JP4412384B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP4412384B2
JP4412384B2 JP2007273585A JP2007273585A JP4412384B2 JP 4412384 B2 JP4412384 B2 JP 4412384B2 JP 2007273585 A JP2007273585 A JP 2007273585A JP 2007273585 A JP2007273585 A JP 2007273585A JP 4412384 B2 JP4412384 B2 JP 4412384B2
Authority
JP
Japan
Prior art keywords
fuel
pressure
common rail
passage
intermediate chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007273585A
Other languages
Japanese (ja)
Other versions
JP2008064108A (en
Inventor
嘉紀 太長根
義正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007273585A priority Critical patent/JP4412384B2/en
Publication of JP2008064108A publication Critical patent/JP2008064108A/en
Application granted granted Critical
Publication of JP4412384B2 publication Critical patent/JP4412384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は燃料噴射装置に関する。   The present invention relates to a fuel injection device.

ニードル弁の内端部上に形成された圧力制御室と噴射圧を増大するための増圧ピストンの中間室とを具備し、圧力制御室内に供給されたコモンレール内の高圧燃料を燃料排出通路内に排出することによりニードル弁を開弁して燃料噴射を行い、中間室内に供給されたコモンレール内の高圧燃料を燃料排出通路内に排出することにより増圧ピストンを作動させて燃料噴射圧を増大させるようにした燃料噴射装置において、圧力制御室および中間室を三位置切換型三方弁を介して燃料排出通路に連結し、この三方弁の切換作用によって燃料噴射時に噴射圧を増大させるときには圧力制御室および中間室を共に燃料排出通路に連結し、燃料噴射時に噴射圧を増大させないとき、即ち増圧ピストンの作動を停止するときには圧力制御室のみを燃料排出通路に連結するようにした燃料噴射装置が公知である(例えば特許文献1参照)。
特開2003−106235号公報
A pressure control chamber formed on the inner end of the needle valve and an intermediate chamber of a pressure-increasing piston for increasing the injection pressure, and the high-pressure fuel in the common rail supplied into the pressure control chamber is fed into the fuel discharge passage. The needle valve is opened to discharge the fuel to inject fuel, and the high-pressure fuel in the common rail supplied into the intermediate chamber is discharged into the fuel discharge passage to operate the pressure-increasing piston to increase the fuel injection pressure. In the fuel injection apparatus, the pressure control chamber and the intermediate chamber are connected to the fuel discharge passage via a three-position switching type three-way valve, and the pressure control is performed when the injection pressure is increased during fuel injection by the switching action of the three-way valve. Both the chamber and the intermediate chamber are connected to the fuel discharge passage, and when the injection pressure is not increased during fuel injection, that is, when the operation of the boosting piston is stopped, only the pressure control chamber is discharged. The fuel injection system to be coupled to the road are known (e.g., see Patent Document 1).
JP 2003-106235 A

ところで上述の三位置切換型三方弁では弁体駆動用の電磁コイルに供給される励磁電流値を変化させることによって弁体が一方の端部位置、中間位置および他方の端部位置のいずれか一つの位置に移動せしめられる。この場合、電磁力でもって弁体を中間位置に静止させることは理論的には可能であるが実際には弁体の位置は極めて不安定であり、特に激しく振動するエンジンに取付けることを意図している燃料噴射装置では電磁力によって弁体を中間位置に位置させる三位置切換型三方弁は使用したくないのが現状である。また、弁体に三位置をとらせようとすると弁体のリフト量を大きくしなければならず、弁体のリフト量を大きくするためには電磁コイルをかなり大型化しなければならない。しかしながら燃料噴射弁において電磁コイルを大型化するのは極めて困難である。
本発明は安定した二位置切換型三方弁を用いて増圧ピストンによる増圧作用を制御することのできる燃料噴射装置を提供することにある。
By the way, in the above-mentioned three-position switching type three-way valve, the valve element is one of one end position, intermediate position, and the other end position by changing the excitation current value supplied to the solenoid coil for driving the valve element. Moved to one position. In this case, it is theoretically possible to stop the valve body at an intermediate position with electromagnetic force, but in reality, the position of the valve body is extremely unstable, and is intended to be mounted on a particularly vibrated engine. In the present fuel injection apparatus, it is not desired to use a three-position switching type three-way valve in which the valve body is positioned at an intermediate position by electromagnetic force. Further, if the valve body is to be positioned at three positions, the lift amount of the valve body must be increased. In order to increase the lift amount of the valve body, the electromagnetic coil must be considerably enlarged. However, it is extremely difficult to increase the size of the electromagnetic coil in the fuel injection valve.
An object of the present invention is to provide a fuel injection device capable of controlling a pressure increasing action by a pressure increasing piston using a stable two-position switching type three-way valve.

即ち、本発明によれば、ニードル弁の内端部上に形成された圧力制御室と噴射圧を増大するための増圧ピストンの中間室とを二位置切換型三方弁を介してコモンレール内又は燃料排出通路に選択的に連結し、圧力制御室内に供給されたコモンレール内の高圧燃料を燃料排出通路内に排出することによりニードル弁を開弁して燃料噴射を行い、中間室内に供給されたコモンレール内の高圧燃料を燃料排出通路内に排出することにより増圧ピストンを作動させて燃料噴射圧を増大させるようにした燃料噴射装置において、コモンレール内の燃料圧が機関の運転状態に応じて予め定められた燃料圧よりも低い低圧側燃料領域と予め定められた燃料圧よりも高い高圧側燃料領域との間で変化せしめられ、三方弁と中間室とを連通する燃料流通通路内に中間室制御弁を配置し、中間室制御弁に中間室制御弁作動用としてコモンレール内の高圧燃料を供給して中間室制御弁をコモンレール内の高圧燃料により作動させると共に中間室制御弁が機関の運転状態に応じたコモンレール内の燃料圧の変化に応じて燃料流通通路の流路面積を制御し、コモンレール内の燃料圧が高圧側燃料領域となったときには中間室制御弁による燃料流通通路の流路面積制御により増圧ピストンによる増圧作用が行われ、コモンレール内の燃料圧が低圧側燃料領域となったときには中間室制御弁による燃料流通通路の流路面積制御によりコモンレール内の燃料圧が高圧側燃料領域にあるときに比べて増圧ピストンによる増圧作用を弱めるか又は増圧ピストンの作動を停止するようにしている。 That is, according to the present invention, the pressure control chamber formed on the inner end portion of the needle valve and the intermediate chamber of the pressure increasing piston for increasing the injection pressure are placed in the common rail through the two-position switching type three-way valve. By selectively connecting to the fuel discharge passage, the high pressure fuel in the common rail supplied into the pressure control chamber is discharged into the fuel discharge passage, the needle valve is opened to perform fuel injection, and the fuel is supplied into the intermediate chamber In a fuel injection device in which a high pressure fuel in a common rail is discharged into a fuel discharge passage to operate a pressure increasing piston to increase a fuel injection pressure , the fuel pressure in the common rail is preliminarily set in accordance with the operating state of the engine. contain altered between lower than a defined fuel pressure low-pressure fuel region with a predetermined fuel pressure is higher the high-pressure fuel region than in the fuel flow passage communicating between the three-way valve and the intermediate chamber Between room control valve disposed intermediate chamber control valve causes the intermediate chamber control valve to supply the high pressure fuel in the common rail to an intermediate chamber control valve for the intermediate chamber control valve actuated actuated by the high pressure fuel in the common rail of the engine The flow area of the fuel circulation passage is controlled according to the change in the fuel pressure in the common rail according to the operating state. When the fuel pressure in the common rail reaches the high pressure side fuel region, the flow in the fuel circulation passage by the intermediate chamber control valve is controlled. When the fuel pressure in the common rail becomes the low pressure side fuel region by the pressure increase piston by the road area control, the fuel pressure in the common rail is increased by the flow area control of the fuel flow passage by the intermediate chamber control valve. The pressure increasing action by the pressure-increasing piston is weakened or the operation of the pressure-increasing piston is stopped as compared with the case in the side fuel region.

安定した燃料噴射作用および安定した増圧制御を確保することができる。   Stable fuel injection action and stable pressure increase control can be ensured.

図1は燃料噴射装置の全体を図解的に示しており、図1において一点鎖線で囲まれた部分1はエンジンに取付けられた燃料噴射弁を示している。図1に示されるように燃料噴射装置は高圧の燃料を貯留するためのコモンレール2を備えており、このコモンレール2内には燃料タンク3内の燃料が高圧燃料ポンプ4を介して供給される。コモンレール2内の燃料圧は高圧燃料ポンプ4の吐出量を制御することにより機関運転状態に応じた目標燃料圧に維持され、目標燃料圧に維持されているコモンレール2内の高圧の燃料が高圧燃料供給通路5を介して燃料噴射弁1に供給される。   FIG. 1 schematically shows the entire fuel injection apparatus, and a portion 1 surrounded by a one-dot chain line in FIG. 1 indicates a fuel injection valve attached to the engine. As shown in FIG. 1, the fuel injection device includes a common rail 2 for storing high-pressure fuel, and fuel in the fuel tank 3 is supplied into the common rail 2 via a high-pressure fuel pump 4. The fuel pressure in the common rail 2 is maintained at the target fuel pressure corresponding to the engine operating state by controlling the discharge amount of the high pressure fuel pump 4, and the high pressure fuel in the common rail 2 maintained at the target fuel pressure is the high pressure fuel. It is supplied to the fuel injection valve 1 through the supply passage 5.

図1に示されるように燃料噴射弁1は燃焼室内に燃料を噴射するためのノズル部6と、噴射圧を増圧させるための増圧器7と、燃料通路を切換えるための三方弁8とを具備している。この三方弁8は図1において8aで示される一方の端部位置と図1において8bで示される他方の端部位置との二つ位置のうちのいずれか一方に切換えられる二位置切換型三方弁からなる。ノズル部6はニードル弁9を備えており、ノズル部6の先端にはニードル弁9の先端部により開閉制御される噴口10(図示せず)が形成されている。ニードル弁9の周りには噴射される高圧燃料で満たされたノズル室11が形成されており、ニードル弁9の頂面上には燃料で満たされている圧力制御室12が形成されている。圧力制御室12内にはニードル弁9を下方に向けて、即ち閉弁方向に付勢する圧縮ばね13が挿入されており、この圧力制御室12は燃料流通通路14を介して三方弁8に連結されている。   As shown in FIG. 1, the fuel injection valve 1 includes a nozzle portion 6 for injecting fuel into the combustion chamber, a pressure intensifier 7 for increasing the injection pressure, and a three-way valve 8 for switching the fuel passage. It has. This three-way valve 8 is a two-position switching type three-way valve that is switched to one of two positions, one end position indicated by 8a in FIG. 1 and the other end position indicated by 8b in FIG. Consists of. The nozzle portion 6 includes a needle valve 9, and a nozzle hole 10 (not shown) that is controlled to open and close by the tip portion of the needle valve 9 is formed at the tip of the nozzle portion 6. A nozzle chamber 11 filled with high-pressure fuel to be injected is formed around the needle valve 9, and a pressure control chamber 12 filled with fuel is formed on the top surface of the needle valve 9. A compression spring 13 is inserted into the pressure control chamber 12 so that the needle valve 9 is directed downward, that is, in the valve closing direction. The pressure control chamber 12 is connected to the three-way valve 8 via the fuel flow passage 14. It is connected.

一方、増圧器7は一体成形された大径ピストン15と小径ピストン16からなる増圧ピストン17を具備する。小径ピストン16と反対側の大径ピストン15の頂面上には高圧の燃料で満たされた高圧室18が形成されており、この高圧室18は高圧燃料供給通路19を介して高圧燃料供給通路5に連結されている。従って高圧室18内には常時コモンレール2内の燃料圧(以下、コモンレール圧という)が作用している。これに対し、小径ピストン16周りの大径ピストン15の端面上には燃料で満たされた中間室20が形成されており、この中間室20内には大径ピストン15を高圧室18に向けて付勢する圧縮ばね21が挿入されている。また、大径ピストン15と反対側の小径ピストン16の端面上には燃料で満たされた増圧室22が形成されており、この増圧室22およびノズル室11は高圧燃料供給通路23、高圧燃料供給通路19から高圧燃料供給通路23に向けてのみ流通可能な逆止弁24、および高圧燃料供給通路19を介して高圧燃料供給通路5に連結されている。   On the other hand, the pressure booster 7 includes a pressure increasing piston 17 composed of a large-diameter piston 15 and a small-diameter piston 16 which are integrally formed. A high-pressure chamber 18 filled with high-pressure fuel is formed on the top surface of the large-diameter piston 15 opposite to the small-diameter piston 16, and the high-pressure chamber 18 is connected to a high-pressure fuel supply passage 19 via a high-pressure fuel supply passage 19. 5 is connected. Accordingly, the fuel pressure in the common rail 2 (hereinafter referred to as common rail pressure) is constantly acting in the high pressure chamber 18. On the other hand, an intermediate chamber 20 filled with fuel is formed on the end face of the large-diameter piston 15 around the small-diameter piston 16, and the large-diameter piston 15 faces the high-pressure chamber 18 in the intermediate chamber 20. An urging compression spring 21 is inserted. Further, a pressure increasing chamber 22 filled with fuel is formed on the end face of the small diameter piston 16 opposite to the large diameter piston 15, and the pressure increasing chamber 22 and the nozzle chamber 11 are provided with a high pressure fuel supply passage 23, a high pressure. A check valve 24 that can flow only from the fuel supply passage 19 toward the high-pressure fuel supply passage 23 is connected to the high-pressure fuel supply passage 5 via the high-pressure fuel supply passage 19.

一方、三方弁8と中間室20とを連通する燃料流通通路25内には中間室制御弁26が配置され、この中間室制御弁26によって燃料流通通路25の流路面積が制御される。別の言い方をすると、中間室制御弁26は一方では燃料流通通路25aおよび燃料流通通路14を介して三方弁8に連結され、他方では燃料流通通路26bを介して中間室20に連結される。また、中間室制御弁26には弁作動用としてコモンレール2内の高圧燃料が高圧燃料供給通路5,19および高圧燃料供給通路27を介して供給される。   On the other hand, an intermediate chamber control valve 26 is disposed in a fuel flow passage 25 that communicates the three-way valve 8 and the intermediate chamber 20, and the flow passage area of the fuel flow passage 25 is controlled by the intermediate chamber control valve 26. In other words, the intermediate chamber control valve 26 is connected to the three-way valve 8 on the one hand via the fuel flow passage 25a and the fuel flow passage 14, and is connected to the intermediate chamber 20 on the other hand via the fuel flow passage 26b. Further, the high pressure fuel in the common rail 2 is supplied to the intermediate chamber control valve 26 through the high pressure fuel supply passages 5 and 19 and the high pressure fuel supply passage 27 for valve operation.

一方、三方弁8には高圧燃料供給通路5および燃料流通通路14に加え、例えば燃料タンク3内に接続された燃料排出通路28が連結されている。この三方弁8は電磁ソレノイド或いはピエゾ圧電素子のようなアクチュエータ29によって駆動され、この三方弁8によって燃料流通通路14が高圧燃料供給通路5又は燃料排出通路28のいずれか一方に選択的に連結される。   On the other hand, in addition to the high-pressure fuel supply passage 5 and the fuel circulation passage 14, for example, a fuel discharge passage 28 connected to the inside of the fuel tank 3 is connected to the three-way valve 8. The three-way valve 8 is driven by an actuator 29 such as an electromagnetic solenoid or a piezoelectric element, and the fuel flow passage 14 is selectively connected to either the high-pressure fuel supply passage 5 or the fuel discharge passage 28 by the three-way valve 8. The

次に図1を参照しつつ中間室制御弁26が燃料流通通路25の流路を全開している場合のニードル弁9および増圧ピストン17の作動について説明する。
図1は、三方弁8による燃料通路切換作用によって燃料流通通路14が高圧燃料供給通路5に連結されている場合を示しており、この場合には圧力制御室12内および中間室20内は共にコモンレール圧となっている。一方、このときノズル室11内、高圧室18内および増圧室22内もコモンレール圧となっている。このときノズル室11内の燃料圧によりニードル弁9を上昇させる力よりも圧力制御室12内の燃料圧および圧縮ばね13のばね力によってニードル弁9を下降させる力の方が強い。そのため、ニードル弁9は下降せしめられており、その結果ニードル弁9が閉弁するために噴口10からの燃料噴射は停止されている。一方、増圧器7については、上述したように高圧室18内、中間室20内および増圧室22内は全てコモンレール圧となっており、従ってこのときには図1に示されるように増圧ピストン17は圧縮ばね21のばね力によって上昇した状態に保持されている。
Next, the operation of the needle valve 9 and the pressure increasing piston 17 when the intermediate chamber control valve 26 fully opens the flow path of the fuel circulation passage 25 will be described with reference to FIG.
FIG. 1 shows a case where the fuel flow passage 14 is connected to the high-pressure fuel supply passage 5 by the fuel passage switching action by the three-way valve 8. In this case, both the inside of the pressure control chamber 12 and the inside of the intermediate chamber 20 are shown. Common rail pressure. On the other hand, at this time, the inside of the nozzle chamber 11, the high pressure chamber 18, and the pressure increasing chamber 22 are also at the common rail pressure. At this time, the force of lowering the needle valve 9 by the fuel pressure in the pressure control chamber 12 and the spring force of the compression spring 13 is stronger than the force of raising the needle valve 9 by the fuel pressure in the nozzle chamber 11. Therefore, the needle valve 9 is lowered, and as a result, the needle valve 9 is closed, so that fuel injection from the nozzle 10 is stopped. On the other hand, as for the pressure intensifier 7, the inside of the high pressure chamber 18, the intermediate chamber 20, and the pressure intensifying chamber 22 are all at the common rail pressure as described above. Therefore, at this time, as shown in FIG. Is held in a raised state by the spring force of the compression spring 21.

一方、三方弁8による通路切換作用によって燃料流通通路14が燃料排出通路28に連結されるとノズル部6の圧力制御室12内の燃料圧が低下するためにニードル弁9が上昇し、その結果ニードル弁9が開弁してノズル室11内の燃料が噴口10から噴射される。一方、このとき中間室20内の燃料圧が低下するために増圧ピストン17には下向きの大きな力が作用し、その結果増圧室22内の燃料圧はコモンレール圧よりも高くなる。従ってこのとき、高圧燃料供給通路23を介して増圧室22内に連結されているノズル室11内の燃料圧もコモンレール圧よりも高くなり、燃料噴射が行われている間、この高い燃料圧に維持される。従ってニードル弁9が開弁すると噴口10からコモンレール圧よりも高い噴射圧でもって燃料が噴射されることになる。   On the other hand, when the fuel flow passage 14 is connected to the fuel discharge passage 28 by the passage switching action by the three-way valve 8, the fuel pressure in the pressure control chamber 12 of the nozzle portion 6 is lowered, so that the needle valve 9 rises. The needle valve 9 is opened and the fuel in the nozzle chamber 11 is injected from the nozzle 10. On the other hand, since the fuel pressure in the intermediate chamber 20 decreases at this time, a large downward force acts on the pressure increasing piston 17, and as a result, the fuel pressure in the pressure increasing chamber 22 becomes higher than the common rail pressure. Accordingly, at this time, the fuel pressure in the nozzle chamber 11 connected to the pressure increasing chamber 22 via the high-pressure fuel supply passage 23 is also higher than the common rail pressure, and this high fuel pressure is maintained during fuel injection. Maintained. Therefore, when the needle valve 9 is opened, fuel is injected from the nozzle 10 with an injection pressure higher than the common rail pressure.

次いで三方弁8による燃料通路切換作用により図1に示される如く燃料流通通路14が再び高圧燃料供給通路5に連結されると、ノズル部6の圧力制御室12内はコモンレール圧となり、その結果燃料の噴射が停止される。また、このとき増圧器7の中間室20内もコモンレール圧となり、その結果増圧ピストン17は圧縮ばね23のばね力によって再び図1に示されるような上昇した状態に保持される。   Next, when the fuel flow passage 14 is again connected to the high pressure fuel supply passage 5 as shown in FIG. 1 by the fuel passage switching action by the three-way valve 8, the pressure control chamber 12 of the nozzle portion 6 becomes the common rail pressure, and as a result, the fuel Is stopped. At this time, the pressure in the intermediate chamber 20 of the pressure booster 7 also becomes the common rail pressure, and as a result, the pressure boosting piston 17 is held in the raised state again as shown in FIG. 1 by the spring force of the compression spring 23.

一方、中間室制御弁26が燃料流通通路25を遮断している場合には三方弁8の切換作用によって燃料流通通路25aが高圧燃料供給通路5に連結されようと燃料排出通路28に連結されようと中間室20内の燃料圧は変動せず、従って増圧ピストン17は作動しない。従ってこのときノズル室11内は常時コモンレール圧となっており、斯くして燃料噴射時の噴射圧はコモンレール圧となる。このように中間室制御弁26によって増圧ピストン17による増圧作用が制御される。   On the other hand, when the intermediate chamber control valve 26 blocks the fuel circulation passage 25, the fuel circulation passage 25a may be connected to the high pressure fuel supply passage 5 or to the fuel discharge passage 28 by the switching action of the three-way valve 8. The fuel pressure in the intermediate chamber 20 does not fluctuate, and therefore the booster piston 17 does not operate. Accordingly, at this time, the inside of the nozzle chamber 11 is always at the common rail pressure, and thus the injection pressure at the time of fuel injection is the common rail pressure. Thus, the intermediate chamber control valve 26 controls the pressure increasing action by the pressure increasing piston 17.

さて、圧縮着火式内燃機関では軽負荷時、特にアイドリング運転時には機械騒音は低く、従ってこのとき大きな燃焼騒音が発生すると搭乗者に不快感を与える。ところで軽負荷運転時或いはアイドリング運転時に噴射圧を高くして噴射率を高くすると燃焼圧が急上昇するために燃焼騒音が発生し、従ってこのとき燃焼騒音を低減するには噴射圧、即ちコモンレール圧を低くすることが必要となる。一方、高負荷運転時には多量の燃料を或る決まった期間内に噴射する必要があるために噴射圧が高くされ、コモンレール圧が高くされる。このようにコモンレール圧は機関負荷或いは機関の出力トルクが小さいときには低く、機関負荷或いは機関の出力トルクが高くなるにつれて高くされる。   Now, in a compression ignition type internal combustion engine, the machine noise is low at a light load, particularly at idling operation, and therefore, if a large combustion noise is generated at this time, the passenger is uncomfortable. By the way, if the injection pressure is increased and the injection rate is increased during light load operation or idling operation, the combustion pressure suddenly rises and combustion noise is generated. Therefore, at this time, in order to reduce the combustion noise, the injection pressure, that is, the common rail pressure is reduced. It needs to be lowered. On the other hand, since it is necessary to inject a large amount of fuel within a certain period during high load operation, the injection pressure is increased and the common rail pressure is increased. Thus, the common rail pressure is low when the engine load or the engine output torque is small, and is increased as the engine load or the engine output torque increases.

一方、機関高負荷運転時における機関出力を更に増大するには更に多くの燃料を或る決まった期間内に噴射する必要がある。そこで本発明では機関高負荷運転時に或る決まった期間内にできる限り多くの燃料を噴射するために増圧ピストン17を作動させて噴射圧を増大させるようにしている。なお、機関の出力トルクが増大するほどコモンレール圧が高められるので本発明ではコモンレール圧が高くなったときに増圧ピストン17による噴射圧の増大作用を行わせるようにしている。即ち、本発明では図2に示されるようにコモンレール2内の燃料圧が予め定められた燃料圧よりも高い高圧側燃料領域IIにあるときには増圧ピストン17を作動させ、コモンレール2内の燃料圧が予め定められた燃料圧よりも低い低圧側燃料領域Iにあるときにはコモンレール2内の燃料圧が高圧側燃料領域IIにあるときに比べて増圧ピストン17による増圧作用を弱めるか又は増圧ピストン17の作動を停止するようにしている。なお、図2において縦軸TQは機関の出力トルクを示しており、横軸NEは機関回転数を示している。また、増圧ピストン17を作動させるためには中間室20内の高圧の燃料を燃料排出通路28内に排出しなければならず、このように高圧燃料を排出させることはエネルギの損失となる。従ってこの高圧燃料の排出量はできる限り低減することが好ましい。この点に関し、本発明では図2の低圧側燃料領域Iにおいて増圧ピストン17の作動を停止させることによって高圧燃料の排出量が低減される。   On the other hand, in order to further increase the engine output during engine high load operation, it is necessary to inject more fuel within a certain period. Therefore, in the present invention, the injection pressure is increased by operating the pressure-increasing piston 17 in order to inject as much fuel as possible within a certain period during engine high load operation. Since the common rail pressure is increased as the engine output torque is increased, the injection pressure is increased by the pressure increasing piston 17 in the present invention when the common rail pressure is increased. That is, in the present invention, as shown in FIG. 2, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II higher than the predetermined fuel pressure, the pressure-increasing piston 17 is operated and the fuel pressure in the common rail 2 is Is in the low-pressure side fuel region I lower than the predetermined fuel pressure, or the pressure-increasing action by the pressure-increasing piston 17 is weakened or increased as compared with when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II. The operation of the piston 17 is stopped. In FIG. 2, the vertical axis TQ indicates the output torque of the engine, and the horizontal axis NE indicates the engine speed. Further, in order to operate the pressure-increasing piston 17, high-pressure fuel in the intermediate chamber 20 must be discharged into the fuel discharge passage 28, and discharging such high-pressure fuel in this way results in energy loss. Therefore, it is preferable to reduce the discharge amount of the high-pressure fuel as much as possible. In this regard, in the present invention, the discharge amount of the high-pressure fuel is reduced by stopping the operation of the pressure-increasing piston 17 in the low-pressure side fuel region I in FIG.

次に図3(A),(B)を参照しつつコモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには増圧ピストン17を作動させ、コモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときには増圧ピストン17の作動を停止するようにした中間室制御弁26の第1実施例について説明する。   Next, referring to FIGS. 3A and 3B, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II shown in FIG. 2, the pressure-increasing piston 17 is operated, and the fuel pressure in the common rail 2 is changed. A first embodiment of the intermediate chamber control valve 26 in which the operation of the pressure-increasing piston 17 is stopped when in the low-pressure side fuel region I shown in FIG. 2 will be described.

図3(A)を参照すると中間室制御弁26は円筒状の弁室30と、弁室30内で往復動する弁体31と、弁体31の軸線方向の一端面上に形成されかつ高圧燃料供給通路27を介してコモンレール2内に連結された高圧室32を具備する。弁体31の軸線方向中央部の外周面上には環状をなす凹溝33が形成され、それにより弁体31は、その軸線方向において互いに間隔を隔てると共に互いに連結されかつ弁室30の内周面上を摺動する第1の弁体31aと第2の弁体31bから構成される。この実施例では第1の弁体31aと第2の弁体31bは同じ外径を有する。   Referring to FIG. 3A, the intermediate chamber control valve 26 is formed on a cylindrical valve chamber 30, a valve body 31 reciprocating in the valve chamber 30, an end face in the axial direction of the valve body 31, and a high pressure. A high-pressure chamber 32 connected to the common rail 2 through a fuel supply passage 27 is provided. An annular concave groove 33 is formed on the outer peripheral surface of the central portion in the axial direction of the valve body 31, whereby the valve bodies 31 are spaced apart from each other in the axial direction and connected to each other and the inner periphery of the valve chamber 30. The first valve element 31a and the second valve element 31b slide on the surface. In this embodiment, the first valve body 31a and the second valve body 31b have the same outer diameter.

図3(A)に示されるように高圧室32は第1の弁体31aの外端面上に形成され、第2の弁体31bの外端面上には端部室34が形成される。また、第1の弁体31aと第2の弁体31b間の凹溝33内には弁間室35が形成される。一方、端部室34内には第1の弁体31aおよび第2の弁体32bを高圧室32に向けて付勢するばね部材36が挿入され、この端部室34は燃料排出通路28に連結される。燃料流通通路25aと25bは整列配置されており、弁室30の内周面上には燃料流通通路25aを介して三方弁8に連結された三方弁側燃料流通開口37と燃料流通通路25bを介して中間室20に連結された中間室側燃料流通開口38とが形成されている。   As shown in FIG. 3A, the high-pressure chamber 32 is formed on the outer end surface of the first valve body 31a, and the end chamber 34 is formed on the outer end surface of the second valve body 31b. An inter-valve chamber 35 is formed in the recessed groove 33 between the first valve body 31a and the second valve body 31b. On the other hand, a spring member 36 that urges the first valve body 31 a and the second valve body 32 b toward the high pressure chamber 32 is inserted into the end chamber 34, and this end chamber 34 is connected to the fuel discharge passage 28. The The fuel flow passages 25a and 25b are aligned, and a three-way valve side fuel flow opening 37 and a fuel flow passage 25b connected to the three-way valve 8 through the fuel flow passage 25a are provided on the inner peripheral surface of the valve chamber 30. An intermediate chamber side fuel circulation opening 38 connected to the intermediate chamber 20 is formed.

コモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときには弁体31は図3(A)に示されるようにばね部材36のばね力により上昇しており、このとき三方弁側燃料流通開口37と中間室側燃料流通開口38は第2の弁体31bの外周面によって閉塞される。即ち、燃料流通通路25が中間室制御弁26によって遮断される。従ってこのとき増圧ピストン17の作動が停止され、噴射圧はコモンレール圧となる。   When the fuel pressure in the common rail 2 is in the low-pressure side fuel region I shown in FIG. 2, the valve element 31 is raised by the spring force of the spring member 36 as shown in FIG. The side fuel circulation opening 37 and the intermediate chamber side fuel circulation opening 38 are closed by the outer peripheral surface of the second valve body 31b. That is, the fuel flow passage 25 is blocked by the intermediate chamber control valve 26. Accordingly, at this time, the operation of the pressure increasing piston 17 is stopped, and the injection pressure becomes the common rail pressure.

これに対し、コモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには弁体31は図3(B)に示されるように高圧室32内のコモンレール圧によりばね部材36のばね力に抗して押し下げられ、三方弁側燃料流通開口37および中間室側燃料流通開口38が共に弁間室35内に開口する。即ち、中間室制御弁26は燃料流通通路25の流路を全開する。従ってこのとき三方弁8による流路切換作用により燃料流通通路14が高圧燃料供給通路5に連結されるとコモンレール2内の高圧燃料が中間室20内に送り込まれ、燃料流通通路14が燃料排出通路28に連結されると中間室20内の高圧燃料が排出されるので増圧ピストン17による増大作用が行われる。   On the other hand, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II shown in FIG. 2, the valve body 31 is moved by the common rail pressure in the high-pressure chamber 32 as shown in FIG. The three-way valve side fuel circulation opening 37 and the intermediate chamber side fuel circulation opening 38 are both opened into the valve chamber 35 by being pushed down against the spring force. That is, the intermediate chamber control valve 26 fully opens the flow path of the fuel circulation passage 25. Therefore, at this time, when the fuel flow passage 14 is connected to the high pressure fuel supply passage 5 by the flow path switching action by the three-way valve 8, the high pressure fuel in the common rail 2 is sent into the intermediate chamber 20, and the fuel flow passage 14 becomes the fuel discharge passage. When connected to 28, the high pressure fuel in the intermediate chamber 20 is discharged, so that the pressure increasing piston 17 increases the pressure.

図3に示す第1実施例では弁体31が図3(A)に示す状態にあろうと図3(B)に示す状態にあろうと燃料流通通路25a内にコモンレール2内の高圧燃料が供給されればこの高圧燃料は第2の弁体31bの外周と弁室30の内壁面間を通って端部室34内に漏洩し、端部室34内に漏洩した燃料は燃料排出通路28に排出される。しかしながらこのように高圧燃料が漏洩するような構造にしておくと高圧燃料ポンプ4の駆動エネルギが増大し、好ましくない。以下に述べる実施例は高圧燃料の漏洩が生じないような構造にしたものを示している。なお、以下に述べる実施例において図3に示す構造と同様な構造については同一の参照符号を用いる。   In the first embodiment shown in FIG. 3, the high pressure fuel in the common rail 2 is supplied into the fuel flow passage 25a regardless of whether the valve element 31 is in the state shown in FIG. 3A or in the state shown in FIG. Then, the high-pressure fuel leaks into the end chamber 34 through the outer periphery of the second valve body 31b and the inner wall surface of the valve chamber 30, and the fuel leaked into the end chamber 34 is discharged to the fuel discharge passage 28. . However, such a structure in which high-pressure fuel leaks is not preferable because the driving energy of the high-pressure fuel pump 4 increases. The embodiment described below shows a structure in which high-pressure fuel does not leak. In the embodiments described below, the same reference numerals are used for the same structures as those shown in FIG.

図4(A),(B)に第2実施例を示す。この第2実施例において第1実施例と異なるところは中間室制御弁26における高圧燃料の漏洩を生じさせないために端部室34が燃料流通通路25a,25bよりも流路断面の小さな燃料通路40を介して燃料流通通路25aに連結されていることである。この第2実施例においてもコモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには増圧ピストン17を作動させ、コモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときには増圧ピストン17の作動を停止するようにしているが、燃料通路40を設けることによって増圧作用を行うときの弁体31の動きが第1実施例とは若干異なる。   4A and 4B show a second embodiment. The second embodiment is different from the first embodiment in that the end chamber 34 has a fuel passage 40 having a smaller channel cross section than the fuel circulation passages 25a and 25b in order not to cause leakage of high-pressure fuel in the intermediate chamber control valve 26. It is connected to the fuel flow passage 25a via Also in the second embodiment, when the fuel pressure in the common rail 2 is in the high pressure side fuel region II shown in FIG. 2, the pressure increasing piston 17 is operated, and the fuel pressure in the common rail 2 is low pressure side fuel shown in FIG. While the operation of the pressure-increasing piston 17 is stopped when in the region I, the movement of the valve body 31 when performing the pressure-increasing action by providing the fuel passage 40 is slightly different from that in the first embodiment.

即ち、コモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときには弁体31は図4(A)に示されるように上昇しており、このとき第2の弁体31bによって燃料流通通路25a,25bは遮断されている。なお、三方弁8による流路切換作用により燃料流通通路25a内の燃料圧が変動すると端部室34内の燃料圧も変動するが高圧室32内の燃料圧はさほど高くないために弁体31は図4(A)に示されるように上昇した位置に保持される。   That is, when the fuel pressure in the common rail 2 is in the low-pressure side fuel region I shown in FIG. 2, the valve body 31 rises as shown in FIG. 4 (A). At this time, the second valve body 31b The fuel circulation passages 25a and 25b are blocked. When the fuel pressure in the fuel flow passage 25a varies due to the flow path switching action by the three-way valve 8, the fuel pressure in the end chamber 34 also varies, but the fuel pressure in the high pressure chamber 32 is not so high, so the valve element 31 As shown in FIG. 4 (A), the raised position is maintained.

一方、コモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには高圧室32内の燃料圧は高くなる。このとき三方弁8による流路切換作用により燃料流通通路25aが高圧燃料流通通路5に連結されると端部室34内の燃料圧が高くなるために図4(A)に示されるように弁体31は上昇する。しかしながら実際には燃料通路40の流路面積が小さいことや、弁体31の慣性により燃料流通通路25aが高圧燃料流通通路5に連結されても弁体31はただちに上昇せず、図4(B)に示されるように中間室制御弁26は燃料流通通路25の流路を全開した状態に維持される。従ってこの間に中間室20内に高圧燃料が供給される。   On the other hand, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II shown in FIG. 2, the fuel pressure in the high-pressure chamber 32 becomes high. At this time, when the fuel flow passage 25a is connected to the high-pressure fuel flow passage 5 by the flow path switching action by the three-way valve 8, the fuel pressure in the end chamber 34 becomes higher, so that the valve body is shown in FIG. 31 rises. However, actually, even if the flow passage area of the fuel passage 40 is small or the fuel circulation passage 25a is connected to the high-pressure fuel circulation passage 5 due to the inertia of the valve body 31, the valve body 31 does not rise immediately, and FIG. ), The intermediate chamber control valve 26 is maintained in a state in which the flow path of the fuel circulation passage 25 is fully opened. Accordingly, high pressure fuel is supplied into the intermediate chamber 20 during this period.

次いで三方弁8による流路切換作用によって燃料流通通路25aが燃料排出通路28に連結されると端部室34内の燃料圧が低下するために図4(B)に示されるように弁体31が下降し、中間室制御弁26が燃料流通通路25の流路を全開する。その結果、中間室20内の燃料圧は低下し、増圧ピストン17による増圧作用が行われる。   Next, when the fuel flow passage 25a is connected to the fuel discharge passage 28 by the flow path switching action by the three-way valve 8, the fuel pressure in the end chamber 34 decreases, so that the valve body 31 is moved as shown in FIG. The intermediate chamber control valve 26 fully opens the flow path of the fuel circulation passage 25. As a result, the fuel pressure in the intermediate chamber 20 decreases, and the pressure increasing action by the pressure increasing piston 17 is performed.

図5(A),(B)に第3実施例を示す。第1実施例および第2実施例ではばね部材36のばね力でもって弁体31に上向きの力を付与しているのでばね部材36として大型で強力なばね部材が必要となる。第3実施例では第2の弁体31bの外径を第1の弁体31aの外径よりも小さくすると共に端部室34を高圧燃料供給通路41を介してコモンレール2内に連結して端部室34内の燃料圧をコモンレール圧とし、第1の弁体31aと第2の弁体31bの断面積差分だけ弁体31に下向きの燃料圧を作用させることによってばね部材36として小型で弱いばね部材を使用できるようにしている。なお、この第3実施例では弁間室35は燃料流通通路25aよりも流路面積が小さな燃料通路42を介して燃料流通通路25aに常時連結されている。   5A and 5B show a third embodiment. In the first embodiment and the second embodiment, an upward force is applied to the valve body 31 by the spring force of the spring member 36, so that a large and strong spring member is required as the spring member 36. In the third embodiment, the outer diameter of the second valve body 31b is made smaller than the outer diameter of the first valve body 31a, and the end chamber 34 is connected to the common rail 2 via the high-pressure fuel supply passage 41 to thereby connect the end chamber. The fuel pressure in 34 is a common rail pressure, and a small and weak spring member 36 is used as the spring member 36 by applying downward fuel pressure to the valve body 31 by the difference in cross-sectional area between the first valve body 31a and the second valve body 31b. Can be used. In the third embodiment, the inter-valve chamber 35 is always connected to the fuel circulation passage 25a via the fuel passage 42 having a smaller passage area than the fuel circulation passage 25a.

この第3実施例においても、コモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときには弁体31は図5(A)に示されるように上昇しており、このとき第2の弁体31bによって燃料流通通路25a,25bは遮断されている。なお、三方弁8による流路切換作用により燃料流通通路25a内の燃料圧が変動すると弁間室35内の燃料圧も変動するが高圧室32内の燃料圧はさほど高くないために弁体31は図5(A)に示されるように上昇した位置に保持される。   Also in the third embodiment, when the fuel pressure in the common rail 2 is in the low pressure side fuel region I shown in FIG. 2, the valve element 31 is raised as shown in FIG. The fuel flow passages 25a and 25b are blocked by the second valve body 31b. If the fuel pressure in the fuel flow passage 25a varies due to the flow path switching action by the three-way valve 8, the fuel pressure in the inter-valve chamber 35 also varies, but the fuel pressure in the high-pressure chamber 32 is not so high, so the valve element 31 Is held in the raised position as shown in FIG.

一方、コモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには高圧室32内および端部室34内の燃料圧は高くなる。このとき三方弁8による流路切換作用により燃料流通通路25aが高圧燃料流通通路5に連結されると弁間室35内の燃料圧がコモンレール圧になるために図5(A)に示されるように弁体31はばね部材36のばね力によって上昇する。しかしながら実際には弁体31の慣性により燃料流通通路25aが高圧燃料流通通路5に連結されても弁体31はただちに上昇せず、図5(B)に示されるように中間室制御弁26は燃料流通通路25の流路を全開した状態に維持される。従ってこの間に中間室20内に高圧燃料が供給される。   On the other hand, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II shown in FIG. 2, the fuel pressure in the high-pressure chamber 32 and the end chamber 34 is high. At this time, when the fuel flow passage 25a is connected to the high-pressure fuel flow passage 5 by the flow path switching action by the three-way valve 8, the fuel pressure in the inter-valve chamber 35 becomes the common rail pressure, as shown in FIG. Further, the valve body 31 is raised by the spring force of the spring member 36. However, in actuality, even if the fuel flow passage 25a is connected to the high-pressure fuel flow passage 5 due to the inertia of the valve body 31, the valve body 31 does not rise immediately, and the intermediate chamber control valve 26 is not shown in FIG. The flow path of the fuel circulation passage 25 is maintained in a fully opened state. Accordingly, high pressure fuel is supplied into the intermediate chamber 20 during this period.

次いで三方弁8による流路切換作用によって燃料流通通路25aが燃料排出通路28に連結されると弁間室35内の燃料圧が低下するために図5(B)に示されるように弁体31が下降し、中間室制御弁26が燃料流通通路25の流路を全開する。その結果、中間室20内の燃料圧は低下し、増圧ピストン17による増圧作用が行われる。   Next, when the fuel flow passage 25a is connected to the fuel discharge passage 28 by the flow path switching action by the three-way valve 8, the fuel pressure in the inter-valve chamber 35 decreases, so that the valve body 31 is shown in FIG. Is lowered, and the intermediate chamber control valve 26 fully opens the flow path of the fuel circulation passage 25. As a result, the fuel pressure in the intermediate chamber 20 decreases, and the pressure increasing action by the pressure increasing piston 17 is performed.

図6に第4実施例を示す。この第4実施例では弁体31の中心軸線上に燃料通路43が形成され、高圧室32内の高圧燃料が燃料通路43を介して端部室34内に送り込まれる。この第4実施例では端部室34内に高圧燃料を送り込むために燃料噴射弁1内に図5(A),(B)に示すような高圧燃料供給通路41を形成する必要がないという利点がある。また、高圧室32とコモンレール2との通路長および端部室34とコモンレール2との通路長の差を小さくすることができるのでコモンレール2内で発生した圧力脈動が高圧室32内および端部室34内に伝播したときこれら高圧室32内および端部室34内での圧力脈動に位相差が生じず、斯くして弁体31が振動するのを阻止することができる。   FIG. 6 shows a fourth embodiment. In the fourth embodiment, a fuel passage 43 is formed on the central axis of the valve body 31, and the high-pressure fuel in the high-pressure chamber 32 is sent into the end chamber 34 through the fuel passage 43. In the fourth embodiment, there is an advantage that it is not necessary to form the high pressure fuel supply passage 41 as shown in FIGS. 5A and 5B in the fuel injection valve 1 in order to send the high pressure fuel into the end chamber 34. is there. Further, since the difference in the passage length between the high pressure chamber 32 and the common rail 2 and the passage length between the end chamber 34 and the common rail 2 can be reduced, the pressure pulsation generated in the common rail 2 is caused in the high pressure chamber 32 and the end chamber 34. Therefore, no phase difference occurs in the pressure pulsation in the high pressure chamber 32 and the end chamber 34, and thus the valve body 31 can be prevented from vibrating.

図7に第5実施例を示す。この第5実施例においても弁体31内に高圧室32と端部室34とを連通する燃料通路44が形成され、この燃料通路44内に絞り45が形成される。弁体31の移動速度は高圧室32から端部室34への燃料の移動速度或いは端部室34から高圧室32への燃料の移動速度によって定まり、各気筒の燃料噴射弁1間における弁体31の移動速度のばらつきをなくすには高圧室32から端部室34への、および端部室34から高圧室32への燃料の移動速度を一致させる必要がある。この第5実施例では絞り45を高精度で形成することにより各弁体31の移動速度を一致させることが可能となる。   FIG. 7 shows a fifth embodiment. Also in the fifth embodiment, a fuel passage 44 that connects the high-pressure chamber 32 and the end chamber 34 is formed in the valve body 31, and a throttle 45 is formed in the fuel passage 44. The moving speed of the valve body 31 is determined by the moving speed of the fuel from the high pressure chamber 32 to the end chamber 34 or the moving speed of the fuel from the end chamber 34 to the high pressure chamber 32, and the valve body 31 between the fuel injection valves 1 of each cylinder. In order to eliminate variations in the moving speed, it is necessary to match the moving speed of the fuel from the high pressure chamber 32 to the end chamber 34 and from the end chamber 34 to the high pressure chamber 32. In the fifth embodiment, the movement speeds of the valve bodies 31 can be matched by forming the throttle 45 with high accuracy.

また、各燃料噴射弁1間で弁体31の移動速度のばらつきをなくすには図5(A),(B)に示す実施例において図8に示す如く高圧室32および端部室34に連結された各高圧燃料供給通路27,41内に夫々絞り46,47を設けることもできる。   Further, in order to eliminate the variation in the moving speed of the valve element 31 between the fuel injection valves 1, the embodiment shown in FIGS. 5A and 5B is connected to the high pressure chamber 32 and the end chamber 34 as shown in FIG. In addition, throttles 46 and 47 can be provided in the high-pressure fuel supply passages 27 and 41, respectively.

一方、図5(A),(B)に示す実施例ではばね部材36のばね力の設定の仕方によりコモンレール圧が増大するにつれて増圧ピストン17による増圧作用を強めるようにすることもできる。この場合の中間室制御弁26の作動が図9(A),(B)および図10(A),(B)に示されている。即ち、この場合にはコモンレール2内の燃料圧が図9(A)に示される高圧側燃料領域IIIにあるときには増圧ピストン17を強力に作動させ、コモンレール2内の燃料圧が図9(A)に示される中圧側燃料領域IIにあるときには増圧ピストン17による増圧作用を低下させ、コモンレール2内の燃料圧が図9(A)に示される低圧側燃料領域Iにあるときには増圧ピストン17の作動を停止するようにしている。なお、図9(A)においてもTQは機関の出力トルク、NEは機関回転数を示している。   On the other hand, in the embodiment shown in FIGS. 5A and 5B, the pressure-increasing action by the pressure-intensifying piston 17 can be increased as the common rail pressure increases depending on how the spring force of the spring member 36 is set. The operation of the intermediate chamber control valve 26 in this case is shown in FIGS. 9 (A) and 9 (B) and FIGS. 10 (A) and 10 (B). That is, in this case, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region III shown in FIG. 9A, the pressure-increasing piston 17 is operated strongly, and the fuel pressure in the common rail 2 is changed to FIG. ), The pressure-increasing action by the pressure-increasing piston 17 is reduced. When the fuel pressure in the common rail 2 is in the low-pressure side fuel region I shown in FIG. The operation of 17 is stopped. In FIG. 9A, TQ indicates the engine output torque, and NE indicates the engine speed.

即ち、コモンレール2内の燃料圧が図9(A)に示される低圧側燃料領域Iにあるときには図5(A),(B)に示す実施例においてコモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときと同様に図9(B)に示されるように弁体31が常時上昇せしめられており、増圧ピストン17の作動は停止せしめられている。   That is, when the fuel pressure in the common rail 2 is in the low pressure side fuel region I shown in FIG. 9A, the fuel pressure in the common rail 2 in the embodiment shown in FIGS. 5A and 5B is shown in FIG. As in the low pressure side fuel region I, the valve body 31 is always raised as shown in FIG. 9B, and the operation of the pressure increasing piston 17 is stopped.

一方、コモンレール2内の燃料圧が図9(A)に示される高圧側燃料領域IIIにあるときには図5(A),(B)に示す実施例においてコモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときと同様に燃料流通通路25aが燃料排出通路28に連結されたときに図10(B)に示されるように弁体31は最下降位置まで下降する。その結果、燃料流通通路25a,25bの流路は全開せしめられ、増圧ピストン17による強力な増圧作用が行われる。   On the other hand, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region III shown in FIG. 9A, the fuel pressure in the common rail 2 in the embodiment shown in FIGS. 5A and 5B is shown in FIG. When the fuel flow passage 25a is connected to the fuel discharge passage 28 as in the high pressure side fuel region II, the valve body 31 is lowered to the lowest position as shown in FIG. As a result, the flow paths of the fuel circulation passages 25a and 25b are fully opened, and a strong pressure increasing action by the pressure increasing piston 17 is performed.

一方、コモンレール2内の燃料圧が図9(A)に示される中圧側燃料領域IIにあるときには燃料流通通路25aが燃料排出通路28に連結されたときに弁体31は図10(A)に示されるように第2の弁体31bが三方弁側燃料流通開口37および中間室側燃料流通開口38を部分的に開口する。即ち、コモンレール2内の燃料圧が高くなるにつれて弁間室35内に開口する各燃料流通開口37,38の開口面積が徐々に増大する。弁間室35内に開口する各燃料流通開口37,38の開口面積が増大すると増圧ピストン17による増圧作用が強められ、従って図9(A),(B)および図10(A),(B)に示される実施例ではコモンレール2内の燃料圧が高くなるにつれて増圧ピストン17による増圧作用が強められることになる。   On the other hand, when the fuel pressure in the common rail 2 is in the intermediate pressure side fuel region II shown in FIG. 9A, the valve element 31 is shown in FIG. 10A when the fuel circulation passage 25a is connected to the fuel discharge passage 28. As shown, the second valve element 31b partially opens the three-way valve side fuel circulation opening 37 and the intermediate chamber side fuel circulation opening 38. That is, as the fuel pressure in the common rail 2 increases, the opening areas of the fuel flow openings 37 and 38 that open into the inter-valve chamber 35 gradually increase. When the opening area of each of the fuel flow openings 37 and 38 opened in the inter-valve chamber 35 is increased, the pressure increasing action by the pressure increasing piston 17 is strengthened, and therefore FIGS. 9 (A), 9 (B) and 10 (A), In the embodiment shown in (B), the pressure increasing action by the pressure increasing piston 17 is strengthened as the fuel pressure in the common rail 2 increases.

さて、図5(A),(B)から図10(A),(B)に示す実施例では燃料流通通路25aが高圧燃料供給5に連結されたときに中間室20内に十分に高圧燃料が供給される前に中間室制御弁26が燃料流通通路25を遮断してしまい、その結果良好な増圧作用を行うことができなくなる危険性がある。また、コモンレール圧が徐々に下がってくると中間室20内の高圧燃料が抜けた状態で中間室制御弁26が燃料流通通路25を遮断してしまい、その結果増圧を必要とするコモンレール圧になったときに中間室20が高圧燃料で満たされるまで増圧作用が行われなくなる危険性がある。   In the embodiment shown in FIGS. 5A and 5B to FIGS. 10A and 10B, when the fuel circulation passage 25a is connected to the high-pressure fuel supply 5, the high-pressure fuel is sufficiently in the intermediate chamber 20. There is a risk that the intermediate chamber control valve 26 shuts off the fuel flow passage 25 before being supplied, and as a result, a good pressure increasing action cannot be performed. Further, when the common rail pressure gradually decreases, the intermediate chamber control valve 26 shuts off the fuel flow passage 25 in a state where the high-pressure fuel in the intermediate chamber 20 is released, and as a result, the common rail pressure that requires pressure increase is obtained. When this happens, there is a risk that the pressure increasing action will not be performed until the intermediate chamber 20 is filled with high-pressure fuel.

このような危険性がある場合には図11に示すように中間室20をコモンレール2内から中間室20内に向けてのみ流通可能な逆止弁48および絞り49を介してコモンレール2内に連結すればよい。このようにすると中間室制御弁26が燃料流通通路25を遮断していても中間室20は高圧燃料で満たされるので増圧すべきコモンレール圧になったときに確実に増圧作用を行うことができる。   When there is such a risk, as shown in FIG. 11, the intermediate chamber 20 is connected to the common rail 2 via a check valve 48 and a throttle 49 that can flow only from the common rail 2 toward the intermediate chamber 20. do it. In this way, even if the intermediate chamber control valve 26 shuts off the fuel flow passage 25, the intermediate chamber 20 is filled with the high-pressure fuel, so that the pressure increasing action can be reliably performed when the common rail pressure to be increased is reached. .

このように中間室20を逆止弁48を介してコモンレール2に連結した場合には中間室制御弁26に中間室20内の高圧燃料を排出させるだけの作用を行わせてもよい。   In this way, when the intermediate chamber 20 is connected to the common rail 2 via the check valve 48, the intermediate chamber control valve 26 may be allowed to perform an operation only for discharging the high-pressure fuel in the intermediate chamber 20.

また、中間室20を高圧燃料で満たすようにするには図12に示されるように端部室34と燃料流通通路25b又は中間室20とを燃料流通通路25bよりも流路面積の小さな燃料通路50を介して連結するようにしてもよい。このようにすると中間室20に高圧燃料が充填されてから端部室34内の燃料圧が上昇するので中間室20が高圧燃料で満たされるまで中間室制御弁26が燃料流通通路25a,25bを遮断しなくなり、斯くして中間室20は確実に高圧燃料で満たされることになる。   Further, in order to fill the intermediate chamber 20 with the high-pressure fuel, as shown in FIG. 12, the end portion 34 and the fuel circulation passage 25b or the intermediate chamber 20 have a fuel passage 50 having a smaller flow area than the fuel circulation passage 25b. You may make it connect via. In this way, since the fuel pressure in the end chamber 34 rises after the intermediate chamber 20 is filled with the high pressure fuel, the intermediate chamber control valve 26 shuts off the fuel flow passages 25a and 25b until the intermediate chamber 20 is filled with the high pressure fuel. Thus, the intermediate chamber 20 is surely filled with high-pressure fuel.

次に図13(A),(B)を参照しつつコモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには増圧ピストン17を作動させ、コモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときにはコモンレール2内の燃料圧が高圧側燃料領域IIにあるときに比べて増圧ピストン17による増圧作用を弱めるようにした実施例を示している。   Next, referring to FIGS. 13A and 13B, when the fuel pressure in the common rail 2 is in the high pressure side fuel region II shown in FIG. 2, the pressure increasing piston 17 is operated, and the fuel pressure in the common rail 2 is changed. 2 shows an embodiment in which the pressure increasing action by the pressure increasing piston 17 is weakened when the fuel pressure in the common rail 2 is in the high pressure side fuel region II when in the low pressure side fuel region I shown in FIG. .

この実施例では中間室20に連結された燃料流通通路25bが常時、弁間室35内に連通せしめられると共に、三方弁8に連結された燃料流通通路25aが絞り51およびバイパス通路52を介して常時、弁間室35内に連通せしめられる。即ち、この実施例ではコモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときには図13(A)に示されるように弁体31が上昇しており、このとき三方弁側燃料流通開口37が第2の弁体31bによって閉塞される。従ってこのときには中間室20はバイパス通路52および絞り51を介して燃料流通通路25aに常時連通せしめられ、その結果増圧ピストン17による弱い増圧作用が行われる。   In this embodiment, the fuel flow passage 25 b connected to the intermediate chamber 20 is always in communication with the valve chamber 35, and the fuel flow passage 25 a connected to the three-way valve 8 is connected via the throttle 51 and the bypass passage 52. The valve chamber 35 is always communicated with the valve chamber 35. That is, in this embodiment, when the fuel pressure in the common rail 2 is in the low pressure side fuel region I shown in FIG. 2, the valve body 31 is raised as shown in FIG. The fuel flow opening 37 is closed by the second valve body 31b. Accordingly, at this time, the intermediate chamber 20 is always communicated with the fuel circulation passage 25a via the bypass passage 52 and the throttle 51, and as a result, a weak pressure increasing action is performed by the pressure increasing piston 17.

一方、コモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには燃料流通通路25aが燃料排出通路28に連結されたときに図13(B)に示されるように三方弁側燃料流通開口37が弁間室35内に完全に開口する。従ってこのときには強力な増圧作用が行われる。   On the other hand, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II shown in FIG. 2, when the fuel circulation passage 25a is connected to the fuel discharge passage 28, as shown in FIG. The fuel flow opening 37 completely opens into the inter-valve chamber 35. Therefore, at this time, a strong pressure increasing action is performed.

図14(A),(B)は図13(A),(B)に示す実施例の変形例を示している。この変形例では第2の弁体31bの外径が第1の弁体31aの外径よりも大きく形成されており、端部室34が燃料流通通路25aと同程度の流路面積を有する燃料通路53を介して燃料流通通路25aに連結されている。この実施例でもコモンレール2内の燃料圧が図2に示される低圧側燃料領域Iにあるときには弁体31は図14(A)に示されるように上昇しており、従ってこのとき弱い増圧作用が行われる。   14 (A) and 14 (B) show a modification of the embodiment shown in FIGS. 13 (A) and 13 (B). In this modified example, the outer diameter of the second valve body 31b is formed larger than the outer diameter of the first valve body 31a, and the end passage 34 has a flow passage area comparable to the fuel circulation passage 25a. 53 is connected to the fuel flow passage 25a. Also in this embodiment, when the fuel pressure in the common rail 2 is in the low pressure side fuel region I shown in FIG. 2, the valve element 31 is raised as shown in FIG. Is done.

一方、コモンレール2内の燃料圧が図2に示される高圧側燃料領域IIにあるときには高圧室32内の燃料圧は高くなる。このとき三方弁8による流路切換作用により燃料流通通路25aが高圧燃料流通通路5に連結されると端部室34内の燃料圧がただちに高くなるために図14(A)に示されるように弁体31は上昇する。このとき高圧燃料は絞り51およびバイパス通路52を介して中間室20内に供給される。次いで三方弁8による流路切換作用によって燃料流通通路25aが燃料排出通路28に連結されると端部室34内の燃料圧がただちに低下するために図14(B)に示されるように弁体31が下降する。その結果、三方弁側燃料流通開口37が弁間室35内に完全に開口し、従って強力な増圧作用が行われる。   On the other hand, when the fuel pressure in the common rail 2 is in the high-pressure side fuel region II shown in FIG. 2, the fuel pressure in the high-pressure chamber 32 becomes high. At this time, when the fuel flow passage 25a is connected to the high-pressure fuel flow passage 5 by the flow path switching action of the three-way valve 8, the fuel pressure in the end chamber 34 immediately increases, so that the valve as shown in FIG. The body 31 rises. At this time, the high-pressure fuel is supplied into the intermediate chamber 20 through the throttle 51 and the bypass passage 52. Next, when the fuel flow passage 25a is connected to the fuel discharge passage 28 by the flow path switching action by the three-way valve 8, the fuel pressure in the end chamber 34 immediately decreases, so that the valve body 31 as shown in FIG. Descends. As a result, the three-way valve side fuel flow opening 37 is completely opened in the inter-valve chamber 35, and thus a strong pressure increasing action is performed.

燃料噴射装置の全体図である。1 is an overall view of a fuel injection device. コモンレール圧の低圧側燃料領域Iおよび高圧側燃料領域IIを示す図である。It is a figure which shows the low pressure side fuel area | region I and the high pressure side fuel area | region II of a common rail pressure. 中間室制御弁の第1実施例を示す図である。It is a figure which shows 1st Example of an intermediate chamber control valve. 中間室制御弁の第2実施例を示す図である。It is a figure which shows 2nd Example of an intermediate chamber control valve. 中間室制御弁の第3実施例を示す図である。It is a figure which shows 3rd Example of an intermediate chamber control valve. 中間室制御弁の第4実施例を示す図である。It is a figure which shows 4th Example of an intermediate chamber control valve. 中間室制御弁の第5実施例を示す図である。It is a figure which shows 5th Example of an intermediate chamber control valve. 中間室制御弁の第3実施例の変形例を示す図である。It is a figure which shows the modification of 3rd Example of an intermediate chamber control valve. 中間室制御弁等を示す図である。It is a figure which shows an intermediate chamber control valve. 中間室制御弁を示す図である。It is a figure which shows an intermediate chamber control valve. 燃料噴射装置の全体図である。1 is an overall view of a fuel injection device. 中間室制御弁の別の実施例を示す図である。It is a figure which shows another Example of an intermediate chamber control valve. 中間室制御弁の更に別の実施例を示す図である。It is a figure which shows another Example of an intermediate chamber control valve. 中間室制御弁の図13に示す実施例の変形例を示す図である。It is a figure which shows the modification of the Example shown in FIG. 13 of an intermediate chamber control valve.

符号の説明Explanation of symbols

2 コモンレール
5,19,23,27,41 高圧燃料供給通路
6 ノズル部
7 増圧器
8 三方弁
9 ニードル弁
12 圧力制御室
14,25,25a,25b 燃料流通通路
17 増圧ピストン
20 中間室
22 増圧室
24,48 逆止弁
26 中間室制御弁
28 燃料排出通路
30 弁室
31 弁体
31a 第1の弁体
31b 第2の弁体
32 高圧室
34 端部室
35 弁間室
36 ばね部材
37 三方弁側燃料流通開口
38 中間室側燃料流通開口
40,42,43,44,50,53 燃料通路
2 Common rail 5, 19, 23, 27, 41 High-pressure fuel supply passage 6 Nozzle part 7 Booster 8 Three-way valve 9 Needle valve 12 Pressure control chamber 14, 25, 25a, 25b Fuel flow passage 17 Pressure-increasing piston 20 Intermediate chamber 22 Increase Pressure chambers 24 and 48 Check valve 26 Intermediate chamber control valve 28 Fuel discharge passage 30 Valve chamber 31 Valve body 31a First valve body 31b Second valve body 32 High pressure chamber 34 End chamber 35 Intervalve chamber 36 Spring member 37 Three-way Valve side fuel flow opening 38 Intermediate chamber side fuel flow opening 40, 42, 43, 44, 50, 53 Fuel passage

Claims (2)

ニードル弁の内端部上に形成された圧力制御室と噴射圧を増大するための増圧ピストンの中間室とを二位置切換型三方弁を介してコモンレール内又は燃料排出通路に選択的に連結し、上記圧力制御室内に供給されたコモンレール内の高圧燃料を燃料排出通路内に排出することによりニードル弁を開弁して燃料噴射を行い、上記中間室内に供給されたコモンレール内の高圧燃料を燃料排出通路内に排出することにより増圧ピストンを作動させて燃料噴射圧を増大させるようにした燃料噴射装置において、コモンレール内の燃料圧が機関の運転状態に応じて予め定められた燃料圧よりも低い低圧側燃料領域と予め定められた燃料圧よりも高い高圧側燃料領域との間で変化せしめられ、上記三方弁と中間室とを連通する燃料流通通路内に中間室制御弁を配置し、該中間室制御弁に中間室制御弁作動用としてコモンレール内の高圧燃料を供給して該中間室制御弁をコモンレール内の高圧燃料により作動させると共に該中間室制御弁が機関の運転状態に応じたコモンレール内の燃料圧の変化に応じて該燃料流通通路の流路面積を制御し、コモンレール内の燃料圧が上記高圧側燃料領域となったときには該中間室制御弁による該燃料流通通路の流路面積制御により増圧ピストンによる増圧作用が行われ、コモンレール内の燃料圧が上記低圧側燃料領域となったときには該中間室制御弁による該燃料流通通路の流路面積制御によりコモンレール内の燃料圧が該高圧側燃料領域にあるときに比べて増圧ピストンによる増圧作用を弱めるか又は増圧ピストンの作動を停止するようにした燃料噴射装置。 The pressure control chamber formed on the inner end of the needle valve and the intermediate chamber of the booster piston for increasing the injection pressure are selectively connected to the common rail or the fuel discharge passage via a two-position switching type three-way valve. The high pressure fuel in the common rail supplied into the pressure control chamber is discharged into the fuel discharge passage to open the needle valve to perform fuel injection, and the high pressure fuel in the common rail supplied into the intermediate chamber is discharged. In a fuel injection device that operates a pressure-increasing piston to increase the fuel injection pressure by discharging the fuel into the fuel discharge passage, the fuel pressure in the common rail is higher than the fuel pressure determined in advance according to the operating state of the engine. also contain altered between the low low-pressure fuel region with a predetermined fuel pressure is higher the high-pressure fuel region than the intermediate chamber controlled fuel flow passage communicating between the three-way valve and the intermediate chamber It was placed, operated intermediate chamber control valve of the engine actuates a high-pressure fuel in the common rail the intermediate chamber control valve to supply the high pressure fuel in the common rail to the intermediate chamber control valve as an intermediate chamber control valve actuation The flow area of the fuel circulation passage is controlled according to the change in the fuel pressure in the common rail according to the state, and the fuel circulation by the intermediate chamber control valve when the fuel pressure in the common rail reaches the high pressure side fuel region. When the pressure in the common rail is increased by the passage area control of the passage and the fuel pressure in the common rail reaches the low pressure side fuel region, the common rail is controlled by the passage area control of the fuel circulation passage by the intermediate chamber control valve. A fuel injection device in which the pressure-increasing action by the pressure-increasing piston is weakened or the operation of the pressure-increasing piston is stopped compared to when the internal fuel pressure is in the high-pressure side fuel region. 上記中間室制御弁はコモンレール内の燃料圧が上記高圧側燃料領域にあるときには三方弁の切換作用により燃料流通通路が燃料排出通路に連結されたときに該燃料流通通路の流路を全開させ、コモンレール内の燃料圧が上記低圧側燃料領域にあるときには三方弁の切換作用により燃料流通通路が燃料排出通路に連結されたときに該燃料流通通路の流路を全開時よりも小さな流路面積だけ流通可能とするか、又は該燃料流通通路を遮断する請求項1に記載の燃料噴射装置。   When the fuel pressure in the common rail is in the high pressure side fuel region, the intermediate chamber control valve opens the flow path of the fuel circulation passage when the fuel circulation passage is connected to the fuel discharge passage by the switching action of the three-way valve, When the fuel pressure in the common rail is in the low-pressure side fuel region, when the fuel flow passage is connected to the fuel discharge passage by the switching action of the three-way valve, the flow passage of the fuel flow passage is smaller than the flow passage area when fully opened. The fuel injection device according to claim 1, wherein the fuel injection device is configured to be able to flow or to block the fuel flow passage.
JP2007273585A 2004-09-24 2007-10-22 Fuel injection device Expired - Fee Related JP4412384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273585A JP4412384B2 (en) 2004-09-24 2007-10-22 Fuel injection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004277112 2004-09-24
JP2007273585A JP4412384B2 (en) 2004-09-24 2007-10-22 Fuel injection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005030275A Division JP4075894B2 (en) 2004-09-24 2005-02-07 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2008064108A JP2008064108A (en) 2008-03-21
JP4412384B2 true JP4412384B2 (en) 2010-02-10

Family

ID=39287003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273585A Expired - Fee Related JP4412384B2 (en) 2004-09-24 2007-10-22 Fuel injection device

Country Status (1)

Country Link
JP (1) JP4412384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112761838A (en) * 2021-01-25 2021-05-07 哈尔滨工程大学 Modular diesel engine double-valve common rail system with flexibly adjustable oil injection rule

Also Published As

Publication number Publication date
JP2008064108A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4286770B2 (en) Control valve and fuel injection valve having the same
KR100561791B1 (en) Fuel injector
JP4245639B2 (en) Fuel injection valve for internal combustion engine
JPH1047196A (en) Direct operation type speed control nozzle valve of fluid injector
JP5236018B2 (en) Fuel injector with improved valve control
JP2008309015A (en) Fuel injection control device for internal combustion engine
JP4075894B2 (en) Fuel injection device
JP2005534839A (en) Fuel injector with high pressure control fuel passage
US7506635B2 (en) Fuel injection system
JP2006233853A (en) Injector
KR20010080112A (en) Fuel injection device
US6928986B2 (en) Fuel injector with piezoelectric actuator and method of use
JP4412384B2 (en) Fuel injection device
JP4107277B2 (en) Fuel injection device for internal combustion engine
KR20020063100A (en) Fuel injector assembly and internal combustion engine including same
JP2005513332A (en) Fuel injection device for an internal combustion engine
KR101433041B1 (en) Fuel injector
JP4329704B2 (en) Fuel injection device
JP2008304017A (en) Three-way selector valve and fuel injection device using the same
KR20030017634A (en) Fuel injection device
JP2005320904A (en) Fuel injection valve
JP4045922B2 (en) Fuel injection device for internal combustion engine
JP4305353B2 (en) Fuel injection device
JP2887970B2 (en) Fuel injection device
WO2013147078A1 (en) Hydraulic-drive fuel injection device and internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees