン交換膜の場合には、1mol/l−NaNO水溶液で対イオンを塩化物イオンから硝酸イオンに置換させ、遊離した塩化物イオンを硝酸銀水溶液を用いて電位差滴定装置(COMTITE−900、平沼産業株式会社製)で定量した(Amol)。
【0042】
次に、同じ電極接合体を1mol/l−HCl水溶液に4時間以上浸漬し、イオン交換水で十分水洗した後、60℃で5時間減圧乾燥して乾燥時の重さ(Dg)を測定した。
【0043】
次いで、電極層のみをカッターナイフで適当量(Eg)掻き落とし、陽イオン交換性である場合はSを、陰イオン交換性である場合Nを元素分析で定量した(Bmol)。
【0044】
上記測定値に基づいて、イオン交換膜−電極接合体の総イオン交換容量、および電極層イオン交換容量を次式により求めた。
【0045】
総イオン交換容量=A×1000/D[mmol/g−乾燥重量]
電極層イオン交換容量=B×1000/E[mmol/g−乾燥重量]
2)触媒金属担持量
所定面積の電極接合体をイオン交換水で2倍に希釈した王水に24時間浸漬して金属触媒を溶解させ、溶解液を誘導結合プラズマ発行分析法で分析して触媒金属担持量を求めた。
【0046】
3)電極層厚さ
電極接合体の断面を走査型電子顕微鏡(SEM)で観察して、片面の電極層厚さを求めた。
【0047】
4)接合体抵抗および電極面抵抗
陽イオン交換膜を用いた電極接合体の場合には0.1mol/L−HCl水溶液で、陰イオン交換膜を用いた電極接合体の場合には0.1mol/L−水酸化ナトリウム水溶液で接合体中のイオン交換基の対イオンをそれぞれ水素イオン、水酸化物イオンにした。
【0048】
次いで、白金黒電極で上記の電極接合体を挟み、LCRメーター(日置電機製3532−50型)を用いて周波数50Hz〜2.5MHzで、空気中(25℃、相対湿度80%)での交流インピーダンス測定を行った。得られたcole−coleプロットにおける低周波数側第1番目の変極点のインピーダンスから、接合体を挟まずに求めた同様のインピーダンスを差し引き、接合体抵抗とした。
【0049】
また、同じ電極接合体を用いて電極層表面のインピーダンスを測定し、接合体抵抗と同様にして電極面抵抗を求めた。
【0050】
5)接合性
A)Xカットテープ法
作成直後の電極接合体を用い、JISK−5400のXカットテープ法に準拠し、テープ剥離試験を行った。テープ剥離後、イオン交換膜上に残った電極層の状態を目視で10点法により評価し、作成直後の接合性とした。
【0051】
また、次項の燃料電池出力電圧試験において0.1A/cmで250時間連続発電した後セルから電極接合体を取り出し、作成直後と同様にしてテープ剥離試験を行い接合性を評価した。
【0052】
B)剥離強度測定法
作成直後のイオン交換膜−電極接合体から、幅1cm、長さ5cmのサンプルを切り出し、イオン交換膜の90°剥離強度を東洋精機製ストログラフ M−1用いて測定した。
【0053】
6)燃料電池出力電圧
ポリテトラフルオロエチレンで撥水化処理した厚さ100μm、空孔率80%のカーボンペーパーで電極接合体を挟み、これを図1に示す構造の燃料電池セルに組み込んだ。次いで、燃料電池セル温度25℃に設定し、燃料極側に20重量%メタノール水溶液を、酸化極側に大気圧の酸素を200ml/minで供給して発電試験を行ない、電流密度0A/cm、0.1A/cmにおけるセルの端子電圧を測定した。
【0054】
7)耐久性評価
上記出力電圧の測定後、25℃、0.1A/cmで連続発電試験を行い、250時間後の出力電圧を測定し、電極接合体の耐久性を評価した。
【0055】
8)除湿能力測定
イオン交換膜−電極接合体を図3に示すように内容積27リットルの測定セルに組み込み、温度25℃、相対湿度70%に調整した恒温恒湿器に入れた。次いで、電極接合体のカーボンペーパー側を陰極に、白金メッキチタンメッシュ側を陽極にして4Vの直流電圧をかけ、1時間後の測定セル内の湿度を測定した。
【0056】
実施例1
80質量部の触媒坦持カーボンブラック(ルテニウム50mol%の白金−ルテニウム合金が50質量%)、10質量部の炭素繊維(繊維径0.15μm、繊維長10〜20μm)、5質量部のポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレントリブロック共重合体(スチレン含量30%、分子量12万)、5質量部のシンジオタクチック1,2−ポリブタジエン(分子量15万)を、900質量部の有機溶媒(テトラヒドロフラン95質量%、N,N−ジメチルホルムアミド5質量%)に分散させてスラリーを作成し、これをポリテトラフルオロエチレン(PTFE)製フィルム上に塗布した後、25℃で5時間乾燥し、次いで80℃で4時間減圧乾燥して導電性無機粒子シートを形成した。
【0057】
別途、スチレン90質量部、ジビニルベンゼン10質量部(全重合性単量体中8.2モル%)、t−ブチルパーオキシエチルヘキサノエート5質量部よりなる単量体組成物を調整し、これにポリエチレン(PE、重量平均分子量25万)製の多孔質膜(膜厚25μm、空隙率37%、平均孔径0.03μm)を大気圧下、25℃で10分浸漬し、単量体組成物を含浸させた。
【0058】
続いて、多孔質膜を単量体組成物中から取り出し、これに上記のPTFEフィルム上の導電性無機粒子シートを導電性無機粒子が多孔質膜と接触するように配置した。同様にして、多孔質膜のもう一方の面に、同様に形成した別の導電性無機粒子シートを配置した後、0.3MPaの窒素加圧下、80℃で5時間加熱重合し、膜状の電極接合体前駆体を得た。次いで、得られた電極接合体前駆体の膜状物を98%濃硫酸と純度90%以上のクロロスルホン酸の1:1混合物中に40℃で45分間浸漬し、スルホン酸型陽イオン交換膜−電極接合体を得た。得られた電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、燃料電池出力電圧、耐久性を測定した。これらの結果を表2に示した。また、この電極接合体のイオン交換膜と片面の電極層部分の断面を電子線マイクロアナライザーにより分析したところ、図3に示す通り、イオン交換基であるスルホン酸基のS強度がイオン交換膜と電極層の間で連続的に変化していることが確認された。
【0059】
【表1】

Figure 2005032536
【0060】
【表2】
Figure 2005032536
【0061】
実施例2〜4
導電性無機粒子を含むスラリーを表1に示す組成に変えた以外は実施例1と同様にして電極接合体を得た。これら電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、燃料電池出力電圧、耐久性を測定した結果を表2に示した。
【0062】
比較例1
導電性無機粒子シートを用いず、厚さ100μmのポリエステルフィルムを剥離材として用いた以外は実施例1と同様にして、電極層の接合されていないスルホン酸型陽イオン交換膜を得た。
【0063】
次いで、この陽イオン交換膜上に、実施例1で用いた白金とルテニウム合金触媒(ルテニウム50mol%)を50質量%担持したカーボンブラックと、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレントリブロック共重合体のスルホン化樹脂(イオン交換容量1.0mmol/g)の1−プロパノール/ジクロロエタン溶液(濃度5質量%)を混合したものを塗布し25℃で5時間、80℃で4時間減圧乾燥した後、上記の膜状物を100℃、圧力5MPaの加圧下で100秒間熱圧着し、更に室温で2分間放置し、陽イオン交換膜−電極接合体を得た。この電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、燃料電池出力電圧、耐久性を測定した結果を表2に示した。
【0064】
実施例5
単量体組成物のスチレンをクロルメチルスチレンに変えた以外は実施例1と同様にして導電性無機粒子シートを接合した電極接合体前駆体を得た。次いで、これを30質量%トリメチルアミン10質量部、水5質量部、アセトン5質量部よりなるアミノ化浴中、室温で5時間反応せしめ4級アンモニウム塩型陰イオン交換膜−電極接合体を得た。
【0065】
得られた電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、燃料電池出力電圧、耐久性を測定した結果を表3に示した。
【0066】
【表3】
Figure 2005032536
【0067】
比較例2
導電性無機粒子シートを用いず、厚さ100μmのポリエステルフィルムを剥離材として用いた以外は実施例5と同様にして、電極層の接合されていない4級アンモニウム塩型陰イオン交換膜を得た。
【0068】
次いで、この陰イオン交換膜上に、実施例1で用いたのと同じ触媒担持カーボンブラックを3.5質量%と、ポリ(4−ビニルピリジン)のN−メチル化樹脂(分子量6万、メチル化率20mol%)を1.5質量%含むN,N−ジメチルホルムアミドのスラリーを塗布し25℃で5時間、80℃で4時間減圧乾燥した。続いて、上記の膜状物を100℃、圧力5MPaの加圧下で100秒間熱圧着し、更に室温で2分間放置し、陰イオン交換膜−電極接合体を得た。この電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、燃料電池出力電圧、耐久性を測定した結果を表3に示した。
【0069】
実施例6、7
表4に示す導電性無機粒子を含むスラリーを調整し、これを撥水化処理したカーボンペーパー(厚さ100μm、空隙率80%)の上に塗布した後、25℃で5時間乾燥し、次いで80℃で4時間減圧乾燥して導電性無機粒子層を形成したカーボンペーパーよりなる電極シートを得た。
【0070】
次いで、上記の電極シートを用いた以外は実施例1と同様にしてスルホン酸型陽イオン交換膜−電極接合体を得た。得られた電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、燃料電池出力電圧、耐久性を測定した。これらの結果を表5に示す。
【0071】
【表4】
Figure 2005032536
【0072】
【表5】
Figure 2005032536
【0073】
比較例3
実施例1で用いたのと同じ触媒担持カーボンブラックを3.5質量%と、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレントリブロック共重合体のスルホン化樹脂(イオン交換容量1.0mmol/g)を1.5質量%含む1−プロパノール/ジクロロエタンのスラリーを混合したものを実施例6で用いたのと同じカーボンペーパー上に塗布し25℃で5時間、80℃で4時間減圧乾燥した。
【0074】
次に、比較例1と同様にして得た電極層が接合されていないスルホン酸型陽イオン交換膜上に、上記のカーボンペーパーを触媒金属層がイオン交換膜と接するように両面に配置して100℃、圧力5MPaの加圧下で100秒間熱圧着し、更に室温で2分間放置し、陽イオン交換膜−電極接合体を得た。この電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、燃料電池出力電圧、耐久性を測定した結果を表5に示した。
【0075】
実施例8
表6に示す電子導電性物質粒子を含むスラリーを調整し、これを撥水化処理したカーボンペーパー(厚さ100μm、空隙率80%)の上に塗布した後、25℃で5時間乾燥し、次いで80℃で4時間減圧乾燥して電子導電性物質粒子層を形成したカーボンペーパーよりなる電極シートを得た。
【0076】
次いで、上記の電極シートを片面に、もう一方の面には白金をメッキしたチタン製エキスパンドメッシュ(厚さ100μm、線幅200μm、縦方向ピッチ1.5mm、横方向ピッチ0.75mm)を電子導電性物質シートとして使用して実施例1と同様にして単量体組成物を重合し、その後スルホン酸基を導入して電極接合体を得た。
【0077】
続いて、この電極接合体のエキスパンドメッシュ側に、白金触媒を50質量%担持したカーボンブラックを3.5質量%と、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレントリブロック共重合体のスルホン化樹脂(イオン交換容量1.0mmol/g)を1.5質量%含む1−プロパノール/ジクロロエタン溶液(濃度5質量%;以下これを、実施例8の触媒スラリー)を塗布し25℃で5時間、80℃で4時間減圧乾燥した後、上記の膜状物を100℃、圧力5MPaの加圧下で100秒間熱圧着し、更に室温で2分間放置し、除湿用イオン交換膜−電極接合体を得た。得られた除湿用イオン交換膜−電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、除湿能力を測定した結果を表7に示した。なお、電極層厚さ、電極層イオン交換容量、触媒金属担持量、電極面抵抗、接合性はそれぞれの電極層について測定を行なった。
【0078】
【表6】
Figure 2005032536
【表7】
Figure 2005032536
比較例4
実施例8の触媒スラリーを撥水化処理したカーボンペーパー(厚さ100μm、空隙率80%)の上に塗布した後、25℃で5時間乾燥し、次いで80℃で4時間減圧乾燥して電子導電性物質粒子層を形成したカーボンペーパーよりなる電極シートを得た。
【0079】
次に、比較例1と同様にして電極層が接合されていないスルホン酸型陽イオン交換膜を得、この片面に実施例8で用いたのと同じ白金をメッキしたチタン製エキスパンドメッシュを置いた後、さらに実施例8のスラリーを塗布し、25℃で5時間、80℃で4時間減圧乾燥した。次いで、もう一方の面に上記の電子導電性物質粒子層を形成したカーボンペーパーを配して、100℃、圧力5MPaの加圧下で100秒間熱圧着し、更に室温で2分間放置し、除湿用イオン交換膜−電極接合体を得た。得られた除湿用イオン交換膜−電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、触媒金属担持量、接合体抵抗、電極面抵抗、接合性、除湿能力を測定した結果を表7に示した。なお、電極層厚さ、電極層イオン交換容量、触媒金属担持量、電極面抵抗、接合性はそれぞれの電極層について測定を行なった。
【0080】
実施例9、10
実施例9では、撥水化処理したカーボンペーパー(厚さ100μm、空隙率80%)を、実施例10では白金をメッキしたチタン製エキスパンドメッシュ(厚さ100μm、線幅200μm、縦方向ピッチ1.5mm、横方向ピッチ0.75mm)を電子導電性物質シートとして使用し、実施例1と同様にしてイオン交換膜−電極接合体を得た。得られた電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、接合体抵抗、電極面抵抗、接合性を測定した結果を表8に示した。
【0081】
【表8】
Figure 2005032536
比較例5、6
比較例1と同様にして得た電極層が接合されていないスルホン酸型イオン交換膜の両面に、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレントリブロック共重合体のスルホン化樹脂(イオン交換容量1.0mmol/g)の1−プロパノール/ジクロロエタン溶液(濃度5質量%)を塗布し、25℃で5時間、80℃で4時間減圧乾燥した。次いで、この両面に、比較例5では撥水化処理したカーボンペーパー(厚さ100μm、空隙率80%)を、比較例6では白金をメッキしたチタン製エキスパンドメッシュ(厚さ100μm、線幅200μm、縦方向ピッチ1.5mm、横方向ピッチ0.75mm)を配し、100℃、圧力5MPaの加圧下で100秒間熱圧着し、更に室温で2分間放置し、陽イオン交換膜−電極接合体を得た。得られた電極接合体の総イオン交換容量、電極層厚さ、電極層イオン交換容量、接合体抵抗、電極面抵抗、接合性を測定した結果を表8に示した。
【0082】
【発明の効果】
本発明の製造方法では、電子導電性物質同士の間隙および/または電子導電性物質自身の間隙、さらにこれらとイオン交換膜の間隙に存在するイオン交換樹脂がイオン交換膜部分の架橋型イオン交換樹脂と連続的な重合体を形成しているイオン交換膜−電極接合体が得られる。このため、寸法安定性、耐熱性、メタノール非透過性に優れた架橋型のイオン交換樹脂を主とするイオン交換膜であっても、イオン交換膜と電極層の接合性が極めて高い。従って、イオン交換膜両面の電極層間のイオン導電性が高くなり、例えば燃料電池に適用した場合高い出力電圧を得ることができる。
【0083】
さらに、上記構造に起因して、作成直後だけでなく長期間の使用後やメタノール水溶液浸漬後であっても高い接合性を維持できるため、例えば直接メタノール燃料電池に適用した場合、長期に渡り高い出力電圧を得ることができる。
【0084】
以上のように、本発明の製造方法は、イオン導電性に起因する高い特性を長期間に渡り維持できるため燃料電池を初めとする電気化学デバイスの実用化において極めて有効なイオン交換膜−電極接合体を提供するものである。
【図面の簡単な説明】
【図1】図1は直接メタノール型燃料電池の基本構造を示す模式図である。
【図2】図2は本発明の製造方法で得られる接合体の代表的な構造を示す模式図である。
【図3】図3は本発明の製造方法で得られる接合体の除湿能力を測定するためのセルの構造を示す模式図である。
【図4】実施例1で製造した隔膜−電極接合体の接合部分の断面を電子線マイクロアナライザーにより分析した結果を示す図。
【符号の説明】
【符号の説明】
1;電池隔壁
2;燃料流通孔
3;酸化剤ガス流通孔
4;燃料室側拡散電極
5;酸化剤室側ガス拡散電極
6;固体高分子電解質
7;燃料室
8;酸化剤室
9;イオン交換樹脂
10;導電性無機粒子(触媒坦持導電性カーボン)
11;基材(多孔質フィルム)
12;イオン交換膜
13;電極層
14;陽極(白金メッキチタンメッシュ側)
15;陰極(カーボンペーパー側)
16;陽極集電体
17;陰極集電体
18;除湿能力測定セル隔壁
19;除湿室[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is an ion exchange membrane / electrode assembly used in various batteries, electrochemical sensors, electrochemical air purifiers, dehumidifiers, etc., particularly ion exchange that is suitably used for direct methanol fuel cells. The present invention relates to a method for producing a joined body of a membrane and a catalyst electrode.
[0002]
[Prior art]
A fuel cell is a power generation system that continuously supplies fuel and an oxidant and extracts chemical energy as electric power when they react. Fuel cells are roughly classified into alkaline, phosphoric acid, and solid polymer electrolyte types that operate at relatively low temperatures, and molten carbonate and solid oxide electrolyte types that operate at high temperatures, depending on the type of electrolyte used. Is done.
[0003]
Among these, the polymer electrolyte fuel cell generally has a gas diffusion electrode having a catalyst supported on both sides of a solid polymer diaphragm that acts as an electrolyte, and the side on which one gas diffusion electrode exists. A fuel made of hydrogen gas or methanol or the like is supplied to the chamber (fuel chamber), and an oxygen-containing gas such as oxygen or air as an oxidant is supplied to the chamber on the other gas diffusion electrode side. By connecting an external load circuit between them, the fuel cell is operated. In particular, direct methanol fuel cells that use methanol as a direct fuel are expected to be a relatively small output power source, especially for portable devices, because the fuel is liquid and is easy to handle. Has been.
[0004]
The basic structure of such a direct methanol fuel cell is shown in FIG. In the figure, (1) is a battery partition, (2) is a fuel flow hole, (3) is an oxidant gas flow hole, (4) is a fuel chamber side diffusion electrode, (5) is an oxidant chamber side gas diffusion electrode, (6) shows a solid polymer electrolyte membrane. In this direct methanol fuel cell, protons (hydrogen ions) and electrons are generated in the fuel chamber side diffusion electrode (4) from methanol supplied to the fuel chamber (7), and the protons are contained in the solid polymer electrolyte (6). Is transferred to the other oxidant chamber (8) and reacts with oxygen in the air or oxygen gas to produce water. At this time, the electrons generated in the fuel chamber side diffusion electrode (4) move to the oxidant chamber side gas diffusion electrode (5) through the external load circuit to obtain electric energy.
[0005]
Usually, in the direct methanol fuel cell having such a structure, a cation exchange membrane is used as the solid polymer electrolyte membrane. The cation exchange membrane is required to have low electrical resistance, high water retention, stability for long-term use, and high physical strength. Conventionally, a perfluorocarbon sulfonic acid membrane has been mainly used as such a cation exchange membrane. However, this membrane is excellent in chemical stability, but its water retention is insufficient, so that the cation exchange membrane is dried and the proton conductivity tends to be lowered, and the physical strength is also high. Since it is insufficient, it is difficult to reduce the electric resistance by thinning the film. In addition, there is a problem that so-called methanol crossover easily occurs, in which methanol permeates through the ion exchange membrane. Further, the perfluorocarbon sulfonic acid membrane is expensive (see, for example, Non-Patent Documents 1 and 2).
[0006]
In order to solve these problems, a porous film made of polyethylene or the like is used as a base material, and an ion exchange membrane formed using a hydrocarbon ion exchange resin such as polystyrene sulfonic acid as an ion exchange resin is used. Proposed. In this case, in order to improve the dimensional stability, heat resistance, or mechanical strength, a crosslinked type is often used as the hydrocarbon-based ion exchange resin (for example, Patent Document 1). 2).
[0007]
On the other hand, as described above, in a solid polymer electrolyte fuel cell, a fuel chamber side diffusion electrode and an oxidant chamber side gas diffusion electrode (hereinafter referred to simply as a catalyst electrode) for taking out electricity from fuel such as methanol. ) Is essential. In the fuel quality side diffusion electrode, the fuel is oxidized and electrons are taken out, but protons are generated at the same time in this reaction. This proton moves through the cation exchange membrane, which is a diaphragm, to the oxidant chamber side gas diffusion electrode, where it reacts with the oxidant and is converted to water. In order to improve proton transfer and continuously extract electrons (electricity), it is indispensable that a material having proton conductivity is in contact with the site where the fuel is oxidized. Is a catalyst such as platinum for accelerating the reaction, an electron conductive material capable of transferring generated electrons such as conductive carbon, and a cation capable of transferring protons such as a cation exchange resin. It is made of an ion conductive material. Therefore, in order to facilitate the movement of protons and obtain good battery performance, not only the ion conductivity of each of the cation exchange resin in the catalyst electrode part and the cation exchange membrane as the diaphragm, but also between these materials. The ion conductivity of is extremely important.
[0008]
Conventionally, when a perfluorocarbon sulfonic acid membrane is used as a diaphragm, a perfluorocarbon sulfonic acid resin is also used as a cation exchange resin for the catalyst electrode portion, and this resin is composed of carbon carrying a catalyst and a diluting solvent. The paste was applied to perfluorocarbon sulfonic acid constituting the diaphragm, dried, and hot-pressed to obtain an ion conductivity sufficient between the catalyst electrode part and the diaphragm part (for example, Patent Document 3). ). This is presumably because the perfluorocarbon sulfonic acid resin used is thermoplastic, so that it is fused and integrated by hot pressing.
[0009]
However, according to the study of the present inventor, it has been clarified that the following problems occur when the above-described cross-linked ion exchange resin is used as the resin in the ion exchange membrane constituting the diaphragm. That is, in order to form the catalyst electrode portion on the ion exchange membrane, even if the same operation of applying the paste as described above, drying, and further hot pressing is performed, sufficient fusion does not occur. As a result, the bondability between the catalyst electrode part and the diaphragm part becomes insufficient. This is presumably because the resin in the ion exchange membrane is a cross-linked type. And since joining property is inadequate, ion conductivity will also become inferior. Even if a product with relatively good ionic conductivity can be produced at the initial stage of manufacture, the bondability gradually deteriorates by maintaining it in use, that is, immersed in methanol. In many cases, the catalyst electrode part peels off from the ion exchange membrane part in a relatively short period of time.
[Non-Patent Document 1]
“Development and application of polymer electrolyte fuel cells”, NTS Corporation, published on April 28, 2000, p. 33-41
[Non-Patent Document 2]
JPO Technical Research Section, “Technology Trend Survey on Fuel Cells”, JPO, May 31, 2001, p. 16
[Patent Document 1]
JP-A-11-335473
[Patent Document 2]
JP 2001-135328 A
[Patent Document 3]
JP-A-6-150937
[0010]
[Problems to be solved by the invention]
Therefore, even when an ion exchange membrane mainly composed of a cross-linked ion exchange resin with excellent dimensional stability, heat resistance, mechanical strength, methanol impermeability, etc. is used, the bondability between the electrode portion and the ion exchange membrane portion Therefore, there has been a demand for a method for producing a membrane-catalyst electrode assembly that is excellent in performance and can be used directly for a methanol fuel cell.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive research in view of the above-mentioned object. The inventors of the present invention have a problem in that, in the method of manufacturing a joined body of an ion exchange membrane and a catalyst electrode, the method of simultaneously forming the ion exchange membrane portion and joining the ion exchange membrane portion and the electrode layer is the above problem. The present invention was completed as a result of further investigations on the possibility that the solution was effective.
[0012]
That is, the present invention is characterized in that an electronically conductive substance is brought into contact with at least one surface of a substrate impregnated with a polymerizable monomer, and then the polymerizable monomer is polymerized while maintaining the contact. It is a manufacturing method of the membrane-electrode assembly made into.
[0013]
According to another invention, an electronic conductive substance is brought into contact with at least one surface of a base material that can be impregnated with a polymerizable monomer, and then the polymerizable monomer is maintained on the base material while maintaining the contact. The membrane-electrode assembly is produced by impregnating the body and then polymerizing the polymerizable monomer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In any of the above production methods of the present invention, the polymerizable monomer is brought into contact with the electron conductive substance before the polymerizable monomer is polymerized, and then the polymerizable monomer is polymerized. At this time, if there is no substrate for impregnating and holding the polymerizable monomer, it is impossible to form a layer having no electronic conductivity necessary for use as an electrochemical device or the like. There arises a problem that the electrode assembly is not formed or the thickness of the layer is not uniform.
[0015]
The substrate is not particularly limited as long as it is a film-like material (including a sheet shape, a film shape, or a plate shape, the same applies hereinafter) having a void that can be impregnated with a polymerizable monomer. In general, the material is preferably used as a base material for an ion exchange membrane. Examples of the base material of such an ion exchange membrane include a porous film, non-woven paper, woven fabric, non-woven fabric, paper, inorganic membrane, etc., and the thermoplastic resin composition, thermosetting resin composition or Although it may be an inorganic substance or a mixture thereof, the thermoplastic resin composition is not only easy to manufacture, but also has high adhesion strength with the polymer of the polymerizable monomer described later, and is more flexible. It is preferable that it is a thing. Examples of the thermoplastic resin composition include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, and 5-methyl-1-heptene. Polyolefin resin such as α-olefin homopolymer or copolymer; polyvinyl chloride diameter such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-olefin copolymer Resin; polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer Fluorine diameter resin such as nylon 6, nylon 66, etc. Polyamide resins. Among these, it is preferable to use a polyolefin resin because it is excellent in mechanical strength, chemical stability, and chemical resistance and generally has good compatibility with a polymerizable monomer. As the polyolefin resin, polyethylene or polypropylene resin is particularly preferable, and polyethylene resin is most preferable.
[0016]
Furthermore, it is preferably a porous film, particularly a porous film made of polyolefin resin, and a porous film made of polyethylene resin in terms of smoothness, easy contact with a wide range of electronic conductive materials, and excellent strength. Is most preferred.
[0017]
As such a porous film, the average pore diameter of the pores thereof is preferably 0.005 to 5.0 μm, particularly preferably 0.01 to 2.0 μm, and the porosity (also referred to as porosity) is 20 to 20 μm. It is preferably 95%, particularly 30 to 90%, and the air permeability (JIS P-8117) is preferably 1500 seconds or less, particularly preferably 1000 seconds or less. The thickness is preferably 5 to 150 μm, more preferably 10 to 120 μm, and particularly preferably 15 to 50 μm so that the obtained ion exchange membrane can be thinned and sufficient strength can be obtained.
[0018]
Such a porous film can be obtained, for example, by a method described in JP-A-9-212964, JP-A-2002-338721, or the like, or a commercially available product (for example, Asahi Kasei “Hypore”, Ube Industries, Ltd.). "Eupor", Tonen Tapils "Setera", Nitto Denko "Exepor", Mitsui Chemicals "Hillette", etc.) are also available.
[0019]
In the present invention, the above-described base material is impregnated with a polymerizable monomer. The polymerizable monomer may be appropriately selected according to the use of the obtained membrane-electrode assembly, and any known polymerizable monomer may be used. However, the polymerization is easy, and the obtained polymer is acid resistant. -It is preferable that it is a vinyl type polymerizable monomer at the point which is excellent in alkali resistance, electrochemical stability, etc. Specific examples of the vinyl polymerizable monomer include styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, p-tert-butylstyrene, α-halogenated styrene, vinylnaphthalene, vinyl. Monofunctional aromatic vinyl compounds such as pyridine, vinylimidazole, and styrene sulfonic acid; monofunctional (meth) such as (meth) acrylic acid, methyl (meth) acrylate, and (meth) acrylamide-2-methylpropanesulfonic acid Acrylic acids or derivatives thereof; monofunctional polymerizable monomers such as other vinyl compounds such as vinylphosphonic acid and maleic anhydride; polyfunctional aromatic vinyl compounds such as divinylbenzene, divinylbiphenyl and trivinylbenzene Trimethylol methane trimethacrylate, methylenebisacrylamid And polyfunctional (meth) acrylic acid derivatives such as hexamethylene dimethacrylamide; or other polyfunctional polymerizable monomers such as butadiene, chloroprene and divinyl sulfone (hereinafter these polyfunctional polymerizable monomers). Is also referred to as a cross-linking agent). (In the present invention, unless otherwise specified, both a single type of polymerizable monomer and a mixture of a plurality of types of polymerizable monomers are simply referred to as polymerizable monomers.)
These polymerizable monomers may be used alone or in combination of a plurality of types, but depending on other methods, production of a membrane-electrode assembly having high bonding strength aimed by the present invention is possible. In view of the difficulty, it is preferable that the polymer contains at least one crosslinking agent and the polymer of the polymerizable monomer becomes a crosslinking type.
[0020]
Furthermore, it is possible to use an aromatic vinyl compound because it is easy to introduce an ion exchange group, particularly a strongly acidic ion exchange group, which will be described later, and is particularly excellent in acid / alkali resistance and electrochemical stability. preferable. In this case, a polymerizable monomer composed mainly of monofunctional aromatic vinyl compounds and containing about 0.1 to 30 mol% of a crosslinking agent (particularly a polyfunctional aromatic vinyl compound) in all polymerizable monomers. A mixture of monomers is preferred.
[0021]
In the present invention, a polymerization initiator is preferably mixed with the polymerizable monomer impregnated in the substrate. The polymerization initiator is not particularly limited as long as it is a polymerization initiator capable of polymerizing the polymerizable monomer as described above, and specifically, octanoyl peroxide, lauroyl peroxide. , T-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaurate, t-hexylperoxybenzoate, di-t-butylperoxide, etc. Of organic peroxides. The blending amount of the polymerization initiator may be a known range used in the polymerization of the polymerizable monomer, and is generally about 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable monomer. .
[0022]
Furthermore, if necessary, known additives for producing an ion exchange resin by polymerization of a polymerizable monomer such as a solvent, a plasticizer, and a filler may be mixed.
[0023]
The electron conductive material in the present invention may be any known electron conductive material. Specific materials include gold, silver, copper, platinum, titanium, rhodium, ruthenium, iridium, palladium, osmium, nickel, iron. Metal oxide particles such as tin oxide, indium oxide, and indium-tin composite oxide; conductive carbon (carbon), conductive organic polymer, and the like. In addition, the shape is not particularly limited, but considering that the obtained membrane-electrode assembly is used for a fuel cell, a void portion (in particular, both the front and back surfaces of the membrane) through which the polymerizable monomer can penetrate is used. It is preferable that the film is formed in a thin film-like state having a void portion communicating therewith.
[0024]
The film-like electronic conductive material having the voids is formed by compressing the powder and / or long fibers of the electronic conductive material composed of the above materials, or once adding a solvent to form a slurry, which is then printed by the printing method. It can be manufactured by a method of thinly applying to a polyester film or the like by a doctor blade method or the like and drying. In this case, it is preferable to add a binder to the slurry in order to improve the formability of the obtained film-like electronic conductive material. The powder of the electronic conductive material may be appropriately selected according to the purpose, such as an indefinite shape, a spherical shape, a short fiber shape, or a flake shape. Further, a cloth-like or mesh-like shape may be formed by weaving or partially fusing long fibers of an electronic conductive material. Further, it is also possible to use a thin metal plate or the like formed by forming a large number of holes by a mechanical method or the like. The thickness of the electron conductive material in the form of a film may be appropriately set according to the intended use of the obtained membrane-electrode assembly. For example, when used as a membrane-electrode assembly for a fuel cell Is preferably 0.1 to 300 μm.
[0025]
In addition, the said electroconductive substance is variously available as a powder and a fiber, and these may be formed in a sheet form by the above-mentioned method, or as carbon paper, a metal mesh, etc. Those formed into a sheet may be obtained commercially and used as they are.
[0026]
When the membrane-electrode assembly obtained by the production method of the present invention is used as an electrode assembly for a fuel cell, among the above-mentioned electronic conductive materials, conductive carbon or an electrode on conductive carbon is used. What carried the substance (metal catalyst etc.) used as a catalyst of reaction is preferable. In addition, a variety of commercially available products in which a catalyst is supported on conductive carbon are also available, or Japanese Patent Laid-Open Nos. 2002-329500, 2002-100373, and 7-246336. You may manufacture by the method as described in gazette. Of course, when the electrode part in the membrane-electrode assembly does not need to have a catalytic function and only the electronic conductivity is required, it is not necessary to use a catalyst-supported one. Workability may be improved by using carbon paper, metal mesh or the like rather than using a powder component.
[0027]
As described above, in the production method of the present invention, the conductive substance is brought into contact with the polymerizable monomer before polymerization of the polymerizable monomer. As a method of this contact, (1) the above-mentioned base material is impregnated with a polymerizable monomer, and then at least one surface of the base material impregnated with this polymerizable monomer is brought into contact with an electronic conductive material. Method (first method), (2) a method in which at least one surface of a substrate is first brought into contact with an electronic conductive material, and the substrate is impregnated with a polymerizable monomer while maintaining the contact. Any of (second method) may be used.
[0028]
In the first method, the method for impregnating the base material with the polymerizable monomer is not particularly limited, and a solution or slurry of the above-mentioned polymerizable monomer and an optional component blended as necessary (hereinafter, collectively) A method of preparing a polymerizable monomer solution) and applying or spraying the polymerizable monomer solution onto a substrate, or immersing the substrate in the polymerizable monomer solution. The By such a method, the polymerizable monomer penetrates into the voids (pores) of the base material. A method of immersing the base material in the polymerizable monomer solution is preferable because the operation is easy and the uniformity is high. Although the immersion time depends on the type of the base material and the composition of the polymerizable monomer solution, it is generally from 0.1 second to several tens of minutes.
[0029]
In the first method, at least one of the front and back surfaces of the base material impregnated with the polymerizable monomer (and other penetrable optional components) produced in this manner is subjected to electronic conductivity. Contact with material. Due to this contact, the polymerizable monomer (and other optional components) present in the gap of the base material and / or on the surface of the base material is a gap between the electronic conductive materials or a gap of the electronic conductive material itself. It penetrates into the part. In this case, when the membrane-electrode assembly obtained by the production method of the present invention is intended to have a layer containing an electronic conductive material only on one side, the electronic conductive material is brought into contact with only one side of the substrate. What is necessary is just to make it have a layer containing an electronically conductive substance on both surfaces, and what is necessary is just to make an electronically conductive substance contact both surfaces of a base material. In addition, when it shall have a layer containing an electronically conductive substance on both surfaces, you may use a different thing as an electronically conductive substance made to contact each surface.
[0030]
The contact method is not particularly limited, but a typical method particularly preferable in terms of excellent operability and stable production of a homogeneous product is described as follows.
[0031]
That is, a film-like material of an electronically conductive material having voids as described above is formed on a surface of a material such as a polyester film that has a smooth surface and does not react with a polymerizable monomer, or is manufactured separately. This is pasted on such a polyester film. The surface that is not in contact with the polyester film or the like of the film-like material of the electronic conductive material is brought into contact with the base material impregnated with the polymerizable monomer produced by the method described above. When it is desired to form a layer containing an electron conductive substance only on one side, a simple polyester film (no film of an electron conductive substance is present) may be used on the other side. The sandwich structure thus obtained is preferably sandwiched by applying an appropriate pressure in order to remove excess polymerizable monomers and make the thickness uniform. The pressure at this time may be appropriately set to such an extent that the used base material and the film-like material of the electronic conductive material are not greatly deformed or disintegrated, while maintaining sufficient adhesion.
[0032]
In the second method of the present invention, contrary to the first method, after the base material and the electronic conductive material are made, the base material is impregnated with the polymerizable monomer solution. Also in this method, the order is simply different, and the other operations may be performed in the same manner as in the first method.
[0033]
In the operation of impregnating the base material with the polymerizable monomer, the first method is more preferable because the film-like material of an electroconductive substance or a polyester film does not get in the way and the operation is simpler.
[0034]
In the production method of the present invention, the polymerizable monomer is then polymerized in both the first and second methods. The polymerization method is not particularly limited, and a known polymerization method may be employed depending on the polymerizable monomer used. In general, a method of polymerizing by heating using a polymerization initiator composed of the peroxide is preferable because the operation is easy and relatively uniform polymerization is possible. In the polymerization, in order to prevent polymerization inhibition by oxygen, to obtain surface smoothness, and to obtain higher bonding strength, it is covered with a film such as polyester as described above and polymerized as it is under pressure. More preferably. The polymerization temperature in the case of polymerization by thermal polymerization is not particularly limited, and may be appropriately selected and applied according to known conditions according to the peroxide used, but is generally about 50 to 150 ° C., preferably 60 to It is about 120 ° C. In addition, when a solvent is contained in the polymerizable monomer solution, it is possible to remove the solvent prior to polymerization.
[0035]
The membrane-electrode assembly obtained by the production method of the present invention as described above may be used as it is depending on the purpose of use thereof. An ion exchange group is introduced into the union and used.
[0036]
Specific examples of such ion-exchange groups include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, and the like as cation exchange groups, and examples of anion exchange groups include primary to tertiary amino groups and quaternary groups. Examples include an ammonium group, a pyridyl group, an imidazole group, a quaternary pyridinium group, and a quaternary imidazolium group.
[0037]
These ion-exchange groups may be introduced in accordance with known ion-exchange resin production methods. For example, when styrene is mainly used as the polymerizable monomer, sulfur trioxide, chlorosulfonic acid, fuming sulfuric acid is used. The sulfonic acid group can be introduced by contacting with concentrated sulfuric acid and then hydrolyzing as necessary. Moreover, when a methacrylic acid ester is used as the polymerizable monomer, a carboxylic acid group can be introduced by hydrolyzing the ester portion.
[0038]
The greater the amount of ion exchange groups introduced, the better the electrical performance of the resulting membrane-electrode assembly, but generally the total ion exchange capacity of the ion exchange membrane and the entire electrode layer is 0.3-5. It is sufficient that the ion exchange capacity of only the electrode layer is about 0.1 to 3.0 mmol / g at about 0.0 mmol / g. The amount of ion-exchange group introduced can also be controlled by known methods such as controlling the substrate concentration, reaction temperature, and time in the reaction.
[0039]
The membrane-electrode assembly obtained by the above method usually varies greatly depending on the shape of the electronic conductive material, etc., but the junction resistance by the AC impedance method performed by sandwiching the assembly with a platinum black electrode. 1 ~ 500Ω ・ cm 2 The electric resistance of the electrode layer surface (hereinafter referred to as electrode surface resistance) was 0.005 to 100 kΩ / cm. Further, even immediately after the assembly was formed, it was directly incorporated into a methanol fuel cell and subjected to, for example, continuous power generation for 250 hours. Later, it showed a peel strength of 8 to 10 points in a tape peel test based on the JISK-5400 X-cut tape method, and is not limited to a membrane-electrode assembly for fuel cells, but an electrochemical sensor. It can be suitably used as a membrane-electrode assembly in an air cleaner, a dehumidifier or the like.
[0040]
【Example】
In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples. In addition, the characteristic of the ion exchange membrane-electrode assembly shown in an Example and a comparative example shows the value measured with the following method.
[0041]
1) Ion exchange capacity
The electrode assembly is immersed in a 1 mol / l-HCl aqueous solution for 10 hours or more. Thereafter, in the case of a cation exchange membrane, the counter ion of the ion exchange group is replaced with sodium ion from sodium ion with 1 mol / l-NaCl aqueous solution, and the liberated hydrogen ion is subjected to potentiometric titration using an aqueous sodium hydroxide solution ( COMMITITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) (Amol). On the other hand, in the case of an anion exchange membrane, 1 mol / l-NaNO. 3 Counter ions were substituted from chloride ions to nitrate ions with an aqueous solution, and the liberated chloride ions were quantified with a potentiometric titrator (COMTITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) using an aqueous silver nitrate solution (Amol).
[0042]
Next, the same electrode assembly was immersed in a 1 mol / l-HCl aqueous solution for 4 hours or more, sufficiently washed with ion-exchanged water, dried under reduced pressure at 60 ° C. for 5 hours, and the weight (Dg) at the time of drying was measured. .
[0043]
Subsequently, only an electrode layer was scraped off by an appropriate amount (Eg) with a cutter knife, and S was quantified by elemental analysis when it was cation exchangeable and N was anion exchangeable (Bmol).
[0044]
Based on the measured values, the total ion exchange capacity of the ion exchange membrane-electrode assembly and the electrode layer ion exchange capacity were determined by the following equations.
[0045]
Total ion exchange capacity = A × 1000 / D [mmol / g-dry weight]
Electrode layer ion exchange capacity = B × 1000 / E [mmol / g-dry weight]
2) Amount of catalyst metal supported
The electrode assembly having a predetermined area was immersed in aqua regia diluted twice with ion-exchanged water for 24 hours to dissolve the metal catalyst, and the dissolved solution was analyzed by inductively coupled plasma emission analysis to determine the amount of catalyst metal supported. .
[0046]
3) Electrode layer thickness
The cross section of the electrode assembly was observed with a scanning electron microscope (SEM) to determine the electrode layer thickness on one side.
[0047]
4) Joint resistance and electrode surface resistance
In the case of an electrode assembly using a cation exchange membrane, it is joined with a 0.1 mol / L-HCl aqueous solution, and in the case of an electrode assembly using an anion exchange membrane, it is joined with a 0.1 mol / L-sodium hydroxide aqueous solution. The counter ion of the ion exchange group in the body was changed to hydrogen ion and hydroxide ion, respectively.
[0048]
Next, the above electrode assembly is sandwiched between platinum black electrodes, and an alternating current in the air (25 ° C., relative humidity 80%) at a frequency of 50 Hz to 2.5 MHz using an LCR meter (Model 3532-50 manufactured by Hioki Electric). Impedance measurement was performed. The same impedance obtained without sandwiching the joined body was subtracted from the impedance of the first inflection point on the low frequency side in the obtained colle-coll plot to obtain the joined body resistance.
[0049]
Moreover, the impedance of the electrode layer surface was measured using the same electrode assembly, and the electrode surface resistance was determined in the same manner as the assembly resistance.
[0050]
5) Bondability
A) X-cut tape method
Using the electrode assembly immediately after preparation, a tape peeling test was performed in accordance with the X cut tape method of JISK-5400. After peeling off the tape, the state of the electrode layer remaining on the ion exchange membrane was visually evaluated by a 10-point method to determine the bondability immediately after preparation.
[0051]
In the fuel cell output voltage test in the next section, 0.1 A / cm 2 After 250 hours of continuous power generation, the electrode assembly was taken out from the cell, and a tape peeling test was conducted in the same manner as immediately after the production to evaluate the bondability.
[0052]
B) Peel strength measurement method
A sample having a width of 1 cm and a length of 5 cm was cut out from the ion exchange membrane-electrode assembly immediately after preparation, and the 90 ° peel strength of the ion exchange membrane was measured using Toyo Seiki's Strograph M-1.
[0053]
6) Fuel cell output voltage
The electrode assembly was sandwiched between carbon paper having a thickness of 100 μm and a porosity of 80% that had been made water-repellent with polytetrafluoroethylene, and this was assembled into a fuel cell having the structure shown in FIG. Next, the fuel cell temperature was set to 25 ° C., a power generation test was performed by supplying a 20 wt% methanol aqueous solution to the fuel electrode side and atmospheric pressure oxygen to the oxidation electrode side at 200 ml / min, and a current density of 0 A / cm 2 0.1 A / cm 2 The cell terminal voltage was measured.
[0054]
7) Durability evaluation
After measurement of the output voltage, 25 ° C., 0.1 A / cm 2 A continuous power generation test was conducted, and the output voltage after 250 hours was measured to evaluate the durability of the electrode assembly.
[0055]
8) Dehumidification capacity measurement
As shown in FIG. 3, the ion exchange membrane-electrode assembly was incorporated into a measurement cell having an internal volume of 27 liters, and placed in a thermo-hygrostat adjusted to a temperature of 25 ° C. and a relative humidity of 70%. Next, a DC voltage of 4 V was applied with the carbon paper side of the electrode assembly as the cathode and the platinum-plated titanium mesh side as the anode, and the humidity in the measurement cell after 1 hour was measured.
[0056]
Example 1
80 parts by mass of catalyst-supported carbon black (50% by mass of platinum-ruthenium alloy of ruthenium 50 mol%), 10 parts by mass of carbon fiber (fiber diameter 0.15 μm, fiber length 10 to 20 μm), 5 parts by mass of polystyrene Poly (ethylene-butylene) -polystyrene triblock copolymer (styrene content 30%, molecular weight 120,000), 5 parts by mass of syndiotactic 1,2-polybutadiene (molecular weight 150,000), 900 parts by weight of organic solvent ( A slurry was prepared by dispersing in 95% by mass of tetrahydrofuran and 5% by mass of N, N-dimethylformamide, and this was coated on a film made of polytetrafluoroethylene (PTFE), then dried at 25 ° C. for 5 hours, It dried under reduced pressure at 80 degreeC for 4 hours, and formed the electroconductive inorganic particle sheet.
[0057]
Separately, a monomer composition consisting of 90 parts by mass of styrene, 10 parts by mass of divinylbenzene (8.2 mol% in all polymerizable monomers), and 5 parts by mass of t-butylperoxyethyl hexanoate was prepared. A porous film (film thickness 25 μm, porosity 37%, average pore diameter 0.03 μm) made of polyethylene (PE, weight average molecular weight 250,000) was immersed in this at 10 ° C. for 10 minutes at atmospheric pressure, and the monomer composition The material was impregnated.
[0058]
Subsequently, the porous membrane was taken out of the monomer composition, and the conductive inorganic particle sheet on the PTFE film was placed thereon so that the conductive inorganic particles were in contact with the porous membrane. Similarly, another conductive inorganic particle sheet formed in the same manner was placed on the other surface of the porous membrane, and then polymerized by heating at 80 ° C. for 5 hours under a nitrogen pressure of 0.3 MPa. An electrode assembly precursor was obtained. Subsequently, the obtained electrode assembly precursor membrane was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid having a purity of 90% or more at 40 ° C. for 45 minutes to obtain a sulfonic acid cation exchange membrane. -An electrode assembly was obtained. The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joined body resistance, electrode surface resistance, joining property, fuel cell output voltage and durability of the obtained electrode assembly were measured. These results are shown in Table 2. Further, when the cross section of the ion exchange membrane of this electrode assembly and the electrode layer portion on one side was analyzed with an electron beam microanalyzer, as shown in FIG. It was confirmed that there was a continuous change between the electrode layers.
[0059]
[Table 1]
Figure 2005032536
[0060]
[Table 2]
Figure 2005032536
[0061]
Examples 2-4
An electrode assembly was obtained in the same manner as in Example 1 except that the slurry containing conductive inorganic particles was changed to the composition shown in Table 1. The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joined body resistance, electrode surface resistance, joining property, fuel cell output voltage and durability of these electrode assemblies are shown. It was shown in 2.
[0062]
Comparative Example 1
A sulfonic acid cation exchange membrane with no electrode layer bonded thereto was obtained in the same manner as in Example 1 except that a conductive inorganic particle sheet was not used and a 100 μm thick polyester film was used as a release material.
[0063]
Next, on this cation exchange membrane, carbon black carrying 50% by mass of platinum and ruthenium alloy catalyst (ruthenium 50 mol%) used in Example 1, polystyrene-poly (ethylene-butylene) -polystyrene triblock copolymer After applying a mixture of 1-propanol / dichloroethane solution (concentration 5% by mass) of a combined sulfonated resin (ion exchange capacity 1.0 mmol / g) and drying under reduced pressure at 25 ° C. for 5 hours and at 80 ° C. for 4 hours. The membrane-like material was thermocompression bonded at 100 ° C. under a pressure of 5 MPa for 100 seconds, and further allowed to stand at room temperature for 2 minutes to obtain a cation exchange membrane-electrode assembly. The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joint resistance, electrode surface resistance, jointability, fuel cell output voltage and durability of this electrode assembly are shown. It was shown in 2.
[0064]
Example 5
An electrode assembly precursor obtained by bonding conductive inorganic particle sheets was obtained in the same manner as in Example 1 except that the styrene of the monomer composition was changed to chloromethylstyrene. Next, this was reacted for 5 hours at room temperature in an amination bath composed of 10 parts by mass of 30% by mass trimethylamine, 5 parts by mass of water and 5 parts by mass of acetone to obtain a quaternary ammonium salt type anion exchange membrane-electrode assembly. .
[0065]
Results of measuring the total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joined body resistance, electrode surface resistance, joining property, fuel cell output voltage, durability of the obtained electrode assembly Are shown in Table 3.
[0066]
[Table 3]
Figure 2005032536
[0067]
Comparative Example 2
A quaternary ammonium salt type anion exchange membrane with no electrode layer bonded thereto was obtained in the same manner as in Example 5 except that a conductive inorganic particle sheet was not used and a polyester film having a thickness of 100 μm was used as a release material. .
[0068]
Next, on this anion exchange membrane, 3.5% by mass of the same catalyst-supported carbon black used in Example 1 and an N-methylated resin of poly (4-vinylpyridine) (molecular weight 60,000, methyl) A slurry of N, N-dimethylformamide containing 1.5% by mass) was applied and dried under reduced pressure at 25 ° C. for 5 hours and at 80 ° C. for 4 hours. Subsequently, the membrane-like material was thermocompression bonded at 100 ° C. under a pressure of 5 MPa for 100 seconds, and further allowed to stand at room temperature for 2 minutes to obtain an anion exchange membrane-electrode assembly. The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joint resistance, electrode surface resistance, jointability, fuel cell output voltage and durability of this electrode assembly are shown. It was shown in 3.
[0069]
Examples 6 and 7
A slurry containing conductive inorganic particles shown in Table 4 was prepared, and this was applied onto carbon paper (thickness 100 μm, porosity 80%) treated with water repellency, and then dried at 25 ° C. for 5 hours, An electrode sheet made of carbon paper on which a conductive inorganic particle layer was formed by drying under reduced pressure at 80 ° C. for 4 hours was obtained.
[0070]
Next, a sulfonic acid type cation exchange membrane-electrode assembly was obtained in the same manner as in Example 1 except that the above electrode sheet was used. The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joined body resistance, electrode surface resistance, joining property, fuel cell output voltage and durability of the obtained electrode assembly were measured. These results are shown in Table 5.
[0071]
[Table 4]
Figure 2005032536
[0072]
[Table 5]
Figure 2005032536
[0073]
Comparative Example 3
3.5% by mass of the same catalyst-supported carbon black used in Example 1, and a sulfonated resin of polystyrene-poly (ethylene-butylene) -polystyrene triblock copolymer (ion exchange capacity 1.0 mmol / g) A mixture of 1-propanol / dichloroethane slurry containing 1.5 mass% was applied on the same carbon paper as used in Example 6 and dried under reduced pressure at 25 ° C. for 5 hours and at 80 ° C. for 4 hours.
[0074]
Next, on the sulfonic acid type cation exchange membrane to which the electrode layer obtained in the same manner as in Comparative Example 1 is not bonded, the above carbon paper is arranged on both sides so that the catalytic metal layer is in contact with the ion exchange membrane. Thermocompression bonding was performed at 100 ° C. under a pressure of 5 MPa for 100 seconds, and then allowed to stand at room temperature for 2 minutes to obtain a cation exchange membrane-electrode assembly. The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joint resistance, electrode surface resistance, jointability, fuel cell output voltage and durability of this electrode assembly are shown. This is shown in FIG.
[0075]
Example 8
A slurry containing electronic conductive material particles shown in Table 6 was prepared, and this was applied onto a carbon paper (thickness 100 μm, porosity 80%) subjected to water repellency, and then dried at 25 ° C. for 5 hours. Subsequently, the electrode sheet which consists of carbon paper which dried under reduced pressure at 80 degreeC for 4 hours and formed the electroconductive substance particle layer was obtained.
[0076]
Next, a titanium expanded mesh (thickness 100 μm, line width 200 μm, longitudinal pitch 1.5 mm, lateral pitch 0.75 mm) plated with platinum on one side and platinum on the other side is electrically conductive. The monomer composition was polymerized in the same manner as in Example 1 by using as a conductive material sheet, and then a sulfonic acid group was introduced to obtain an electrode assembly.
[0077]
Subsequently, on the expanded mesh side of the electrode assembly, 3.5% by mass of carbon black supporting 50% by mass of a platinum catalyst and a sulfonated resin of polystyrene-poly (ethylene-butylene) -polystyrene triblock copolymer. A 1-propanol / dichloroethane solution (concentration: 5% by mass; hereinafter referred to as catalyst slurry of Example 8) containing 1.5% by mass (ion exchange capacity: 1.0 mmol / g) was applied at 25 ° C. for 5 hours, 80%. After drying under reduced pressure at 4 ° C. for 4 hours, the membrane-like material was thermocompression bonded at 100 ° C. under a pressure of 5 MPa for 100 seconds, and further allowed to stand at room temperature for 2 minutes to obtain an ion exchange membrane-electrode assembly for dehumidification. . The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joined body resistance, electrode surface resistance, joining property, and dehumidifying ability of the obtained dehumidifying ion exchange membrane-electrode assembly were measured. The results are shown in Table 7. The electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, electrode surface resistance, and bondability were measured for each electrode layer.
[0078]
[Table 6]
Figure 2005032536
[Table 7]
Figure 2005032536
Comparative Example 4
The catalyst slurry of Example 8 was coated on carbon paper (thickness 100 μm, porosity 80%) treated with water repellency, dried at 25 ° C. for 5 hours, and then dried under reduced pressure at 80 ° C. for 4 hours to obtain an electron. An electrode sheet made of carbon paper on which a conductive substance particle layer was formed was obtained.
[0079]
Next, a sulfonic acid type cation exchange membrane having no electrode layer bonded thereto was obtained in the same manner as in Comparative Example 1, and a titanium expanded mesh plated with the same platinum as used in Example 8 was placed on one side. Thereafter, the slurry of Example 8 was further applied and dried under reduced pressure at 25 ° C. for 5 hours and at 80 ° C. for 4 hours. Next, the carbon paper on which the above-mentioned electron conductive material particle layer is formed is arranged on the other surface, thermocompression bonded for 100 seconds under a pressure of 100 ° C. and a pressure of 5 MPa, and further left for 2 minutes at room temperature for dehumidification. An ion exchange membrane-electrode assembly was obtained. The total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, joined body resistance, electrode surface resistance, joining property, and dehumidifying ability of the obtained dehumidifying ion exchange membrane-electrode assembly were measured. The results are shown in Table 7. The electrode layer thickness, electrode layer ion exchange capacity, catalytic metal loading, electrode surface resistance, and bondability were measured for each electrode layer.
[0080]
Examples 9, 10
In Example 9, a water-repellent carbon paper (thickness 100 μm, porosity 80%) was used, and in Example 10, a platinum-plated titanium expanded mesh (thickness 100 μm, line width 200 μm, longitudinal pitch 1.. 5 mm, lateral pitch 0.75 mm) was used as the electron conductive material sheet, and an ion exchange membrane-electrode assembly was obtained in the same manner as in Example 1. Table 8 shows the results of measuring the total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, joined body resistance, electrode surface resistance, and joining property of the obtained electrode assembly.
[0081]
[Table 8]
Figure 2005032536
Comparative Examples 5 and 6
A sulfonated resin (ion exchange capacity 1) of polystyrene-poly (ethylene-butylene) -polystyrene triblock copolymer was formed on both surfaces of a sulfonic acid type ion exchange membrane obtained by the same method as in Comparative Example 1 and to which no electrode layer was bonded. 0.0 mmol / g) of 1-propanol / dichloroethane solution (concentration 5 mass%) was applied and dried under reduced pressure at 25 ° C. for 5 hours and at 80 ° C. for 4 hours. Then, on both surfaces, a carbon paper (thickness 100 μm, porosity 80%) treated with water repellency in Comparative Example 5, and a titanium expanded mesh (thickness 100 μm, line width 200 μm) plated with platinum in Comparative Example 6, A vertical pitch of 1.5 mm and a horizontal pitch of 0.75 mm), thermocompression bonding was performed at 100 ° C. under a pressure of 5 MPa for 100 seconds, and then allowed to stand at room temperature for 2 minutes to form a cation exchange membrane-electrode assembly. Obtained. Table 8 shows the results of measuring the total ion exchange capacity, electrode layer thickness, electrode layer ion exchange capacity, joined body resistance, electrode surface resistance, and joining property of the obtained electrode assembly.
[0082]
【The invention's effect】
In the production method of the present invention, the ion-exchange resin present in the gap between the electron conductive materials and / or the gap between the electron conductive materials and the gap between the ion-conductive membrane and the ion-exchange membrane is a cross-linked ion-exchange resin having an ion-exchange membrane portion. And an ion exchange membrane-electrode assembly forming a continuous polymer. Therefore, even an ion exchange membrane mainly composed of a cross-linked ion exchange resin excellent in dimensional stability, heat resistance, and methanol impermeability has extremely high bondability between the ion exchange membrane and the electrode layer. Therefore, the ionic conductivity between the electrode layers on both surfaces of the ion exchange membrane is increased, and a high output voltage can be obtained when applied to, for example, a fuel cell.
[0083]
Furthermore, due to the above structure, high bondability can be maintained not only immediately after creation but also after long-term use or after immersion in aqueous methanol solution, so that, for example, when applied directly to a methanol fuel cell, it is high over a long period of time. An output voltage can be obtained.
[0084]
As described above, the production method of the present invention can maintain high characteristics due to ionic conductivity over a long period of time, so that it is extremely effective in practical use of electrochemical devices including fuel cells. Provide the body.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the basic structure of a direct methanol fuel cell.
FIG. 2 is a schematic diagram showing a typical structure of a joined body obtained by the production method of the present invention.
FIG. 3 is a schematic diagram showing the structure of a cell for measuring the dehumidifying ability of a joined body obtained by the production method of the present invention.
4 is a view showing the result of analyzing the cross section of the joined portion of the membrane-electrode assembly produced in Example 1 using an electron beam microanalyzer. FIG.
[Explanation of symbols]
[Explanation of symbols]
1: Battery partition
2; Fuel distribution hole
3; Oxidant gas flow hole
4: Fuel chamber side diffusion electrode
5; Oxidant chamber side gas diffusion electrode
6; Solid polymer electrolyte
7: Fuel chamber
8; Oxidant chamber
9; Ion exchange resin
10: Conductive inorganic particles (catalyst-supported conductive carbon)
11: Substrate (porous film)
12; Ion exchange membrane
13: Electrode layer
14; Anode (platinum-plated titanium mesh side)
15; Cathode (carbon paper side)
16; Anode current collector
17; Cathode current collector
18; Dehumidifying capacity measuring cell partition
19; Dehumidification chamber

Claims (3)

重合性単量体を含浸させた基材の少なくとも一方の表面に電子導電性物質を接触させ、次いで該接触を保った状態で重合性単量体を重合させることを特徴とする膜−電極接合体の製造方法。A membrane-electrode junction comprising contacting an electron conductive substance with at least one surface of a substrate impregnated with a polymerizable monomer, and then polymerizing the polymerizable monomer while maintaining the contact. Body manufacturing method. 重合性単量体を含浸させることの可能な基材の少なくとも一方の表面に電子導電性物質を接触させ、次いで、該接触を保った状態で基材に重合性単量体を含浸させ、その後、重合性単量体を重合させることを特徴とする膜−電極接合体の製造方法。An electronic conductive material is brought into contact with at least one surface of a substrate that can be impregnated with the polymerizable monomer, and then the substrate is impregnated with the polymerizable monomer while maintaining the contact. A method for producing a membrane-electrode assembly, which comprises polymerizing a polymerizable monomer. 重合性単量体を重合させて得られた重合体に、さらにイオン交換性基を導入することを特徴とする請求項1又は2記載の膜−電極接合体の製造方法。The method for producing a membrane-electrode assembly according to claim 1 or 2, wherein an ion-exchange group is further introduced into the polymer obtained by polymerizing the polymerizable monomer.
JP2003195502A 2003-07-11 2003-07-11 Method of manufacturing junction element Pending JP2005032536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195502A JP2005032536A (en) 2003-07-11 2003-07-11 Method of manufacturing junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195502A JP2005032536A (en) 2003-07-11 2003-07-11 Method of manufacturing junction element

Publications (1)

Publication Number Publication Date
JP2005032536A true JP2005032536A (en) 2005-02-03

Family

ID=34206292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195502A Pending JP2005032536A (en) 2003-07-11 2003-07-11 Method of manufacturing junction element

Country Status (1)

Country Link
JP (1) JP2005032536A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302704A (en) * 2005-04-21 2006-11-02 Toyota Motor Corp Fuel cell
JP2007048543A (en) * 2005-08-09 2007-02-22 Toagosei Co Ltd Electrolyte film and direct liquid fuel type fuel cell
WO2007072842A1 (en) 2005-12-20 2007-06-28 Tokuyama Corporation Electrolyte membrane-electrode membrane assembly for solid polymer fuel cell, process for producing the electrolyte membrane-electrode membrane assembly, and fuel cell comprising the electrolyte membrane-electrode membrane assembly
JP2007317412A (en) * 2006-05-24 2007-12-06 Tokuyama Corp Proton conductivity imparting agent solution for electrode catalyst layer
WO2008004567A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Solid polymer electrolyte membrane and fuel cell
JP2008192329A (en) * 2007-01-31 2008-08-21 Asahi Glass Co Ltd Membrane electrode junction for polymer electrolyte fuel cell and its manufacturing method
WO2008120675A1 (en) 2007-03-30 2008-10-09 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302704A (en) * 2005-04-21 2006-11-02 Toyota Motor Corp Fuel cell
JP2007048543A (en) * 2005-08-09 2007-02-22 Toagosei Co Ltd Electrolyte film and direct liquid fuel type fuel cell
WO2007072842A1 (en) 2005-12-20 2007-06-28 Tokuyama Corporation Electrolyte membrane-electrode membrane assembly for solid polymer fuel cell, process for producing the electrolyte membrane-electrode membrane assembly, and fuel cell comprising the electrolyte membrane-electrode membrane assembly
US8231997B2 (en) 2005-12-20 2012-07-31 Tokuyama Corporation Electrolyte membrane-electrode membrane assembly for solid polymer fuel cell and production method thereof, and fuel cell equipped therewith
KR101314019B1 (en) * 2005-12-20 2013-10-01 가부시키가이샤 도쿠야마 Electrolyte membrane-electrode membrane assembly for solid polymer fuel cell, process for producing the electroyte membrane-electrode membrane assembly, and fuel cell comprising the electroyte membrane-electrode membrane assembly
JP2007317412A (en) * 2006-05-24 2007-12-06 Tokuyama Corp Proton conductivity imparting agent solution for electrode catalyst layer
WO2008004567A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Gas Chemical Company, Inc. Solid polymer electrolyte membrane and fuel cell
JPWO2008004567A1 (en) * 2006-07-06 2009-12-03 三菱瓦斯化学株式会社 Solid polymer electrolyte membrane and fuel cell
JP2008192329A (en) * 2007-01-31 2008-08-21 Asahi Glass Co Ltd Membrane electrode junction for polymer electrolyte fuel cell and its manufacturing method
WO2008120675A1 (en) 2007-03-30 2008-10-09 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same

Similar Documents

Publication Publication Date Title
KR100921420B1 (en) Process for producing membrane?electrode assembly
JP5150895B2 (en) Membrane electrode assembly, method for producing membrane electrode assembly, and polymer electrolyte fuel cell
US7923166B2 (en) Separating membrane for fuel cell
EP2096697B1 (en) Diaphragm for solid polymer fuel cell and membrane-electrode assembly
JP4769518B2 (en) Polymer electrolyte membrane and fuel cell employing polymer electrolyte membrane
KR101217947B1 (en) Separation Membrane for Fuel Battery and Process for Producing the Same
WO2010073753A1 (en) Separation membrane for fuel cell, and method for production thereof
JP5004525B2 (en) Fuel cell membrane
JPH08329962A (en) Polymer solid electrolyte film/electrode integrally molded body and manufacture thereof
JP2005032535A (en) Junction element
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JP5132115B2 (en) Fuel cell membrane
JP2005032536A (en) Method of manufacturing junction element
EP2017913B1 (en) Direct-liquid fuel cell and process for producing membrane for use in a direct-liquid fuel cell
JP4500514B2 (en) Manufacturing method of joined body
JP5283826B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
WO2006092914A1 (en) Membrane electrode joined product, process for producing the same, and direct methanol-type fuel cell
JP4883880B2 (en) Method for producing diaphragm for direct methanol fuel cell
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
KR20090039423A (en) Membrane electrode assembly for fuel cell and fuel cell system including same
JP5317416B2 (en) Electrolyte membrane-catalyst electrode assembly and direct liquid fuel cell
US20050098438A1 (en) System and a method for manufacturing an electrolyte using electro deposition
JP2008159547A (en) Polymer electrolyte membrane, method for manufacturing the membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
JPH07130371A (en) Solid polymer fuel cell electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223