JP2006163177A - X線マスクおよびその製造方法 - Google Patents

X線マスクおよびその製造方法 Download PDF

Info

Publication number
JP2006163177A
JP2006163177A JP2004357084A JP2004357084A JP2006163177A JP 2006163177 A JP2006163177 A JP 2006163177A JP 2004357084 A JP2004357084 A JP 2004357084A JP 2004357084 A JP2004357084 A JP 2004357084A JP 2006163177 A JP2006163177 A JP 2006163177A
Authority
JP
Japan
Prior art keywords
ray
mask
transmission part
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004357084A
Other languages
English (en)
Inventor
Kazuo Nakamae
一男 仲前
Yoshihiro Hirata
嘉裕 平田
Takeshi Haga
剛 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004357084A priority Critical patent/JP2006163177A/ja
Publication of JP2006163177A publication Critical patent/JP2006163177A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

【課題】 大面積の窓領域を有する、製造効率の高いX線マスクを提供する。
【解決手段】 本発明のX線マスクは、X線リソグラフィにおいてレジストにパターンを転写するマスクであり、X線透過部と、X線透過部により保持されるX線吸収体とを備える。このX線透過部を構成するX線透過膜は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成される層を有することを特徴とする。
【選択図】 図1

Description

本発明は、X線透過部が、AlまたはTiなどの金属または金属化合物により構成される層を有するX線マスクおよびその製造方法に関する。
マイクロマシンおよびマイクロ光学の分野における3次元微細構造体は、X線リソグラフィにより製造することができる。特に、X線の中でもシンクロトロン放射のX線(以下、「SR」という。)を使用するLIGA(Lithographie Galvanoformung Abformung )法は、高さ数百μmで高いアスペクト比を有する3次元微細構造体を製造することができるとともに、高精度の加工が可能である。
X線リソグラフィにおいては、X線マスクを介してレジストにX線を照射し、X線マスクのパターンをレジストに転写する。X線マスクは、X線透過率の高い薄膜であるX線透過部(マスクブランク)と、X線透過部上に保持され、X線透過率の低いX線吸収体とを備える。X線透過部は、SiNなどからなり、一方、X線吸収体は、タングステン(W)などからなる。
LIGA法では、高さ数百μmのレジストを露光するため、X線吸収体の厚さは5μm程度必要であり、このような厚膜のX線吸収体は、SiNなどのX線透過部上にスパッタリングした後、ドライエッチングすることにより形成することができる(非特許文献1参照)。
具体的には、まず、図4(a)に示すように、支持基板41の両面にCVD法により、X線透過部である厚さ2μmのSiN膜42a、42bを形成する。つぎに、支持基板41の下面のSiN膜42bを、RIEなどにより、X線マスクの窓領域と同程度の大きさおよび形状となるようにエッチングし、図4(b)に示すように、SiN膜42cを形成する。
つぎに、図4(c)に示すように、支持基板41の上面にあるSiN膜42a(マスクブランク)上に、スパッタリングにより厚さ0.1μmのAl23からなるエッチングストップ膜42dと、厚さ5μmのWからなるX線吸収体膜43aと、厚さ0.2μmのAlからなる膜43bとを順次形成する。
その後、Alからなる膜43b上にレジストを形成し、リソグラフィによりレジストをパターン化し、Cl2を用いて、Alからなる膜43bをエッチングして、図4(d)に示すようなエッチングマスク43cを形成する。つづいて、パターン化したエッチングマスク43cを利用して、SF6のECR( electron cyclotron resonance )プラズマにより、WからなるX線吸収体膜43aをドライエッチングし、レジスト46を除去すると、図4(e)に示すような構造体が得られる。最後に、支持基板41の反対面をエッチングし、窓を開口すると、図4(f)に示すようなX線マスク40が得られる。形成する窓は、破損を避けるため、40mm×20mm以下とする。
奥山 浩、平田 嘉裕、「タングステンの高アスペクト比加工技術を用いたX線マスクの開発」、第9回機械学会設計工学システム部門講演会、1999年10月、第1−4頁
しかし、このようにして得られるX線マスクは、X線の透過効率を高めるためにX線透過部を厚さ2μm程度の薄膜とする必要があり、また、WなどからなるX線吸収体膜の応力が大きいため、SiNなどからなるX線透過部が破損しやすい。したがって、大面積からなる窓を有するX線マスクを提供することが困難であるため、露光面積が狭く、製造効率が低い。
本発明の課題は、大面積の窓領域を有する、製造効率の高いX線マスクを提供することにある。
本発明のX線マスクは、X線リソグラフィにおいてレジストにパターンを転写するマスクであり、X線透過部と、X線透過部により保持されるX線吸収体とを備える。このX線透過部を構成するX線透過膜は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成される層を有することを特徴とする。
かかる層は、スパッタリングまたはCVDまたは蒸着により形成することができる。また、薄膜状のX線透過膜を支持フレームに固定することにより形成することができる。さらには、板状体を切削することにより形成することができる。
X線透過膜が破損しにくいため、X線マスクの窓領域を広くすることができる。
(X線マスク)
本発明のX線マスクの典型的な例を図1(f)に示す。図1(f)に示すように、本発明のX線マスク10は、X線透過部12と、X線透過部12により保持されるX線吸収体13dとを備え、X線リソグラフィにおいてレジストにパターンを転写することができる。このX線マスク10においては、X線透過部12が、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成されるX線透過膜12aを有することを特徴とする。
SRなどのX線は透過力が強いため、リソグラフィにより露光するレジストとして、化薬マイクロケム製のSU−8などの高感度レジストを使用する場合には、X線透過部が、金属または金属化合物により構成される層を有するものであっても十分に露光することができる。このような金属層または金属化合物からなる層を有するX線透過部は、従来のSiN製の薄膜と異なり、割れなどの破損が生じにくいため、大面積の窓を有するX線マスクを提供することが可能であり、露光面積が広く、製造効率を高めることができる。
たとえば、厚さ2μmのSiN膜を透過部に備えるX線マスクは、20mm×40mmより大きな窓領域を形成すると、SiN膜の割れが生じやすくなる。これに対して、たとえば、厚さ2μmのNi膜を透過部に有する本発明のX線マスクは、透過部が破損しにくいため、45mm×45mm程度にまで大幅に窓領域を拡大することができる。
X線透過部には、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成される層を有する。金属化合物としては、酸化物、窒化物などが好ましい。
この金属層または金属化合物層の厚さは、構成する材料の種類によって異なるが、一般的には、機械的強度を維持する点で、2μm以上が好ましく、10μm以上がより好ましい。また、X線透過率を高める点で、100μm以下が好ましく、50μm以下がより好ましい。
(X線マスクの製造方法)
本発明のX線マスクの製造方法は、上記X線マスクの製造方法であって、X線透過部における金属層または金属化合物層は、スパッタリングまたはCVDまたは蒸着により形成し、または、薄膜状のX線透過膜を支持フレームに固定することにより形成し、または、板状体を切削することにより形成することができる。
実施の形態1
本実施の形態においては、X線透過部における金属層または金属化合物層を、スパッタリングまたはCVDまたは蒸着により形成する。かかる層は、金属層または金属化合物層であるため、スパッタリングまたはCVDまたは蒸着などの通常の方法により容易に形成することができる。
まず、支持基板11の下面に、LPCVD( Low Pressure Chemical Vapor Deposition )法などによりSiN膜を形成し、つづいて、図1(a)に示すように、RIEまたはレーザ加工などにより、X線マスクの窓領域と同程度の大きさおよび形状となるようにエッチングし、SiN膜15を形成する。支持基板11には、直径3インチ、厚さ1mmのSi基板などを使用することができる。また、SiN膜15は、厚さ2μm程度形成するのが好ましい。
つぎに、図1(b)に示すように、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物からなるマスクブランク12aを、支持基板11の上面に形成する。マスクブランク12aは、スパッタリングまたはCVDまたは蒸着により容易に形成することができ、厚さは2μm〜100μmとするのが好ましい。
その後、図1(c)に示すように、マスクブランク12a上に、スパッタリングにより、Al23などからなるエッチングストップ膜12bと、WまたはWNなどからなるX線吸収体膜13aと、Alなどからなる膜13bとを順次形成する。エッチングストップ膜12bは厚さ0.1μm程度、WなどからなるX線吸収体膜13aは厚さ5μm程度、Alなどからなる膜13bは厚さ0.2μm程度形成するのが好ましい。
その後、Alなどからなる膜13b上にレジストを形成し、リソグラフィによりパターン化を行なうと、図1(d)に示すようなレジスト16が得られる。リソグラフィの代わりに、電子線描画法によりパターニングすることもできる。つづいて、Cl2またはBCl3によりAlなどからなる膜13bをプラズマエッチングして、パターン化したエッチングマスク13cを形成する。つぎに、エッチングマスク13cを利用して、SF6などによりWなどからなるX線吸収体膜13aをプラズマエッチングし、レジスト16を除去すると、図1(e)に示すような構造体が得られる。
X線吸収体膜13aのエッチングに際しては、加工する構造体の厚さが増加するに伴ない、サイドエッチングも大きくなるため、パターンの加工精度およびプロファイル(形状)が劣化しやすい。そこで、低圧高密度プラズマであるECRプラズマを使用し、プラズマ圧力を低減することにより、エッチングプロファイルの異方性を高めるのが好ましい。また、基板温度を−40℃程度に冷却すると、サイドエッチングを抑制することができるので好ましい。
最後に、支持基板11の反対面をエッチングし、窓を開口すると、図1(f)に示すような本発明のX線マスク10が得られる。支持基板11のエッチングは、40%KOH水溶液などのアルカリ水溶液により行なうことができるが、使用するアルカリ水溶液は、X線透過膜12aを保護するために、支持基板11に対するエッチングレートが、X線透過膜12aに対するエッチングレートより十分に速いものを選択するのが好ましい。たとえば、25%水酸化テトラメチルアンモン水溶液(TMAH)は、NiからなるX線透過膜に対するエッチングレートより、Siからなる支持基板に対するエッチングレートの方が速いため、X線透過膜への影響を抑えながら、Si基板を深くエッチングすることができる。
得られるX線マスク10は、X線透過部12とX線吸収体13dとを備える。また、X線透過部12は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属またはその金属化合物により構成されるX線透過膜12aを有するため、X線透過部が破損しにくく、大面積の窓領域を有するX線マスクを提供することができる。したがって、X線による露光効率を高め、製造コストを低減することができる。
実施の形態2
本実施の形態においては、X線透過部における金属層または金属化合物層は、薄膜状のX線透過膜を支持フレームに治具により固定して形成する。Al、TiまたはFeなどからなる薄膜は、部品として容易に入手することができるので、この層を支持フレームに固定することにより、容易にX線透過部を形成することができ、製造コストを低減することができる。
まず、図2(a)に示すように、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物からなる層22aを、たとえば、SUS製の支持フレーム21に、張力を持たせた状態で治具25により固定する。層22aは薄膜状のX線透過膜であり、厚さは2μm〜100μmが好ましい。
つぎに、図2(b)に示すように、層22a上に、スパッタリングにより、Al23などからなるエッチングストップ膜22bと、WまたはWNなどからなるX線吸収体膜23aと、Alなどからなる膜23bとを順次形成する。エッチングストップ膜22bは厚さ0.1μm程度、WなどからなるX線吸収体膜23aは厚さ5μm程度、Alなどからなる膜23bは厚さ0.2μm程度形成するのが好ましい。
その後、Alなどからなる膜23b上にレジストを形成し、リソグラフィによりパターン化すると、図2(c)に示すようなレジスト26が得られる。リソグラフィの代わりに、電子線描画法によりパターン化することもできる。つづいて、Cl2またはBCl3によりAlなどからなる膜23bをプラズマエッチングして、パターン化する。つぎに、パターン化したエッチングマスク23cを利用して、SF6などによりWなどからなるX線吸収体膜23aをプラズマエッチングし、レジスト26を除去すると、図2(d)に示すような本発明のX線マスク20が得られる。エッチングは、ECRプラズマを使用し、基板温度を−40℃程度に冷却すると、サイドエッチングを抑制することができるので好ましい。
得られるX線マスク20は、X線透過部22とX線吸収体23dとを備える。また、X線透過部22は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属またはその金属化合物からなるX線透過膜22aを有し、X線透過部22が破損しにくいため、大面積の窓領域を有するX線マスクを提供することができる。したがって、X線による露光効率を高め、製造コストを低減することができる。
実施の形態3
本実施の形態においては、X線透過部における金属層または金属化合物層は、板状体を切削して形成する。Al、TiまたはFeなどからなる板状体の一部を切削することにより、薄膜状の窓領域を形成し、X線透過部として利用することができる。また、機械加工によるため低コストで製造することができ、フレームと透過部を同一の部材を利用して一度に形成することができる。
まず、図3(a)に示すような、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物からなる板状体を切削し、図3(b)に示すような中央部に薄層31aを有する構造体31を形成する。層31aの厚さは、2μm〜100μmが好ましい。
つぎに、図3(c)に示すように、構造体31の上面にスパッタリングにより、Al23などからなるエッチングストップ膜32bと、WまたはWNなどからなるX線吸収体膜33aと、Alなどからなる膜33bとを順次形成する。エッチングストップ膜32bは厚さ0.1μm程度、WなどからなるX線吸収体膜33aは厚さ5μm程度、Alなどからなる膜33bは厚さ0.2μm程度形成するのが好ましい。
その後、Alなどからなる膜33b上にレジストを形成し、リソグラフィによりパターン化すると、図3(d)に示すようなレジスト36が得られる。リソグラフィの代わりに、電子線描画法によりパターン化することもできる。つづいて、Cl2またはBCl3によりAlなどからなる膜33bをプラズマエッチングして、パターン化する。つぎに、パターン化したエッチングマスク33cを利用して、SF6などによりWなどからなるX線吸収体膜33aをプラズマエッチングし、レジスト36を除去すると、図3(e)に示すような本発明のX線マスク30が得られる。エッチングは、ECRプラズマを使用し、基板温度を−40℃程度に冷却すると、サイドエッチングを抑制することができるので好ましい。
得られるX線マスク30は、X線透過部とX線吸収体33dとを備え、X線透過部は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属またはその金属化合物からなるX線透過膜31aを有するため、X線透過部が破損しにくい。したがって、大面積の窓領域を有するX線マスクを提供することができ、X線による露光効率を高め、製造コストを低減することができる。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
窓領域の面積が広く、製造効率の高いX線マスクを提供することができる。
本発明の実施の形態1におけるX線マスクの製造方法を示す工程図である。 本発明の実施の形態2におけるX線マスクの製造方法を示す工程図である。 本発明の実施の形態3におけるX線マスクの製造方法を示す工程図である。 従来のX線マスクの製造方法を示す工程図である。
符号の説明
10 X線マスク、12 X線透過部、12a X線透過膜、13d X線吸収体、21 支持フレーム。

Claims (4)

  1. X線リソグラフィにおいてレジストにパターンを転写するマスクであって、X線透過部と、該X線透過部により保持されるX線吸収体とを備え、前記X線透過部を構成するX線透過膜は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成される層を有することを特徴とするX線マスク。
  2. X線リソグラフィにおいてレジストにパターンを転写するマスクの製造方法であって、前記マスクは、X線透過部と、該X線透過部により保持されるX線吸収体とを備え、前記X線透過部を構成するX線透過膜は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成される層を有し、該層は、スパッタリングまたはCVDまたは蒸着により形成することを特徴とするX線マスクの製造方法。
  3. X線リソグラフィにおいてレジストにパターンを転写するマスクの製造方法であって、前記マスクは、X線透過部と、該X線透過部により保持されるX線吸収体とを備え、前記X線透過部を構成するX線透過膜は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成される層を有し、該層は、薄膜状のX線透過膜を支持フレームに固定して形成することを特徴とするX線マスクの製造方法。
  4. X線リソグラフィにおいてレジストにパターンを転写するマスクの製造方法であって、前記マスクは、X線透過部と、該X線透過部により保持されるX線吸収体とを備え、前記X線透過部を構成するX線透過膜は、Al、Ti、Cr、Mn、Fe、Co、NiもしくはCuのうち少なくとも1つの金属、または、その金属化合物により構成される層を有し、該層は、板状体を切削して形成することを特徴とするX線マスクの製造方法。
JP2004357084A 2004-12-09 2004-12-09 X線マスクおよびその製造方法 Withdrawn JP2006163177A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357084A JP2006163177A (ja) 2004-12-09 2004-12-09 X線マスクおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357084A JP2006163177A (ja) 2004-12-09 2004-12-09 X線マスクおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2006163177A true JP2006163177A (ja) 2006-06-22

Family

ID=36665255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357084A Withdrawn JP2006163177A (ja) 2004-12-09 2004-12-09 X線マスクおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2006163177A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249950A (ja) * 2007-03-30 2008-10-16 Hoya Corp フォトマスクブランク及びフォトマスク
RU2704673C1 (ru) * 2019-02-22 2019-10-30 Федеральное государственное бюджетное учреждение науки Институт Ядерной Физики им. Г.И. Будкера Сибирского отделения (ИЯФ СО РАН) Способ изготовления рентгенолитографического шаблона

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249950A (ja) * 2007-03-30 2008-10-16 Hoya Corp フォトマスクブランク及びフォトマスク
TWI424261B (zh) * 2007-03-30 2014-01-21 Hoya Corp 光罩基底及光罩
RU2704673C1 (ru) * 2019-02-22 2019-10-30 Федеральное государственное бюджетное учреждение науки Институт Ядерной Физики им. Г.И. Будкера Сибирского отделения (ИЯФ СО РАН) Способ изготовления рентгенолитографического шаблона

Similar Documents

Publication Publication Date Title
Aimi et al. High-aspect-ratio bulk micromachining of titanium
US10910185B2 (en) Method for the fabrication of electron field emission devices including carbon nanotube electron field emission devices
KR101614628B1 (ko) 미세 요철 구조체, 건식 에칭용 열반응형 레지스트 재료, 몰드의 제조 방법 및 몰드
US9153453B2 (en) Technique for etching monolayer and multilayer materials
TW201116478A (en) Method for manufacturing microstructures
Finnegan et al. High aspect ratio anisotropic silicon etching for x-ray phase contrast imaging grating fabrication
US20090160028A1 (en) Method for forming gaps in micromechanical device and micromechanical device
KR20170126265A (ko) 극자외선 리소그래피용 펠리클 및 그의 제조 방법
Du et al. Fabrication of novel MEMS inertial switch with six layers on a metal substrate
JP2010029976A (ja) 微細構造体形成方法
JP2006163177A (ja) X線マスクおよびその製造方法
JP4787557B2 (ja) 近視野光発生素子の製造方法
JP2009172759A (ja) Mems製造のためのエアロゲルベースの型およびその形成方法
JP6380606B2 (ja) 樹脂層付金属マスク
KR101015176B1 (ko) 전사용마스크기판의 제조방법, 전사용마스크기판 및전사용마스크
JP2007067329A (ja) Soi基板、荷電粒子線露光用マスクブランクスおよび荷電粒子線露光用マスク
JP6137393B2 (ja) 樹脂層付金属マスク
JP4333107B2 (ja) 転写マスク及び露光方法
JP5892690B2 (ja) レジストパターン形成方法及びモールド製造方法
Desta et al. X-ray Mask for LIGA Microfabrication
JP4788249B2 (ja) ステンシルマスクブランク及びステンシルマスク並びにそれを用いた荷電粒子線のパターン露光方法
JP2008186995A (ja) 露光用マスクブランクス、露光用マスクおよびそれらの製造方法
CN104591079B (zh) 一种微米管道的加工方法
JP4853031B2 (ja) 荷電粒子露光用マスクの製造方法
JP2006171203A (ja) マスクおよびその製造方法ならびに3次元微細構造体およびその製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304