JP4519143B2 - Injector - Google Patents

Injector Download PDF

Info

Publication number
JP4519143B2
JP4519143B2 JP2007009801A JP2007009801A JP4519143B2 JP 4519143 B2 JP4519143 B2 JP 4519143B2 JP 2007009801 A JP2007009801 A JP 2007009801A JP 2007009801 A JP2007009801 A JP 2007009801A JP 4519143 B2 JP4519143 B2 JP 4519143B2
Authority
JP
Japan
Prior art keywords
fuel
flow path
valve body
pressure
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007009801A
Other languages
Japanese (ja)
Other versions
JP2008175155A (en
Inventor
康弘 堀内
宮本  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2007009801A priority Critical patent/JP4519143B2/en
Priority to DE102008000082.5A priority patent/DE102008000082B4/en
Publication of JP2008175155A publication Critical patent/JP2008175155A/en
Application granted granted Critical
Publication of JP4519143B2 publication Critical patent/JP4519143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0047Four-way valves or valves with more than four ways

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、所定の燃料供給源から燃料を受け入れエンジンに噴射供給するインジェクタに関する。   The present invention relates to an injector that receives fuel from a predetermined fuel supply source and injects it into an engine.

従来から、インジェクタは、例えば、ディーゼルエンジンのような直噴型のエンジンに搭載され、コモンレール等の燃料供給源から高圧の燃料を受け入れ、気筒内に直接噴射供給するために用いられている。このインジェクタは、先端に設けられた噴孔を開閉するニードルを備え、ニードルに対して噴孔を開放する方向(開弁方向)に圧力を及ぼす燃料が流出入するノズル室、および、ニードルに対して噴孔を閉鎖する方向(閉弁方向)に圧力を及ぼす燃料が流出入する背圧室を形成する。そして、インジェクタは背圧室から燃料を流出させ背圧室の圧力を減圧することで、ニードルをリフトさせ噴孔を開放して燃料を噴射させる。   Conventionally, an injector is mounted on a direct-injection engine such as a diesel engine, and is used to receive high-pressure fuel from a fuel supply source such as a common rail and directly inject and supply it into a cylinder. The injector includes a needle that opens and closes a nozzle hole provided at a tip, a nozzle chamber into which fuel that exerts pressure in a direction in which the nozzle hole is opened (valve opening direction) with respect to the needle, and the needle Thus, a back pressure chamber is formed in which fuel that exerts pressure in the direction of closing the nozzle hole (the valve closing direction) flows in and out. The injector then causes the fuel to flow out of the back pressure chamber and reduce the pressure in the back pressure chamber, thereby lifting the needle and opening the nozzle hole to inject the fuel.

近年、インジェクタから噴射される燃料の噴霧をさらに微粒化して燃焼効率を上げるため、インジェクタによる燃料の噴射圧力の高圧化が進んでいる。そして、単に、燃料供給源における燃料の供給圧力を高圧化するだけでなく、インジェクタに増圧機構を設けて、より積極的に高圧化を図る検討が進められている。   In recent years, in order to further increase the combustion efficiency by further atomizing the fuel spray injected from the injector, the fuel injection pressure by the injector has been increased. In addition to simply increasing the fuel supply pressure in the fuel supply source, studies are underway to increase pressure more positively by providing a pressure increasing mechanism in the injector.

例えば、この増圧機構は、増圧媒体となる燃料が圧力を及ぼす増圧面と増圧される燃料に圧力を及ぼす被増圧面とを有する増圧ピストンを備えて、増圧面と被増圧面との面積比に応じて燃料を増圧する。そして、増圧された燃料は、ノズル室に流入しニードルに対し開弁方向に圧力を及ぼしてニードルをリフトさせ、さらに、開放された噴孔から噴射され噴霧化する(つまり、ニードルに対し開弁方向に作用する燃料の圧力が噴孔から噴射させる噴射圧力に相当する)。   For example, the pressure increasing mechanism includes a pressure increasing piston having a pressure increasing surface on which a fuel as a pressure increasing medium exerts pressure and a pressure increasing surface that exerts pressure on the fuel to be increased. The fuel pressure is increased according to the area ratio. The pressurized fuel flows into the nozzle chamber, exerts pressure on the needle in the valve opening direction, lifts the needle, and is further injected and atomized from the opened nozzle hole (that is, opened to the needle). The pressure of the fuel acting in the valve direction corresponds to the injection pressure injected from the injection hole).

しかし、噴射圧力が高圧になるほど、開弁時のニードルは、より強く開弁方向に圧力を受けるようになる。このため、ニードルのリフト速度が速くなり、微量噴射のように噴孔の開放期間を短くする必要のあるときに、速やかにニードルのリフトを停止しニードルを噴孔側に下降させることが困難になる。従って、微量噴射が要求されるときに、常に目標量よりも多い燃料が噴射されてしまい、燃焼効率を悪化させてしまう懸念がある。   However, the higher the injection pressure, the stronger the needle at the time of valve opening receives pressure in the valve opening direction. For this reason, when the needle lift speed is increased and it is necessary to shorten the opening period of the nozzle hole as in the case of micro injection, it is difficult to quickly stop the needle lift and to lower the needle to the nozzle hole side. Become. Therefore, when a small amount of injection is required, there is a concern that more fuel than the target amount is always injected, and the combustion efficiency is deteriorated.

このため、ニードルの開弁時には、リフト速度を遅くして、また、閉弁時にはニードルの下降速度を速くする所謂ニードルの動作速度を調整する逆止弁と絞りの並列接続組合せ構造を油圧回路上に配置した噴射装置が提案されている(例えば、特許文献1、2参照)。特許文献1および特許文献2に開示される噴射装置では、背圧室と背圧室に燃料を流出入させる3方切替弁とを接続する燃料流路上に、背圧室から高圧流路への流通を阻止し、高圧流路からの流通を許容する逆止弁を備えた流路と、さらに流通を規制する絞りを備えた流路との2流路を並列に接続して、順方向の流入流量と逆方向の流出流量に差を設けた構成となっている。   Therefore, when the needle is opened, the lift speed is slowed down, and when the needle is closed, the needle descending speed is increased. Have been proposed (see, for example, Patent Documents 1 and 2). In the injection devices disclosed in Patent Document 1 and Patent Document 2, the back pressure chamber and the high pressure flow channel are connected to the fuel flow channel connecting the back pressure chamber and the three-way switching valve that allows fuel to flow into and out of the back pressure chamber. Two channels, a flow path with a check valve that prevents flow and allows flow from the high-pressure flow path, and a flow path with a throttle to restrict flow are connected in parallel, A difference is provided between the inflow flow rate and the outflow flow rate in the opposite direction.

しかし、開示された従来例では、2つの流路を設けて2つの部品を別々に配置して2つの油圧回路を形成する必要があり、体格が大きくなったり、体格上の制約から設定が困難となる問題があった。
特開平8−21332号公報 米国特許第6644282号明細書
However, in the disclosed conventional example, it is necessary to form two hydraulic circuits by providing two flow paths and arranging two parts separately, and it is difficult to set because of the size of the body or restrictions on the body There was a problem.
JP-A-8-21332 US Pat. No. 6,644,282

本発明は、上記の問題点を解決するためになされたものであり、その目的は、ニードルの動作速度を調整する逆止弁と絞りの組合せ構造を簡素化し、油圧回路構成をコンパクト化することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to simplify the combined structure of a check valve and a throttle for adjusting the operating speed of the needle and to make the hydraulic circuit configuration compact. It is in.

〔請求項1の手段〕
請求項1に記載のインジェクタによれば、ニードルと、先端に設けられて燃料を噴出する噴孔と、内部に摺動可能に配設されて噴孔を開閉するニードルに対し、開弁あるいは閉弁方向に圧力を及ぼすとともにニードルの開弁時に噴孔に燃料を供給するように燃料が流出入するノズル室と、が形成される弁ボディと、ニードルの反噴孔側に設けられ、ニードルに対し開弁あるいは閉弁方向に圧力を及ぼすように燃料が流出入する背圧室と、を有するインジェクタにおいて、背圧室への燃料の流入、および、背圧室からの燃料の流出がされるように、背圧室と背圧室の外部領域である高圧燃料源および低圧流路とを共用の流路を通じて接続する燃料流路と、燃料流路上に配され、内部に配設される弁体の弁部がシート部から離座して開弁した際に、弁体のシート隙間を通じて、外部領域から背圧室への燃料の流入のみを許容するシート隙間流路と、弁体の内部を通じて外部領域と背圧室との間を燃料が流通可能に常時接続する弁体内流路と、を有する逆止弁と、を備えることを特徴としている。
[Means of Claim 1]
According to the injector of the first aspect, the valve is opened or closed with respect to the needle, the nozzle hole provided at the tip for ejecting the fuel, and the needle slidably disposed therein to open and close the nozzle hole. A nozzle body in which fuel is flown in and out so as to supply fuel to the nozzle hole when the needle is opened, and a valve body formed on the side opposite to the nozzle hole of the needle. On the other hand, in an injector having a back pressure chamber through which fuel flows in and out so as to exert pressure in the valve opening or closing direction, the fuel flows into and out of the back pressure chamber. As described above, the back pressure chamber and the fuel flow path connecting the high pressure fuel source and the low pressure flow path, which are the external regions of the back pressure chamber, through the common flow path, and the valve disposed on the fuel flow path and disposed inside when the valve portion of the body is opened by away from the seat portion Through the seat gap of the valve body, a seat gap flow path that allows only fuel to flow from the outside area into the back pressure chamber, and always connected so that fuel can flow between the outside area and the back pressure chamber through the inside of the valve body And a check valve having a valve body flow path.

これにより、背圧室への燃料の流出入流量に差を設けることが可能となって、背圧室の圧力の減圧および回復(加圧)の遅速が得られ、結果、ニードルの動作速度を調整することができる。また、逆止弁にシート隙間流路と弁体内流路とを一体的に構成するので、部品点数が少なくなり簡素化できる。
さらに、逆止弁の弁体は、弁部の反対側が開放端をなしていて、この開放端には、弁体内通路を流通した燃料が通過するスリットが径方向に複数設けられており、スリットの径方向外側にシート隙間流路と弁体内流路を通過した燃料が合流する溜まり部を有することを特徴としている。
これにより、弁体の開放端が弁ボディに当接しても、弁体内流路を通過した燃料がスリットを介して円滑に溜まり部に流出するため、シート隙間流路を通過した燃料と的確に合流させて、多量の適切な燃料をノズルの背圧室へ導くことができる。

As a result, it is possible to provide a difference in the flow rate of the fuel into and out of the back pressure chamber, resulting in a slow pressure reduction and recovery (pressurization) of the pressure in the back pressure chamber. As a result, the operating speed of the needle is reduced. Can be adjusted. In addition, since the seat clearance channel and the valve body channel are integrally formed with the check valve, the number of components can be reduced and simplified.
Furthermore, the valve body of the check valve has an open end on the opposite side of the valve portion, and the open end is provided with a plurality of radial slits through which the fuel flowing through the valve body passage passes. It has the reservoir part where the fuel which passed the sheet | seat clearance flow path and the valve body flow path merges in the radial direction outer side.
As a result, even if the open end of the valve body comes into contact with the valve body, the fuel that has passed through the valve body flow channel smoothly flows out to the reservoir through the slit. Combined, a large amount of suitable fuel can be directed to the nozzle back pressure chamber.

〔請求項2の手段〕
請求項2に記載のインジェクタによれば、弁体内流路は、弁体の軸中心に配設され、弁体の内部におけるシート隙間流路を通過する燃料の流れ方向と、弁体内流路を通過する燃料の流れ方向とを略合致させることを特徴としている。
これにより、シート隙間流路と弁体内流路とを流れる燃料を1本の油圧回路にまとめることが可能となって、簡素化できる。また、この1つの油圧回路にて燃料の流出入の共用の流路として接続することが可能となる。
[Means of claim 2]
According to the injector of the second aspect, the valve body flow path is disposed at the axial center of the valve body, and the flow direction of the fuel passing through the seat gap flow path in the valve body and the valve body flow path are defined. It is characterized by substantially matching the flow direction of the fuel passing therethrough.
Thereby, the fuel flowing through the seat gap flow path and the valve body flow path can be combined into one hydraulic circuit, which can be simplified. In addition, this one hydraulic circuit can be connected as a common flow path for fuel inflow and outflow.

〔請求項3の手段〕
請求項3に記載のインジェクタによれば、弁体内流路は、外部領域の側に配され外部領域と背圧室との間の燃料の流通量を規制する絞り部と、絞り部と直列に配され弁体を外部領域の側に付勢するバネ部材の収容と燃料の流通とを兼ねるバネ室と、を備えることを特徴としている。
[Means of claim 3]
According to the injector of claim 3, the flow passage in the valve body is arranged in series with the throttle portion, which is arranged on the outer region side and restricts the amount of fuel flowing between the outer region and the back pressure chamber. And a spring chamber that serves as both housing of a spring member that distributes and biases the valve body toward the external region and fuel circulation.

これにより、燃料の流通量が規制されて、燃料の流出入に適度な差を設けることが可能となり、背圧室の圧力の減圧および回復(加圧)の遅速が得られ、結果、ニードルのリフト速度を遅く、ニードルの下降速度を速くすることができる。また、油圧回路が簡素化できて構造がコンパクトになり、体格を小さく抑えることができる。   As a result, the flow rate of the fuel is regulated, and it is possible to provide an appropriate difference in the flow of the fuel, and the pressure of the back pressure chamber is reduced and the recovery (pressurization) is slow. The lift speed can be reduced and the needle lowering speed can be increased. Further, the hydraulic circuit can be simplified, the structure becomes compact, and the physique can be kept small.

〔請求項4の手段〕
請求項4に記載のインジェクタによれば、燃料を背圧室の圧力よりも高圧に増圧してノズル室に供給する増圧機構を備え、増圧機構により増圧された燃料をノズル室に供給して噴射することを特徴としている。
これにより、増圧機構を備え、増圧された燃料をノズル室に供給する増圧型インジェクタの場合にも、請求項1と同様な作用効果が得られる。
[Means of claim 4]
According to the injector of the fourth aspect, the pressure increasing mechanism that supplies the fuel to the nozzle chamber by increasing the pressure to a pressure higher than the pressure in the back pressure chamber is provided, and the fuel increased by the pressure increasing mechanism is supplied to the nozzle chamber. It is characterized by spraying.
Thus, even in the case of a pressure-increasing injector that includes a pressure-increasing mechanism and supplies pressure-increased fuel to the nozzle chamber, the same effect as that of the first aspect can be obtained.

〔請求項5の手段〕
請求項5に記載のインジェクタによれば、背圧室は、燃料を蓄圧するコモンレールと燃料流路を介して連通し、逆止弁を経由して燃料が流出入することを特徴としている。
これにより、燃料を高圧状態で蓄圧するコモンレールと連通して、背圧室に高圧な燃料が流出入しても、請求項1と同様な作用効果が得られる。
[Means of claim 5]
According to the injector of the fifth aspect, the back pressure chamber communicates with the common rail for accumulating the fuel via the fuel flow path, and the fuel flows in and out via the check valve.
Thus, even if high pressure fuel flows into and out of the back pressure chamber by communicating with the common rail that accumulates fuel in a high pressure state, the same effect as in the first aspect can be obtained.

本発明の最良の形態1のインジェクタは、ニードルと、先端に設けられて燃料を噴出する噴孔と、内部に摺動可能に配設されて噴孔を開閉するニードルに対し、開弁あるいは閉弁方向に圧力を及ぼすとともにニードルの開弁時に噴孔に燃料を供給するように燃料が流出入するノズル室と、が形成される弁ボディと、ニードルの反噴孔側に設けられ、ニードルに対し開弁あるいは閉弁方向に圧力を及ぼすように燃料が流出入する背圧室とを有している。   The injector according to the best mode 1 of the present invention opens or closes a needle, a nozzle hole provided at the tip for ejecting fuel, and a needle slidably disposed therein to open and close the nozzle hole. A nozzle body in which a pressure is applied in the valve direction and fuel flows into and out of the nozzle so that the fuel is supplied to the nozzle when the needle is opened; and a valve body formed on the side opposite to the nozzle of the needle. On the other hand, it has a back pressure chamber into which fuel flows in and out so as to exert pressure in the valve opening or closing direction.

また、このインジェクタにおいて、背圧室への燃料の流入、および、背圧室からの燃料の流出がされるように、背圧室と背圧室の外部領域である高圧燃料源および低圧流路とを共用の流路を通じて接続する燃料流路上に、内部に配設される弁体が開弁した際に、弁体のシート隙間を通じて、外部領域から背圧室への燃料の流入のみを許容するシート隙間流路と、弁体の内部を通じて外部領域と背圧室との間を燃料が流通可能に常時接続する弁体内流路とを有する逆止弁を備える。   Further, in this injector, the high-pressure fuel source and the low-pressure flow path which are the external region of the back pressure chamber and the back pressure chamber are arranged so that the fuel flows into and out of the back pressure chamber. When the valve body arranged inside the fuel flow path is connected through the common flow path, only the inflow of fuel from the external region to the back pressure chamber is allowed through the seat clearance of the valve body. And a check valve having a valve body flow path that always connects the outer region and the back pressure chamber through the inside of the valve body so that fuel can flow.

そして、弁体の外部領域の側の軸中心に燃料の流通量を規制する絞り部を設け、この絞り部と直列にバネ部材の収容と燃料の流通とを兼ねるバネ室を備えることによって、外部領域側へ付勢するとともに弁体内流路を形成する。これにより、シート隙間流路の燃料の流れ方向と弁体内流路の燃料の流れ方向とを略合致させ、1本の燃料流路にまとめることが可能となって、また、背圧室への燃料の流出入流量に適度な差を設けることが可能となって、背圧室の圧力の減圧および回復(加圧)の遅速が得られ、結果、ニードルの動作速度を調整するとともに、油圧回路構成を簡素化、コンパクト化したものである。
本発明の最良の形態を、図に示す実施例1とともに説明する。なお、以下の説明では、インジェクタのノズル側を一端側、電磁弁側を他端側という。
A throttle part that regulates the amount of fuel flow is provided at the shaft center on the outer region side of the valve body, and a spring chamber that serves as both housing of the spring member and fuel flow is provided in series with the throttle part. It energizes to the region side and forms a valve body flow path. As a result, the flow direction of the fuel in the seat gap flow path and the flow direction of the fuel in the flow path in the valve body can be substantially matched to be combined into a single fuel flow path. It is possible to provide an appropriate difference in the flow rate of the fuel flow, and the slowdown of pressure reduction and recovery (pressurization) of the back pressure chamber is obtained. As a result, the operating speed of the needle is adjusted and the hydraulic circuit The configuration is simplified and compact.
The best mode of the present invention will be described together with Example 1 shown in the drawings. In the following description, the nozzle side of the injector is referred to as one end side, and the solenoid valve side is referred to as the other end side.

〔実施例1の構成〕
実施例1のインジェクタの構成を、図1を用いて説明する。図1は、インジェクタの構成と燃料の流路を模式化して示した説明図である。
インジェクタ1は、例えば、燃料を高圧化する燃料供給ポンプ(図示せず)と、燃料供給ポンプで高圧化された燃料を高圧状態で蓄圧するコモンレール2などとともに、エンジン(図示せず)に燃料を噴射供給する蓄圧式の燃料噴射装置を構成する。そして、インジェクタ1は、エンジンに搭載されエンジンの各気筒内に燃料を噴射する。
[Configuration of Example 1]
The structure of the injector of Example 1 is demonstrated using FIG. FIG. 1 is an explanatory diagram schematically showing the configuration of the injector and the flow path of the fuel.
The injector 1 includes, for example, a fuel supply pump (not shown) for increasing the pressure of the fuel, a common rail 2 for accumulating the fuel increased in pressure by the fuel supply pump in a high pressure state, and the like, and a fuel for the engine (not shown). An accumulator fuel injection device for injection supply is configured. The injector 1 is mounted on the engine and injects fuel into each cylinder of the engine.

また、インジェクタ1は、高圧燃料源のコモンレール2から高圧の燃料を受け入れ、受け入れた高圧の燃料をさらに増圧して気筒内に噴射する増圧型である。この増圧型のインジェクタ1は、燃料を噴射するノズル3と、ノズル3に燃料を増圧して供給する増圧機構4と、所定の電子制御装置(ECU:図示せず)からの指令に応じて開閉する電磁弁5と、電磁弁5の開閉に応じて、増圧機構4を作動するための流路と、増圧機構4の作動を停止するための流路とを切り替える3方切替弁6とからなり、作動媒体である燃料の外部領域の低圧側への排出により減圧する油圧回路によって作動され、このために、低圧流路であるリターン流路7、8と接続される。なお、ここで外部領域とは、本実施例では、例えば、インジェクタ1以外の構成部材もしくは部分、部位を指し、高圧燃料源のコモンレール2や低圧流路であるリターン流路7、8は外部領域であるという。   The injector 1 is a pressure-increasing type that accepts high-pressure fuel from a common rail 2 as a high-pressure fuel source, and further injects the received high-pressure fuel into a cylinder. The pressure increasing type injector 1 includes a nozzle 3 for injecting fuel, a pressure increasing mechanism 4 for increasing and supplying fuel to the nozzle 3, and a command from a predetermined electronic control unit (ECU: not shown). An electromagnetic valve 5 that opens and closes, and a three-way switching valve 6 that switches between a flow path for operating the pressure increase mechanism 4 and a flow path for stopping the operation of the pressure increase mechanism 4 according to the opening and closing of the electromagnetic valve 5. And is operated by a hydraulic circuit that reduces the pressure by discharging the fuel, which is a working medium, to the low pressure side, and is connected to the return flow paths 7, 8 that are low pressure flow paths. In this embodiment, the external region refers to, for example, a component, a part, or a part other than the injector 1, and the common rail 2 as a high-pressure fuel source and the return channels 7 and 8 as low-pressure channels are external regions. It is said.

増圧機構4は、パスカルの原理に基づき燃料を増圧するものであり、軸方向一端側に向かい大小2段に径が変化する増圧ピストン25を有する。そして、増圧機構4は、大径の増圧面26で燃料の圧力を受けるとともに、この圧力に基づく付勢力を、小径の被増圧面27を介して燃料に加えることで燃料を増圧する。   The pressure boosting mechanism 4 boosts the fuel based on the Pascal principle, and has a pressure boosting piston 25 whose diameter changes in two steps, large and small, toward one end in the axial direction. The pressure-increasing mechanism 4 receives the pressure of the fuel at the large-diameter pressure-increasing surface 26 and increases the fuel pressure by applying an urging force based on this pressure to the fuel through the small-diameter pressure-increasing surface 27.

つまり、増圧ピストン25は、一端側の小径ピストン部28と、他端側の大径ピストン部29とからなり、小径ピストン部28の一端面が被増圧面27をなすとともに大径ピストン部29の他端面が増圧面26をなす。そして、増圧ピストン25は、軸方向一端側に向かい大小2段に径が変化するシリンダ31に収容され(以下、シリンダ31の一端側の小径部分を小径シリンダ部32とし、他端側の大径部分を大径シリンダ部33とする)、大径シリンダ部33の内周面に大径ピストン部29の外周面が摺接し、小径シリンダ部32の内周面に小径ピストン部28の外周面が摺接する。   That is, the pressure-increasing piston 25 includes a small-diameter piston portion 28 on one end side and a large-diameter piston portion 29 on the other end side. One end surface of the small-diameter piston portion 28 forms a pressure-increasing surface 27 and the large-diameter piston portion 29. The other end face forms a pressure increasing surface 26. The pressure-increasing piston 25 is accommodated in a cylinder 31 whose diameter changes in two steps of large and small toward one end side in the axial direction (hereinafter, a small diameter portion on one end side of the cylinder 31 is referred to as a small diameter cylinder portion 32, and a large diameter on the other end side). The outer peripheral surface of the large-diameter piston portion 29 is in sliding contact with the inner peripheral surface of the large-diameter cylinder portion 33, and the outer peripheral surface of the small-diameter piston portion 28 is in contact with the inner peripheral surface of the small-diameter cylinder portion 32. Is in sliding contact.

また、小径ピストン部28が、小径シリンダ部32を他端側から封鎖して、増圧される燃料が流出入する被増圧室16を形成し、大径ピストン部29が、大径シリンダ部33を一端側から封鎖して、増圧媒体となる燃料が流出入する増圧室17を形成する。   The small-diameter piston portion 28 seals the small-diameter cylinder portion 32 from the other end side to form the pressurized chamber 16 into which the fuel to be boosted flows in and out, and the large-diameter piston portion 29 becomes the large-diameter cylinder portion. 33 is sealed from one end side to form a pressure increasing chamber 17 into which fuel as a pressure increasing medium flows in and out.

さらに、大径ピストン部29は、大径シリンダ部33を他端側から封鎖して、増圧を操作するための燃料が流出入する増圧操作室34を形成する。そして、大径ピストン部29の一端面は、増圧操作室34の燃料の圧力を受ける増圧操作面35をなし、増圧操作面35の面積は、増圧面26の面積と被増圧面27の面積との差分に略一致する。また、増圧操作室34には、増圧ピストン25を他方に付勢するバネ36が収容されている。   Further, the large-diameter piston portion 29 seals the large-diameter cylinder portion 33 from the other end side to form a pressure increasing operation chamber 34 into which fuel for operating pressure increasing flows. One end surface of the large-diameter piston portion 29 forms a pressure increasing operation surface 35 that receives the pressure of the fuel in the pressure increasing operation chamber 34, and the area of the pressure increasing operation surface 35 is the area of the pressure increasing surface 26 and the surface to be pressurized 27. It is almost the same as the difference with the area. The pressure increasing operation chamber 34 accommodates a spring 36 that biases the pressure increasing piston 25 to the other side.

ここで、増圧室17は、燃料流路18によりコモンレール2と連通し、コモンレール2に蓄圧された燃料を増圧媒体として受け入れる。さらに、増圧室17は、燃料流路38により後記する3方切替弁6の燃料流路39に通じる。また、増圧操作室34は、燃料流路40により3方切替弁6の燃料流路41に通じ、被増圧室16には、燃料流路40から分岐する燃料流路42が接続する。なお、燃料流路42には、被増圧室16への燃料の流入のみを許容する逆止弁43が設けられている。   Here, the pressure increasing chamber 17 communicates with the common rail 2 through the fuel flow path 18 and receives fuel accumulated in the common rail 2 as a pressure increasing medium. Further, the pressure increasing chamber 17 communicates with a fuel flow path 39 of the three-way switching valve 6 described later by a fuel flow path 38. The pressure increasing operation chamber 34 is communicated with the fuel flow path 41 of the three-way switching valve 6 by the fuel flow path 40, and the fuel flow path 42 branched from the fuel flow path 40 is connected to the pressure increase chamber 16. The fuel flow path 42 is provided with a check valve 43 that allows only fuel to flow into the pressurized chamber 16.

以上の構成により、増圧機構4は、増圧操作室34への燃料の流出入を通じて、燃料の増圧および増圧停止を行う。すなわち、増圧操作室34から燃料が流出すると、増圧室17に高圧燃料が流入して増圧ピストン25が一端側に変位し、被増圧室16の燃料が増圧されてノズル室12に供給される。また、増圧操作室34に燃料が流入すると、増圧ピストン25が他端側に変位するとともに逆止弁43が開弁し、被増圧室16に燃料が流入して被増圧室16の燃料の増圧が停止され、燃料がノズル室12に供給されなくなる。   With the above configuration, the pressure increasing mechanism 4 performs pressure increase and stop of pressure increase through the flow of fuel into and out of the pressure increase operation chamber 34. That is, when the fuel flows out from the pressure increasing operation chamber 34, the high pressure fuel flows into the pressure increasing chamber 17, the pressure increasing piston 25 is displaced to one end side, the fuel in the pressure increasing chamber 16 is increased, and the nozzle chamber 12. To be supplied. Further, when the fuel flows into the pressure increasing operation chamber 34, the pressure increasing piston 25 is displaced to the other end side and the check valve 43 is opened, and the fuel flows into the pressure increasing chamber 16 and the pressure increasing chamber 16. The fuel pressure increase is stopped and the fuel is not supplied to the nozzle chamber 12.

電磁弁5は、後記する3方切替弁6の背圧室45からの燃料の流出入を操作する開閉弁であり、ECUからの指令に応じて開閉する。電磁弁5は、3方切替弁6の背圧室45と連通する燃料流路46とインジェクタ1の外部領域である低圧流路のリターン流路7との間に接続され、電磁弁5の開弁によって流出する燃料をリターン流路7に排出する。なお、燃料流路46には、背圧室45と電磁弁5との間に背圧室45からの燃料の流出流量を規制する絞り47が設けられている。   The electromagnetic valve 5 is an open / close valve for operating the flow of fuel from the back pressure chamber 45 of the three-way switching valve 6 to be described later, and opens and closes in response to a command from the ECU. The electromagnetic valve 5 is connected between a fuel flow path 46 communicating with the back pressure chamber 45 of the three-way switching valve 6 and a return flow path 7 of a low pressure flow path that is an external region of the injector 1. The fuel flowing out by the valve is discharged to the return flow path 7. The fuel flow path 46 is provided with a throttle 47 between the back pressure chamber 45 and the solenoid valve 5 for regulating the flow rate of fuel outflow from the back pressure chamber 45.

3方切替弁6は、増圧操作室34から燃料が流出するための流路と、増圧操作室34に燃料が流入するための流路とを切り替えることで、増圧機構4を作動させて燃料を増圧したり、増圧機構4の作動を停止させて燃料の増圧を停止したりする。   The three-way switching valve 6 operates the pressure-increasing mechanism 4 by switching between a flow path for the fuel to flow out from the pressure increase operation chamber 34 and a flow path for the fuel to flow into the pressure increase operation chamber 34. Thus, the pressure of the fuel is increased, or the pressure increase mechanism 4 is stopped to stop the pressure increase of the fuel.

ここで、3方切替弁6は、弁ボディ20に設けられたシリンダ49に摺動自在に収容される弁体60よりなる。弁体60はシリンダ49内を摺動するピストン部50と燃料の流出入の流路を切り替える対をなす2つの弁部61、62を備えている。また、シリンダ49には側壁および周壁に3つの燃料流路39、41、52を備えてそれぞれの間の連通を遮断することができる対をなす2つの弁座部63、64を備えており、一対の弁部61、62のそれぞれと一対の弁座部63、64のそれぞれとの組合せにより、切替弁構造を形成している。   Here, the three-way switching valve 6 includes a valve body 60 slidably accommodated in a cylinder 49 provided in the valve body 20. The valve body 60 includes a piston portion 50 that slides in the cylinder 49 and two valve portions 61 and 62 that make a pair for switching the flow path of fuel in and out. The cylinder 49 includes two fuel seats 39, 41, 52 on the side wall and the peripheral wall, and includes two valve seats 63, 64 that form a pair that can block communication between each. A switching valve structure is formed by a combination of each of the pair of valve portions 61 and 62 and each of the pair of valve seat portions 63 and 64.

また、弁体60の一端側に、3つの燃料流路39、41、52を介して燃料が流出入する溜まり部53が形成され、燃料流路39は、燃料流路41より一端側で溜まり部53に開口し、燃料流路41は、燃料流路52より一端側で溜まり部53に開口する。そして、燃料流路39は、燃料流路38により増圧室17と連通し、燃料流路18、増圧室17、燃料流路38を介してコモンレール2に通じ、燃料流路41は、燃料流路40により増圧操作室34に通じ、燃料流路52は、インジェクタ1の外部領域である低圧流路のリターン流路8に通じる。   In addition, a reservoir 53 through which fuel flows in and out through the three fuel flow paths 39, 41, 52 is formed on one end side of the valve body 60, and the fuel flow path 39 collects on one end side from the fuel flow path 41. The fuel flow path 41 opens to the reservoir 53 at one end side from the fuel flow path 52. The fuel flow path 39 communicates with the pressure increasing chamber 17 via the fuel flow path 38, communicates with the common rail 2 via the fuel flow path 18, the pressure increasing chamber 17, and the fuel flow path 38. The flow path 40 leads to the pressure increasing operation chamber 34, and the fuel flow path 52 leads to the return flow path 8 of the low pressure flow path that is an external region of the injector 1.

また、弁体60の他端側に、弁体60を一端側に付勢する燃料が流出入する背圧室45が形成される。背圧室45には、燃料流路18から分岐した燃料流路51が接続し、燃料流路18、51を通じてコモンレール2から背圧室45に燃料が流入する。なお、燃料流路51には、背圧室45への燃料の流入流量を規制する絞り48が設けられている。また、背圧室45は燃料流路46を介して電磁弁5と接続される。   In addition, a back pressure chamber 45 is formed on the other end side of the valve body 60. The back pressure chamber 45 flows into and out of the fuel that urges the valve body 60 toward the one end side. A fuel flow path 51 branched from the fuel flow path 18 is connected to the back pressure chamber 45, and fuel flows from the common rail 2 into the back pressure chamber 45 through the fuel flow paths 18 and 51. The fuel flow path 51 is provided with a throttle 48 that regulates the flow rate of fuel flowing into the back pressure chamber 45. Further, the back pressure chamber 45 is connected to the electromagnetic valve 5 through the fuel flow path 46.

そして、電磁弁5の通電により開弁されて背圧室45がリターン流路7と連通すると、弁体60が他端側に変位して弁座部63に弁部61が着座し、弁座部64から弁部62が離座すると、燃料流路41と燃料流路52とが連通し、増圧操作室34からリターン流路8に燃料が流出する。この結果、増圧ピストン25の一端側への変位が促され、被増圧室16の燃料が増圧されてノズル3に供給される。   When the back pressure chamber 45 is opened by energization of the electromagnetic valve 5 and the back pressure chamber 45 communicates with the return flow path 7, the valve body 60 is displaced to the other end side and the valve portion 61 is seated on the valve seat portion 63. When the valve part 62 is separated from the part 64, the fuel flow path 41 and the fuel flow path 52 communicate with each other, and the fuel flows out from the pressure increasing operation chamber 34 to the return flow path 8. As a result, the displacement of the pressure-increasing piston 25 toward one end is promoted, and the fuel in the pressure-increasing chamber 16 is increased and supplied to the nozzle 3.

また、弁体60が一端側に変位して弁座部64に弁部62が着座し、弁座部63から弁部61が離座すると、燃料流路39と燃料流路41とが連通し、コモンレール2から増圧操作室34に高圧燃料が流入する。この結果、増圧ピストン25の他端側への変位が促され、被増圧室16の燃料の増圧が停止されてノズル3に燃料が供給されなくなる。   Further, when the valve body 60 is displaced to one end side and the valve portion 62 is seated on the valve seat portion 64 and the valve portion 61 is separated from the valve seat portion 63, the fuel flow path 39 and the fuel flow path 41 communicate with each other. The high pressure fuel flows from the common rail 2 into the pressure increasing operation chamber 34. As a result, the displacement of the pressure-increasing piston 25 toward the other end side is promoted, the pressure increase of the fuel in the pressure-increasing chamber 16 is stopped, and the fuel is not supplied to the nozzle 3.

次に、ノズル3は、噴孔9を開閉するニードル10を有し、ニードル10に対し噴孔9を閉鎖する方向(閉弁方向)に圧力を及ぼす燃料が流出入する背圧室11、噴孔9を開放する方向(開弁方向)に圧力を及ぼす燃料が流出入するノズル室12を形成する。また、ノズル3は、ニードル10を閉弁方向に付勢するバネ13を、背圧室11に収容する。つまり、ニードル10は、背圧室11の燃料の圧力(ノズル背圧とする)およびバネ13により閉弁方向に付勢されるとともに、ノズル室12の燃料の圧力(ノズル室圧と呼ぶ)により開弁方向に付勢されている。   Next, the nozzle 3 has a needle 10 that opens and closes the nozzle hole 9, and a back pressure chamber 11 into which fuel that exerts pressure in the direction of closing the nozzle hole 9 with respect to the needle 10 (valve closing direction) A nozzle chamber 12 into which fuel that exerts pressure in the direction in which the hole 9 is opened (valve opening direction) flows in and out is formed. The nozzle 3 also houses a spring 13 that urges the needle 10 in the valve closing direction in the back pressure chamber 11. That is, the needle 10 is urged in the valve closing direction by the fuel pressure (nozzle back pressure) in the back pressure chamber 11 and the spring 13, and by the fuel pressure in the nozzle chamber 12 (referred to as nozzle chamber pressure). It is energized in the valve opening direction.

ここで、ノズル室12は、燃料流路15により被増圧室16と連通する。被増圧室16は、増圧機構4において燃料が増圧される燃料室であり、増圧機構4は、燃料をノズル背圧よりも高圧に増圧してノズル室12に供給する。   Here, the nozzle chamber 12 communicates with the pressurized chamber 16 through the fuel flow path 15. The pressurized chamber 16 is a fuel chamber in which fuel is increased in the pressure increasing mechanism 4, and the pressure increasing mechanism 4 increases the fuel to a pressure higher than the nozzle back pressure and supplies the fuel to the nozzle chamber 12.

また、背圧室11には、増圧室17とコモンレール2とを連通する燃料流路18から分岐する燃料流路19が接続し、燃料流路19には、背圧室11への燃料の流通量を規制する絞り部21を有する弁体56を備えた逆止弁22が、背圧室11への燃料の流入を許容し、背圧室11からの流出を規制する向きに設けられている。そして、コモンレール2から背圧室11に燃料が燃料流路18、19、および逆止弁22を介して多量に流入する順方向流れを形成するとともに、逆方向には背圧室11から燃料が逆止弁22の絞り部21によって規制された所定の流量のみが燃料流路19を経由して流出するように形成されて、背圧室11からの燃料の流出および背圧室11への燃料の流入流量に差を設けている。   The back pressure chamber 11 is connected to a fuel flow path 19 that branches from a fuel flow path 18 that connects the pressure increasing chamber 17 and the common rail 2, and fuel flow to the back pressure chamber 11 is connected to the fuel flow path 19. A check valve 22 including a valve body 56 having a throttle portion 21 that regulates the flow rate is provided in a direction that allows inflow of fuel into the back pressure chamber 11 and restricts outflow from the back pressure chamber 11. Yes. A forward flow in which a large amount of fuel flows from the common rail 2 to the back pressure chamber 11 via the fuel flow paths 18 and 19 and the check valve 22 is formed, and in the reverse direction, fuel flows from the back pressure chamber 11 in the reverse direction. Only a predetermined flow rate regulated by the throttle portion 21 of the check valve 22 is formed so as to flow out through the fuel flow path 19, so that the fuel flows out of the back pressure chamber 11 and the fuel into the back pressure chamber 11. There is a difference in the inflow flow rate.

これにより、背圧室11の減圧はゆっくりと、回復(加圧)は迅速とすることができる。また、燃料流路19は、接続した逆止弁22の順方向動作時は高圧燃料源からの高圧流路と、逆方向作動時には外部領域の低圧側に排出する低圧流路とを共用の流路として利用することとなる。   Thereby, the decompression of the back pressure chamber 11 can be performed slowly and the recovery (pressurization) can be performed quickly. Further, the fuel flow path 19 has a common flow path between the high pressure flow path from the high pressure fuel source during forward operation of the connected check valve 22 and the low pressure flow path that discharges to the low pressure side of the external region during reverse operation. It will be used as a road.

ここで、本発明の絞り部21を有する弁体56を備えた逆止弁22を、図2を参照して説明する。図2(a)は絞り部21を備えた逆止弁22の構成を示す軸断面図であり、(b)、(c)はそれぞれX−X部矢視およびY−Y部矢視の断面図である。   Here, the check valve 22 including the valve body 56 having the throttle portion 21 of the present invention will be described with reference to FIG. FIG. 2A is an axial cross-sectional view showing the configuration of the check valve 22 provided with the throttle portion 21, and FIGS. 2B and 2C are cross sections taken along arrows XX and YY, respectively. FIG.

逆止弁22は、弁ボディ20の他端側に設けられたシリンダ55に摺動自在に収容される弁体56と弁体56を他端側に付勢するバネ57よりなる。弁体56は所定長さの円柱状部材であって、外周において、他端側には円錐台形状の弁部72と、一端側には所定の幅および深さを有するスリット73、および中間部には円柱状の円弧の一部を残して4面取り74が設けられており、さらに、内周において、他端側に有底の、一端側に開放する円筒状の内筒部をなして、バネ57の収容と燃料の流通を兼ねるバネ室71とを備えている。   The check valve 22 includes a valve body 56 slidably accommodated in a cylinder 55 provided on the other end side of the valve body 20 and a spring 57 that biases the valve body 56 toward the other end side. The valve body 56 is a cylindrical member having a predetermined length, and has a frustoconical valve portion 72 on the other end, a slit 73 having a predetermined width and depth on one end, and an intermediate portion on the outer periphery. Is provided with four chamfers 74, leaving a part of the circular arc of the columnar shape, and further, in the inner circumference, a bottomed end on the other end side and a cylindrical inner cylinder portion opened on one end side, A spring chamber 71 is also provided which serves as both housing of the spring 57 and fuel circulation.

従って、弁体56の弁部72は逆止弁22の他端側、つまりインジェクタ1の外部領域の側に配され、バネ室71に圧縮コイル型のバネ57を装着することで、弁部72を外部領域の側に付勢することができ、外部領域の高圧燃料に対して流入のみを許容し、低圧流路への流出はバネ57の付勢力で閉鎖する弁体構造の逆止弁22とすることができる。   Accordingly, the valve portion 72 of the valve body 56 is disposed on the other end side of the check valve 22, that is, on the outer region side of the injector 1, and the compression coil type spring 57 is attached to the spring chamber 71, thereby The check valve 22 has a valve body structure that allows only the inflow of the high-pressure fuel in the external region and allows the outflow to the low-pressure flow path to be closed by the biasing force of the spring 57. It can be.

さらに、弁体56には、他端側の有底部の軸中心に所定の穴径を有する絞り部21が設けられ、バネ室71と直列に接続する弁体内流路B(図中太実線で示す上方から下方への矢印)を構成して燃料の流通量を規制している。従って、この円筒状のバネ室71を形成する有底部に絞り部21を形成することは、バネ57を収容するバネ室71を弁体内流路Bの流路とを兼ねることが可能となって、また、絞り部21を所定径の小孔に加工するのみなので簡素化に効果を奏する。   Further, the valve body 56 is provided with a throttle portion 21 having a predetermined hole diameter at the center of the bottomed portion on the other end side, and is connected to the spring chamber 71 in series with a flow passage B in the valve body (indicated by a thick solid line in the figure). The flow amount of the fuel is regulated by configuring an arrow from above to below. Therefore, forming the throttle portion 21 in the bottomed portion that forms the cylindrical spring chamber 71 allows the spring chamber 71 that houses the spring 57 to also serve as the flow path of the valve body flow path B. In addition, since the narrowed portion 21 is only processed into a small hole having a predetermined diameter, it is effective for simplification.

なお、4面取り74はシリンダ55との組合せによって三日月状の燃料通路68を形成させるものであり、従って、3面取りまたは2面取り、もしくは多面取りであっても燃料通路68が確保されれば構わない。   The four chamfers 74 form a crescent-shaped fuel passage 68 in combination with the cylinder 55. Therefore, the fuel passage 68 may be secured even if it is a three-chamfer, two-chamfer, or multi-chamfer. .

一方、シリンダ55の他端側は弁体56の弁部72が軸方向に着座して封止するシート部75を備えており、そして、シート部75の他端側は燃料流路59に接続している。また、シリンダ55の一端側は、シリンダ55の内径よりも径大な内径を有する空間を形成し、弁ボディ20の一端側に当接させて溜まり部66を形成し、溜まり部66と弁体56の内筒部開放端とはスリット73を介して連通し、そして、溜まり部66は燃料流路67に接続している。   On the other hand, the other end side of the cylinder 55 is provided with a seat portion 75 in which the valve portion 72 of the valve body 56 is seated and sealed in the axial direction, and the other end side of the seat portion 75 is connected to the fuel flow path 59. is doing. In addition, one end side of the cylinder 55 forms a space having an inner diameter larger than the inner diameter of the cylinder 55 and is brought into contact with one end side of the valve body 20 to form a reservoir portion 66. The reservoir portion 66 and the valve body 56 is communicated with the open end of the inner cylinder portion via a slit 73, and the reservoir portion 66 is connected to a fuel flow path 67.

この構成により、例えば、逆止弁22の他端側の燃料流路59から高圧燃料が流入するときは、バネ57の付勢力に抗して燃料圧力による付勢力が勝って弁体56が一端側へ変位する。これにより、弁部72はシート部75と離座して弁体56は開弁し、燃料は弁体56が開弁した弁部72とシート部75との間のシート隙間76を通じて、弁体56の外周の軸方向に沿う燃料通路68を経由して溜まり部66に流れるシート隙間流路A(図中太実線で示す上方から下方への矢印)を形成する。   With this configuration, for example, when high-pressure fuel flows from the fuel flow path 59 on the other end side of the check valve 22, the urging force due to the fuel pressure wins against the urging force of the spring 57, and the valve body 56 has one end. Displace to the side. As a result, the valve portion 72 is separated from the seat portion 75, the valve body 56 is opened, and the fuel passes through the seat gap 76 between the valve portion 72 and the seat portion 75 where the valve body 56 is opened. A sheet clearance channel A (an arrow from the upper side to the lower side indicated by a thick solid line in the figure) that flows to the accumulation portion 66 via the fuel passage 68 along the axial direction of the outer periphery of 56 is formed.

さらに、絞り部21を経由する弁体内流路Bからの燃料も弁体56のバネ室71に流入してスリット73を経由して溜まり部66に流れる。このとき、シート隙間流路Aと弁体内流路Bを通過する燃料の流れ方向は、共に軸方向であって、シート隙間流路Aおよび弁体内流路Bの双方を経由して流れる燃料は溜まり部66に合流して、多量の燃料流れとなって燃料流路67を経由してノズル3の背圧室11へ流出する。従って、双方の燃料流量を1本の油圧回路にまとめて流すことができる。   Further, the fuel from the valve body flow path B passing through the throttle portion 21 also flows into the spring chamber 71 of the valve body 56 and flows into the pool portion 66 via the slit 73. At this time, the flow direction of the fuel passing through the seat gap flow path A and the valve body flow path B is both the axial direction, and the fuel flowing through both the seat gap flow path A and the valve body flow path B is It merges with the reservoir 66 and flows into the back pressure chamber 11 of the nozzle 3 via the fuel flow path 67 as a large amount of fuel flow. Therefore, both fuel flow rates can be flowed together in one hydraulic circuit.

また、逆に、例えば燃料流路67から逆止弁22を経由して燃料流路59に燃料が流出するときは、燃料流路67の燃料圧力とバネ57との2つの付勢力によって、弁体56は他端側に押されて、弁部72とシート部75は着座して燃料の流通を封止するので、燃料は弁体内流路Bを図中下方から上方へ、しかも絞り部21による規制された流量しか流れないこととなる。   Conversely, for example, when the fuel flows out from the fuel flow path 67 to the fuel flow path 59 via the check valve 22, the fuel pressure in the fuel flow path 67 and the two urging forces of the spring 57 cause the valve to flow. The body 56 is pushed to the other end side, and the valve portion 72 and the seat portion 75 are seated to seal the fuel flow, so that the fuel flows through the valve body flow passage B from the lower side to the upper side in the figure, and the throttle portion 21. Therefore, only the regulated flow rate is allowed to flow.

つまり、弁体56が開弁した際に弁体56のシート隙間76を通じて外部領域から背圧室11への燃料の流入のみを許容するシート隙間流路Aと、弁体56の内部を通じて外部領域と背圧室11との間を燃料が流通可能に常時接続する弁体内流路Bとを配設して、シート隙間流路Aを通過する燃料の流れ方向と弁体内流路Bを通過する燃料の流れ方向とを略合致させる構成の逆止弁22である。これにより、背圧室11の外部領域である高圧燃料源および低圧流路とを共用の流路を通じて接続する燃料流路19上に1油圧回路のみの構成にて接続できることが特徴となる。   That is, when the valve body 56 is opened, the seat gap flow path A that allows only fuel to flow into the back pressure chamber 11 from the outside area through the seat gap 76 of the valve body 56, and the outside area through the inside of the valve body 56 And the back pressure chamber 11 is provided with a valve body passage B that is always connected so that fuel can flow, and passes through the seat gap passage A and the flow direction of the fuel and the valve body passage B. This is a check valve 22 configured to substantially match the fuel flow direction. Accordingly, the high pressure fuel source and the low pressure flow path, which are the external regions of the back pressure chamber 11, can be connected to the fuel flow path 19 that connects the common flow paths with only one hydraulic circuit.

以上、絞り部21を有する弁体56を備えた逆止弁22により、ノズル3は、ニードル10が開弁方向にリフトし噴孔9が開放されるとき、コモンレール2に蓄圧される燃料の圧力(レール圧)と常時連通する背圧室11はニードル10の閉弁方向の付勢力を生じるが、この付勢力と相まって、さらに、逆止弁22の閉弁による流出流量の規制のため、背圧室11の圧力の減圧は緩やかとなって、従ってニードル10のリフト速度はより遅くなる。   As described above, the check valve 22 including the valve body 56 having the throttle portion 21 allows the nozzle 3 to be fuel pressure accumulated in the common rail 2 when the needle 10 is lifted in the valve opening direction and the nozzle hole 9 is opened. The back pressure chamber 11 that is always in communication with the (rail pressure) generates an urging force in the valve closing direction of the needle 10, and coupled with this urging force, the back flow chamber 11 further restricts the outflow flow rate by closing the check valve 22. The pressure in the pressure chamber 11 is gradually reduced, so that the lift speed of the needle 10 becomes slower.

また、増圧された燃料がノズル室12に流入しなくなると、これにより、ノズル室圧による付勢力が、ノズル背圧による付勢力とバネ13による付勢力との合力よりも弱くなるので、ニードル10が閉弁方向に下降し、同時に、逆止弁22が開弁して燃料流路18、19を通じて背圧室11に燃料が流入する。このとき、逆止弁22を介しての燃料は順方向に低抵抗で多量に流れるので、背圧室11の圧力の回復(加圧)は速やかに実行され、ニードル10が迅速に下降して噴孔9が閉鎖され燃料の噴射の急速な終了(シャープカット)が実現できる。   Further, when the pressurized fuel does not flow into the nozzle chamber 12, the urging force due to the nozzle chamber pressure becomes weaker than the resultant force of the urging force due to the nozzle back pressure and the urging force due to the spring 13. 10 is lowered in the valve closing direction, and at the same time, the check valve 22 is opened and the fuel flows into the back pressure chamber 11 through the fuel flow paths 18 and 19. At this time, since the fuel flowing through the check valve 22 flows in a large amount with low resistance in the forward direction, the recovery (pressurization) of the pressure in the back pressure chamber 11 is executed quickly, and the needle 10 descends quickly. The injection hole 9 is closed, and the rapid end of fuel injection (sharp cut) can be realized.

〔実施例1の作動〕
実施例1のインジェクタ1の作動を、絞り部21を備えた逆止弁22の作動を中心に説明する。
まず、3方切替弁6において、燃料流路39と燃料流路41との間が開放され、燃料流路41と燃料流路52との間が閉鎖されている初期時(非通電時)の状態は、コモンレール2と増圧操作室34とが連通し、増圧機構4は作動しておらず燃料の増圧は行われていない。
[Operation of Example 1]
The operation of the injector 1 according to the first embodiment will be described focusing on the operation of the check valve 22 including the throttle portion 21.
First, in the three-way switching valve 6, the gap between the fuel flow path 39 and the fuel flow path 41 is opened and the gap between the fuel flow path 41 and the fuel flow path 52 is closed. In this state, the common rail 2 and the pressure increasing operation chamber 34 communicate with each other, the pressure increasing mechanism 4 is not operated, and fuel pressure is not increased.

電磁弁5が作動して3方切替弁6の背圧室45を開放すると、3方切替弁6の背圧室45の燃料がリターン流路7に流出し背圧室45の背圧が低下する。これにより、3方切替弁6が起動し、弁体60が他端側に変位を開始し、弁部61が弁座部63に着座して燃料流路39と燃料流路41との間が閉鎖されるとともに、弁部62と弁座部64が離座して燃料流路41と燃料流路52との間が開放されて増圧操作室34の燃料がリターン流路8に流出し、増圧操作室34の背圧が低下する。このため、増圧ピストン25が一端側に変位し、被増圧室16に燃料が増圧されてノズル室12に供給される。   When the solenoid valve 5 is actuated to open the back pressure chamber 45 of the three-way switching valve 6, the fuel in the back pressure chamber 45 of the three-way switching valve 6 flows into the return flow path 7 and the back pressure in the back pressure chamber 45 decreases. To do. As a result, the three-way switching valve 6 is activated, the valve body 60 starts to be displaced to the other end side, the valve part 61 is seated on the valve seat part 63, and the gap between the fuel flow path 39 and the fuel flow path 41 is established. While being closed, the valve portion 62 and the valve seat portion 64 are separated from each other, the space between the fuel flow path 41 and the fuel flow path 52 is opened, and the fuel in the pressure increasing operation chamber 34 flows out to the return flow path 8. The back pressure in the pressure increasing operation chamber 34 is reduced. For this reason, the pressure-increasing piston 25 is displaced to one end side, and the fuel is increased in pressure to the pressure increase chamber 16 and supplied to the nozzle chamber 12.

ノズル室12に増圧された燃料が供給されると、増圧したノズル室圧による付勢力が減圧したノズル背圧による付勢力とバネ13による付勢力との合力よりも強くなり、ニードル10が開弁方向に変位して噴孔9が開放される。これにより、増圧した噴射圧力により燃料が噴孔9から噴射され、略同時に、逆止弁22の1流路構造の燃料流路59、および燃料流路19を通じて背圧室11から燃料が流出する。   When the increased fuel is supplied to the nozzle chamber 12, the urging force due to the increased nozzle chamber pressure becomes stronger than the resultant force of the urging force due to the reduced nozzle back pressure and the urging force due to the spring 13, and the needle 10 The nozzle hole 9 is opened by being displaced in the valve opening direction. As a result, fuel is injected from the injection hole 9 by the increased injection pressure, and the fuel flows out from the back pressure chamber 11 through the fuel flow path 59 of the one flow path structure of the check valve 22 and the fuel flow path 19 almost simultaneously. To do.

このとき、燃料は逆止弁22を逆方向に流れるので逆止弁22が閉弁され、弁体内流路Bのみを通じて流出する燃料は所定の流量に規制されるため、背圧室11の圧力の減圧は緩やかとなって、従ってニードル10のリフト速度は遅くなる。   At this time, since the fuel flows through the check valve 22 in the reverse direction, the check valve 22 is closed, and the fuel flowing out only through the valve body passage B is regulated to a predetermined flow rate. The depressurization of the needle 10 becomes gradual, and therefore the lift speed of the needle 10 becomes slow.

また、増圧機構4による燃料の増圧が停止されると、増圧された燃料がノズル室12に流入しなくなる。これにより、ノズル室圧による付勢力が、ノズル背圧による付勢力とバネ13による付勢力との合力よりも弱くなるので、ニードル10が閉弁方向に変位し、同時に、逆止弁22が開弁してシート隙間流路Aを通じて燃料流路19から背圧室11に燃料が流入する。このとき、逆止弁22のシート隙間流路Aの燃料は順方向に低抵抗で多量に流れるので、噴孔9が迅速に閉鎖され燃料の噴射の急速な終了(シャープカット)が実現される。   Further, when the pressure increase of the fuel by the pressure increase mechanism 4 is stopped, the increased pressure fuel does not flow into the nozzle chamber 12. As a result, the urging force due to the nozzle chamber pressure becomes weaker than the resultant force of the urging force due to the nozzle back pressure and the urging force due to the spring 13, so that the needle 10 is displaced in the valve closing direction and at the same time the check valve 22 is opened. The fuel flows into the back pressure chamber 11 from the fuel passage 19 through the seat gap passage A. At this time, since the fuel in the seat gap flow path A of the check valve 22 flows in a large amount with low resistance in the forward direction, the injection hole 9 is quickly closed and a rapid end of fuel injection (sharp cut) is realized. .

〔実施例1の効果〕
実施例1のインジェクタ1によれば、背圧室11への燃料の流入、および、背圧室11からの燃料の流出がされるように、背圧室11と背圧室11の外部領域である高圧燃料源および低圧流路とを共用の流路を通じて接続する燃料流路19と、燃料流路19上に配され、内部に配設される弁体56が開弁した際に、弁体56のシート隙間76を通じて、外部領域から背圧室11への燃料の流入のみを許容するシート隙間流路Aと、弁体56の内部を通じて外部領域と背圧室11との間を燃料が流通可能に常時接続する弁体内流路Bとを有する逆止弁22とを備える。
[Effect of Example 1]
According to the injector 1 of the first embodiment, in the region outside the back pressure chamber 11 and the back pressure chamber 11, the fuel flows into the back pressure chamber 11 and the fuel flows out of the back pressure chamber 11. When a valve body 56 disposed on the fuel flow path 19 and disposed inside the fuel flow path 19 that connects a high-pressure fuel source and a low-pressure flow path through a common flow path is opened, the valve body The fuel flows between the outer space and the back pressure chamber 11 through the inside of the valve body 56 and the seat space flow path A that allows only the fuel to flow into the back pressure chamber 11 from the outer region through the seat clearance 76 of 56. And a check valve 22 having a valve body flow path B that is always connected.

そして、弁体56の外部領域の側の軸中心に燃料の流通量を規制する絞り部21を設け、この絞り部21と直列にバネ57の収容と燃料の流通とを兼ねるバネ室71を備えることによって、外部領域側へ付勢するとともに弁体内流路Bを形成する構成をしている。これにより、シート隙間流路Aの燃料の流れ方向と弁体内流路Bの燃料の流れ方向とを略合致させて、1本の燃料流路にまとめることが可能となって、また、背圧室11への燃料の流出入流量に適度な差を設けることが可能となるので、背圧室11の圧力の減圧および回復(加圧)の遅速が得られ、結果、ニードル10の動作速度を調整することができる。   In addition, a throttle portion 21 that regulates the amount of fuel flow is provided at the shaft center on the outer region side of the valve body 56, and a spring chamber 71 that serves as both housing of the spring 57 and fuel flow is provided in series with the throttle portion 21. Accordingly, the valve body channel B is formed while being urged toward the external region side. As a result, the fuel flow direction in the seat gap flow path A and the fuel flow direction in the valve body flow path B can be substantially matched to be combined into one fuel flow path. Since it is possible to provide an appropriate difference in the flow rate of the fuel flowing into and out of the chamber 11, the pressure in the back pressure chamber 11 is reduced and the recovery (pressurization) is slow. As a result, the operating speed of the needle 10 is reduced. Can be adjusted.

従って、噴射される燃料の噴射圧力が高圧でも、背圧室11からの燃料の流出流量は規制されて背圧室11の圧力の減圧はゆっくりと起こるためニードル10のリフト速度は遅く、噴孔9からの噴射量(噴射率)はゼロから急激に立ち上がるのではなく、緩やかに立ち上がることとなる。これにより、インジェクタ1による微量噴射を高精度に行うことが可能となる。また、背圧室11への燃料の流入流量は多量に行われ、背圧室11の圧力の回復(加圧)は迅速に起こるため、ニードル10の下降速度は速くなり燃料の噴射を急速に終了(シャープカット)することができる。   Therefore, even if the injection pressure of the injected fuel is high, the outflow flow rate of the fuel from the back pressure chamber 11 is regulated, and the pressure reduction in the back pressure chamber 11 occurs slowly, so the lift speed of the needle 10 is slow and the injection hole The injection amount (injection rate) from 9 does not rise suddenly from zero but rises gently. Thereby, it becomes possible to perform the micro injection by the injector 1 with high accuracy. Further, since the flow rate of fuel into the back pressure chamber 11 is large, and the pressure recovery (pressurization) of the back pressure chamber 11 occurs quickly, the descending speed of the needle 10 is increased and the fuel injection is rapidly performed. It can be finished (sharp cut).

また、本実施例では、弁体内流路Bを、外部領域の側に配され外部領域と背圧室11との間の燃料の流通量を規制する絞り部21を弁体56の軸中心に、また、弁体56のバネ室71と直列に配設して構成し、燃料をシート隙間流路Aを通過する燃料の流れ方向と略合致させて流通させるので、構造が簡素化し、燃料を1本の油圧回路としてまとめることが可能となって、体格を小さく、コンパクト化できる。   In the present embodiment, the valve body channel B is disposed on the outer region side, and the throttle portion 21 that regulates the amount of fuel flowing between the outer region and the back pressure chamber 11 is centered on the shaft of the valve body 56. In addition, since it is arranged in series with the spring chamber 71 of the valve body 56 and the fuel is made to flow in a manner substantially matching the flow direction of the fuel passing through the seat gap flow path A, the structure is simplified and the fuel is supplied. It is possible to combine them as a single hydraulic circuit, and the size and size can be reduced.

〔変形例〕
実施例1のインジェクタ1では、燃料を背圧室11の圧力よりも高圧に増圧してノズル室12に供給する増圧機構4と、また、背圧室11は、燃料を高圧状態で蓄圧するコモンレール2と常時連通させる場合の例について本発明の説明をしたが、これに限ることなく、増圧機構4を介在させない通常のインジェクタにおいても、また、背圧室11とコモンレール2とが常時連通しない構成のインジェクタにおいても、いずれの場合においても、本発明は採用でき、同様な効果を得ることができる。
[Modification]
In the injector 1 of the first embodiment, the pressure increasing mechanism 4 that increases the fuel pressure to be higher than the pressure in the back pressure chamber 11 and supplies the fuel to the nozzle chamber 12, and the back pressure chamber 11 stores the fuel in a high pressure state. The present invention has been described with respect to an example in which the common rail 2 is always in communication. However, the present invention is not limited to this example, and the back pressure chamber 11 and the common rail 2 are always in communication even in a normal injector that does not include the pressure increasing mechanism 4. The present invention can be employed in any case even in an injector having a configuration that does not, and similar effects can be obtained.

インジェクタの構成と燃料の流路を模式化して示す説明図である(実施例1)。It is explanatory drawing which shows the structure of an injector, and the flow path of a fuel typically (Example 1). (a)は、絞り部を備えた逆止弁の構成を示す軸断面図であり、(b)はX−X部矢視の断面図であり、(c)はY−Y部矢視の断面図である(実施例1)。(A) is an axial sectional view showing the configuration of a check valve provided with a throttle part, (b) is a sectional view taken along the line XX, and (c) is taken along the line YY. (Example 1) which is sectional drawing.

符号の説明Explanation of symbols

1 インジェクタ
2 コモンレール(高圧燃料源、燃料の供給源)
3 ノズル
4 増圧機構
5 電磁弁
6 3方切替弁
7、8 リターン流路(低圧流路)
9 噴孔
10 ニードル
11 背圧室
12 ノズル室
13 バネ
19 燃料流路
20 弁ボディ
21 絞り部
22 逆止弁
56 弁体
57 バネ(バネ部材)
71 バネ室
76 シート隙間
A シート隙間流路
B 弁体内流路
1 Injector 2 Common rail (high pressure fuel source, fuel supply source)
3 Nozzle 4 Pressure increase mechanism 5 Solenoid valve 6 Three-way switching valve 7, 8 Return flow path (low pressure flow path)
DESCRIPTION OF SYMBOLS 9 Injection hole 10 Needle 11 Back pressure chamber 12 Nozzle chamber 13 Spring 19 Fuel flow path 20 Valve body 21 Restriction part 22 Check valve 56 Valve body 57 Spring (spring member)
71 Spring chamber 76 Seat gap A Sheet gap channel B Valve body channel

Claims (5)

ニードルと、
先端に設けられて燃料を噴出する噴孔と、内部に摺動可能に配設されて前記噴孔を開閉する前記ニードルに対し、開弁あるいは閉弁方向に圧力を及ぼすとともに前記ニードルの開弁時に前記噴孔に燃料を供給するように燃料が流出入するノズル室と、が形成される弁ボディと、
前記ニードルの反噴孔側に設けられ、前記ニードルに対し開弁あるいは閉弁方向に圧力を及ぼすように燃料が流出入する背圧室と、を有するインジェクタにおいて、
前記背圧室への燃料の流入、および、前記背圧室からの燃料の流出がされるように、前記背圧室と前記背圧室の外部領域である高圧燃料源および低圧流路とを共用の流路を通じて接続する燃料流路と、
前記燃料流路上に配され、内部に配設される弁体の弁部がシート部から離座して開弁した際に、前記弁体のシート隙間を通じて、前記外部領域から前記背圧室への燃料の流入のみを許容するシート隙間流路と、前記弁体の内部を通じて前記外部領域と前記背圧室との間を燃料が流通可能に常時接続する弁体内流路と、を有する逆止弁と、を備え、
前記逆止弁の前記弁体は、前記弁部の反対側が開放端をなしていて、この開放端には、前記弁体内通路を流通した燃料が通過するスリットが径方向に複数設けられており、前記スリットの径方向外側に前記シート隙間流路と前記弁体内流路を通過した燃料が合流する溜まり部を有することを特徴とするインジェクタ。
Needle,
Pressure is applied in the valve opening or closing direction to a nozzle hole provided at the tip for ejecting fuel and the needle slidably disposed therein to open and close the nozzle hole, and the needle is opened. A valve body in which a nozzle chamber into which fuel flows in and out to supply fuel to the nozzle hole is sometimes formed;
A back pressure chamber that is provided on the side opposite to the injection hole of the needle and into which fuel flows in and out so as to exert pressure on the needle in a valve opening or closing direction;
The back pressure chamber and a high pressure fuel source and a low pressure flow path that are external regions of the back pressure chamber are arranged so that fuel flows into the back pressure chamber and fuel flows out of the back pressure chamber. A fuel flow path connected through a shared flow path;
When the valve portion of the valve body arranged on the fuel flow path and separated from the seat portion opens and opens , the seat space of the valve body passes through the gap between the external region and the back pressure chamber. A non-return check having a seat gap flow path that allows only fuel to flow in, and a valve body flow path that always connects the outer region and the back pressure chamber through the inside of the valve body so that fuel can flow. A valve ,
The valve body of the check valve has an open end opposite to the valve portion, and the open end is provided with a plurality of radial slits through which the fuel flowing through the valve body passage passes. An injector having a reservoir portion where fuel that has passed through the seat gap flow path and the valve body flow path joins on a radially outer side of the slit .
請求項1に記載のインジェクタにおいて、
前記弁体内流路は、前記弁体の軸中心に配設され、前記弁体の内部における、前記シート隙間流路を通過する燃料の流れ方向と、前記弁体内流路を通過する燃料の流れ方向とを略合致させることを特徴とするインジェクタ。
The injector according to claim 1, wherein
The valve body flow path is disposed at the axial center of the valve body, and the flow direction of fuel passing through the seat gap flow path and the flow of fuel passing through the valve body flow path inside the valve body An injector characterized by substantially matching the direction.
請求項1または2に記載のインジェクタにおいて、
前記弁体内流路は、前記外部領域の側に配され前記外部領域と前記背圧室との間の燃料の流通量を規制する絞り部と、該絞り部と直列に配され前記弁体を前記外部領域の側に付勢するバネ部材の収容と燃料の流通とを兼ねるバネ室と、を備えることを特徴とするインジェクタ。
Injector according to claim 1 or 2,
The valve body flow path is disposed on the outer region side and restricts the amount of fuel flowing between the outer region and the back pressure chamber, and is disposed in series with the restrictor. An injector comprising: a spring chamber that serves as both housing of a spring member biased toward the outer region side and fuel circulation.
請求項1ないし3のいずれか1つに記載のインジェクタにおいて、
燃料を前記背圧室の圧力よりも高圧に増圧して前記ノズル室に供給する増圧機構を備え、前記増圧機構により増圧された燃料を前記ノズル室に供給して噴射することを特徴とするインジェクタ。
The injector according to any one of claims 1 to 3,
A pressure-increasing mechanism that boosts the fuel to a pressure higher than the pressure in the back pressure chamber and supplies the fuel to the nozzle chamber, and supplies the fuel boosted by the pressure-increasing mechanism to the nozzle chamber and injects the fuel; Injector.
請求項1ないし4のいずれか1つに記載のインジェクタにおいて、
前記背圧室は、燃料を蓄圧するコモンレールと前記燃料流路を介して連通し、
前記逆止弁を経由して燃料が流出入することを特徴とするインジェクタ。
Injector according to any one of claims 1 to 4,
The back pressure chamber communicates with the common rail for accumulating fuel via the fuel flow path,
An injector wherein fuel flows in and out through the check valve.
JP2007009801A 2007-01-19 2007-01-19 Injector Expired - Fee Related JP4519143B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007009801A JP4519143B2 (en) 2007-01-19 2007-01-19 Injector
DE102008000082.5A DE102008000082B4 (en) 2007-01-19 2008-01-17 Injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009801A JP4519143B2 (en) 2007-01-19 2007-01-19 Injector

Publications (2)

Publication Number Publication Date
JP2008175155A JP2008175155A (en) 2008-07-31
JP4519143B2 true JP4519143B2 (en) 2010-08-04

Family

ID=39564101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009801A Expired - Fee Related JP4519143B2 (en) 2007-01-19 2007-01-19 Injector

Country Status (2)

Country Link
JP (1) JP4519143B2 (en)
DE (1) DE102008000082B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732834B2 (en) * 2010-03-31 2015-06-10 株式会社デンソー Fuel injection device
JP5625837B2 (en) 2010-03-31 2014-11-19 株式会社デンソー Fuel injection device
JP5310806B2 (en) * 2011-01-07 2013-10-09 株式会社デンソー Fuel injection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003833A (en) * 1999-06-18 2001-01-09 Mitsubishi Motors Corp Accumulator type fuel injector
JP2006029281A (en) * 2004-07-21 2006-02-02 Toyota Central Res & Dev Lab Inc Fuel injection device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2541379B1 (en) * 1983-02-21 1987-06-12 Renault IMPROVEMENT IN ELECTROMAGNETICALLY CONTROLLED INJECTION SYSTEMS FOR A PRESSURE-TIME DIESEL ENGINE WHERE THE INJECTOR NEEDLE IS DRIVEN BY THE DISCHARGE THEN LOADING A CAPACITY
CH668621A5 (en) * 1986-01-22 1989-01-13 Dereco Dieselmotoren Forschung FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE.
JP2586613B2 (en) * 1988-11-22 1997-03-05 日本電装株式会社 Fuel injection device
JP2684731B2 (en) * 1988-12-12 1997-12-03 株式会社デンソー Fuel injection device
JP3156310B2 (en) * 1991-10-25 2001-04-16 株式会社デンソー Fuel injection device
JP3458451B2 (en) * 1994-05-30 2003-10-20 株式会社デンソー Fuel injection device
JP2885076B2 (en) 1994-07-08 1999-04-19 三菱自動車工業株式会社 Accumulator type fuel injection device
DE10158951A1 (en) 2001-12-03 2003-06-12 Daimler Chrysler Ag Fuel Injection system for IC engine, operates with pressure conversion, has connection from control chamber and admission chamber to return line passing via common valve connection
DE10229417A1 (en) * 2002-06-29 2004-01-15 Robert Bosch Gmbh Accumulator injection system with vario nozzle and pressure booster
DE102004024527A1 (en) * 2004-05-18 2005-12-15 Robert Bosch Gmbh Fuel injection system
JP4286770B2 (en) * 2004-12-02 2009-07-01 株式会社日本自動車部品総合研究所 Control valve and fuel injection valve having the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003833A (en) * 1999-06-18 2001-01-09 Mitsubishi Motors Corp Accumulator type fuel injector
JP2006029281A (en) * 2004-07-21 2006-02-02 Toyota Central Res & Dev Lab Inc Fuel injection device

Also Published As

Publication number Publication date
DE102008000082A1 (en) 2008-07-31
JP2008175155A (en) 2008-07-31
DE102008000082B4 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP4286770B2 (en) Control valve and fuel injection valve having the same
JP4914867B2 (en) Fuel injector
JP5103138B2 (en) High pressure liquid supply pump
US8100110B2 (en) Fuel injector with selectable intensification
JP2002531769A (en) Hydraulically actuated fuel injector with seating pin actuator
JP4226011B2 (en) Fuel injection device
JP4519143B2 (en) Injector
KR20020005007A (en) Double acting two stage hydraulic control device
JP4134979B2 (en) Fuel injection device for internal combustion engine
US8161947B2 (en) Pressure boosting system for at least one fuel injector
WO2005066485A1 (en) Fuel injector with piezoelectric actuator and method of use
JP4107277B2 (en) Fuel injection device for internal combustion engine
CA2367618A1 (en) Fuel pressure delay cylinder
US20070215714A1 (en) Injector
JP2008304017A (en) Three-way selector valve and fuel injection device using the same
JP4062844B2 (en) Fuel injection device
US6913212B2 (en) Oil activated fuel injector control with delay plunger
JP2008232026A (en) Injector
JP4239945B2 (en) Fuel injection valve
JP4506744B2 (en) Three-way switching valve and injector provided with the same
JP2005320904A (en) Fuel injection valve
JP4134957B2 (en) Fuel injection device for internal combustion engine
JP4415962B2 (en) Injector
JP4218630B2 (en) Fuel injection device for internal combustion engine
JP4407655B2 (en) Injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees