JP2006161568A - Control valve and fuel injection valve having the same - Google Patents

Control valve and fuel injection valve having the same Download PDF

Info

Publication number
JP2006161568A
JP2006161568A JP2004349966A JP2004349966A JP2006161568A JP 2006161568 A JP2006161568 A JP 2006161568A JP 2004349966 A JP2004349966 A JP 2004349966A JP 2004349966 A JP2004349966 A JP 2004349966A JP 2006161568 A JP2006161568 A JP 2006161568A
Authority
JP
Japan
Prior art keywords
valve
seat
control
valve member
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004349966A
Other languages
Japanese (ja)
Other versions
JP4286770B2 (en
Inventor
Hirokuni Tomita
浩邦 冨田
Shigeiku Enomoto
榎本  滋郁
Yoshihisa Yamamoto
義久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2004349966A priority Critical patent/JP4286770B2/en
Priority to DE200510057526 priority patent/DE102005057526B4/en
Publication of JP2006161568A publication Critical patent/JP2006161568A/en
Application granted granted Critical
Publication of JP4286770B2 publication Critical patent/JP4286770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0038Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details rotary

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve easy to be assembled and reducing driving energy, without high machining accuracy or positioning accuracy. <P>SOLUTION: For boosting fuel supplied from a common rail 2 to a boosting device 4 by the drive of a boosting piston 44 and then injecting the boosted fuel from the injection nozzle 7, a hydraulic servo valve 3 for controlling boosting operation and injecting operation is provided. The hydraulic servo valve 3 of a two-position three-way valve increases/decreases hydraulic pressure of a servo valve control chamber 13 to make a boost control passage 14 and an injection control passage 15 selectively communicate with a return port 28 leading to a return passage 27 or a high pressure port 22 leading to the common rail 2. The hydraulic servo valve 3 is divided into an upper valve 31 provided with an upper seat 33 and a lower valve 32 provided with a lower seat 34 to be driven, so that its machining is facilitated and the driving energy is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、内燃機関の燃料噴射弁に好適に使用される制御弁に関する。詳しくは、燃料噴射弁に設けた増圧装置において増圧作動を制御する制御弁に関する。   The present invention relates to a control valve suitably used for a fuel injection valve of an internal combustion engine, for example. Specifically, the present invention relates to a control valve that controls a pressure increasing operation in a pressure increasing device provided in a fuel injection valve.

内燃機関の各気筒に設けた燃料噴射弁に、共通の蓄圧器(コモンレール)から燃料を供給するコモンレール式燃料噴射システムが注目されている。また、近年、高出力化、および、燃費や排気ガス浄化性能を向上させる目的で、燃料の噴射圧力を高めることが要求されており、これを簡易に実現する燃料噴射弁用の増圧装置が提案されている(例えば、特許文献1等)。
特表2002−539372号公報
A common rail fuel injection system that supplies fuel from a common pressure accumulator (common rail) to fuel injection valves provided in each cylinder of an internal combustion engine has attracted attention. In recent years, it has been required to increase the fuel injection pressure for the purpose of increasing the output and improving the fuel efficiency and exhaust gas purification performance. It has been proposed (for example, Patent Document 1).
JP 2002-539372 A

燃料噴射弁用の増圧装置は、一般に、コモンレールから供給される燃料を増圧ピストンで加圧して、噴射圧を高圧にするものである。その一例として、例えば、特許文献1の構成を図5に示すと、コモンレール10には高圧ポンプPで加圧した燃料タンクTの燃料が蓄圧されており、コモンレール10から燃料噴射弁100の燃料溜まり101に所定圧の燃料が供給されるようになっている。増圧器はコモンレール10と燃料溜まり101の間に配置され、増圧ピストン103を用いて増圧室104に供給される燃料を増圧した後、燃料溜まり101に供給する。増圧ピストン103の駆動は、電磁駆動式の増圧制御弁105を用いて圧力室106の油圧を増減することにより制御される。   In general, a booster for a fuel injection valve pressurizes fuel supplied from a common rail with a booster piston to increase the injection pressure. As an example, for example, when the configuration of Patent Document 1 is shown in FIG. 5, the fuel in the fuel tank T pressurized by the high pressure pump P is accumulated in the common rail 10, and the fuel reservoir of the fuel injection valve 100 is accumulated from the common rail 10. A fuel of a predetermined pressure is supplied to 101. The pressure intensifier is disposed between the common rail 10 and the fuel reservoir 101, boosts the fuel supplied to the pressure increasing chamber 104 using the pressure increasing piston 103, and then supplies the fuel to the fuel reservoir 101. The driving of the booster piston 103 is controlled by increasing or decreasing the hydraulic pressure in the pressure chamber 106 using an electromagnetically driven booster control valve 105.

コモンレール10の燃料は、また、噴孔を開閉するニードル109の背圧室108にも供給されている。噴射制御弁107を開いて背圧室108の油圧を低下させると、ニードル109がリフトしてコモンレール10の燃料または増圧器で増圧された燃料を噴射する。このような増圧装置を付設することで、より高圧での噴射を可能にするとともに、運転状態に応じたよりきめ細かい制御を行って、所望の噴射率を実現可能となる。   The fuel of the common rail 10 is also supplied to the back pressure chamber 108 of the needle 109 that opens and closes the nozzle hole. When the injection control valve 107 is opened to lower the hydraulic pressure in the back pressure chamber 108, the needle 109 lifts and injects fuel in the common rail 10 or fuel increased in pressure by the pressure intensifier. By attaching such a pressure intensifying device, it is possible to perform injection at a higher pressure, and to perform a finer control according to the operation state, thereby realizing a desired injection rate.

ここで、増圧作動を制御する増圧制御弁105は2位置3方弁で、弁体のシート位置を切り換えることにより、圧力室106をコモンレール10またはリターン通路に選択的に連通させて、圧力室106の油圧を増減させる。一般的に、2位置3方弁の弁体には、円筒シール部を有するスプール弁や、2つのテーパシート部を有する弁が用いられる。また、特許文献2には、燃料噴射弁のノズル制御用として、弁部材にテーパシートとパイプ状のフラットシートを設けた制御弁が開示されている。バルブシート部の一方をフラットとすると、組み付け時の位置決め精度が要求されない利点がある。
特開2001−90634号公報
Here, the pressure increasing control valve 105 for controlling the pressure increasing operation is a two-position three-way valve, and by selectively switching the seat position of the valve body, the pressure chamber 106 is selectively communicated with the common rail 10 or the return passage. The hydraulic pressure in the chamber 106 is increased or decreased. In general, a spool valve having a cylindrical seal portion and a valve having two tapered seat portions are used as a valve body of a two-position three-way valve. Patent Document 2 discloses a control valve in which a valve member is provided with a taper sheet and a pipe-like flat sheet for nozzle control of a fuel injection valve. If one of the valve seat portions is flat, there is an advantage that positioning accuracy during assembly is not required.
JP 2001-90634 A

一般的に制御弁は、大流量を制御するためシート径を大きくすると、大きな駆動エネルギーを必要とする。特許文献2で提案されているテーパシートとパイプシートを1つの弁部材に備えた3方制御弁は、上下のシート径を同じにすることで油圧バランスさせて駆動エネルギーを低減しようとするものであるが、パイプシートからのリークを防ぐための精密加工が必要である。さらに、閉弁時にパイプシートの油膜により開弁力が発生し、それを抑えるための強い閉弁力が必要となるという問題がある。   Generally, a control valve requires a large amount of driving energy when the seat diameter is increased in order to control a large flow rate. The three-way control valve provided with a taper seat and a pipe seat in one valve member proposed in Patent Document 2 attempts to reduce the drive energy by balancing the hydraulic pressure by making the upper and lower seat diameters the same. There is a need for precision machining to prevent leakage from the pipe seat. Furthermore, there is a problem that when the valve is closed, a valve opening force is generated by the oil film of the pipe seat, and a strong valve closing force is required to suppress it.

そこで、本発明では、高度な加工精度や位置決め精度を必要とせず、製作や組付けを容易にすること、また、駆動エネルギーを低減することにより、高性能で信頼性の高い制御弁を提供することを目的とする。   Therefore, the present invention provides a high-performance and highly reliable control valve that does not require high processing accuracy and positioning accuracy, facilitates manufacture and assembly, and reduces drive energy. For the purpose.

請求項1の制御弁は、弁ハウジングに収容した第1弁部材の内部に第2弁部材を挿入配置してなり、第1弁部材が第1弁座に着座する時、第2弁部材は第1弁部材に押されて第2弁座から離座して第2ポートと制御通路が連通する。また、第2弁部材が第2弁座に着座する時、第1弁部材は第1弁座から離座して第1ポートと制御通路が連通する。以上により、上記制御通路と上記第1ポートまたは上記第2ポートを選択的に連通させる。   The control valve according to claim 1 is configured such that the second valve member is inserted and arranged inside the first valve member accommodated in the valve housing, and when the first valve member is seated on the first valve seat, the second valve member is The second port communicates with the control passage by being pushed by the first valve member and separated from the second valve seat. Further, when the second valve member is seated on the second valve seat, the first valve member is separated from the first valve seat and the first port communicates with the control passage. As described above, the control passage and the first port or the second port are selectively communicated.

本発明によれば、3方向制御弁をそれぞれにシートが形成される2つの弁部材で構成したので、高度な加工精度や位置決め精度が不要となる。よって製作や組付けが容易となり、簡易に高性能で信頼性の高い弁装置を提供することを目的とする。   According to the present invention, since the three-way control valve is composed of two valve members each formed with a seat, high processing accuracy and positioning accuracy are not required. Accordingly, it is an object of the present invention to provide a valve device that can be easily manufactured and assembled, and simply has high performance and high reliability.

請求項2の制御弁は、弁ハウジング内に第1弁部材と第2弁部材を付勢部材を用いて密接配置してなり、第1弁部材が第1弁座に着座する時、第2弁部材は第1弁部材に押されて第2弁座から離座して第2ポートと制御通路が連通する。また、第2弁部材が第2弁座に着座する時、第1弁部材は第1弁座から離座して第1ポートと制御通路が連通する。以上により、上記制御通路と上記第1ポートまたは上記第2ポートを選択的に連通させる。   The control valve according to claim 2 is configured such that the first valve member and the second valve member are closely arranged in the valve housing using a biasing member, and the second valve member has a second valve when the first valve member is seated on the first valve seat. The valve member is pushed by the first valve member and is separated from the second valve seat so that the second port communicates with the control passage. Further, when the second valve member is seated on the second valve seat, the first valve member is separated from the first valve seat and the first port communicates with the control passage. As described above, the control passage and the first port or the second port are selectively communicated.

本発明によっても、3方向制御弁をそれぞれにシートが形成される2つの弁部材で構成されることで、高度な加工精度や位置決め精度が不要となる。よって製作や組付けが容易となり、簡易に高性能で信頼性の高い弁装置を提供することを目的とする。   Also according to the present invention, since the three-way control valve is composed of two valve members each formed with a seat, high processing accuracy and positioning accuracy are not required. Accordingly, it is an object of the present invention to provide a valve device that can be easily manufactured and assembled, and simply has high performance and high reliability.

請求項3の制御弁は、第1弁座と第2弁座の間に制御通路を配置する。そして、第1弁座に対して制御通路と反対側に第1ポートを配置し、第2弁座に対して制御通路と反対側に第2ポートを配置することにより、制御通路と第1ポートまたは第2ポートを選択的に連通させて制御通路の油圧を切り替えることができる。   In the control valve according to the third aspect, the control passage is disposed between the first valve seat and the second valve seat. Then, the first port is disposed on the opposite side of the control passage with respect to the first valve seat, and the second port is disposed on the opposite side of the control passage with respect to the second valve seat, whereby the control passage and the first port are disposed. Alternatively, the hydraulic pressure of the control passage can be switched by selectively communicating the second port.

請求項4の制御弁において、第1弁部材は弁ハウジングに設けたシリンダ内を摺動し、第1弁部材の摺動径に対して第1弁部材のシート径、および第2弁部材のシート径を小さくしている。これにより、第1弁部材の摺動径に加わる油圧力を、シート径に加わる油圧力より大きくすることができ、第1弁部材の摺動径に加わる油圧力を制御することで弁部材を移動できる。   5. The control valve according to claim 4, wherein the first valve member slides in a cylinder provided in the valve housing, the seat diameter of the first valve member with respect to the sliding diameter of the first valve member, and the second valve member The seat diameter is reduced. Thereby, the oil pressure applied to the sliding diameter of the first valve member can be made larger than the oil pressure applied to the seat diameter, and the valve member is controlled by controlling the oil pressure applied to the sliding diameter of the first valve member. Can move.

請求項5の制御弁において、第2弁部材は弁ハウジングおよび第1弁部材に対して摺動部を持たない。そのため第2弁部材は高精度な摺動加工が不要である。   In the control valve according to claim 5, the second valve member does not have a sliding portion with respect to the valve housing and the first valve member. Therefore, the second valve member does not require highly accurate sliding processing.

請求項6の制御弁は、弁ハウジングに設けたシリンダ内周に第1弁座および第2弁座を設け、軸方向の異なる位置に配置する。これにより第1弁部材と第2弁部材をそれぞれ弁ハウジングに対して対向する方向から挿入することができ、組付けが容易になる。   According to a sixth aspect of the present invention, the first valve seat and the second valve seat are provided on the inner periphery of the cylinder provided in the valve housing, and are arranged at different positions in the axial direction. As a result, the first valve member and the second valve member can be inserted from the direction facing the valve housing, respectively, and assembly is facilitated.

請求項7の制御弁は、第1ポートが低圧流体通路に、第2ポートが高圧流体通路に連通し、第1弁体のシート径と上記第2弁体のシート径が同等である。このようにすると、流体圧力は弁体に対して第1弁体を閉弁し、第2弁体を開弁するよう作用するため、制御室を高圧にすることが安全であるシステムに対して安全性を高めることができる。   According to a seventh aspect of the present invention, the first port communicates with the low pressure fluid passage and the second port communicates with the high pressure fluid passage, and the seat diameter of the first valve body and the seat diameter of the second valve body are equal. In this way, the fluid pressure acts to close the first valve body and open the second valve body with respect to the valve body. Safety can be increased.

請求項8の制御弁は、第1ポートが低圧流体通路に、第2ポートが高圧流体通路に連通し、上記第1弁体のシート径が上記第2弁体のシート径より小さい。このようにすると、制御室の圧力をゆるやかに低圧にし、すばやく高圧にすることができる。よって、例えば燃料噴射弁に適用した場合、ノズルニードルの開弁速度を遅く、閉弁速度を速くして噴射率をデルタ型にすることができ、NOx低減に好適である。   In the control valve according to claim 8, the first port communicates with the low pressure fluid passage, the second port communicates with the high pressure fluid passage, and the seat diameter of the first valve body is smaller than the seat diameter of the second valve body. If it does in this way, the pressure of a control room can be made into low pressure gently, and can be made high pressure quickly. Therefore, for example, when applied to a fuel injection valve, the valve opening speed of the nozzle needle can be reduced and the valve closing speed can be increased to make the injection rate a delta type, which is suitable for NOx reduction.

請求項9の制御弁は、第1弁部材の摺動部端面と弁ハウジングに設けたシリンダ内壁面とで囲まれる油圧室を設け、この油圧室の圧力を電気的アクチュエータで制御することにより第1弁部材を駆動する。このようにすると、電気的アクチュエータは油圧室の圧力を制御する小さな力で、大きな力を必要とする制御弁を駆動することができる。   The control valve according to claim 9 is provided with a hydraulic chamber surrounded by the sliding portion end surface of the first valve member and a cylinder inner wall surface provided in the valve housing, and the pressure in the hydraulic chamber is controlled by an electric actuator. One valve member is driven. In this way, the electric actuator can drive a control valve that requires a large force with a small force that controls the pressure in the hydraulic chamber.

請求項10の制御弁は、油圧室が第1オリフィスを介して高圧流体通路に連通する通路と、第2オリフィスと電気的アクチュエータで制御される弁体を介して低圧流体通路に連通する通路を備える。このようにすると、第1オリフィスで油圧室に流入する高圧流体を制限し、第2オリフィスを第1オリフィスより大きくすることで、駆動時に油圧室からリークする燃料を低減することができる。   According to a tenth aspect of the present invention, there is provided a control valve in which a hydraulic chamber communicates with a high-pressure fluid passage through a first orifice, and a passage communicated with a low-pressure fluid passage through a valve body controlled by a second orifice and an electric actuator. Prepare. If it does in this way, the fuel which leaks from a hydraulic chamber at the time of a drive can be reduced by restricting the high pressure fluid which flows into a hydraulic chamber by the 1st orifice, and making the 2nd orifice larger than the 1st orifice.

請求項11の制御弁は、第1弁部材が第1弁座から離座すると、制御通路の圧力が減少し、高圧流体通路との圧力差により第2弁部材が第2弁座に着座する。このようにすると、第1弁体と第2弁体が分離しても確実に第2弁体を着座することができる。   In the control valve according to claim 11, when the first valve member is separated from the first valve seat, the pressure of the control passage decreases, and the second valve member is seated on the second valve seat due to the pressure difference with the high pressure fluid passage. . If it does in this way, even if a 1st valve body and a 2nd valve body isolate | separate, a 2nd valve body can be seated reliably.

請求項12の制御弁は、第1弁部材のシートが略円錐面になっており、第2弁部材のシートが略円錐面になっている。このようにすると、容易な加工で精度の高いシートを製造できる。   In the control valve according to claim 12, the seat of the first valve member has a substantially conical surface, and the seat of the second valve member has a substantially conical surface. If it does in this way, a highly accurate sheet | seat can be manufactured by easy process.

請求項13の制御弁は、第1弁部材のシートが略円錐面になっており、第2弁部材のシートが略球面になっている。このようにすると、第2弁部材が傾くようなことがあっても確実にシートできる。   In the control valve according to the thirteenth aspect, the seat of the first valve member has a substantially conical surface, and the seat of the second valve member has a substantially spherical surface. If it does in this way, even if the 2nd valve member may incline, it can seat reliably.

請求項14の制御弁は、第1弁部材のシートが略円錐面になっており、第2弁部材のシートが平面になっている。このようにすると、第1弁部材と第2弁部材の軸が大きくズレても確実に第2弁部材が着座する。さらに、第2弁座着座時の面圧を小さくすることができ、高圧のシステムでも信頼性の高い制御弁が得られる。   In the control valve according to the fourteenth aspect, the seat of the first valve member has a substantially conical surface, and the seat of the second valve member has a flat surface. If it does in this way, even if the axis | shaft of a 1st valve member and a 2nd valve member slip | deviates large, a 2nd valve member will seat reliably. Furthermore, the surface pressure when the second valve seat is seated can be reduced, and a highly reliable control valve can be obtained even in a high pressure system.

請求項15は、請求項9ないし13に記載した構成の制御弁を備える燃料噴射弁である。上記制御弁の制御通路が増圧ピストンの制御室とノズルニードルの制御室に連通し、電気的アクチュエータ駆動時に第1弁部材を開弁し第2弁部材を閉弁して制御室を低圧にすることで増圧ピストンを駆動して噴射燃料を増圧するとともにノズルニードルを開弁して噴射を行う。一方、電気的アクチュエータ停止時に第1弁体を閉弁し第2弁体を開弁して制御室を高圧にすることで増圧ピストンをリセットするとともにノズルニードルを閉弁して噴射停止する。このようにして燃料噴射を制御することができる。   A fifteenth aspect of the present invention is a fuel injection valve provided with the control valve having the configuration described in the ninth to thirteenth aspects. The control passage of the control valve communicates with the control chamber of the booster piston and the control chamber of the nozzle needle, and when the electric actuator is driven, the first valve member is opened and the second valve member is closed to lower the control chamber. As a result, the pressure increasing piston is driven to increase the pressure of the injected fuel and the nozzle needle is opened to perform injection. On the other hand, when the electric actuator is stopped, the first valve body is closed and the second valve body is opened to increase the pressure of the control chamber, thereby resetting the booster piston and closing the nozzle needle to stop the injection. In this way, fuel injection can be controlled.

請求項16の燃料噴射弁は制御通路にオリフィスを備え、オリフィス流量を調整することで噴射と増圧のタイミングを設定できる。増圧ピストンの制御通路のオリフィス流量を調整することで駆動信号オンから増圧開始までの時間を調整でき、ノズルニードルの制御通路のオリフィス流量を調整することで駆動信号オンから噴射開始までの時間を調整できる。そして増圧と噴射のタイミングを設定することで噴射弁の噴射率波形を設定できる。   The fuel injection valve according to the sixteenth aspect includes an orifice in the control passage, and the timing of injection and pressure increase can be set by adjusting the orifice flow rate. By adjusting the orifice flow rate in the control passage of the booster piston, the time from the drive signal ON to the start of pressure increase can be adjusted, and by adjusting the orifice flow rate in the control passage of the nozzle needle, the time from the drive signal ON to the start of injection Can be adjusted. The injection rate waveform of the injection valve can be set by setting the pressure increase and injection timing.

以下、本発明の第1の実施の形態を図面に基づいて説明する。図1は、本発明を適用した3方向制御弁である油圧サーボ弁3を用いたディーゼルエンジン用の増圧式コモンレールインジェクタ1の構成図である。図1において、インジェクタ1は、高圧流体通路である高圧燃料通路21を介して、高圧燃料を蓄圧するコモンレール2に接続している。コモンレール2には、吐出量の可変機構を備える公知の高圧サプライポンプ23が接続され、燃料タンク24の燃料を加圧してコモンレール2に圧送するようになっている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a pressure-intensifying common rail injector 1 for a diesel engine using a hydraulic servo valve 3 which is a three-way control valve to which the present invention is applied. In FIG. 1, an injector 1 is connected to a common rail 2 that accumulates high-pressure fuel via a high-pressure fuel passage 21 that is a high-pressure fluid passage. A known high-pressure supply pump 23 having a discharge amount variable mechanism is connected to the common rail 2, and the fuel in the fuel tank 24 is pressurized and fed to the common rail 2.

インジェクタ1は、コモンレール2の燃料を増圧する増圧装置4と、増圧装置4で増圧された燃料を噴射する噴射ノズル7を有している。増圧装置4および噴射ノズル7の作動は、電磁弁5と油圧サーボ弁3によって制御される。電磁弁5は2位置2方弁で、燃料タンク24に至る低圧流体通路としてのリターン通路27と油圧サーボ弁3との間を開閉することにより、油圧室であるサーボ弁制御室13の制御油圧を増減させる。電磁弁5は電気的アクチュエータであるソレノイドで弁体を開閉制御する公知の構成のものが用いられる。本発明の特徴である油圧サーボ弁3については、詳細を後述する。   The injector 1 includes a pressure increasing device 4 that increases the fuel in the common rail 2 and an injection nozzle 7 that injects the fuel increased in pressure by the pressure increasing device 4. The operations of the pressure booster 4 and the injection nozzle 7 are controlled by the electromagnetic valve 5 and the hydraulic servo valve 3. The electromagnetic valve 5 is a two-position two-way valve, and opens and closes a return passage 27 serving as a low-pressure fluid passage leading to the fuel tank 24 and the hydraulic servo valve 3 to control hydraulic pressure in the servo valve control chamber 13 that is a hydraulic chamber. Increase or decrease. As the electromagnetic valve 5, a known configuration is used in which a valve body is controlled to be opened and closed by a solenoid which is an electric actuator. Details of the hydraulic servo valve 3 which is a feature of the present invention will be described later.

増圧装置4は、大小二段径の段付シリンダ45内を図の上下方向に摺動する増圧ピストン44によって、シリンダ45の下端部に形成される増圧室41の圧力を増減する。増圧ピストン44は大小二段径の段付形状で、大径の上ピストンが大径の上シリンダ内を、小径の下ピストンの下端部が小径の下シリンダ内を、それぞれ油密を保って摺動するようになっており、増圧室41は小径の下ピストン下端面とシリンダ45内壁面を室壁として形成される。シリンダ45の上端部には、増圧ピストン44の大径の上ピストン上端面とシリンダ45内壁面を室壁とする高圧室42が形成され、高圧燃料通路21を介してコモンレール2に接続されている。   The pressure booster 4 increases or decreases the pressure in the pressure increasing chamber 41 formed at the lower end of the cylinder 45 by a pressure increasing piston 44 that slides in a stepped cylinder 45 having a large and small two-stage diameter in the vertical direction in the figure. The booster piston 44 has a stepped shape with a large and small two-stage diameter. The large-diameter upper piston keeps the oil tight inside the large-diameter upper cylinder, and the small-diameter lower piston has the lower end inside the small-diameter lower cylinder. The pressure increasing chamber 41 is formed with the lower piston lower end surface and the inner wall surface of the cylinder 45 as chamber walls. A high pressure chamber 42 is formed at the upper end of the cylinder 45 with the upper piston upper end surface of the large pressure boosting piston 44 and the inner wall surface of the cylinder 45 as chamber walls, and is connected to the common rail 2 via the high pressure fuel passage 21. Yes.

シリンダ45の大径の上シリンダ内には、増圧ピストン44の小径の下ピストン周りに、増圧制御室11が形成される。増圧制御室11はオリフィス141を有する増圧制御通路14によって油圧サーボ弁3と連通するとともに、逆止弁16を有する流路によって増圧室41と連通している。増圧制御室11にはスプリング43が配設されて増圧ピストン44を上方に付勢している。この時、増圧ピストン44の上端面には、高圧室42の油圧力が、下端面には増圧制御室11の油圧力とスプリング43のバネ力が作用しており、増圧制御室11の圧力を低下させると、増圧ピストン44が下降して増圧室41に供給される燃料を増圧する。   In the upper cylinder of the large diameter of the cylinder 45, the pressure increasing control chamber 11 is formed around the lower piston of the small diameter of the pressure increasing piston 44. The pressure increase control chamber 11 communicates with the hydraulic servo valve 3 through a pressure increase control passage 14 having an orifice 141, and communicates with the pressure increase chamber 41 through a flow path having a check valve 16. A spring 43 is disposed in the pressure increase control chamber 11 to urge the pressure increase piston 44 upward. At this time, the oil pressure of the high pressure chamber 42 is applied to the upper end surface of the pressure increasing piston 44, and the oil pressure of the pressure increasing control chamber 11 and the spring force of the spring 43 are applied to the lower end surface. When the pressure is reduced, the pressure-increasing piston 44 is lowered to increase the pressure of the fuel supplied to the pressure-increasing chamber 41.

噴射ノズル7は、ノズルボデー72内にノズルニードル71を摺動自在に収容してなる。ノズルニードル71は、コマンドピストン73によって駆動されてノズルボデー72先端部に設けた噴孔74を開閉する。燃料溜まり75は流路17により増圧室41と連通している。コマンドピストン73の上方には噴射制御室12が設けられ、噴射制御室12はオリフィス151を有する噴射制御通路15によって油圧サーボ弁3と連通している。コマンドピストン73はノズルニードル71よりも大径としてあり、コマンドピストン73とノズルニードル71の連結部周りには、スプリング76が配設されてコマンドピストン73に上向きの付勢力を、ノズルニードル71に下向きの付勢力を与えている。この構成において、噴射制御室12の圧力を低下させると、コマンドピストン73とともにノズルニードル71が上昇して、燃料溜まり75から供給される燃料を噴射する。   The injection nozzle 7 includes a nozzle needle 71 slidably accommodated in a nozzle body 72. The nozzle needle 71 is driven by the command piston 73 to open and close the nozzle hole 74 provided at the tip of the nozzle body 72. The fuel reservoir 75 communicates with the pressure increasing chamber 41 through the flow path 17. An injection control chamber 12 is provided above the command piston 73, and the injection control chamber 12 communicates with the hydraulic servo valve 3 through an injection control passage 15 having an orifice 151. The command piston 73 has a larger diameter than the nozzle needle 71, and a spring 76 is disposed around the connecting portion between the command piston 73 and the nozzle needle 71 to apply an upward biasing force to the command piston 73 and downward to the nozzle needle 71. Giving the urging power of. In this configuration, when the pressure in the injection control chamber 12 is lowered, the nozzle needle 71 rises together with the command piston 73 and the fuel supplied from the fuel reservoir 75 is injected.

次に、図2を用いて本発明の特徴である油圧サーボ弁3の構造について説明する。図示するように、油圧サーボ弁3は、弁ハウジングに設けたシリンダ65に、第1弁部材である上バルブ31と第2弁部材である下バルブ32を収容してなる。上バルブ31は上端が閉鎖する略円筒状で、上半部を摺動部とし、小径とした下半部の開口端部に下方へ向けて縮径させてテーパ面(円錐面)状の上シート33を形成している。下バルブ32は略円柱状で、上半部が上バルブ31の筒内に挿通保持され、下端部を下方へ向けて拡径させてテーパ面(円錐面)状の下シート34を形成している。シリンダ65は、中間部が小径の段付き形状となっており、その上端側の段部を上バルブ31が着座する第1弁座としての上弁座63、下端側の段部を下バルブ32が着座する第2弁座としての下弁座64としてある。下バルブ32はシリンダ65中間部から下方へ延出し、下シート34を設けた下端部が大径のシリンダ65下端部内に収容されている。   Next, the structure of the hydraulic servo valve 3 which is a feature of the present invention will be described with reference to FIG. As shown in the figure, the hydraulic servo valve 3 includes a cylinder 65 provided in a valve housing and an upper valve 31 as a first valve member and a lower valve 32 as a second valve member. The upper valve 31 has a substantially cylindrical shape whose upper end is closed, and the upper half portion is a sliding portion, the diameter of the lower end portion of the lower half portion having a small diameter is reduced downward to form a tapered surface (conical surface). A sheet 33 is formed. The lower valve 32 is substantially cylindrical, and the upper half is inserted and held in the cylinder of the upper valve 31, and the lower end portion is expanded downward to form a tapered sheet (conical surface) -shaped lower sheet 34. Yes. The cylinder 65 has a stepped shape with a small diameter in the middle part. The upper valve seat 63 as a first valve seat on which the upper valve 31 is seated at the upper end stepped portion and the lower valve 32 at the lower end stepped portion. Is a lower valve seat 64 as a second valve seat on which is seated. The lower valve 32 extends downward from the middle portion of the cylinder 65, and the lower end portion provided with the lower seat 34 is accommodated in the lower end portion of the large-diameter cylinder 65.

弁ハウジングは、シリンダ65の上端部と弁座63、64を設けた小径中間部を構成する座面部材61と、シリンダ65の下端部を構成するハウジング部材62を衝合してなる。座面部材61には、上弁座63上方のシリンダ65側面に開口して、上バルブ31の小径下半部周りの空間に連通する、第1ポートとしてのリターンポート28が形成されている。リターンポート28の他端はリターン通路27に連通している。座面部材61には、さらに、弁座63、64間のシリンダ65側面に開口して、下バルブ32の中間部周りの空間に連通する増圧制御通路14と噴射制御通路15が形成される。これら増圧制御通路14および噴射制御通路15の他端は、それぞれ増圧装置4の増圧制御室11、噴射ノズル7の噴射制御室12に連通している。一方、ハウジング部材62には、シリンダ65の下端面中央に開口して、下バルブ31の下端部周りの空間に開口する、第2ポートとしての高圧ポート22が形成されている。なお、高圧ポート22に対向する下バルブ32の下端面は、半円筒状の溝を有しており、下バルブ32開弁時に高圧ポート22から流入する燃料の流れを絞らないようにしてある。   The valve housing is formed by abutting a seat surface member 61 constituting a small diameter intermediate portion provided with valve seats 63 and 64 and a housing member 62 constituting a lower end portion of the cylinder 65. The seat surface member 61 is formed with a return port 28 as a first port that opens to the side surface of the cylinder 65 above the upper valve seat 63 and communicates with the space around the lower half of the small diameter of the upper valve 31. The other end of the return port 28 communicates with the return passage 27. The seat member 61 is further formed with a pressure increase control passage 14 and an injection control passage 15 that open to the side surface of the cylinder 65 between the valve seats 63 and 64 and communicate with the space around the middle portion of the lower valve 32. . The other ends of the pressure increase control passage 14 and the injection control passage 15 communicate with the pressure increase control chamber 11 of the pressure increase device 4 and the injection control chamber 12 of the injection nozzle 7, respectively. On the other hand, the housing member 62 is formed with a high-pressure port 22 as a second port that opens in the center of the lower end surface of the cylinder 65 and opens in a space around the lower end portion of the lower valve 31. Note that the lower end surface of the lower valve 32 facing the high pressure port 22 has a semi-cylindrical groove so that the flow of fuel flowing from the high pressure port 22 is not restricted when the lower valve 32 is opened.

サーボ弁制御室13は、上バルブ31が摺動するシリンダ65の上端部に、上バルブ31の上端面とシリンダ65の内壁面を室壁として形成される。サーボ弁制御室13は、側面に開口するインオリフィス25を有する通路にて増圧装置4の高圧室42に連通するとともに、頂面に開口するアウトオリフィス26を有する通路にて電磁弁5を介してリターン通路27に連通する。この電磁弁5を駆動することにより、サーボ弁制御室13とリターン通路27との連通が制御され、上バルブ31および下バルブ32が一体で上下動する。ここで、図3(a)、(e)に示すように、詳細には、上バルブ31の上端面は中央部が凹陥しており、上方に突出する外周縁部には一箇所に径方向の溝311が設けられる。この溝311は、上バルブ31が上方位置にある時もインオリフィス25からサーボ弁制御室13に燃料が流入するようにしている。   The servo valve control chamber 13 is formed at the upper end portion of the cylinder 65 on which the upper valve 31 slides with the upper end surface of the upper valve 31 and the inner wall surface of the cylinder 65 as chamber walls. The servo valve control chamber 13 communicates with the high-pressure chamber 42 of the pressure intensifier 4 through a passage having an in-orifice 25 opened on the side surface, and via the electromagnetic valve 5 in a passage having an out-orifice 26 opened on the top surface. To the return passage 27. By driving the electromagnetic valve 5, the communication between the servo valve control chamber 13 and the return passage 27 is controlled, and the upper valve 31 and the lower valve 32 move up and down integrally. Here, as shown in FIGS. 3 (a) and 3 (e), in detail, the upper end surface of the upper valve 31 is recessed at the center, and the outer peripheral edge projecting upward is in one radial direction. The groove 311 is provided. The groove 311 allows fuel to flow from the in-orifice 25 into the servo valve control chamber 13 even when the upper valve 31 is in the upper position.

油圧サーボ弁3は、上バルブ31の上端面の面積A1を下バルブ32の下端面の面積A4より大きくし、摺動部と上シート33の間にリターンポート28に連通する低圧部を設けている。本実施形態では、上シート33と下シート34の面積は同じとしたが、上シート33の面積より下端面の面積A4が大きければシート面積の差があってもよい。この構成により、制御室13の圧力によってシート位置が切り替わり、制御室13が高圧の時は、下方向の油圧力が大きくなり、油圧サーボ弁3の上シート33が閉じる。制御室13が低圧になると上方向の油圧力が大きくなり、下シート34が閉じる。   The hydraulic servo valve 3 has an area A1 of the upper end surface of the upper valve 31 larger than an area A4 of the lower end surface of the lower valve 32, and a low pressure portion communicating with the return port 28 is provided between the sliding portion and the upper seat 33. Yes. In the present embodiment, the areas of the upper sheet 33 and the lower sheet 34 are the same. However, as long as the area A4 of the lower end surface is larger than the area of the upper sheet 33, there may be a difference in sheet area. With this configuration, the seat position is switched by the pressure in the control chamber 13, and when the control chamber 13 is at a high pressure, the downward oil pressure increases and the upper seat 33 of the hydraulic servo valve 3 is closed. When the control chamber 13 becomes low pressure, the upward oil pressure increases and the lower seat 34 closes.

図1、2を用いて油圧サーボ弁3およびインジェクタ1の作動を説明する。図1に示すように、電磁弁(2/2弁)5は非通電状態で閉弁するように構成されており、油圧サーボ弁3のアウトオリフィス26とリターン通路27の連通は遮断されている。この時、図2に示すように、インオリフィス25から流入するコモンレール2の圧力で、サーボ弁制御室13は高圧となっており、上バルブ31の上シート33が上弁座63に着座し、下バルブ32の下シート34は下弁座64から離座している。従って、増圧制御通路14および噴射制御通路15は高圧ポート22と連通し、増圧制御室11および噴射制御室12も高圧となっている。このため、噴射ノズル7のノズルニードル71は下端位置にあり燃料は噴射されない。   The operation of the hydraulic servo valve 3 and the injector 1 will be described with reference to FIGS. As shown in FIG. 1, the electromagnetic valve (2/2 valve) 5 is configured to close in a non-energized state, and the communication between the out orifice 26 and the return passage 27 of the hydraulic servo valve 3 is blocked. . At this time, as shown in FIG. 2, the servo valve control chamber 13 is at a high pressure due to the pressure of the common rail 2 flowing from the in-orifice 25, and the upper seat 33 of the upper valve 31 is seated on the upper valve seat 63, The lower seat 34 of the lower valve 32 is separated from the lower valve seat 64. Accordingly, the pressure increase control passage 14 and the injection control passage 15 communicate with the high pressure port 22, and the pressure increase control chamber 11 and the injection control chamber 12 are also at a high pressure. For this reason, the nozzle needle 71 of the injection nozzle 7 is in the lower end position, and fuel is not injected.

噴射時に、電磁弁5に通電してこれを開弁駆動すると、油圧サーボ弁3のアウトオリフィス26とリターン通路27が連通して、サーボ弁制御室13の油圧が低圧になる(図2の電磁弁ON行程)。すると、
上向き力=(A2+A4)×Fp>下向き力=A3×Fp・・・(1)
となり、上下バルブ31、32は上下の油圧力差により図の上方に移動する。これに伴い、上バルブ31の上シート33が上弁座63から離座し、次いで下バルブ32の下シート34が下弁座64に着座する。すなわち、
上向き力=A4×Fp>下向き力=A5×Fp・・・(2)
となり、下バルブ32の下シート34は閉鎖状態を保持する。
When the solenoid valve 5 is energized and driven to open during injection, the out orifice 26 and the return passage 27 of the hydraulic servo valve 3 communicate with each other, and the hydraulic pressure in the servo valve control chamber 13 becomes low (the electromagnetic in FIG. 2). Valve ON stroke). Then
Upward force = (A2 + A4) × Fp> Downward force = A3 × Fp (1)
Thus, the upper and lower valves 31 and 32 move upward in the figure due to the difference between the upper and lower oil pressures. Accordingly, the upper seat 33 of the upper valve 31 is separated from the upper valve seat 63, and then the lower seat 34 of the lower valve 32 is seated on the lower valve seat 64. That is,
Upward force = A4 × Fp> Downward force = A5 × Fp (2)
Thus, the lower seat 34 of the lower valve 32 is kept closed.

これにより、増圧制御通路14および噴射制御通路15がリターンポート28と連通し、増圧制御室11および噴射制御室12の燃料は、油圧サーボ弁3の上シート33を通過してリターン通路27へ流出する。ノズルニードル71は、噴射制御室12の油圧力が低下して、開弁方向の油圧力がスプリング76の力より大きくなると開弁して、噴孔74を開放する。また、増圧制御室11が低圧になると増圧ピストン44は上下の油圧力差をバランスするように図の下方に移動し、増圧室41の燃料を加圧して燃料溜まり17へ送出する。これにより、増圧された燃料を噴射することができる。   As a result, the pressure increase control passage 14 and the injection control passage 15 communicate with the return port 28, and the fuel in the pressure increase control chamber 11 and the injection control chamber 12 passes through the upper seat 33 of the hydraulic servo valve 3 and returns to the return passage 27. Spill to The nozzle needle 71 opens to open the nozzle hole 74 when the oil pressure in the injection control chamber 12 decreases and the oil pressure in the valve opening direction becomes larger than the force of the spring 76. Further, when the pressure increase control chamber 11 becomes low pressure, the pressure increase piston 44 moves downward in the drawing so as to balance the upper and lower oil pressure differences, pressurizes the fuel in the pressure increase chamber 41 and sends it to the fuel reservoir 17. Thereby, the pressurized fuel can be injected.

ここで、増圧制御室11へ至る増圧制御通路14と噴射制御室12へ至る噴射制御通路15を独立して設けたので、それぞれオリフィス141、オリフィス151で流量を制御可能である。本実施形態では、噴射制御室12の圧力が先に低下するようにすることで、ノズルニードル71の開弁が速くなり噴射応答性が向上する。この場合、噴射される燃料は、噴射開始時はコモンレール圧であるが、増圧ピストン44が増圧室41の燃料を加圧することにより、噴射中に超高圧になる。このため初期が低く後期が高いデルタ状の噴射率波形を成形でき、エミッションの低減と高出力化の両立に有利である。   Here, since the pressure increase control passage 14 leading to the pressure increase control chamber 11 and the injection control passage 15 leading to the injection control chamber 12 are provided independently, the flow rate can be controlled by the orifice 141 and the orifice 151, respectively. In the present embodiment, by causing the pressure in the injection control chamber 12 to decrease first, the valve opening of the nozzle needle 71 becomes faster and the injection responsiveness is improved. In this case, the fuel to be injected has a common rail pressure at the start of injection, but the pressure increasing piston 44 pressurizes the fuel in the pressure increasing chamber 41, resulting in an extremely high pressure during the injection. Therefore, a delta-shaped injection rate waveform with a low initial stage and a high late stage can be formed, which is advantageous for achieving both reduction of emission and high output.

噴射終了時は、電磁弁5への通電を停止し、油圧サーボ弁3のアウトオリフィス26とリターン通路27の連通を遮断する。これにより、サーボ弁制御室13の油圧が再び上昇して高圧になる(図2の電磁弁OFF行程)。すると、
上向き力=A4×Fp<下向き力=(A1+A5)×Fp・・・(3)
となり、上下バルブ31、32が上下の油圧力差により図の下方に移動する。これに伴い、下バルブ32の下シート34が下弁座64から離座し、次いで上バルブ31の上シート33が上弁座6に着座して、
上向き力=(A2+A4)×Fp<下向き力=(A1+A3)×Fp・・・(4)
となり、上バルブ31の上シート33は閉鎖状態を保持する。
At the end of injection, the energization of the electromagnetic valve 5 is stopped, and the communication between the out orifice 26 of the hydraulic servo valve 3 and the return passage 27 is shut off. As a result, the hydraulic pressure in the servo valve control chamber 13 rises again to a high pressure (the electromagnetic valve OFF process in FIG. 2). Then
Upward force = A4 × Fp <Downward force = (A1 + A5) × Fp (3)
Thus, the upper and lower valves 31 and 32 move downward in the figure due to the hydraulic pressure difference between the upper and lower sides. Accordingly, the lower seat 34 of the lower valve 32 is separated from the lower valve seat 64, and then the upper seat 33 of the upper valve 31 is seated on the upper valve seat 6,
Upward force = (A2 + A4) × Fp <Downward force = (A1 + A3) × Fp (4)
Thus, the upper seat 33 of the upper valve 31 is kept closed.

これにより、増圧制御通路14および噴射制御通路15と高圧ポート22が連通し、増圧制御室11および噴射制御室12に、油圧サーボ弁3の下シート34を通りコモンレール圧の燃料が流入して再び高圧となる。すると、噴射ノズル7のノズルニードル71が下降して噴孔を閉鎖するとともに、増圧装置4の増圧ピストン44が初期位置へ戻る。   As a result, the pressure increase control passage 14 and the injection control passage 15 and the high pressure port 22 communicate with each other, and fuel of the common rail pressure flows into the pressure increase control chamber 11 and the injection control chamber 12 through the lower seat 34 of the hydraulic servo valve 3. The pressure becomes high again. Then, the nozzle needle 71 of the injection nozzle 7 is lowered to close the injection hole, and the pressure increasing piston 44 of the pressure increasing device 4 is returned to the initial position.

ここで、上述したように、増圧制御通路14と噴射制御通路15はオリフィス141とオリフィス151により流量を独立して制御可能であり、本実施形態では、噴射制御室12の圧力が先に上昇するように構成される。従って、まず噴射制御室12が高圧になり、コマンドピストン73とノズルニードル71の面積差により、ノズルニードル71が高速で閉弁するためシャープカットが可能である。次いで増圧制御室11が高圧になり、スプリング43により増圧ピストン44が復帰方向(図の上方)に移動する。この時、増圧室41は、逆止弁16から燃料が流入してコモンレール圧を維持する。   Here, as described above, the flow rate of the pressure increase control passage 14 and the injection control passage 15 can be independently controlled by the orifice 141 and the orifice 151, and in this embodiment, the pressure in the injection control chamber 12 rises first. Configured to do. Accordingly, first, the injection control chamber 12 becomes high pressure, and the nozzle needle 71 closes at a high speed due to the area difference between the command piston 73 and the nozzle needle 71, so that sharp cutting is possible. Next, the pressure-increasing control chamber 11 becomes high pressure, and the pressure-increasing piston 44 is moved in the return direction (upward in the figure) by the spring 43. At this time, the pressure increasing chamber 41 maintains the common rail pressure by the flow of fuel from the check valve 16.

以上のように、本発明によれば、電磁弁5の駆動エネルギーを低減できるとともに、高度な加工精度や位置決め精度を要さずに常時リークを低減できる油圧サーボ弁6を提供できる。また、油圧サーボ弁6の複数の弁部材、すなわち、上シート33をもつ上バルブ31と下シート34をもつ下バルブ32で構成することで、弁座63、64を有する座面部材61に対してバルブ31、32を両側から挿入することができ、容易に組付け可能となる。図3(a)に示すように、下バルブ32は上バルブ31の中心穴にラフガイドされ、先端のテーパ部が接触した状態で規定のリフト量を確保できるように調整してある。これにより、上シート33が閉じる時、上バルブ31は下バルブ32を押し下げて下シート34を開き、下シート34が閉じる時、下バルブ32は上バルブ31を押し上げて上シート33を開く。なお、下バルブ32は開弁後に上バルブ31と分離することで、上バルブ31の着座時のエネルギーを分散してバウンスを防止することができる。   As described above, according to the present invention, it is possible to provide the hydraulic servo valve 6 that can reduce the drive energy of the electromagnetic valve 5 and can always reduce the leak without requiring high processing accuracy and positioning accuracy. Further, by constituting the plurality of valve members of the hydraulic servo valve 6, that is, the upper valve 31 having the upper seat 33 and the lower valve 32 having the lower seat 34, the seat member 61 having the valve seats 63, 64 can be used. Thus, the valves 31 and 32 can be inserted from both sides, and can be easily assembled. As shown in FIG. 3A, the lower valve 32 is roughly guided by the center hole of the upper valve 31, and is adjusted so that a specified lift amount can be secured in a state where the tip tapered portion is in contact. Accordingly, when the upper seat 33 is closed, the upper valve 31 pushes down the lower valve 32 to open the lower seat 34, and when the lower seat 34 is closed, the lower valve 32 pushes up the upper valve 31 to open the upper seat 33. The lower valve 32 is separated from the upper valve 31 after the valve is opened, so that the energy at the time of sitting of the upper valve 31 can be dispersed to prevent bounce.

図3(b)〜(d)に油圧サーボ弁6の他の実施形態を示す。図3(b)は、本発明の第2の実施形態であり、上バルブ31の上シート33が着座する上弁座63の座面を、対向する上シート33同様、下方に向けて縮径するテーパ面とし、下バルブ32の下シート34が着座する下弁座64の座面を、対向する下シート34同様、下方に向けて拡径するテーパ面とする。このようにシート座面をテーパ状にすると、容易な加工で信頼性の高いシートを製造できる。   3 (b) to 3 (d) show another embodiment of the hydraulic servo valve 6. FIG. FIG. 3B is a second embodiment of the present invention, and the diameter of the seat surface of the upper valve seat 63 on which the upper seat 33 of the upper valve 31 is seated is reduced downward, like the upper seat 33 facing the lower seat. The seat surface of the lower valve seat 64 on which the lower seat 34 of the lower valve 32 is seated is a tapered surface that expands in the downward direction, like the opposing lower seat 34. Thus, if a seat seat surface is made into a taper shape, a reliable sheet | seat can be manufactured by easy process.

図3(c)は、本発明の第3の実施形態であり、上下弁座63、64は第2実施形態と同様のテーパ面とし、下バルブ32の下シート34を球面状に構成する。このようにすると、下バルブ32の軸が傾いてもシートできるので、信頼性がより向上する。   FIG. 3C shows a third embodiment of the present invention. The upper and lower valve seats 63 and 64 have the same tapered surface as that of the second embodiment, and the lower seat 34 of the lower valve 32 is formed in a spherical shape. In this case, since the seat can be formed even if the axis of the lower valve 32 is inclined, the reliability is further improved.

図3(d)は、本発明の第4の実施形態であり、下バルブ32の下シート34をフラット(平面)に構成した。このようにすると、上バルブ31と下バルブ32に軸ズレが生じた場合、上バルブ31の筒内周面と下バルブ32外周面とのクリアランスが小さくても確実にシールすることができる。さらに、下シート34着座時の面圧を小さくすることができ、高圧のシステムでも信頼性の高い制御弁が得られる。また、本実施形態では、上バルブ31と下バルブ32を貫通する貫通穴35を形成し、その上端にインオリフィス25を設けている。これにより、サーボ弁制御室13が高圧ポート22を介してコモンレール2に連通するので、通路構成がより簡易になる。   FIG. 3D shows a fourth embodiment of the present invention, in which the lower seat 34 of the lower valve 32 is configured to be flat (planar). In this way, when the upper valve 31 and the lower valve 32 are misaligned, the upper valve 31 can be reliably sealed even if the clearance between the cylinder inner peripheral surface of the upper valve 31 and the outer peripheral surface of the lower valve 32 is small. Furthermore, the surface pressure when the lower seat 34 is seated can be reduced, and a highly reliable control valve can be obtained even in a high pressure system. In the present embodiment, a through hole 35 that penetrates the upper valve 31 and the lower valve 32 is formed, and an in-orifice 25 is provided at the upper end thereof. As a result, the servo valve control chamber 13 communicates with the common rail 2 via the high-pressure port 22, so that the passage configuration becomes simpler.

図4(a)〜(c)に油圧サーボ弁6のさらに他の実施形態を示す。上記実施形態では、上バルブ31内に下バルブを挿通保持したが、図示するように上バルブ31に下バルブ32をガイドする軸を設け、上バルブ31に下バルブ32を付勢部材であるスプリング37で付勢することにより、一体に移動する構成としてもよい。図4(a)は、本発明の第5の実施形態であり、上バルブ31は上シート33の下方に延出した細径部がガイド軸36となっており、その下端はシリンダ65の下端大径部内に位置している。下バルブ32は半球状で上シート34が球面となっており、上面中央にガイド軸36が嵌合される凹部38を有している。下バルブ32はその下面側に配設されるスプリング37により、上バルブ31と分離しないように押圧されている。   4A to 4C show still another embodiment of the hydraulic servo valve 6. In the above embodiment, the lower valve is inserted and held in the upper valve 31. However, as shown in the drawing, a shaft for guiding the lower valve 32 is provided on the upper valve 31, and the lower valve 32 is a spring as a biasing member. It is good also as a structure which moves integrally by urging | biasing by 37. FIG. 4A shows a fifth embodiment of the present invention. In the upper valve 31, a narrow diameter portion extending below the upper seat 33 is a guide shaft 36, and the lower end thereof is the lower end of the cylinder 65. Located in the large diameter part. The lower valve 32 is hemispherical, the upper seat 34 is spherical, and has a recess 38 in which the guide shaft 36 is fitted at the center of the upper surface. The lower valve 32 is pressed so as not to be separated from the upper valve 31 by a spring 37 disposed on the lower surface side thereof.

図4(b)は、本発明の第6の実施形態であり、上記第5の実施形態の基本構成において、下バルブ32の下シート34を球面とする代わりに、テーパ面としていある。図4(c)は、本発明の第7の実施形態であり、上記第5の実施形態の基本構成において、下バルブ32をT字断面のブロック状とし、下シート34を球面とする代わりにフラットにしてある。スプリング37は下バルブ32の小径下半部周りに配設される。この構成では、上バルブ31と下バルブ32の軸がズレてもシートできるので、下バルブ32に凹部38を設けていない。   FIG. 4B shows a sixth embodiment of the present invention. In the basic configuration of the fifth embodiment, the lower seat 34 of the lower valve 32 has a tapered surface instead of a spherical surface. FIG. 4C shows a seventh embodiment of the present invention. In the basic configuration of the fifth embodiment, instead of the lower valve 32 having a T-shaped cross section and the lower seat 34 having a spherical shape, FIG. It is flat. The spring 37 is disposed around the lower half portion of the lower diameter of the lower valve 32. In this configuration, since the seat can be formed even if the shafts of the upper valve 31 and the lower valve 32 are misaligned, the concave portion 38 is not provided in the lower valve 32.

以上、本発明によれば、簡易な構成で高精度な増圧制御、噴射制御が可能な制御弁を実現できる。なお、本発明は、2つのアクチュエータを備える従来の増圧式インジェクタにおいて、小型のソレノイドで駆動する制御弁としても適用可能である。また、燃料噴射弁以外の流体制御弁としても適用可能である。   As described above, according to the present invention, it is possible to realize a control valve capable of highly accurate pressure increase control and injection control with a simple configuration. Note that the present invention can also be applied as a control valve driven by a small solenoid in a conventional booster injector having two actuators. Moreover, it is applicable also as fluid control valves other than a fuel injection valve.

本発明の制御弁を適用したディーゼルエンジン用の増圧式コモンレールインジェクタの全体構成を示す図である。It is a figure which shows the whole structure of the pressure | voltage increase type common rail injector for diesel engines to which the control valve of this invention is applied. 本発明の第1の実施形態における油圧サーボ弁の構成と作動を説明するための図である。It is a figure for demonstrating the structure and action | operation of the hydraulic servo valve in the 1st Embodiment of this invention. (a)〜(d)はそれぞれ本発明の第1〜第4の実施形態における油圧サーボ弁の詳細構成図である。(A)-(d) is a detailed block diagram of the hydraulic servo valve in the 1st-4th embodiment of this invention, respectively. (a)〜(c)はそれぞれ本発明の第5〜第7の実施形態における油圧サーボ弁の詳細構成図である。(A)-(c) is a detailed block diagram of the hydraulic servo valve in the 5th-7th embodiment of this invention, respectively. 従来の増圧式コモンレールインジェクタの全体構成を示す図である。It is a figure which shows the whole structure of the conventional pressure increase type common rail injector.

符号の説明Explanation of symbols

1 インジェクタ
11 増圧制御室(制御室)
12 噴射制御室(制御室)
13 サーボ弁制御室(油圧室)
14 増圧制御通路(制御通路)
15 噴射制御通路(制御通路)
2 コモンレール
21 高圧燃料通路(高圧流体通路)
22 高圧ポート(第2ポート)
23 燃料ポンプ
24 燃料タンク
25 インオリフィス(第1オリフィス)
26 アウトオリフィス(第2オリフィス)
27 リターン通路(低圧流体通路)
28 リターンポート(第1ポート)
3 油圧サーボ弁(制御弁)
31 上バルブ(第1の弁部材)
32 下バルブ(第2の弁部材)
33 上シート(第1の弁部材)
34 下シート(第2の弁部材)
4 増圧制御弁
41 増圧室
42 高圧室
43 スプリング
44 増圧ピストン
5 電磁弁
61 座面部材(弁ハウジング)
62 ハウジング部材(弁ハウジング)
63 上弁座(第1弁座)
64 下弁座(第2弁座)
65 シリンダ
7 噴射ノズル
71 ノズルニードル
1 Injector 11 Pressure increase control room (control room)
12 Injection control room (control room)
13 Servo valve control room (hydraulic room)
14 Pressure increase control passage (control passage)
15 Injection control passage (control passage)
2 Common rail 21 High pressure fuel passage (High pressure fluid passage)
22 High pressure port (second port)
23 Fuel pump 24 Fuel tank 25 In-orifice (first orifice)
26 Out orifice (second orifice)
27 Return passage (low pressure fluid passage)
28 Return port (1st port)
3 Hydraulic servo valve (control valve)
31 Upper valve (first valve member)
32 Lower valve (second valve member)
33 Upper seat (first valve member)
34 Lower seat (second valve member)
4 Pressure increase control valve 41 Pressure increase chamber 42 High pressure chamber 43 Spring 44 Pressure increase piston 5 Electromagnetic valve 61 Seat member (valve housing)
62 Housing member (valve housing)
63 Upper valve seat (first valve seat)
64 Lower valve seat (second valve seat)
65 cylinders 7 injection nozzles 71 nozzle needles

Claims (16)

弁ハウジングに収容した第1弁部材の内部に第2弁部材を挿入配置し、上記第1弁部材が第1弁座に着座する時、上記第2弁部材は第2弁座から離座して第2ポートと制御通路が連通し、上記第2弁部材が上記第2弁座に着座する時、上記第1弁部材は上記第1弁座から離座して第1ポートと上記制御通路が連通することで、上記制御通路と上記第1ポートまたは上記第2ポートを選択的に連通させる構成となした制御弁。   When the second valve member is inserted and disposed inside the first valve member housed in the valve housing, and the first valve member is seated on the first valve seat, the second valve member is separated from the second valve seat. When the second port communicates with the control passage and the second valve member is seated on the second valve seat, the first valve member is separated from the first valve seat, and the first port and the control passage are A control valve configured to selectively communicate the control passage and the first port or the second port by communicating with each other. 弁ハウジング内に第1弁部材と第2弁部材を付勢部材を用いて密接配置し、上記第1弁部材が第1弁座に着座する時、上記第2弁部材は第2弁座から離座して第2ポートと制御通路が連通し、上記第2弁部材が上記第2弁座に着座する時、上記第1弁部材は上記第1弁座から離座して第1ポートと上記制御通路が連通することで、上記制御通路と上記第1ポートまたは上記第2ポートを選択的に連通させる構成となした制御弁。   When the first valve member and the second valve member are closely arranged in the valve housing using a biasing member and the first valve member is seated on the first valve seat, the second valve member is separated from the second valve seat. When the second port and the control passage communicate with each other and the second valve member is seated on the second valve seat, the first valve member is separated from the first valve seat and A control valve configured to selectively communicate the control passage and the first port or the second port by communicating the control passage. 上記第1弁座と上記第2弁座の間に上記制御通路を配置し、上記第1弁座に対して上記制御通路と反対側に上記第1ポートを配置し、上記第2弁座に対して上記制御通路と反対側に上記第2ポートを配置した請求項1または2記載の制御弁。   The control passage is disposed between the first valve seat and the second valve seat, the first port is disposed on the opposite side of the control passage with respect to the first valve seat, and the second valve seat is disposed on the second valve seat. The control valve according to claim 1, wherein the second port is disposed on the opposite side of the control passage. 上記第1弁部材は上記弁ハウジングに設けたシリンダ内を摺動し、上記第1弁部材の摺動径に対して上記第1弁部材のシート径、および上記第2弁部材のシート径を小さくした請求項1ないし3のいずれか記載の制御弁。   The first valve member slides in a cylinder provided in the valve housing, and the seat diameter of the first valve member and the seat diameter of the second valve member are set with respect to the sliding diameter of the first valve member. 4. The control valve according to claim 1, wherein the control valve is reduced. 上記第2弁部材は上記弁ハウジングおよび上記第1弁部材に対して摺動部を持たない請求項4記載の制御弁。   The control valve according to claim 4, wherein the second valve member has no sliding portion with respect to the valve housing and the first valve member. 上記弁ハウジングに設けたシリンダ内周に上記第1弁座および上記第2弁座を軸方向に位置を異ならせて配置した請求項4または5記載の制御弁。   The control valve according to claim 4 or 5, wherein the first valve seat and the second valve seat are arranged at different positions in the axial direction on an inner periphery of a cylinder provided in the valve housing. 上記第1ポートが低圧流体通路に、上記第2ポートが高圧流体通路に連通し、上記第1弁部材のシート径と上記第2弁部材のシート径が同等である請求項1ないし6のいずれか記載の制御弁。   The first port communicates with the low pressure fluid passage, the second port communicates with the high pressure fluid passage, and the seat diameter of the first valve member and the seat diameter of the second valve member are equal. Or control valve as described. 上記第1ポートが低圧流体通路に、上記第2ポートが高圧流体通路に連通し、上記第1弁部材のシート径が上記第2弁部材のシート径より小さい請求項1ないし6のいずれか記載の制御弁。   The first port communicates with a low pressure fluid passage, the second port communicates with a high pressure fluid passage, and the seat diameter of the first valve member is smaller than the seat diameter of the second valve member. Control valve. 上記第1弁部材の摺動部端面と上記弁ハウジングに設けたシリンダ内壁面とで囲まれる油圧室を設け、この油圧室の圧力を電気的アクチュエータで制御することにより上記第1弁部材を駆動する請求項1ないし8のいずれか記載の制御弁。   A hydraulic chamber surrounded by an end surface of the sliding portion of the first valve member and a cylinder inner wall surface provided in the valve housing is provided, and the pressure of the hydraulic chamber is controlled by an electric actuator to drive the first valve member. The control valve according to any one of claims 1 to 8. 上記油圧室が第1オリフィスを介して高圧流体通路に連通する通路と、第2オリフィスと電気的アクチュエータで制御される弁体を介して低圧流体通路に連通する通路を備えた請求項9記載の制御弁。   10. The passage according to claim 9, wherein the hydraulic chamber includes a passage communicating with the high pressure fluid passage through the first orifice, and a passage communicating with the low pressure fluid passage through the valve body controlled by the second orifice and the electric actuator. Control valve. 上記第1弁部材が上記第1弁座から離座すると、上記制御通路の圧力が減少し、上記高圧流体通路との圧力差により上記第2弁部材が上記第2弁座に着座する請求項10記載の制御弁。   The pressure of the control passage decreases when the first valve member is separated from the first valve seat, and the second valve member is seated on the second valve seat due to a pressure difference with the high pressure fluid passage. 10. The control valve according to 10. 上記第1弁部材のシートが略円錐面になっており、上記第2弁部材のシートが略円錐面になっている請求項1ないし11のいずれか記載の制御弁。   The control valve according to any one of claims 1 to 11, wherein the seat of the first valve member has a substantially conical surface, and the seat of the second valve member has a substantially conical surface. 上記第1弁部材のシートが略円錐面になっており、上記第2弁部材のシートが略球面になっている請求項1ないし11のいずれか記載の制御弁。   The control valve according to any one of claims 1 to 11, wherein the seat of the first valve member has a substantially conical surface, and the seat of the second valve member has a substantially spherical surface. 上記第1弁部材のシートが略円錐面になっており、上記第2弁部材のシートが平面になっている請求項1ないし11のいずれか記載の制御弁。   The control valve according to claim 1, wherein the seat of the first valve member has a substantially conical surface, and the seat of the second valve member has a flat surface. 上記請求項9ないし13のいずれか記載の制御弁を備えた燃料噴射弁であって、上記制御弁の上記制御通路が増圧ピストンの制御室とノズルニードルの制御室に連通し、上記電気的アクチュエータ駆動時に上記第1弁部材を開弁し上記第2弁部材を閉弁して上記制御室を低圧にすることで、上記増圧ピストンを駆動して噴射燃料を増圧するとともに上記ノズルニードルを開弁して噴射を行い、上記電気的アクチュエータ停止時に上記第1弁部材を閉弁し上記第2弁部材を開弁して上記制御室を高圧にすることで、上記増圧ピストンをリセットするとともに上記ノズルニードルを閉弁して噴射停止することを特徴とする燃料噴射弁。   14. A fuel injection valve comprising the control valve according to any one of claims 9 to 13, wherein the control passage of the control valve communicates with a control chamber of a booster piston and a control chamber of a nozzle needle. When the actuator is driven, the first valve member is opened and the second valve member is closed to lower the control chamber, thereby driving the pressure-increasing piston to increase the injected fuel and the nozzle needle. When the electric actuator is stopped, the first valve member is closed and the second valve member is opened to open the control chamber to a high pressure, thereby resetting the pressure increasing piston. A fuel injection valve characterized in that the nozzle needle is closed to stop the injection. 上記制御通路にオリフィスを備え、該オリフィス流量を調整することで、噴射と増圧のタイミングを設定可能に構成した請求項15記載の燃料噴射弁。
The fuel injection valve according to claim 15, wherein an orifice is provided in the control passage, and the timing of injection and pressure increase can be set by adjusting the flow rate of the orifice.
JP2004349966A 2004-12-02 2004-12-02 Control valve and fuel injection valve having the same Expired - Fee Related JP4286770B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004349966A JP4286770B2 (en) 2004-12-02 2004-12-02 Control valve and fuel injection valve having the same
DE200510057526 DE102005057526B4 (en) 2004-12-02 2005-12-01 Control valve and fuel injector with this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349966A JP4286770B2 (en) 2004-12-02 2004-12-02 Control valve and fuel injection valve having the same

Publications (2)

Publication Number Publication Date
JP2006161568A true JP2006161568A (en) 2006-06-22
JP4286770B2 JP4286770B2 (en) 2009-07-01

Family

ID=36599545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349966A Expired - Fee Related JP4286770B2 (en) 2004-12-02 2004-12-02 Control valve and fuel injection valve having the same

Country Status (2)

Country Link
JP (1) JP4286770B2 (en)
DE (1) DE102005057526B4 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040323A (en) * 2005-07-29 2007-02-15 Toyota Central Res & Dev Lab Inc Directional control valve
JP2008128081A (en) * 2006-11-20 2008-06-05 Denso Corp Three-way switching valve and injector equipped with the same
JP2008128057A (en) * 2006-11-20 2008-06-05 Denso Corp Three-way switching valve and injector equipped with the same
JP2008215228A (en) * 2007-03-05 2008-09-18 Denso Corp Fuel injection device
JP2008215229A (en) * 2007-03-05 2008-09-18 Denso Corp Injector
DE102008000773A1 (en) 2007-03-20 2008-09-25 Denso Corp., Kariya Injector, has fuel passage conducting high pressure fuel from high pressure fuel source to nozzle back pressure chamber through high pressure fuel section, where high pressure system check valve limits backflow of fuel to source
JP2008223494A (en) * 2007-03-08 2008-09-25 Denso Corp Injector
CN106089522A (en) * 2016-07-29 2016-11-09 中国北方发动机研究所(天津) A kind of new electronic control fuel injector
DE102008000082B4 (en) * 2007-01-19 2017-08-10 Denso Corporation Injector
CN109026476A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 The variable pressure accumulation type piezoelectric fuel injector of fuel injection characteristic
CN109026475A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 The variable pressure accumulation type piezoelectricity-electromagnetism bivalve electric-controlled fuel injector of fuel injection characteristic
CN109026477A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 Pressure-accumulating type electronic control fuel injection device with control chamber sliding block
CN109026478A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 The variable pressure accumulation type piezoelectricity of fuel injection characteristic-electromagnetism mixing control fuel injector
CN109083786A (en) * 2018-07-26 2018-12-25 哈尔滨工程大学 The variable booster-type heavy oil piezoelectricity-electromagnetism bivalve electric-controlled fuel injector of fuel injection characteristic
CN109083787A (en) * 2018-07-26 2018-12-25 哈尔滨工程大学 Pressure accumulation type piezoelectric fuel injector with control chamber sliding block
CN109083785A (en) * 2018-07-26 2018-12-25 哈尔滨工程大学 Pressure accumulation type electric control fuel oil jet system with control chamber sliding block
CN109098903A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Bivalve electric-controlled fuel injector with control chamber sliding block
CN109098901A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Booster-type can be changed fuel injection characteristic fuel system
CN109098902A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Variable piezoelectricity-electromagnetism bivalve the electric-controlled fuel injector of fuel injection characteristic
CN109098899A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Pressure accumulation type piezoelectricity-electromagnetic control oil sprayer with control chamber sliding block
CN109162846A (en) * 2018-07-26 2019-01-08 哈尔滨工程大学 Pressure accumulation type piezoelectricity with control chamber sliding block-electromagnetism bivalve electric-controlled fuel injector
CN109162847A (en) * 2018-07-26 2019-01-08 哈尔滨工程大学 The variable bivalve electric-controlled fuel injector of fuel injection characteristic with fluid power compensating piston
CN109162843A (en) * 2018-07-26 2019-01-08 哈尔滨工程大学 Piezoelectricity with control chamber sliding block-electromagnetism bivalve electric-controlled fuel injector
CN109184986A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable pressure accumulation type electric control fuel oil jet system of fuel injection characteristic
CN109184996A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Piezoelectricity-electromagnetic control oil sprayer with control chamber sliding block
CN109184984A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Variable boost is than pressure accumulation type piezoelectricity-electromagnetic control oil sprayer
CN109184992A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable piezoelectric fuel injector of fuel injection characteristic
CN109184989A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Bivalve electric-controlled fuel injector
CN109184991A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable piezoelectricity of fuel injection characteristic-electromagnetism mixing control fuel injector
CN109184988A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Variable boost compares electric-controlled fuel injector
CN109184993A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable electric-controlled fuel injector of fuel injection characteristic
CN109184985A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Variable boost is than pressure-accumulating type electronic control fuel injection device
CN109184994A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable bivalve electric-controlled fuel injector of fuel injection characteristic
CN109209709A (en) * 2018-07-26 2019-01-15 哈尔滨工程大学 Electric control fuel oil jet system with fluid power compensating piston
CN109236524A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Variable boost is than pressure accumulation type piezoelectric fuel injector
CN109236532A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Electric-controlled fuel injector with control chamber sliding block
CN109236521A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 The variable pressure-accumulating type electronic control fuel injection device of fuel injection characteristic
CN109236527A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Variable boost is than piezoelectricity-electromagnetic control oil sprayer
CN109236526A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Pressure accumulation type bivalve electric-controlled fuel injector
CN109236528A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Pressure accumulation type piezoelectricity-electromagnetism bivalve electric-controlled fuel injector
CN109236529A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Variable boost compares piezoelectric fuel injector
CN109252999A (en) * 2018-07-26 2019-01-22 哈尔滨工程大学 Piezoelectricity-electromagnetism bivalve electric-controlled fuel injector
CN109253001A (en) * 2018-07-26 2019-01-22 哈尔滨工程大学 Piezoelectric fuel injector with control chamber sliding block
CN109253002A (en) * 2018-07-26 2019-01-22 哈尔滨工程大学 Variable boost is than pressure accumulation type electric control fuel oil jet system
CN109681357A (en) * 2018-07-26 2019-04-26 哈尔滨工程大学 The variable pressure accumulation type bivalve electric-controlled fuel injector of fuel injection characteristic
CN109973270A (en) * 2019-05-21 2019-07-05 中国重汽集团重庆燃油喷射系统有限公司 Control valve coupling for electric-controlled fuel injector
CN111946510A (en) * 2020-09-09 2020-11-17 中船动力研究院有限公司 Injection valve and engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018040A1 (en) 2007-04-13 2008-10-16 Robert Bosch Gmbh Fuel injector with integrated pressure booster
KR101330693B1 (en) * 2011-12-26 2013-11-19 자동차부품연구원 Injector for direct injection type diesel engine
KR101340980B1 (en) * 2011-12-26 2013-12-13 자동차부품연구원 Injector for direct injection type diesel engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910970A1 (en) * 1999-03-12 2000-09-28 Bosch Gmbh Robert Fuel injector
JP3452850B2 (en) * 1999-09-22 2003-10-06 株式会社日本自動車部品総合研究所 Injection valve for internal combustion engine
DE10315016A1 (en) * 2003-04-02 2004-10-28 Robert Bosch Gmbh Fuel injector with a leak-free servo valve
DE10315015B4 (en) * 2003-04-02 2005-12-15 Robert Bosch Gmbh Fuel injector with pressure booster and servo valve with optimized control quantity

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695453B2 (en) * 2005-07-29 2011-06-08 株式会社豊田中央研究所 Directional control valve
JP2007040323A (en) * 2005-07-29 2007-02-15 Toyota Central Res & Dev Lab Inc Directional control valve
JP2008128081A (en) * 2006-11-20 2008-06-05 Denso Corp Three-way switching valve and injector equipped with the same
JP2008128057A (en) * 2006-11-20 2008-06-05 Denso Corp Three-way switching valve and injector equipped with the same
JP4506744B2 (en) * 2006-11-20 2010-07-21 株式会社デンソー Three-way switching valve and injector provided with the same
JP4548406B2 (en) * 2006-11-20 2010-09-22 株式会社デンソー Three-way switching valve and injector provided with the same
DE102008000082B4 (en) * 2007-01-19 2017-08-10 Denso Corporation Injector
JP2008215228A (en) * 2007-03-05 2008-09-18 Denso Corp Fuel injection device
JP4670821B2 (en) * 2007-03-05 2011-04-13 株式会社デンソー Injector
JP4710853B2 (en) * 2007-03-05 2011-06-29 株式会社デンソー Fuel injection device
JP2008215229A (en) * 2007-03-05 2008-09-18 Denso Corp Injector
JP2008223494A (en) * 2007-03-08 2008-09-25 Denso Corp Injector
JP4600405B2 (en) * 2007-03-08 2010-12-15 株式会社デンソー Injector
DE102008000773A1 (en) 2007-03-20 2008-09-25 Denso Corp., Kariya Injector, has fuel passage conducting high pressure fuel from high pressure fuel source to nozzle back pressure chamber through high pressure fuel section, where high pressure system check valve limits backflow of fuel to source
CN106089522A (en) * 2016-07-29 2016-11-09 中国北方发动机研究所(天津) A kind of new electronic control fuel injector
CN109184996A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Piezoelectricity-electromagnetic control oil sprayer with control chamber sliding block
CN109184994A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable bivalve electric-controlled fuel injector of fuel injection characteristic
CN109026477A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 Pressure-accumulating type electronic control fuel injection device with control chamber sliding block
CN109026478A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 The variable pressure accumulation type piezoelectricity of fuel injection characteristic-electromagnetism mixing control fuel injector
CN109083786A (en) * 2018-07-26 2018-12-25 哈尔滨工程大学 The variable booster-type heavy oil piezoelectricity-electromagnetism bivalve electric-controlled fuel injector of fuel injection characteristic
CN109083787A (en) * 2018-07-26 2018-12-25 哈尔滨工程大学 Pressure accumulation type piezoelectric fuel injector with control chamber sliding block
CN109083785A (en) * 2018-07-26 2018-12-25 哈尔滨工程大学 Pressure accumulation type electric control fuel oil jet system with control chamber sliding block
CN109098903A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Bivalve electric-controlled fuel injector with control chamber sliding block
CN109098901A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Booster-type can be changed fuel injection characteristic fuel system
CN109098902A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Variable piezoelectricity-electromagnetism bivalve the electric-controlled fuel injector of fuel injection characteristic
CN109098899A (en) * 2018-07-26 2018-12-28 哈尔滨工程大学 Pressure accumulation type piezoelectricity-electromagnetic control oil sprayer with control chamber sliding block
CN109162846A (en) * 2018-07-26 2019-01-08 哈尔滨工程大学 Pressure accumulation type piezoelectricity with control chamber sliding block-electromagnetism bivalve electric-controlled fuel injector
CN109162847A (en) * 2018-07-26 2019-01-08 哈尔滨工程大学 The variable bivalve electric-controlled fuel injector of fuel injection characteristic with fluid power compensating piston
CN109162843A (en) * 2018-07-26 2019-01-08 哈尔滨工程大学 Piezoelectricity with control chamber sliding block-electromagnetism bivalve electric-controlled fuel injector
CN109184986A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable pressure accumulation type electric control fuel oil jet system of fuel injection characteristic
CN109026476A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 The variable pressure accumulation type piezoelectric fuel injector of fuel injection characteristic
CN109184984A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Variable boost is than pressure accumulation type piezoelectricity-electromagnetic control oil sprayer
CN109184992A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable piezoelectric fuel injector of fuel injection characteristic
CN109184989A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Bivalve electric-controlled fuel injector
CN109184991A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable piezoelectricity of fuel injection characteristic-electromagnetism mixing control fuel injector
CN109184988A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Variable boost compares electric-controlled fuel injector
CN109184993A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 The variable electric-controlled fuel injector of fuel injection characteristic
CN109184985A (en) * 2018-07-26 2019-01-11 哈尔滨工程大学 Variable boost is than pressure-accumulating type electronic control fuel injection device
CN109026475A (en) * 2018-07-26 2018-12-18 哈尔滨工程大学 The variable pressure accumulation type piezoelectricity-electromagnetism bivalve electric-controlled fuel injector of fuel injection characteristic
CN109209709A (en) * 2018-07-26 2019-01-15 哈尔滨工程大学 Electric control fuel oil jet system with fluid power compensating piston
CN109236524A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Variable boost is than pressure accumulation type piezoelectric fuel injector
CN109236532A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Electric-controlled fuel injector with control chamber sliding block
CN109236521A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 The variable pressure-accumulating type electronic control fuel injection device of fuel injection characteristic
CN109236527A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Variable boost is than piezoelectricity-electromagnetic control oil sprayer
CN109236526A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Pressure accumulation type bivalve electric-controlled fuel injector
CN109236528A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Pressure accumulation type piezoelectricity-electromagnetism bivalve electric-controlled fuel injector
CN109236529A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Variable boost compares piezoelectric fuel injector
CN109252999A (en) * 2018-07-26 2019-01-22 哈尔滨工程大学 Piezoelectricity-electromagnetism bivalve electric-controlled fuel injector
CN109253001A (en) * 2018-07-26 2019-01-22 哈尔滨工程大学 Piezoelectric fuel injector with control chamber sliding block
CN109253002A (en) * 2018-07-26 2019-01-22 哈尔滨工程大学 Variable boost is than pressure accumulation type electric control fuel oil jet system
CN109681357A (en) * 2018-07-26 2019-04-26 哈尔滨工程大学 The variable pressure accumulation type bivalve electric-controlled fuel injector of fuel injection characteristic
CN109184996B (en) * 2018-07-26 2021-04-30 哈尔滨工程大学 Piezoelectric-electromagnetic control oil sprayer with control cavity slider
CN109083785B (en) * 2018-07-26 2021-04-30 哈尔滨工程大学 Pressure accumulation type electric control fuel injection system with control cavity sliding block
CN109184986B (en) * 2018-07-26 2020-12-04 哈尔滨工程大学 Pressure accumulation type electronic control fuel injection system with variable fuel injection law
CN109184992B (en) * 2018-07-26 2020-12-29 哈尔滨工程大学 Piezoelectric oil injector with variable oil injection law
CN109184991B (en) * 2018-07-26 2020-12-29 哈尔滨工程大学 Piezoelectric-electromagnetic mixed control oil sprayer with variable oil spraying rule
CN109681357B (en) * 2018-07-26 2021-03-30 哈尔滨工程大学 Pressure accumulation type double-valve electric control oil injector with variable oil injection law
CN109162846B (en) * 2018-07-26 2021-04-09 哈尔滨工程大学 Pressure accumulation type piezoelectric-electromagnetic double-valve electric control oil injector with control cavity sliding block
CN109973270A (en) * 2019-05-21 2019-07-05 中国重汽集团重庆燃油喷射系统有限公司 Control valve coupling for electric-controlled fuel injector
CN109973270B (en) * 2019-05-21 2023-11-10 重油高科电控燃油喷射系统(重庆)有限公司 Control valve coupling for an electronically controlled fuel injector
CN111946510A (en) * 2020-09-09 2020-11-17 中船动力研究院有限公司 Injection valve and engine

Also Published As

Publication number Publication date
DE102005057526A1 (en) 2006-07-13
DE102005057526B4 (en) 2009-04-09
JP4286770B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4286770B2 (en) Control valve and fuel injection valve having the same
JP2006257874A (en) Injector
JP2006233853A (en) Injector
JP2002544437A (en) Two-acting two-stage hydraulic pressure control device
JP4075894B2 (en) Fuel injection device
JP4345096B2 (en) Fuel injection device
JP2007218175A (en) Fuel injection device
JP4134979B2 (en) Fuel injection device for internal combustion engine
JP2006342731A (en) Fuel injector for internal combustion engine
US6928986B2 (en) Fuel injector with piezoelectric actuator and method of use
JP6376988B2 (en) Fuel injection valve
EP1227241B1 (en) Fuel injector assembly and internal combustion engine including same
JP4107277B2 (en) Fuel injection device for internal combustion engine
US10808661B2 (en) Fuel injection device
JP4519143B2 (en) Injector
JP2008304017A (en) Three-way selector valve and fuel injection device using the same
JP4134957B2 (en) Fuel injection device for internal combustion engine
JP4079063B2 (en) Fuel injection device for internal combustion engine
JP4218630B2 (en) Fuel injection device for internal combustion engine
JP4412384B2 (en) Fuel injection device
JP2004511722A (en) Fuel injection system for internal combustion engines
WO2013147078A1 (en) Hydraulic-drive fuel injection device and internal combustion engine
JP4321447B2 (en) Valve drive apparatus for internal combustion engine
JP2005105870A (en) Fuel injection device for internal combustion engine
JP2016050562A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Effective date: 20081111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees