WO2013147078A1 - Hydraulic-drive fuel injection device and internal combustion engine - Google Patents

Hydraulic-drive fuel injection device and internal combustion engine Download PDF

Info

Publication number
WO2013147078A1
WO2013147078A1 PCT/JP2013/059370 JP2013059370W WO2013147078A1 WO 2013147078 A1 WO2013147078 A1 WO 2013147078A1 JP 2013059370 W JP2013059370 W JP 2013059370W WO 2013147078 A1 WO2013147078 A1 WO 2013147078A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
pressure
solenoid valve
valve
side logic
Prior art date
Application number
PCT/JP2013/059370
Other languages
French (fr)
Japanese (ja)
Inventor
昭仁 青田
浩二 江戸
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020147026969A priority Critical patent/KR101623679B1/en
Priority to CN201380015054.9A priority patent/CN104169565B/en
Publication of WO2013147078A1 publication Critical patent/WO2013147078A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders

Definitions

  • the present invention relates to a hydraulically driven fuel injection device and an internal combustion engine that inject fuel into an internal combustion engine such as a diesel engine.
  • the fuel injection pressure mode after a certain period from the start of fuel injection becomes the injection pressure mode with a large injection pressure increase rate, that is, by setting it as a so-called high fuel injection pressure mode. It is said that fuel consumption is reduced as well as the increase is suppressed and NOx emissions are reduced.
  • the present invention has been made in view of the above circumstances, and shortens the heat receiving period corresponding to the shortening of the fuel injection period, and the fuel injection pressure mode after a predetermined period from the start of fuel injection is the injection pressure increase rate.
  • An object of the present invention is to provide a hydraulically driven fuel injection device and an internal combustion engine capable of being in a so-called high fuel injection pressure mode which is a large injection pressure mode.
  • the hydraulically-driven fuel injection system includes a pressure-increasing device for increasing the pressure of hydraulic fluid by a pressure-increasing piston and transmitting the pressure to a plunger of a fuel injection pump, and an open side logic that controls supply of hydraulic fluid to the pressure booster.
  • a first solenoid valve for controlling the opening and closing of a valve and a closed side logic valve for controlling the discharge of hydraulic fluid from the pressure booster, and at least one open side logic valve for controlling the supply of hydraulic fluid to the pressure booster;
  • a hydraulically driven fuel injection device comprising: at least one second solenoid valve for opening and closing control; and a controller for opening and closing control of the first solenoid valve and the second solenoid valve, the controller Controls the opening / closing timing of the first solenoid valve and the second solenoid valve, and adjusts the lift of the first solenoid valve and the second solenoid valve to control the fuel injection. Fuel injection pressure to be injected from the pump and reach the desired fuel injection pressure.
  • the fuel injection pressure injected from the fuel injection pump is reduced to a desired fuel injection pressure, that is, the heat reception period corresponding to the shortening of the fuel injection period and
  • the fuel injection pressure mode after a predetermined period of time can be the injection pressure mode with a large injection pressure increase rate, that is, a so-called post-high fuel injection pressure mode.
  • the diameters of the lift and the throttle of the first solenoid valve and / or the number of the second solenoid valve, the lift of the first solenoid valve and / or the second solenoid valve may be appropriately selected.
  • a wide variety of fuel injection pressure modes may be created by selecting as needed.
  • An internal combustion engine of the present invention comprises the above-described hydraulically driven fuel injection device.
  • the heat receiving period corresponding to the shortening of the fuel injection period is shortened, and the fuel injection pressure mode after a predetermined period from the start of the fuel injection becomes the injection pressure mode having a large injection pressure increase rate. It has a hydraulically driven fuel injection device capable of being in the so-called high fuel injection pressure mode. Therefore, it is possible to suppress the in-cylinder maximum pressure and the increase in combustion temperature, reduce the amount of NOx (nitrogen oxide) emissions, and reduce fuel consumption.
  • the heat reception period corresponding to the shortening of the fuel injection period is shortened, and the fuel injection pressure mode after a predetermined period from the start of fuel injection shows an injection pressure with a large injection pressure increase rate. It can be a so-called back high fuel injection pressure mode which becomes a mode.
  • FIG. 1 is a cross-sectional view of a fuel injection pump which is a component of a hydraulic pressure-driven fuel injection device according to an embodiment of the present invention.
  • A is a chart showing the relationship between time and the lift of the open side logic valve (main valve) which is one component of the hydraulic drive fuel injection device according to one embodiment of the present invention
  • b is the present embodiment
  • It is a graph which shows the relationship between the fuel injection pressure of the fuel injection pump which is one component of the hydraulic drive fuel injection system which concerns on these, and time.
  • FIG. 1 is a cross-sectional view of an open side logic valve (main valve) which is a component of a hydraulic pressure-driven fuel injection device according to an embodiment of the present invention.
  • FIG. 1 is a system diagram of a hydraulic drive fuel injection device according to the present embodiment
  • FIG. 2 is a cross sectional view of a fuel injection pump which is one component of the hydraulic drive fuel injection device according to the present embodiment
  • FIG. 3 (a) is a chart showing the relationship between time and the lift of the open side logic valve (main valve) which is one component of the hydraulic drive fuel injection device according to the present embodiment
  • FIG. 3 (b) is a diagram. It is a graph which shows the relationship between the fuel injection pressure of the fuel injection pump which is one component of the hydraulic-drive fuel-injection apparatus concerning this embodiment, and time.
  • FIG. 4 is a cross-sectional view of an open side logic valve (main valve) which is a component of the hydraulically driven fuel injection device according to the present embodiment.
  • the fuel injection pump 1 includes a pump case 2, a plunger barrel 3 fixed in the pump case 2, a plunger 4 slidably fitted in the plunger barrel 3, and a plunger A discharge valve 5 fixed to the top of the barrel 3 and a pressure booster 6 are provided.
  • a plunger chamber 7 is defined by the inner peripheral surface of the plunger barrel 3 and the upper surface of the plunger 4.
  • Reference numeral 8 in FIG. 2 denotes a tappet connected to the lower part of the plunger 4
  • reference numeral 9 denotes a plunger spring for urging the plunger 4 in a direction to push down
  • reference numeral 10 denotes a spring support for supporting the plunger spring 9. It is.
  • the pressure increasing device 6 includes a pressure increasing portion case 21 fixed to the lower portion of the pump case 2.
  • a pressure increasing portion case 21 fixed to the lower portion of the pump case 2.
  • two stepped pistons having different inner diameters, that is, a large cross-sectional area are provided in the pressure increasing portion case 21, two stepped pistons having different inner diameters, that is, a large cross-sectional area are provided.
  • the large diameter piston 22 and the piston rod 23 integral with the large diameter piston 22 and smaller in diameter than this are fitted in a reciprocally slidable manner.
  • the piston rod 23 is fixed to the large diameter piston 22, and the upper surface of the piston rod 23 is in contact with the lower surface of the tappet 8.
  • symbol 24 in FIG. 2 is the small oil chamber which the piston rod 23 faces, and the small oil chamber 24 is always supplied with hydraulic fluid from the low voltage
  • reference numeral 25 in FIG. 2 is a large oil chamber in which the large diameter piston 22 faces
  • reference numerals 31 and 71 denote open side logic valves (main valves) for controlling the supply of hydraulic oil to the large oil chamber 25 of the pressure booster 6, and reference numeral 32 denotes a large valve of the pressure booster 6. It is a closed side logic valve that controls the discharge of hydraulic fluid from the oil chamber 25.
  • the outlet ports of the open side logic valves 31 and 71 and the inlet port of the closed side logic valve 32 are connected to the large oil chamber 25 of the pressure booster 6 via the hydraulic oil pipe 33, respectively.
  • Reference numeral 34 is a (first) solenoid valve for opening and closing control of the opening side logic valve 31 and the closing side logic valve 32
  • reference numeral 35 is a (second) solenoid valve for opening and closing control of the opening side logic valve 71.
  • Reference numeral 36 in FIG. 1 denotes a hydraulic oil pump for supplying hydraulic oil for controlling the start and end of fuel injection
  • reference numeral 37 denotes a hydraulic oil supply pipe connected to the discharge port of the hydraulic oil pump 36. It is.
  • Reference numeral 38 is an accumulator provided in the hydraulic oil supply pipe 37.
  • reference numeral 39 in FIG. 1 denotes an oil tank
  • reference numeral 40 denotes a hydraulic oil return pipe connected to the oil tank 39 from the outlet port of the closing side logic valve 32.
  • the hydraulic oil inlet ports of the open side logic valves 31 and 71 are respectively connected to the hydraulic oil supply pipe 37, and the outlet port of the closed side logic valve 32 is connected to the oil tank 39 via the hydraulic oil return pipe 40 .
  • the back pressure port of the open side logic valve 31 is connected to the solenoid valve 34 via the back pressure pipe 41, and the back pressure port of the close side logic valve 32 is connected to the solenoid valve 34 via the back pressure pipe 42
  • the back pressure port of the open side logic valve 71 is connected to the solenoid valve 35 via the back pressure pipe 43.
  • the back pressure port of the closing logic valve 32 is always open to the side of the oil tank 39 by the solenoid valve 34 except during fuel injection.
  • Reference numeral 51 in FIG. 1 is a hydraulic oil pipe branched from the hydraulic oil supply pipe 37 and connected to the inlet port of the solenoid valve 34, and reference numeral 52 is a branch from the hydraulic oil supply pipe 37 and inlet of the solenoid valve 35. It is a hydraulic oil pipe connected to the port.
  • symbol 53 is a throttle provided in the middle of the hydraulic fluid pipe 51, and the code
  • reference numeral 55 in FIG. 1 denotes a back pressure return pipe connected to the hydraulic fluid return pipe 40 from the closing side logic valve return port of the solenoid valve 34 and the closing side logic valve return port of the solenoid valve 35.
  • Reference numeral 56 denotes a throttle provided in the middle of the back pressure return pipe 15 extending from the close side logic valve return port of the solenoid valve 34 to the hydraulic fluid return pipe 40.
  • Reference numeral 57 denotes a throttle provided in the middle of the back pressure return pipe 15 extending from the close side logic valve return port of the solenoid valve 35 to the hydraulic fluid return pipe 40.
  • Reference numeral 58 in FIG. 1 is connected from the open side logic valve return port of the solenoid valve 34 to the hydraulic fluid return pipe 40 to the oil tank 39 via the back pressure return pipe 55 (or directly operated from the return port)
  • Reference numeral 59 denotes a throttling provided in the middle of the escape oil passage.
  • a hydraulic oil pipe is connected to the back pressure port of the open side logic valve 31 via the back pressure pipe 41 during a period in which fuel injection is not performed.
  • the hydraulic pressure controlled at the flow rate is applied by the throttle 53 provided at 51, and the flow rate is controlled by the throttle 54 provided at the hydraulic fluid pipe 52 via the back pressure pipe 43 at the back pressure port of the open side logic valve 71 Applied hydraulic pressure is applied.
  • the back pressure port of the closing side logic valve 32 is opened to the back pressure side return pipe 55 whose flow rate is controlled by the throttle 56.
  • the back pressure port of the open side logic valve 31 is opened by the solenoid valve 34, and the back pressure port of the close side logic valve 32 which is always open is closed.
  • the back pressure port of the open logic valve 71 is opened by the valve 35.
  • the inlet port and the outlet port of the open side logic valve 31 are communicated, the inlet port and the return port of the closed side logic valve 32 are shut off, and the hydraulic oil from the hydraulic oil pump 36 is supplied to the hydraulic oil supply pipe.
  • 37 is supplied to the large oil chamber 25 of the pressure increasing device 6 through the opening side logic valve 31 and the hydraulic oil pipe 33, and after a predetermined time, the inlet port and the outlet port of the opening side logic valve 71 are communicated and operated
  • the hydraulic oil from the oil pump 36 is supplied from the hydraulic oil supply pipe 37 to the large oil chamber 25 of the pressure intensifier 6 through the open side logic valve 71 and the hydraulic oil pipe 33.
  • the hydraulic pressure in the large oil chamber 25 pushes up the plunger 4 against the spring force of the plunger spring 9 via the piston rod 23 and the tappet 8 so that the fuel in the plunger chamber 7 is pressurized.
  • the pressure is increased and pressure-fed to a fuel injection valve (not shown) via the discharge valve 5 to start fuel injection.
  • Fig. 3 shows the opening and closing states of the open side logic valve 31, 71 per lift stroke (lift vs. time) and changes in fuel injection pressure.
  • the back pressure port of the open side logic valve 31 is closed by the solenoid valve 34, the back pressure port of the close side logic valve 32 is opened, and the back pressure port of the open side logic valve 71 is opened by the solenoid valve 35. It is closed. Thereby, the hydraulic oil inlet port and the outlet port of the open side logic valve 31 are shut off, and the hydraulic oil inlet port and the outlet port of the open side logic valve 71 are shut off.
  • the hydraulic fluid in the large oil chamber 25 of the pressure booster 6 communicates with the return port, and the hydraulic fluid in the large oil chamber 25 of the pressure booster 6 is oil via the back pressure return pipe 55 and the hydraulic oil return pipe 40 whose flow rate is regulated by the throttle 56. It is returned to the tank 39.
  • the plunger 4 is lowered by the spring force of the plunger spring 9 and the hydraulic pressure of the low pressure hydraulic oil introduced to the small oil chamber 24 via the low pressure hydraulic oil pipe 60.
  • the lifts of the open side logic valves 31, 71 shown in FIG. 3A are provided at one end of a valve body 92 fitted so as to be reciprocably slidable in the valve casing 91 shown in FIG.
  • the stroke (moving range) S of the piston 93 integrally formed with the body 92 is adjusted (increased or decreased) by changing the thickness (height) of the stroke adjusting piece 94 that adjusts (increases or decreases) S.
  • the lift of the open side logic valve 31 is smaller than the lift of the open side logic valve 71, that is, the thickness of the stroke adjustment piece 94 of the open side logic valve 31 is the open side logic valve It is set to be thicker than the thickness of the stroke adjustment piece 94 of FIG.
  • the inclination when the open side logic valve 31 shown in FIG. 3A is opened is determined by the throttle 59, and the inclination when the open side logic valve 71 shown in FIG.
  • the inclination when the open side logic valve 31 shown in FIG. 3A is closed is determined by the aperture 53, and the inclination when the open side logic valve 71 shown in FIG. 3A is closed is determined by the aperture 54.
  • symbol 95 in FIG. 4 is a spring which biases the valve body 92 and the piston 93 in the closing direction.
  • the fuel injection pressure injected from the fuel injection pump 1 is shortened to a desired fuel injection pressure, that is, a heat receiving period corresponding to shortening of the fuel injection period.
  • the fuel injection pressure mode after a predetermined period from the start of fuel injection can be the injection pressure mode with a large injection pressure increase rate, that is, the so-called high fuel injection pressure mode.
  • the heat reception period corresponding to the shortening of the fuel injection period is shortened, and the fuel injection pressure after a predetermined period from the fuel injection start
  • the mode can be a so-called post-high fuel injection pressure mode in which the injection pressure mode has a large injection pressure increase rate. Therefore, it is possible to suppress the in-cylinder maximum pressure and the increase in combustion temperature, reduce the amount of NOx (nitrogen oxide) emissions, and reduce fuel consumption.

Abstract

The purpose of the present invention is to shorten heat receiving time that corresponds to a shortening in fuel injection time and to make a fuel injection pressure mode after a prescribed amount of time has passed since the start of fuel injection to become an injection mode with a high rate of increase in injection pressure. Provided are the following: a first electromagnetic valve (34) that controls the opening and closing of an open-side logic valve (31) that governs the supply of operating oil to a pressurization device (6) that increases operating oil pressure through a pressurization piston (22) and transmits such pressure to a plunger (4) of a fuel injection pump (1) and of an closed-side logic valve (32) that governs the discharge of operating oil from the pressurization device (6)respectively; a second electromagnetic valve (35) that controls the opening and closing of an open-side logic valve (71) that governs the supply of operating oil to the pressurization device (6); and a controller that controls the opening and closing of the electromagnetic valves (34, 35). The controller controls the opening and closing timing of the electromagnetic valves (34, 35) and adjusts the lift of the electromagnetic valves (34, 35) so that the injection pressure of the fuel injected from the fuel injection pump (1) reaches a desired fuel injection pressure.

Description

油圧駆動燃料噴射装置および内燃機関Hydraulic drive fuel injection device and internal combustion engine
 本発明は、ディーゼル機関等の内燃機関に燃料を噴射する油圧駆動燃料噴射装置および内燃機関に関する。 The present invention relates to a hydraulically driven fuel injection device and an internal combustion engine that inject fuel into an internal combustion engine such as a diesel engine.
 ディーゼル機関等の内燃機関に燃料を噴射する油圧駆動燃料噴射装置としては、例えば、特許文献1に開示されたものが知られている。 As a hydraulic drive fuel injection device which injects a fuel to internal combustion engines, such as a diesel engine, what was indicated by patent documents 1 is known, for example.
特開2004-100644号公報JP 2004-100644 A
 内燃機関では、一般的に筒内燃焼サイクルの改善のために、受熱期間の短縮が求められている一方、急激な燃焼温度上昇によりNOx(窒素酸化物)の増加を伴ってしまう。そこで、燃料噴射開始から一定期間を経た後の燃料噴射圧力モードが噴射圧力上昇率の大きい噴射圧力モードとなる、いわゆる後高の燃料噴射圧力モードとすることにより、筒内最高圧力および燃焼温度の上昇が抑制されてNOxの排出量が低減されるとともに、燃費が低減されるといわれている。 In an internal combustion engine, it is generally required to shorten a heat receiving period to improve an in-cylinder combustion cycle, but a rapid increase in combustion temperature causes an increase in NOx (nitrogen oxide). Therefore, the fuel injection pressure mode after a certain period from the start of fuel injection becomes the injection pressure mode with a large injection pressure increase rate, that is, by setting it as a so-called high fuel injection pressure mode. It is said that fuel consumption is reduced as well as the increase is suppressed and NOx emissions are reduced.
 これに対して、上記の特許文献1に開示されたものでは、後高の燃料噴射圧力モードとなっているものの受熱期間をさらに短縮させる(後高の燃料噴射圧力モードの期間を短縮させる)余地があり、上記の特許文献1に開示されたもののさらなる改善が求められていた。 On the other hand, in the one disclosed in the above-mentioned Patent Document 1, there is room for further shortening the heat receiving period (while shortening the period of the high fuel injection pressure mode) although it is in the high fuel injection pressure mode. There has been a need for further improvement of what has been disclosed in the above-mentioned Patent Document 1.
 本発明は、上記の事情に鑑みてなされたもので、燃料噴射期間の短縮に対応した受熱期間を短縮させるとともに、燃料噴射開始から一定期間を経た後の燃料噴射圧力モードが噴射圧力上昇率の大きい噴射圧力モードとなる、いわゆる後高の燃料噴射圧力モードとすることができる油圧駆動燃料噴射装置および内燃機関を提供することを目的とする。 The present invention has been made in view of the above circumstances, and shortens the heat receiving period corresponding to the shortening of the fuel injection period, and the fuel injection pressure mode after a predetermined period from the start of fuel injection is the injection pressure increase rate. An object of the present invention is to provide a hydraulically driven fuel injection device and an internal combustion engine capable of being in a so-called high fuel injection pressure mode which is a large injection pressure mode.
 
 本発明の油圧駆動燃料噴射装置は、作動油の圧力を増圧ピストンにより増圧して燃料噴射ポンプのプランジャに伝達する増圧装置と、前記増圧装置への作動油の供給をつかさどる開き側ロジック弁および前記増圧装置からの作動油の排出をつかさどる閉じ側ロジック弁をそれぞれ開閉制御する第1の電磁弁と、前記増圧装置への作動油の供給をつかさどる少なくとも一つの開き側ロジック弁を開閉制御する少なくとも一つの第2の電磁弁と、前記第1の電磁弁および前記第2の電磁弁をそれぞれ開閉制御する制御器と、を備えた油圧駆動燃料噴射装置であって、前記制御器により前記第1の電磁弁および前記第2の電磁弁の開閉時期を制御するとともに、前記第1の電磁弁および前記第2の電磁弁のリフトを調整することにより、前記燃料噴射ポンプから噴射される燃料噴射圧力が、所望の燃料噴射圧力となるようにした。

The hydraulically-driven fuel injection system according to the present invention includes a pressure-increasing device for increasing the pressure of hydraulic fluid by a pressure-increasing piston and transmitting the pressure to a plunger of a fuel injection pump, and an open side logic that controls supply of hydraulic fluid to the pressure booster. A first solenoid valve for controlling the opening and closing of a valve and a closed side logic valve for controlling the discharge of hydraulic fluid from the pressure booster, and at least one open side logic valve for controlling the supply of hydraulic fluid to the pressure booster; A hydraulically driven fuel injection device comprising: at least one second solenoid valve for opening and closing control; and a controller for opening and closing control of the first solenoid valve and the second solenoid valve, the controller Controls the opening / closing timing of the first solenoid valve and the second solenoid valve, and adjusts the lift of the first solenoid valve and the second solenoid valve to control the fuel injection. Fuel injection pressure to be injected from the pump and reach the desired fuel injection pressure.
 本発明の油圧駆動燃料噴射装置によれば、燃料噴射ポンプから噴射される燃料噴射圧力を、所望の燃料噴射圧力、すなわち、燃料噴射期間の短縮に対応した受熱期間を短縮させるとともに、燃料噴射開始から一定期間を経た後の燃料噴射圧力モードが噴射圧力上昇率の大きい噴射圧力モードとなる、いわゆる後高の燃料噴射圧力モードとすることができる。 According to the hydraulically driven fuel injection device of the present invention, the fuel injection pressure injected from the fuel injection pump is reduced to a desired fuel injection pressure, that is, the heat reception period corresponding to the shortening of the fuel injection period and The fuel injection pressure mode after a predetermined period of time can be the injection pressure mode with a large injection pressure increase rate, that is, a so-called post-high fuel injection pressure mode.
 上記の油圧駆動燃料噴射装置において、前記第1の電磁弁および/または前記第2の電磁弁の数、前記第1の電磁弁および/または前記第2の電磁弁のリフト、絞りの径を適宜必要に応じて選択することにより、多種多様の燃料噴射圧力モードを作り出すようにしてもよい。 In the above-described hydraulically driven fuel injection device, the diameters of the lift and the throttle of the first solenoid valve and / or the number of the second solenoid valve, the lift of the first solenoid valve and / or the second solenoid valve may be appropriately selected. A wide variety of fuel injection pressure modes may be created by selecting as needed.
 このような油圧駆動燃料噴射装置によれば、電磁弁の数、電磁弁のリフト、絞りの径を適宜必要に応じて選択することにより、多種多様の燃料噴射圧力モードを作り出すことができ、燃料噴射率制御の自由度を広げることができる。 According to such a hydraulic drive fuel injection device, it is possible to create a wide variety of fuel injection pressure modes by selecting the number of solenoid valves, lifts of solenoid valves, and diameters of throttles as needed. The degree of freedom in injection rate control can be expanded.
 本発明の内燃機関は、上記の油圧駆動燃料噴射装置を具備している。 An internal combustion engine of the present invention comprises the above-described hydraulically driven fuel injection device.
 本発明の内燃機関によれば、燃料噴射期間の短縮に対応した受熱期間を短縮させるとともに、燃料噴射開始から一定期間を経た後の燃料噴射圧力モードが噴射圧力上昇率の大きい噴射圧力モードとなる、いわゆる後高の燃料噴射圧力モードとすることができる油圧駆動燃料噴射装置を具備している。そのため、筒内最高圧力および燃焼温度の上昇を抑制することができ、NOx(窒素酸化物)の排出量を低減させることができるとともに、燃費を低減させることができる。 According to the internal combustion engine of the present invention, the heat receiving period corresponding to the shortening of the fuel injection period is shortened, and the fuel injection pressure mode after a predetermined period from the start of the fuel injection becomes the injection pressure mode having a large injection pressure increase rate. It has a hydraulically driven fuel injection device capable of being in the so-called high fuel injection pressure mode. Therefore, it is possible to suppress the in-cylinder maximum pressure and the increase in combustion temperature, reduce the amount of NOx (nitrogen oxide) emissions, and reduce fuel consumption.
 本発明の油圧駆動燃料噴射装置によれば、燃料噴射期間の短縮に対応した受熱期間を短縮させるとともに、燃料噴射開始から一定期間を経た後の燃料噴射圧力モードが噴射圧力上昇率の大きい噴射圧力モードとなる、いわゆる後高の燃料噴射圧力モードとすることができる。 According to the hydraulically driven fuel injection device of the present invention, the heat reception period corresponding to the shortening of the fuel injection period is shortened, and the fuel injection pressure mode after a predetermined period from the start of fuel injection shows an injection pressure with a large injection pressure increase rate. It can be a so-called back high fuel injection pressure mode which becomes a mode.
本発明の一実施形態に係る油圧駆動燃料噴射装置の系統図である。It is a systematic diagram of a hydraulic drive fuel injection device concerning one embodiment of the present invention. 本発明の一実施形態に係る油圧駆動燃料噴射装置の一構成要素である燃料噴射ポンプの断面図である。FIG. 1 is a cross-sectional view of a fuel injection pump which is a component of a hydraulic pressure-driven fuel injection device according to an embodiment of the present invention. (a)は本発明の一実施形態に係る油圧駆動燃料噴射装置の一構成要素である開き側ロジック弁(主弁)のリフトと、時間との関係を示す図表、(b)は本実施形態に係る油圧駆動燃料噴射装置の一構成要素である燃料噴射ポンプの燃料噴射圧力と、時間との関係を示す図表である。(A) is a chart showing the relationship between time and the lift of the open side logic valve (main valve) which is one component of the hydraulic drive fuel injection device according to one embodiment of the present invention, (b) is the present embodiment It is a graph which shows the relationship between the fuel injection pressure of the fuel injection pump which is one component of the hydraulic drive fuel injection system which concerns on these, and time. 本発明の一実施形態に係る油圧駆動燃料噴射装置の一構成要素である開き側ロジック弁(主弁)の断面図である。FIG. 1 is a cross-sectional view of an open side logic valve (main valve) which is a component of a hydraulic pressure-driven fuel injection device according to an embodiment of the present invention.
 以下、本発明の一実施形態に係る油圧駆動燃料噴射装置について、図1から図4を参照しながら説明する。
 図1は本実施形態に係る油圧駆動燃料噴射装置の系統図であり、図2は本実施形態に係る油圧駆動燃料噴射装置の一構成要素である燃料噴射ポンプの断面図である。図3(a)は本実施形態に係る油圧駆動燃料噴射装置の一構成要素である開き側ロジック弁(主弁)のリフトと、時間との関係を示す図表であり、図3(b)は本実施形態に係る油圧駆動燃料噴射装置の一構成要素である燃料噴射ポンプの燃料噴射圧力と、時間との関係を示す図表である。図4は本実施形態に係る油圧駆動燃料噴射装置の一構成要素である開き側ロジック弁(主弁)の断面図である。
Hereinafter, a hydraulic pressure-driven fuel injection device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
FIG. 1 is a system diagram of a hydraulic drive fuel injection device according to the present embodiment, and FIG. 2 is a cross sectional view of a fuel injection pump which is one component of the hydraulic drive fuel injection device according to the present embodiment. FIG. 3 (a) is a chart showing the relationship between time and the lift of the open side logic valve (main valve) which is one component of the hydraulic drive fuel injection device according to the present embodiment, and FIG. 3 (b) is a diagram. It is a graph which shows the relationship between the fuel injection pressure of the fuel injection pump which is one component of the hydraulic-drive fuel-injection apparatus concerning this embodiment, and time. FIG. 4 is a cross-sectional view of an open side logic valve (main valve) which is a component of the hydraulically driven fuel injection device according to the present embodiment.
 図2に示すように、燃料噴射ポンプ1は、ポンプケース2と、ポンプケース2内に固定されたプランジャバレル3と、プランジャバレル3内に往復摺動可能に嵌合されたプランジャ4と、プランジャバレル3の上部に固定された吐出弁5と、増圧装置6と、を備えている。プランジャバレル3の内周面とプランジャ4の上面とにより、プランジャ室7が区画形成されている。
 なお、図2中の符号8は、プランジャ4の下部に連結されるタペットであり、符号9はプランジャ4を押し下げる方向に付勢するプランジャスプリングであり、符号10はプランジャスプリング9を支持するバネ受である。
As shown in FIG. 2, the fuel injection pump 1 includes a pump case 2, a plunger barrel 3 fixed in the pump case 2, a plunger 4 slidably fitted in the plunger barrel 3, and a plunger A discharge valve 5 fixed to the top of the barrel 3 and a pressure booster 6 are provided. A plunger chamber 7 is defined by the inner peripheral surface of the plunger barrel 3 and the upper surface of the plunger 4.
Reference numeral 8 in FIG. 2 denotes a tappet connected to the lower part of the plunger 4, reference numeral 9 denotes a plunger spring for urging the plunger 4 in a direction to push down, and reference numeral 10 denotes a spring support for supporting the plunger spring 9. It is.
 増圧装置6は、ポンプケース2の下部に固定された増圧部ケース21を備えており、増圧部ケース21内には、内径の異なる段付きの2つのピストン、すなわち、断面積の大きい大径ピストン22と、大径ピストン22と一体でこれよりも小径のピストンロッド23とが、往復摺動可能に嵌合されている。ピストンロッド23は、大径ピストン22に固定されており、ピストンロッド23の上面は、タペット8の下面に当接している。
 なお、図2中の符号24は、ピストンロッド23が臨む小油室で、小油室24には、図示しない低圧の作動油ポンプから低圧作動油管60を介して常時作動油が供給されている。
 また、図2中の符号25は、大径ピストン22が臨む大油室で、二つの開き側ロジック弁31,71および一つの閉じ側ロジック弁32により作動油が給排されるようになっている。
The pressure increasing device 6 includes a pressure increasing portion case 21 fixed to the lower portion of the pump case 2. In the pressure increasing portion case 21, two stepped pistons having different inner diameters, that is, a large cross-sectional area are provided. The large diameter piston 22 and the piston rod 23 integral with the large diameter piston 22 and smaller in diameter than this are fitted in a reciprocally slidable manner. The piston rod 23 is fixed to the large diameter piston 22, and the upper surface of the piston rod 23 is in contact with the lower surface of the tappet 8.
In addition, the code | symbol 24 in FIG. 2 is the small oil chamber which the piston rod 23 faces, and the small oil chamber 24 is always supplied with hydraulic fluid from the low voltage | pressure hydraulic fluid pump not shown via the low voltage | pressure hydraulic fluid pipe 60. .
Further, reference numeral 25 in FIG. 2 is a large oil chamber in which the large diameter piston 22 faces, and the hydraulic fluid is supplied and discharged by the two open side logic valves 31, 71 and one close side logic valve 32. There is.
 図1において、符号31,71はそれぞれ、増圧装置6の大油室25への作動油の供給を制御する開き側ロジック弁(主弁)であり、符号32は、増圧装置6の大油室25からの作動油の排出を制御する閉じ側ロジック弁である。開き側ロジック弁31,71の出口ポート、および閉じ側ロジック弁32の入口ポートはそれぞれ、作動油管33を介して増圧装置6の大油室25に接続されている。
 符号34は、開き側ロジック弁31および閉じ側ロジック弁32を開閉制御する(第1の)電磁弁であり、符号35は、開き側ロジック弁71を開閉制御する(第2の)電磁弁である。電磁弁34,35はそれぞれ、図示しない制御器により開閉制御される。
 なお、図1中の符号36は、燃料噴射始めと噴射終りとを制御する作動油を供給する作動油ポンプであり、符号37は、作動油ポンプ36の吐出口に接続される作動油供給管である。符号38は、作動油供給管37に設けられたアキュムレータである。
 また、図1中の符号39は、オイルタンクであり、符号40は、閉じ側ロジック弁32の出口ポートからオイルタンク39に接続される作動油戻り管である。
In FIG. 1, reference numerals 31 and 71 denote open side logic valves (main valves) for controlling the supply of hydraulic oil to the large oil chamber 25 of the pressure booster 6, and reference numeral 32 denotes a large valve of the pressure booster 6. It is a closed side logic valve that controls the discharge of hydraulic fluid from the oil chamber 25. The outlet ports of the open side logic valves 31 and 71 and the inlet port of the closed side logic valve 32 are connected to the large oil chamber 25 of the pressure booster 6 via the hydraulic oil pipe 33, respectively.
Reference numeral 34 is a (first) solenoid valve for opening and closing control of the opening side logic valve 31 and the closing side logic valve 32, and reference numeral 35 is a (second) solenoid valve for opening and closing control of the opening side logic valve 71. is there. The solenoid valves 34 and 35 are each controlled to open and close by a controller (not shown).
Reference numeral 36 in FIG. 1 denotes a hydraulic oil pump for supplying hydraulic oil for controlling the start and end of fuel injection, and reference numeral 37 denotes a hydraulic oil supply pipe connected to the discharge port of the hydraulic oil pump 36. It is. Reference numeral 38 is an accumulator provided in the hydraulic oil supply pipe 37.
Further, reference numeral 39 in FIG. 1 denotes an oil tank, and reference numeral 40 denotes a hydraulic oil return pipe connected to the oil tank 39 from the outlet port of the closing side logic valve 32.
 開き側ロジック弁31,71の作動油入口ポートはそれぞれ、作動油供給管37に接続され、閉じ側ロジック弁32の出口ポートは、作動油戻り管40を介してオイルタンク39に接続されている。また、開き側ロジック弁31の背圧ポートは、背圧管41を介して電磁弁34に接続され、閉じ側ロジック弁32の背圧ポートは、背圧管42を介して電磁弁34に接続されているとともに、開き側ロジック弁71の背圧ポートは、背圧管43を介して電磁弁35に接続されている。
 なお、閉じ側ロジック弁32の背圧ポートは、燃料噴射時以外、電磁弁34により常時オイルタンク39の側に開放されている。
The hydraulic oil inlet ports of the open side logic valves 31 and 71 are respectively connected to the hydraulic oil supply pipe 37, and the outlet port of the closed side logic valve 32 is connected to the oil tank 39 via the hydraulic oil return pipe 40 . Also, the back pressure port of the open side logic valve 31 is connected to the solenoid valve 34 via the back pressure pipe 41, and the back pressure port of the close side logic valve 32 is connected to the solenoid valve 34 via the back pressure pipe 42 The back pressure port of the open side logic valve 71 is connected to the solenoid valve 35 via the back pressure pipe 43.
The back pressure port of the closing logic valve 32 is always open to the side of the oil tank 39 by the solenoid valve 34 except during fuel injection.
 図1中の符号51は、作動油供給管37から分岐されて電磁弁34の入口ポートに接続される作動油管であり、符号52は、作動油供給管37から分岐されて電磁弁35の入口ポートに接続される作動油管である。符号53は、作動油管51の途中に設けられた絞りであり、符号54は、作動油管52の途中に設けられた絞りである。
 また、図1中の符号55は、電磁弁34の閉じ側ロジック弁用戻しポートおよび電磁弁35の閉じ側ロジック弁用戻しポートから作動油戻り管40に接続される背圧戻り管である。符号56は、電磁弁34の閉じ側ロジック弁用戻しポートから作動油戻り管40に至る背圧戻り管15の途中に設けられた絞りである。符号57は、電磁弁35の閉じ側ロジック弁用戻しポートから作動油戻り管40に至る背圧戻り管15の途中に設けられた絞りである。
Reference numeral 51 in FIG. 1 is a hydraulic oil pipe branched from the hydraulic oil supply pipe 37 and connected to the inlet port of the solenoid valve 34, and reference numeral 52 is a branch from the hydraulic oil supply pipe 37 and inlet of the solenoid valve 35. It is a hydraulic oil pipe connected to the port. The code | symbol 53 is a throttle provided in the middle of the hydraulic fluid pipe 51, and the code | symbol 54 is a throttle provided in the hydraulic fluid pipe 52 in the middle.
Further, reference numeral 55 in FIG. 1 denotes a back pressure return pipe connected to the hydraulic fluid return pipe 40 from the closing side logic valve return port of the solenoid valve 34 and the closing side logic valve return port of the solenoid valve 35. Reference numeral 56 denotes a throttle provided in the middle of the back pressure return pipe 15 extending from the close side logic valve return port of the solenoid valve 34 to the hydraulic fluid return pipe 40. Reference numeral 57 denotes a throttle provided in the middle of the back pressure return pipe 15 extending from the close side logic valve return port of the solenoid valve 35 to the hydraulic fluid return pipe 40.
 図1中の符号58は、電磁弁34の開き側ロジック弁用戻しポートから背圧戻り管55を介してオイルタンク39への作動油戻り管40に接続される(あるいは戻しポートから直接に作動油戻り管40に接続される)逃がし油路であり、符号59は、逃がし油路の途中に設けられた絞りである。 Reference numeral 58 in FIG. 1 is connected from the open side logic valve return port of the solenoid valve 34 to the hydraulic fluid return pipe 40 to the oil tank 39 via the back pressure return pipe 55 (or directly operated from the return port) Reference numeral 59 denotes a throttling provided in the middle of the escape oil passage.
 このような油圧駆動式燃料噴射装置81を備えたディーゼル機関の運転時において、燃料噴射が行われていない期間には、開き側ロジック弁31の背圧ポートに、背圧管41を介して作動油管51に設けられた絞り53にて流量を制御された作動油圧が掛かり、開き側ロジック弁71の背圧ポートに、背圧管43を介して作動油管52に設けられた絞り54にて流量を制御された作動油圧が掛かる。また、閉じ側ロジック弁32の背圧ポートは、絞り56にて流量を制御された背圧側戻り管55に開放されている。
 一方、燃料噴射開始時には、電磁弁34により開き側ロジック弁31の背圧ポートが開かれるとともに、常時開放されている閉じ側ロジック弁32の背圧ポートが閉じられ、所定時間の経過後、電磁弁35により開き側ロジック弁71の背圧ポートが開かれる。
During operation of a diesel engine equipped with such a hydraulically driven fuel injection device 81, a hydraulic oil pipe is connected to the back pressure port of the open side logic valve 31 via the back pressure pipe 41 during a period in which fuel injection is not performed. The hydraulic pressure controlled at the flow rate is applied by the throttle 53 provided at 51, and the flow rate is controlled by the throttle 54 provided at the hydraulic fluid pipe 52 via the back pressure pipe 43 at the back pressure port of the open side logic valve 71 Applied hydraulic pressure is applied. Further, the back pressure port of the closing side logic valve 32 is opened to the back pressure side return pipe 55 whose flow rate is controlled by the throttle 56.
On the other hand, at the start of fuel injection, the back pressure port of the open side logic valve 31 is opened by the solenoid valve 34, and the back pressure port of the close side logic valve 32 which is always open is closed. The back pressure port of the open logic valve 71 is opened by the valve 35.
 これにより、開き側ロジック弁31の入口ポートと出口ポートとが連通され、閉じ側ロジック弁32の入口ポートと戻しポートとが遮断されて、作動油ポンプ36からの作動油が、作動油供給管37から開き側ロジック弁31および作動油管33を介して増圧装置6の大油室25に供給され、所定時間の経過後、開き側ロジック弁71の入口ポートと出口ポートとが連通され、作動油ポンプ36からの作動油が、作動油供給管37から開き側ロジック弁71および作動油管33を介して増圧装置6の大油室25に供給される。
 大油室25に作動油が導入されると、大油室25と小油室24との断面積差つまり大径ピストン22とプランジャ4との断面積差によって大油室25に供給された作動油の圧力を増圧する。
Thereby, the inlet port and the outlet port of the open side logic valve 31 are communicated, the inlet port and the return port of the closed side logic valve 32 are shut off, and the hydraulic oil from the hydraulic oil pump 36 is supplied to the hydraulic oil supply pipe. 37 is supplied to the large oil chamber 25 of the pressure increasing device 6 through the opening side logic valve 31 and the hydraulic oil pipe 33, and after a predetermined time, the inlet port and the outlet port of the opening side logic valve 71 are communicated and operated The hydraulic oil from the oil pump 36 is supplied from the hydraulic oil supply pipe 37 to the large oil chamber 25 of the pressure intensifier 6 through the open side logic valve 71 and the hydraulic oil pipe 33.
When the hydraulic oil is introduced into the large oil chamber 25, the operation supplied to the large oil chamber 25 due to the difference in sectional area between the large oil chamber 25 and the small oil chamber 24, that is, the sectional area difference between the large diameter piston 22 and the plunger 4 Increase the pressure of the oil.
 そして、図2に示すように、大油室25の油圧により、ピストンロッド23およびタペット8を介してプランジャ4がプランジャスプリング9のばね力に抗して押し上げられ、プランジャ室7内の燃料を高圧に増圧して、吐出弁5を介して図示しない燃料噴射弁に圧送し、燃料の噴射が開始される。 Then, as shown in FIG. 2, the hydraulic pressure in the large oil chamber 25 pushes up the plunger 4 against the spring force of the plunger spring 9 via the piston rod 23 and the tappet 8 so that the fuel in the plunger chamber 7 is pressurized. The pressure is increased and pressure-fed to a fuel injection valve (not shown) via the discharge valve 5 to start fuel injection.
 このように、開き側ロジック弁31を先行して開放し、つづいて開き側ロジック弁71を開放することにより、噴射行程1回当たりの燃料噴射の期間における前半の燃料噴射圧力(燃料噴射率)が低く抑えられ、後半の燃料噴射圧力が高められる(吸入行程1回当たりの開き側ロジック弁31,71の開閉状態(リフトと時間との関係)および燃料噴射圧力の変化を示すと図3(a)および図3(b)のようになる)。 Thus, by opening the open logic valve 31 first and then opening the open logic valve 71, the fuel injection pressure (fuel injection rate) in the first half of the fuel injection period per injection stroke Is reduced, and the fuel injection pressure in the second half is increased (Fig. 3 (shows the opening and closing states of the open side logic valve 31, 71 per lift stroke (lift vs. time) and changes in fuel injection pressure). a) and as shown in FIG. 3 (b)).
 噴射の終了時には、電磁弁34により開き側ロジック弁31の背圧ポートが閉じられ、閉じ側ロジック弁32の背圧ポートが開かれるとともに、電磁弁35により開き側ロジック弁71の背圧ポートが閉じられる。
 これにより、開き側ロジック弁31の作動油入口ポートと出口ポートとが遮断され、開き側ロジック弁71の作動油入口ポートと出口ポートとが遮断されるとともに、閉じ側ロジック弁32の入口ポートと戻しポートとが連通され、増圧装置6の大油室25の作動油が、閉じ側ロジック弁32、絞り56によって流量が規制された背圧戻り管55および作動油戻り管40を介してオイルタンク39に戻される。
 大油室25から作動油が排出されると、プランジャスプリング9のばね力および低圧作動油管60を介して小油室24に導かれた低圧作動油の油圧によりプランジャ4が下降せしめられる。
At the end of the injection, the back pressure port of the open side logic valve 31 is closed by the solenoid valve 34, the back pressure port of the close side logic valve 32 is opened, and the back pressure port of the open side logic valve 71 is opened by the solenoid valve 35. It is closed.
Thereby, the hydraulic oil inlet port and the outlet port of the open side logic valve 31 are shut off, and the hydraulic oil inlet port and the outlet port of the open side logic valve 71 are shut off. The hydraulic fluid in the large oil chamber 25 of the pressure booster 6 communicates with the return port, and the hydraulic fluid in the large oil chamber 25 of the pressure booster 6 is oil via the back pressure return pipe 55 and the hydraulic oil return pipe 40 whose flow rate is regulated by the throttle 56. It is returned to the tank 39.
When the hydraulic oil is discharged from the large oil chamber 25, the plunger 4 is lowered by the spring force of the plunger spring 9 and the hydraulic pressure of the low pressure hydraulic oil introduced to the small oil chamber 24 via the low pressure hydraulic oil pipe 60.
 ここで、図3(a)に示す開き側ロジック弁31,71のリフトは、図4に示す弁ケーシング91内に往復摺動可能に嵌合された弁体92の一端部に設けられて弁体92と一体に形成されたピストン93のストローク(可動範囲)Sを調整する(増減させる)ストローク調整ピース94の厚み(高さ)を変えることにより調整される(増減される)。
 図3に示すように、開き側ロジック弁31のリフトは、開き側ロジック弁71のリフトよりも小さくなるように、すなわち、開き側ロジック弁31のストローク調整ピース94の厚みは、開き側ロジック弁71のストローク調整ピース94の厚みよりも厚くなるように設定されている。
Here, the lifts of the open side logic valves 31, 71 shown in FIG. 3A are provided at one end of a valve body 92 fitted so as to be reciprocably slidable in the valve casing 91 shown in FIG. The stroke (moving range) S of the piston 93 integrally formed with the body 92 is adjusted (increased or decreased) by changing the thickness (height) of the stroke adjusting piece 94 that adjusts (increases or decreases) S.
As shown in FIG. 3, the lift of the open side logic valve 31 is smaller than the lift of the open side logic valve 71, that is, the thickness of the stroke adjustment piece 94 of the open side logic valve 31 is the open side logic valve It is set to be thicker than the thickness of the stroke adjustment piece 94 of FIG.
 また、図3(a)に示す開き側ロジック弁31が開くときの傾斜は、絞り59によって決まり、図3(a)に示す開き側ロジック弁71が開くときの傾斜は、絞り57によって決まる。一方、図3(a)に示す開き側ロジック弁31が閉じるときの傾斜は、絞り53によって決まり、図3(a)に示す開き側ロジック弁71が閉じるときの傾斜は、絞り54によって決まる。
 なお、図4中の符号95は、弁体92およびピストン93を閉じる方向に付勢するバネである。
Further, the inclination when the open side logic valve 31 shown in FIG. 3A is opened is determined by the throttle 59, and the inclination when the open side logic valve 71 shown in FIG. On the other hand, the inclination when the open side logic valve 31 shown in FIG. 3A is closed is determined by the aperture 53, and the inclination when the open side logic valve 71 shown in FIG. 3A is closed is determined by the aperture 54.
In addition, the code | symbol 95 in FIG. 4 is a spring which biases the valve body 92 and the piston 93 in the closing direction.
 本実施形態に係る油圧駆動式燃料噴射装置81によれば、燃料噴射ポンプ1から噴射される燃料噴射圧力を、所望の燃料噴射圧力、すなわち、燃料噴射期間の短縮に対応した受熱期間を短縮させるとともに、燃料噴射開始から一定期間を経た後の燃料噴射圧力モードが噴射圧力上昇率の大きい噴射圧力モードとなる、いわゆる後高の燃料噴射圧力モードとすることができる。 According to the hydraulically driven fuel injection device 81 according to the present embodiment, the fuel injection pressure injected from the fuel injection pump 1 is shortened to a desired fuel injection pressure, that is, a heat receiving period corresponding to shortening of the fuel injection period. At the same time, the fuel injection pressure mode after a predetermined period from the start of fuel injection can be the injection pressure mode with a large injection pressure increase rate, that is, the so-called high fuel injection pressure mode.
 また、本実施形態に係る油圧駆動燃料噴射装置81を具備した内燃機関によれば、燃料噴射期間の短縮に対応した受熱期間を短縮させるとともに、燃料噴射開始から一定期間を経た後の燃料噴射圧力モードが噴射圧力上昇率の大きい噴射圧力モードとなる、いわゆる後高の燃料噴射圧力モードとすることができる。そのため、筒内最高圧力および燃焼温度の上昇を抑制することができ、NOx(窒素酸化物)の排出量を低減させることができるとともに、燃費を低減させることができる。 Further, according to the internal combustion engine equipped with the hydraulically driven fuel injection device 81 according to the present embodiment, the heat reception period corresponding to the shortening of the fuel injection period is shortened, and the fuel injection pressure after a predetermined period from the fuel injection start The mode can be a so-called post-high fuel injection pressure mode in which the injection pressure mode has a large injection pressure increase rate. Therefore, it is possible to suppress the in-cylinder maximum pressure and the increase in combustion temperature, reduce the amount of NOx (nitrogen oxide) emissions, and reduce fuel consumption.
 なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で各種変更・変形が可能である。
 例えば、電磁弁の数、電磁弁のリフト、絞りの径を適宜必要に応じて選択することにより、多種多様の燃料噴射圧力モードを作り出すことができ、燃料噴射率制御の自由度を広げることができる。
The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
For example, various types of fuel injection pressure modes can be created by selecting the number of solenoid valves, lift of solenoid valves, and diameter of throttle as needed, and the degree of freedom of fuel injection rate control can be expanded. it can.
 1 燃料噴射ポンプ
 4 プランジャ
 6 増圧装置
22 大径ピストン(増圧ピストン)
31 開き側ロジック弁
32 閉じ側ロジック弁
34 (第1の)電磁弁
35 (第2の)電磁弁
71 開き側ロジック弁
 
 
 
 
 
 
 
 
 
 
 
1 fuel injection pump 4 plunger 6 pressure booster 22 large diameter piston (pressure booster piston)
31 opening side logic valve 32 closing side logic valve 34 (first) solenoid valve 35 (second) solenoid valve 71 opening side logic valve









Claims (3)

  1.  作動油の圧力を増圧ピストンにより増圧して燃料噴射ポンプのプランジャに伝達する増圧装置と、
     前記増圧装置への作動油の供給をつかさどる開き側ロジック弁および前記増圧装置からの作動油の排出をつかさどる閉じ側ロジック弁をそれぞれ開閉制御する第1の電磁弁と、
     前記増圧装置への作動油の供給をつかさどる少なくとも一つの開き側ロジック弁を開閉制御する少なくとも一つの第2の電磁弁と、
     前記第1の電磁弁および前記第2の電磁弁をそれぞれ開閉制御する制御器と、を備えた油圧駆動燃料噴射装置であって、
     前記制御器により前記第1の電磁弁および前記第2の電磁弁の開閉時期を制御するとともに、前記第1の電磁弁および前記第2の電磁弁のリフトを調整することにより、前記燃料噴射ポンプから噴射される燃料噴射圧力が、所望の燃料噴射圧力となるようにした油圧駆動燃料噴射装置。
    A pressure increasing device for increasing the pressure of hydraulic fluid by a pressure increasing piston and transmitting the pressure to a plunger of a fuel injection pump;
    An open side logic valve that controls supply of hydraulic fluid to the pressure intensifier, and a first solenoid valve that opens and closes a closed side logic valve that controls discharge of hydraulic fluid from the pressure intensifier;
    At least one second solenoid valve that opens and controls at least one open side logic valve that controls supply of hydraulic fluid to the pressure intensifier;
    And a controller for controlling the opening and closing of the first solenoid valve and the second solenoid valve, respectively.
    The controller controls the opening / closing timing of the first solenoid valve and the second solenoid valve, and adjusts the lift of the first solenoid valve and the second solenoid valve to thereby control the fuel injection pump. A hydraulically driven fuel injection system in which the fuel injection pressure injected from the fuel injection pressure is set to a desired fuel injection pressure.
  2.  前記第1の電磁弁および/または前記第2の電磁弁の数、前記第1の電磁弁および/または前記第2の電磁弁のリフト、絞りの径を適宜必要に応じて選択することにより、多種多様の燃料噴射圧力モードを作り出すようにした請求項1に記載の油圧駆動燃料噴射装置。 By selecting the number of the first solenoid valve and / or the second solenoid valve, the lift of the first solenoid valve and / or the second solenoid valve, and the diameter of the throttle as needed, The hydraulically powered fuel injector according to claim 1, wherein a wide variety of fuel injection pressure modes are created.
  3.  請求項1または2に記載の油圧駆動燃料噴射装置を具備する内燃機関。
     
     
     
     
     
     
    An internal combustion engine comprising the hydraulically driven fuel injection device according to claim 1.





PCT/JP2013/059370 2012-03-30 2013-03-28 Hydraulic-drive fuel injection device and internal combustion engine WO2013147078A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147026969A KR101623679B1 (en) 2012-03-30 2013-03-28 Hydraulic-drive fuel injection device and internal combustion engine
CN201380015054.9A CN104169565B (en) 2012-03-30 2013-03-28 Hydraulic-driven fuel injection device and internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081011A JP5881505B2 (en) 2012-03-30 2012-03-30 Hydraulic drive fuel injection device
JP2012-081011 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147078A1 true WO2013147078A1 (en) 2013-10-03

Family

ID=49260321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059370 WO2013147078A1 (en) 2012-03-30 2013-03-28 Hydraulic-drive fuel injection device and internal combustion engine

Country Status (4)

Country Link
JP (1) JP5881505B2 (en)
KR (1) KR101623679B1 (en)
CN (1) CN104169565B (en)
WO (1) WO2013147078A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156397B2 (en) 2015-01-14 2017-07-05 トヨタ自動車株式会社 Internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228563U (en) * 1988-08-11 1990-02-23
JP2004100644A (en) * 2002-09-12 2004-04-02 Mitsubishi Heavy Ind Ltd Hydraulic drive fuel injection device
JP2006342731A (en) * 2005-06-09 2006-12-21 Denso Corp Fuel injector for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214659A (en) * 1982-06-07 1983-12-13 Toyota Motor Corp Hydraulically driven fuel injection device
JP2831137B2 (en) * 1990-12-13 1998-12-02 三菱重工業株式会社 Diesel engine fuel injection system
JPH07139513A (en) * 1993-11-18 1995-05-30 Hitachi Constr Mach Co Ltd Oil hydraulic circuit
JP2000282997A (en) * 1999-03-29 2000-10-10 Mitsubishi Heavy Ind Ltd Fuel injection device for diesel engine
JP2001323858A (en) 2000-05-17 2001-11-22 Bosch Automotive Systems Corp Fuel injection device
JP2012026396A (en) * 2010-07-27 2012-02-09 Akasaka Tekkosho:Kk Fuel injection pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228563U (en) * 1988-08-11 1990-02-23
JP2004100644A (en) * 2002-09-12 2004-04-02 Mitsubishi Heavy Ind Ltd Hydraulic drive fuel injection device
JP2006342731A (en) * 2005-06-09 2006-12-21 Denso Corp Fuel injector for internal combustion engine

Also Published As

Publication number Publication date
KR101623679B1 (en) 2016-05-23
JP2013209948A (en) 2013-10-10
KR20140126768A (en) 2014-10-31
JP5881505B2 (en) 2016-03-09
CN104169565B (en) 2017-06-20
CN104169565A (en) 2014-11-26

Similar Documents

Publication Publication Date Title
EP2373879B1 (en) Fuel injectors with intensified fuel storage
JP4495434B2 (en) Dual mode fuel injection system and fuel injector for the system
KR20010043493A (en) Fuel injection system
JP5236018B2 (en) Fuel injector with improved valve control
JP2006161568A (en) Control valve and fuel injection valve having the same
US9181890B2 (en) Methods of operation of fuel injectors with intensified fuel storage
JP3887583B2 (en) Fuel injection device
JPH0320104A (en) Method and device for stroke control of fluid pressure control valve
JP2010019213A (en) Fuel injection device
JP4075894B2 (en) Fuel injection device
US6928986B2 (en) Fuel injector with piezoelectric actuator and method of use
JP2006144698A (en) Fuel injection device for internal combustion engine
WO2013147078A1 (en) Hydraulic-drive fuel injection device and internal combustion engine
KR20020063100A (en) Fuel injector assembly and internal combustion engine including same
JP4229059B2 (en) Fuel injection device for internal combustion engine
JP2005320904A (en) Fuel injection valve
JP2005517864A (en) Fuel injection device for an internal combustion engine
EP2484889B1 (en) Pressure recovery system for low leakage cam assisted common rail fuel system, fuel injector, and operating method therefor
JP2008304017A (en) Three-way selector valve and fuel injection device using the same
JP4550991B2 (en) Fuel / water injection internal combustion engine
JP4134957B2 (en) Fuel injection device for internal combustion engine
US20040099246A1 (en) Fuel injector with multiple control valves
KR20140094843A (en) Fuel injector
KR101331140B1 (en) Fuel Injector
KR101333795B1 (en) Fuel Injector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026969

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768310

Country of ref document: EP

Kind code of ref document: A1