JP2006161463A - Reinforcing method of steel member within steel structure - Google Patents

Reinforcing method of steel member within steel structure Download PDF

Info

Publication number
JP2006161463A
JP2006161463A JP2004356460A JP2004356460A JP2006161463A JP 2006161463 A JP2006161463 A JP 2006161463A JP 2004356460 A JP2004356460 A JP 2004356460A JP 2004356460 A JP2004356460 A JP 2004356460A JP 2006161463 A JP2006161463 A JP 2006161463A
Authority
JP
Japan
Prior art keywords
steel
reinforcing
steel material
steel structure
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004356460A
Other languages
Japanese (ja)
Inventor
Takao Takamatsu
隆夫 高松
Hiroaki Tamai
宏章 玉井
Iori Nakabayashi
伊織 中林
Akio Hattori
明生 服部
Shinya Enomoto
真也 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konishi Co Ltd
Toray Industries Inc
Toray Construction Co Ltd
Tsuru Gakuen
Original Assignee
Konishi Co Ltd
Toray Industries Inc
Toray Construction Co Ltd
Tsuru Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konishi Co Ltd, Toray Industries Inc, Toray Construction Co Ltd, Tsuru Gakuen filed Critical Konishi Co Ltd
Priority to JP2004356460A priority Critical patent/JP2006161463A/en
Publication of JP2006161463A publication Critical patent/JP2006161463A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing method of a steel member within a steel structure which enables effective reinforcement of the steel member within the steel structure, especially the steel member on which a compression force is exerted, and which enables realization of the addition of earthquake-resistant reinforcement by providing durability and toughness against buckling to the steel within an existing steel structure or a newly built steel structure. <P>SOLUTION: The reinforcing method of the steel member within the steel structure is that reinforcement is performed by sticking an FRP plate for reinforcement to the surface of the steel within the steel structure on which the compression force is exerted with an adhesive. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種の鋼構造物中に存在しかつ圧縮力がかかる鋼材に対する補強方法とし効果的に用いることができる鋼構造物中の鋼材の補強方法に関する。   The present invention relates to a method for reinforcing a steel material in a steel structure that can be effectively used as a method for reinforcing a steel material that is present in various steel structures and is subjected to compressive force.

従来、鋼構造物中の鋼材に対する補強としては、例えば、耐震補強については、補強が必要な鋼材部材に対して一定の厚さを有する鋼板を溶接で接合して補強するのが一般的な手法であった。   Conventionally, as a reinforcement for steel materials in a steel structure, for example, with regard to seismic reinforcement, a general method is to reinforce a steel member having a certain thickness by welding to a steel member that needs reinforcement. Met.

しかし、溶接は一般的な工法であるものの、作業時に火花が生じることから鋼構造物には使いにくいとの不都合があり、また、作業者の技能レベル・技量によっては必ず良好な補強効果が得られるというものでもなかった。   However, although welding is a common construction method, there is a disadvantage that it is difficult to use for steel structures because sparks are generated during work, and depending on the skill level and skill of the worker, a good reinforcement effect is always obtained. It wasn't even possible.

一方、従来の補強材料として、補強繊維材料があり、該繊維補強材料は引張り強度が鋼材と比べると大幅に上回るため、主として引張り材の補強に用いられてきた。   On the other hand, there is a reinforcing fiber material as a conventional reinforcing material, and the fiber reinforcing material has been used mainly for reinforcing a tensile material because its tensile strength is significantly higher than that of a steel material.

また、既存造物中の圧縮力がかかる鋼材の表面に鋼材からなる添え材をエポキシ系接着剤で接着し、適宜のクランプ手段でクランプすることにより座屈強度を向上させる方法が提案されている(特許文献1)。   In addition, a method has been proposed in which a buckling strength is improved by adhering an attachment made of steel with an epoxy adhesive to the surface of a steel material to which a compressive force is applied in an existing structure, and clamping with an appropriate clamping means ( Patent Document 1).

しかし、この方法では、接着される補強材が鋼材であり鋼材どおしの接着ということになるので、接着剤の選定や接着表面の処理などが適切になされる必要があり、さらに加えて、被補強鋼材と添え材の接合面のそりが合わない場合などでは、接着強度が得られず、所期の補強効果を期待どおりに得ることができない等の問題があった。
特開平6−330643号公報
However, in this method, the reinforcing material to be bonded is a steel material, which means that the steel material is bonded to each other. Therefore, it is necessary to appropriately select the adhesive and treat the bonding surface, and in addition, When the warpage of the joint surface of the steel material to be reinforced and the accessory does not match, there is a problem that the adhesive strength cannot be obtained and the desired reinforcing effect cannot be obtained as expected.
JP-A-6-330643

本発明の目的は、鋼構造物中の鋼材、特に圧縮力が加わる鋼材に対して効果的な補強を行うことを可能にする鋼構造物中の鋼材の補強方法を提供することにある。   The objective of this invention is providing the reinforcement method of the steel materials in the steel structure which makes it possible to perform effective reinforcement with respect to the steel materials in a steel structure, especially the steel materials to which a compressive force is added.

特に、本発明において、鋼構造物中における鋼材の補強に着目したのは、鋼構造物の建造においては、鋼材を溶接法で接合して建造する工法等が一般的なものであるが、鋼構造物の補強ということを溶接法で行うことは、施工現場上の種々の制約(作業環境・スペース、火気使用に関する制約等)もあって作業精度・信頼性の点では必ずしも完全にできるとは言えず、特に既存の鋼構造物の耐震性診断・耐震補強という一連の流れの中で、耐震性診断までは適切に行われても、その診断結果を踏まえての補強施策の実行という点では、鋼構造物については未だ有効な補強手法が見出されていないという理由で補強が実行されていないのが現状であったことによる。   In particular, in the present invention, focusing on the reinforcement of the steel material in the steel structure, in the construction of the steel structure, a construction method in which the steel material is joined by a welding method is generally used. Reinforcement of structures by welding methods is not always possible in terms of work accuracy and reliability due to various restrictions (work environment / space, restrictions on the use of fire, etc.) on the construction site. In particular, in the series of seismic diagnosis and seismic strengthening of existing steel structures, even if the seismic diagnosis is properly performed, in terms of executing reinforcement measures based on the diagnosis results This is because the reinforcement of steel structures has not been carried out because no effective reinforcement method has been found yet.

そして、中でも、圧縮力が加わる鋼材に対しての効果的補強手法の実現が望まれていたのである。   In particular, it has been desired to realize an effective reinforcing method for steel materials to which a compressive force is applied.

すなわち、補強対象を圧縮力がかかる鋼材、いわゆる圧縮材としているのは、基本的に、鋼材は引張力を受ける引張材として用いられるのが本来技術であるが、鋼構造物の種類・用途や部位によっては、引張り力と圧縮力の両方の力を受けたり圧縮力と曲げモーメントを同時に受ける場合があって、該圧縮力またはねじれによる座屈に対する抵抗性によって該部材性能が決まってくることがあるからである。   In other words, the steel material to which the compression force is applied, that is, the so-called compression material, is basically the technology that the steel material is used as a tensile material that receives the tensile force. Depending on the part, both the tensile force and the compressive force may be received or the compressive force and the bending moment may be simultaneously received, and the performance of the member may be determined by the resistance to buckling due to the compressive force or torsion. Because there is.

かかる目的を達成する本発明の鋼構造物中の鋼材の補強方法は、以下の(1) の構成を有する。
(1)鋼構造物中の圧縮力がかかる鋼材の表面に、補強用FRP板を接着剤を用いて貼り付けて補強することを特徴とする鋼構造物中の鋼材の補強方法。
The method for reinforcing a steel material in a steel structure of the present invention that achieves such an object has the following configuration (1).
(1) A method for reinforcing a steel material in a steel structure, wherein a reinforcing FRP plate is attached to a surface of a steel material to which a compressive force is applied in the steel structure by using an adhesive to reinforce the steel material.

また、かかる本発明の鋼構造物中の鋼材の補強方法は、好ましくは、以下の(2) 〜(5) の具体的構成を有するものである。
(2)補強用FRP板が、少なくとも炭素繊維、アラミド繊維またはガラス繊維が用いられて構成されており、実質的に一方向に該繊維が配列され、板幅が10〜100mmのものであることを特徴とする上記(1) 記載の鋼構造物中の鋼材の補強方法。
(3)貼り付け範囲が、補強対象鋼材の表の面または/および裏面であることを特徴とする上記(1) または(2) 記載の鋼構造物中の鋼材の補強方法。
(4)補強対象鋼材にかかる圧縮力方向と繊維長軸方向とが平行になるようにして補強用FRP板を貼り付けることを特徴とする上記(1) 、(2) または(3) 記載の鋼構造物中の鋼材の補強方法。
(5)複数枚の補強用FRP板を貼り付けるものであり、それぞれの板面方向が交差する方向下で貼り付けられることを特徴とする上記(1) 、(2) 、(3) または(4) 記載の鋼構造物中の鋼材の補強方法。
Moreover, the method for reinforcing a steel material in the steel structure of the present invention preferably has the following specific configurations (2) to (5).
(2) The reinforcing FRP plate is composed of at least carbon fiber, aramid fiber or glass fiber, the fibers are arranged substantially in one direction, and the plate width is 10 to 100 mm. A method for reinforcing a steel material in a steel structure as described in (1) above,
(3) The method for reinforcing a steel material in a steel structure according to the above (1) or (2), wherein the pasting range is the front surface or / and the back surface of the steel material to be reinforced.
(4) The reinforcing FRP plate is affixed so that the direction of compressive force applied to the steel material to be reinforced and the fiber long axis direction are parallel to each other, (1), (2) or (3) A method for reinforcing steel in a steel structure.
(5) A plurality of reinforcing FRP plates are affixed, and the aforesaid (1), (2), (3) or ( 4) A method for reinforcing steel in the steel structure described.

本発明の鋼構造物中の鋼材の補強方法によれば、鋼構造物中の鋼材、特に圧縮力が加わる鋼材に対して効果的な補強を行うことを可能にする鋼構造物中の鋼材の補強方法が提供されるものであり、鋼構造物中にある鋼材に対して、座屈に対する抵抗性と靱性を与えることができるものである。   According to the method for reinforcing a steel material in a steel structure of the present invention, a steel material in a steel structure that enables effective reinforcement to a steel material in a steel structure, particularly a steel material to which a compressive force is applied. A reinforcing method is provided, which can provide buckling resistance and toughness to a steel material in a steel structure.

本発明の鋼構造物中の補強方法は、既存の鋼構造物に採用するのが築造後の年月の経過とともに錆による断面欠損等により弱くなってきた鋼構造物に高い補強効果を与えることができる点で、特に好ましい。   The reinforcement method in the steel structure of the present invention is to be applied to the existing steel structure, and gives a high reinforcement effect to the steel structure that has become weak due to cross-sectional defects due to rust with the passage of time after construction. It is particularly preferable in that

ただし、むろん、被補強鋼構造物は既存のものだけに限られず、新築時に併せて該構造物に対して行うようにしても好ましいものである。   However, of course, the steel structure to be reinforced is not limited to the existing structure, and it is also preferable that the structure is performed on the structure together with the new construction.

以下、更に詳しく本発明の鋼構造物中の鋼材の補強方法について、説明する。   Hereinafter, the method for reinforcing a steel material in the steel structure of the present invention will be described in more detail.

本発明の方法は、鋼構造物中の圧縮力がかかる鋼材の表面に、補強用FRP板を接着剤を用いて貼り付けて補強することを特徴とするものである。   The method of the present invention is characterized in that a reinforcing FRP plate is attached to a surface of a steel material to which a compressive force is applied in a steel structure by using an adhesive to reinforce.

ここで、鋼構造物とは、既に建造されている鋼構造物をいい、また鋼構造物とは、鋼製材料(鋼板、鋼管、鋼材、鋼棒など)を構造物に使用してなるものをいい、鉄筋コンクリート構造物における鉄筋や、鉄骨鉄筋コンクリート構造物における鉄筋や鉄骨は、含まない概念である。   Here, the steel structure refers to a steel structure that has already been constructed, and the steel structure is formed by using a steel material (steel plate, steel pipe, steel material, steel bar, etc.) for the structure. This is a concept that does not include reinforcing bars in reinforced concrete structures, and reinforcing bars and steel frames in steel reinforced concrete structures.

本発明において、補強のために用いられるFRPとは、補強用繊維とマトリックス樹脂で一体化された繊維強化プラスチックであり、該補強用のFRP板は、接着剤が用いられて鋼材の表面に貼り付けられる。該補強用FRP板は、少なくとも炭素繊維、アラミド繊維またはガラス繊維が用いて構成されており、実質的に一方向に該繊維が配列され、板幅が10〜100mmのものであるものを用いるのが好ましい。該補強用FRP板に用いられる補強繊維は、中でも好ましくは、引張り強度が高く、圧縮強度もある程度期待できる材料であることから、炭素繊維、アラミド繊維またはガラス繊維である。これらの補強繊維は、実質的に一方向に配列されていることが、該繊維による補強効果を良好にもたらしめることができることからさらに好ましい。   In the present invention, the FRP used for reinforcement is a fiber reinforced plastic integrated with a reinforcing fiber and a matrix resin. The reinforcing FRP plate is attached to the surface of a steel material using an adhesive. Attached. The reinforcing FRP plate is composed of at least carbon fibers, aramid fibers, or glass fibers, and the fibers are arranged substantially in one direction and have a plate width of 10 to 100 mm. Is preferred. Among them, the reinforcing fiber used for the reinforcing FRP plate is preferably a carbon fiber, an aramid fiber, or a glass fiber because it is a material that has high tensile strength and can be expected to have some compressive strength. It is further preferable that these reinforcing fibers are arranged substantially in one direction because the reinforcing effect by the fibers can be satisfactorily provided.

補強繊維は、本発明者らの各種知見によれば、補強完了後の総使用量(対単位面積あたり)で1200〜9600g/m2 で該補強用FRPに使用されているものを用いるのが好ましい。該補強完了後の繊維の総使用量は、被補強材たる鋼材の種類、大きさ(長さ、幅、寸法等)、断面形状、該鋼材が使用されている箇所の特質、補強繊維の種類・性状等に適宜に対応させて決定をすればよい。 According to the various findings of the present inventors, the reinforcing fibers used are those used in the reinforcing FRP at a total use amount (per unit area) of 1200 to 9600 g / m 2 after completion of reinforcement. preferable. The total amount of fiber used after completion of reinforcement is the type of steel material to be reinforced, the size (length, width, dimensions, etc.), the cross-sectional shape, the characteristics of the location where the steel material is used, and the type of reinforcing fiber.・ Determine according to the properties etc. as appropriate.

また、補強に用いられる補強用FRP板は、接着作業性、取扱い性などの理由から、板幅が10〜100mm程度のものを用いるのが好ましい。また、圧縮力がかかる鋼材の表面に貼って用いるものであるから、該補強用FRP板の長さは、通常は1〜10mであるのが実際的である。また補強用FRP板の板厚さは、1.0〜6mm程度の範囲内のものを用いるのが好ましい。一枚の補強用FRP板としては、その重量は1600〜9600g/m2 、その中で繊維の使用量は、1200〜7200g/m2 程度のものを用いるのが好ましい。 The reinforcing FRP plate used for reinforcement preferably has a plate width of about 10 to 100 mm for reasons such as adhesion workability and handling properties. Moreover, since it sticks and uses on the surface of the steel material to which a compressive force is applied, it is practical that the length of this FRP board for a reinforcement is 1-10 m normally. The reinforcing FRP plate preferably has a thickness within a range of about 1.0 to 6 mm. It is preferable to use one reinforcing FRP plate having a weight of 1600 to 9600 g / m 2 , and a fiber usage amount of about 1200 to 7200 g / m 2 .

従って、上述したように、補強完了後の総使用量(対面積)で繊維量が1200〜9600g/m2 とするためには、通常は、補強完了後の繊維の総使用量(対面積)で1200〜9600g/m2 となるように、FRP板1枚当たりの繊維の使用量が1200〜2400g/m2 程度の補強用FRP板を適宜に積層使用して補強するようにすればよいものである。 Therefore, as described above, in order to set the fiber amount to 1200 to 9600 g / m 2 in the total use amount (against the area) after completion of reinforcement, the total use amount (against area) of the fiber after reinforcement is usually obtained. in such a 1200~9600g / m 2, which may be as amount of fibers per FRP plate one is reinforced by appropriately stacking use 1200~2400g / m 2 about reinforcing FRP plate It is.

また、繊維もしくはFRP板の力学的特性は、全体として、一般に、本発明者らの各種知見によれば、補強繊維の配列方向の引張り強度が600N/mm2 〜2400N/mm2 、ヤング係数が40kN/mm2 〜370kN/mm2 の範囲内となるように用いられることが望ましい。すなわち、圧縮材に対して最大震度規模の地震に対抗できるような補強効果を該繊維もしくはFRP板の使用によって実現するという点で、上記の範囲レベル程度の力学的特性を有するものを用いることが望ましいのである。ただし、これは被補強鋼構造物の補強前の本来の耐震強さ・強度にも対応して厳密には変動する性格のものである。 In general, the mechanical properties of the fiber or FRP plate are generally as follows. According to the various findings of the present inventors, the tensile strength in the arrangement direction of the reinforcing fibers is 600 N / mm 2 to 2400 N / mm 2 and the Young's modulus is 40kN / mm 2 ~370kN / mm and so as to be desirable for use in the second range. That is, it is possible to use a material having a mechanical characteristic of the above-mentioned range level in that a reinforcing effect capable of resisting an earthquake of the maximum seismic intensity scale is realized by using the fiber or the FRP plate. It is desirable. However, this is of a nature that fluctuates strictly according to the original seismic strength / strength before reinforcement of the reinforced steel structure.

すなわち、ヤング係数が大きい補強用FRP板を貼り付ければ、剛性は向上し耐力が向上するものの、エネルギー吸収能が小さく変形も小さいので、その観点では好ましい。一方、ヤング係数が小さく引張り強度の大きい補強用FRP板を貼り付ければ、耐力の向上は若干劣るものの、エネルギー吸収能が大きく、大変形に耐えることができるとともに、変形後の除荷により、ある程度元の形態に復元できるものであり、その観点では好ましい。   That is, if a reinforcing FRP plate having a large Young's modulus is attached, the rigidity is improved and the proof stress is improved, but the energy absorption capacity is small and the deformation is small, so that is preferable from this viewpoint. On the other hand, if a reinforcing FRP plate with a small Young's modulus and a large tensile strength is attached, the yield strength is slightly inferior, but the energy absorption capacity is large and it can withstand large deformations. It can be restored to its original form, which is preferable from this viewpoint.

そして、鋼構造物中の圧縮材として引張り力と圧縮力の両方あるいは圧縮力と曲げモーメントの両方の力を受ける鋼材に対する補強効果をもたらすという点では、繊維もしくはFRP板の力学的特性は、上述のような範囲の組合せであることがバランスが良く好ましいものであり、さらに好ましくは、該補強用FRP板の総使用量・総使用枚数が、補強繊維の配列方向の引張り耐力(引張り強力)4.8kN/m〜19.2kN/m、引張り剛性が312kN/mm〜2184kN/mmの範囲内となるように実現されていることである。   And the mechanical characteristic of a fiber or FRP board is the point which brings about the reinforcement effect with respect to the steel material which receives the force of both the tensile force and the compressive force, or both the compressive force and the bending moment as a compressive material in a steel structure. It is preferable that the combination is in a range with a good balance, and more preferably, the total use amount and the total number of use of the reinforcing FRP plates are the tensile strength (tensile strength) 4 in the direction in which the reinforcing fibers are arranged. .8 kN / m to 19.2 kN / m and the tensile rigidity is in the range of 312 kN / mm to 2184 kN / mm.

本発明に従い補強用FRP板を貼り付ける際に、複数枚を重ねて貼り付けるときには全枚数が同一形状・同一寸法のものでなくともよく、最も圧縮力または曲げモーメントが加わるところに重畳枚数が最も多くなるように階段状に重ねて貼り合わせることも有効である。そのような場合には、重畳枚数が最も多くなる箇所での補強用FRP板の全体が、上述の引張り耐力(引張り強力)、引張り剛性を実現できるように全体を構成して貼ればよいものである。   When affixing a reinforcing FRP plate according to the present invention, when a plurality of sheets are laminated, the total number of sheets may not be the same shape and size, and the number of superimposed sheets is the most where the compressive force or bending moment is applied. It is also effective to stack them in a staircase pattern so as to increase. In such a case, the entire reinforcing FRP plate at the place where the number of superimposed sheets is the largest should be configured and pasted so as to realize the above-mentioned tensile strength (tensile strength) and tensile rigidity. is there.

該補強用FRP板に用いられるマトリックス樹脂は、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリアミドエステル樹脂あるいはポリイミド樹脂などの樹脂が好適に用いられる。   The matrix resin used for the reinforcing FRP plate is preferably a resin such as a polyester resin, an epoxy resin, a phenol resin, a polyamide ester resin, or a polyimide resin.

上述の補強用FRP板全体の引張り強度とヤング係数の各値は、繊維種類・性能によって概ね決定される。すなわち、強度が高い繊維はヤング係数が小さいため、耐力の向上はほどほどであまり大きくなく変形(エネルギー吸収)は大きくできる。逆に、ヤング係数の高い繊維は強度が低く、耐力は大きく向上するが、変形は小さく靭性に乏しいので、これらの特質を踏まえて、使用する繊維種類・性能を決めればよい。   The values of the tensile strength and Young's modulus of the entire reinforcing FRP plate described above are generally determined by the fiber type and performance. That is, since the fiber with high strength has a small Young's modulus, the yield strength is moderately increased and the deformation (energy absorption) can be increased. On the other hand, fibers with high Young's modulus have low strength and greatly improved yield strength, but their deformation is small and their toughness is poor. Therefore, the type and performance of the fiber to be used can be determined based on these characteristics.

また、補強用FRP板を鋼材に接着する接着剤は、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂あるいはウレタン樹脂、ポリイミド樹脂等を用いることができ、中でも、エポキシ樹脂を用いることが接着性や作業性の点で最も好ましいものである。接着剤は、液体状、半液体状、塊状や紛末状あるいはシート状などの固体状・半固体状のものなどを使用することができる。   Further, as an adhesive for bonding the reinforcing FRP plate to the steel material, polyester resin, epoxy resin, phenol resin, acrylic resin, urethane resin, polyimide resin, or the like can be used. This is most preferable in terms of workability. As the adhesive, a liquid, semi-liquid, solid, semi-solid, such as a lump, powder or sheet can be used.

ただし、該接着剤については、従来からこのような補強用FRP板(たとえば、コンクリート橋脚などの補強用などの補強用FRP板)の接着用として使用されているものを用いてもよい。なおまた、上述のマトリックス樹脂自体を接着剤として機能させるものも本発明に含まれるものである。   However, as the adhesive, those conventionally used for bonding such reinforcing FRP plates (for example, reinforcing FRP plates for reinforcing concrete bridge piers, etc.) may be used. In addition, what makes the above-mentioned matrix resin itself function as an adhesive is also included in the present invention.

本発明において、補強される対象となる圧縮力がかかる鋼材は、平鋼、Z型鋼、山形鋼、みぞ型鋼、H型鋼、I型鋼、鋼管またはそれらの組立体の長尺構造材であることが、本発明の効果を良好に得る上で好ましいものである。   In the present invention, the steel material to which the compression force to be reinforced is applied is a flat steel, a Z-shaped steel, an angle steel, a grooved steel, an H-shaped steel, an I-shaped steel, a steel pipe, or a long structural material of an assembly thereof. This is preferable for obtaining the advantageous effects of the present invention.

特に、平鋼、山形鋼、溝型鋼などは、圧縮力に比較的弱いとも言えるので、本発明方法による被補強対象として最適なものである。   In particular, flat steel, angle steel, groove steel, and the like can be said to be relatively weak in compressive force, and are therefore optimal as objects to be reinforced by the method of the present invention.

補強対象鋼材に補強用FRP板を貼り付けるに際しては、該鋼材にかかる圧縮力方向と繊維長軸方向とがほぼ平行になるようにして補強用FRP板を貼り付けることが、高い補強効果を得る上で最も好ましい。該補強用FRP板を貼り付けるに際しては、該板の1枚を貼り付けるだけでなく、適宜に複数枚を重ねて貼り付けてもよく、そのようにすればより高い補強効果を得ることができる。   When the reinforcing FRP plate is attached to the steel material to be reinforced, the reinforcing FRP plate is attached so that the direction of the compressive force applied to the steel material and the fiber major axis direction are substantially parallel to each other, thereby obtaining a high reinforcing effect. Most preferred above. When affixing the reinforcing FRP plate, not only one of the plates may be affixed, but also a plurality of layers may be appropriately affixed and a higher reinforcing effect can be obtained. .

貼り付ける箇所は、特に限定されないが、圧縮力が加わって座屈する可能性があると考えられる箇所に貼り付けるのがよく、例えば、図1に示したように、補強対象鋼材の表の面または/および裏面に対して、繊維長さ方向が圧縮力の方向と平行になるようにして用いて、ある程度の長さで平坦部を有する被補強鋼材の部分に全面的あるいは部分的に貼り付けることが好ましい。表の面や裏の面だけでなく、側面に対しても貼り付けることが可能な場合には、側面に貼り付けてもよい。   The part to be attached is not particularly limited, but it is preferably attached to a part considered to have a possibility of buckling due to the application of compressive force. For example, as shown in FIG. / And affixed to the part of the steel material to be reinforced having a flat portion with a certain length using the fiber length direction parallel to the direction of the compressive force with respect to the back surface. Is preferred. When it is possible to affix not only the front surface and the back surface but also the side surface, it may be affixed to the side surface.

図1は、本発明の鋼構造物中の鋼材の補強方法の一実施態様例をモデル的に示した概略斜視モデル図である。   FIG. 1 is a schematic perspective model diagram showing an embodiment of a method for reinforcing a steel material in a steel structure according to the present invention as a model.

図1において、1は被補強対象物たる鋼構造物、2は補強用FRP板、3は鋼ブレース、4は鋼柱、5は鋼梁、6は床、7はガセットプレートであり、この図では、2本の鋼ブレース3に対して補強用FRP板を貼り付けた場合を示しているが、4の鋼柱に対して補強用FRP板を貼り付ける場合も本発明の補強方法によるものであり、好ましいものである。   In FIG. 1, 1 is a steel structure to be reinforced, 2 is a reinforcing FRP plate, 3 is a steel brace, 4 is a steel column, 5 is a steel beam, 6 is a floor, and 7 is a gusset plate. Shows the case where the reinforcing FRP plate is attached to the two steel braces 3, but the case where the reinforcing FRP plate is attached to the four steel columns is also according to the reinforcing method of the present invention. Yes, it is preferable.

複数の補強用FRP板を用いて、複数の面に対して、それぞれ補強用FRP板を貼り付けるときには、それぞれの補強用FRP板の板面方向が平行になるように貼り付けてもよいが、それぞれの板面方向が交差する方向下であるようにして貼り付けるようにしてもよい。圧縮力が加わる方向が特定の一方向と予想できないときにも対応できるようにするためや、偏心的な力などにも対抗することができるようにするためである。   When using a plurality of reinforcing FRP plates and affixing the reinforcing FRP plates to a plurality of surfaces, respectively, the reinforcing FRP plates may be attached so that the plate surface directions thereof are parallel, You may make it stick so that each board surface direction may be below the direction which cross | intersects. This is because it is possible to cope with a case where the direction in which the compressive force is applied cannot be predicted as a specific direction, or to cope with an eccentric force.

また、本発明の方法に従って被補強物たる鋼材の表面に補強用FRP板を接着剤を用いて貼り付けた後に、さらに、該補強用FRP板の上などを覆うように、繊維束や繊維シート、あるいは樹脂が含浸された繊維束や繊維シート等を巻き付けて、さらに外観の向上や補強効果の一層の向上を行うようにしてもよい。   In addition, after attaching the reinforcing FRP plate to the surface of the steel material to be reinforced according to the method of the present invention using an adhesive, the fiber bundle or the fiber sheet is further covered so as to cover the reinforcing FRP plate. Alternatively, a fiber bundle or a fiber sheet impregnated with a resin may be wound to further improve the appearance and the reinforcing effect.

以下、実施例に基づいて本発明の鋼構造物中の鋼材の補強方法の具体的構成・効果について説明をする。   Hereinafter, based on an Example, the concrete structure and effect of the reinforcement method of the steel materials in the steel structure of this invention are demonstrated.

なお、実施例1〜5、比較例1は、圧縮力がかかる鋼材の補強として本発明方法を採用した場合に関する実施例と比較例である。   In addition, Examples 1-5 and the comparative example 1 are the Examples and comparative examples regarding the case where this invention method is employ | adopted as reinforcement of the steel material which a compression force applies.

実施例6と比較例2は、圧縮力と曲げモーメントが同時にかかる鋼材の補強として本発明方法を採用した場合に関する実施例と比較例である。
実施例1
鉄筋コンクリートに対する補強用として市販されている各種強化用FRP板の中で高強度タイプと分類されている引張り強度が2400kN/mm2 、ヤング係数が156kN/mm2 であって、長さが1280mm、幅が50mm、厚さ2mmの補強用FRP板(補強繊維:炭素繊維、マトリックス樹脂:エポキシ樹脂)を4枚準備した。
Example 6 and Comparative Example 2 are an example and a comparative example relating to the case where the method of the present invention is employed as reinforcement of a steel material to which a compressive force and a bending moment are simultaneously applied.
Example 1
Among various reinforcing FRP plates marketed for reinforcement of reinforced concrete, the tensile strength, which is classified as the high strength type, is 2400 kN / mm 2 , Young's modulus is 156 kN / mm 2 , length is 1280 mm, width Prepared 4 sheets of reinforcing FRP plates (reinforcing fiber: carbon fiber, matrix resin: epoxy resin) having a thickness of 50 mm and a thickness of 2 mm.

これらの補強用FRP板を、山形鋼材(L字型鋼材、鋼材長さ1300mm、L字型断面の1辺の長さ:50mm、同L字型断面の他の1辺の長さ:50mm、同肉厚:4mm)の交差する板面方向下において、L字型を形成する2つの面のそれぞれの内面側と外面側の計4面に対して、接着剤としてエポキシ樹脂を用いて貼り付けた。貼り付けは、FRP板中の繊維長さ方向が山形鋼材の長さ方向と平行になるように貼り付けた。図2がその貼り付けた後の外観斜視モデル図であり、8は被補強対象物たる鋼構造物、2は補強用FRP板である。   These reinforcing FRP plates are made of angle steel (L-shaped steel, length 1300 mm, length of one side of the L-shaped section: 50 mm, length of the other side of the L-shaped section: 50 mm, Adhesion using epoxy resin as an adhesive to a total of four surfaces, the inner and outer surfaces of each of the two surfaces forming the L shape, under the direction of the intersecting plate surfaces of the same thickness: 4 mm) It was. The pasting was performed so that the fiber length direction in the FRP plate was parallel to the length direction of the angle steel. FIG. 2 is an external perspective model view after the affixing, 8 is a steel structure as an object to be reinforced, and 2 is a reinforcing FRP plate.

該補強用FRP板を貼り付けた該山形鋼材に対して圧縮力を両端側から加え、該圧縮力に対する耐久性について各種物性値の測定結果から判断した。   A compressive force was applied from both ends to the angle steel with the reinforcing FRP plate attached thereto, and the durability against the compressive force was judged from the measurement results of various physical properties.

圧縮力を両端側から加えるに際しては、図3にモデル図を示したように、山形鋼材8の両端に方形の鋼板9(200mm×180mm)をピンを用いて固定し、該鋼板を介してオイルジャッキを用いて、山形鋼材に対して、ゆっくりと静的に圧縮荷重を加えた。   When applying the compressive force from both ends, a square steel plate 9 (200 mm × 180 mm) is fixed to both ends of the angle steel 8 using pins as shown in the model diagram of FIG. A compression load was slowly and statically applied to the angle steel using a jack.

該圧縮試験は、山形鋼が座屈するか、貼り付けた補強用FRP板が剥がれるか、あるいは貼り付けた補強用FRP板が層内で破壊するか、のいずれかの事象が発生するまで行った(いずれかの事象が発生したら、その時点で圧縮終了とした)。   The compression test was performed until the angle steel buckled, the attached reinforcing FRP plate was peeled off, or the attached reinforcing FRP plate was broken in the layer. (If any event occurs, compression ends at that point.)

評価データは、圧縮開始から上記の圧縮終了時点までの間で、最大荷重、該最大荷重時の変位量(山形鋼材の長さ方向の中央部の変位量(中央変位))、最大中央変位量、残留変位量、破壊したときは破壊時の変位量のそれぞれを測定した。   The evaluation data includes the maximum load, the displacement at the maximum load (displacement in the central part in the length direction of the angle steel (central displacement)), and the maximum central displacement between the start of compression and the end of compression. The amount of residual displacement and the amount of displacement at the time of failure were measured.

その結果を、表1に示した。
実施例2
コンクリート建造用として市販されている各種強化用FRP板の中で中弾性タイプと分類されている引張り強度が1500kN/mm2 、ヤング係数が273kN/mm2 であって、長さが1280mm、幅が50mm、厚さ2mmの補強用FRP板(補強繊維:炭素繊維、マトリックス樹脂:エポキシ樹脂)を4枚を準備して使用した以外は、すべて実施例1と同一の条件で実施例1と同様の圧縮力付与試験に供した。
The results are shown in Table 1.
Example 2
Medium elastic type and classification has been has tensile strength 1500kN / mm 2 in the various reinforcing FRP plate which is commercially available for concrete construction, Young's Modulus is a 273kN / mm 2, length 1280 mm, width Except that four reinforcing FRP plates (reinforcing fiber: carbon fiber, matrix resin: epoxy resin) having a thickness of 50 mm and a thickness of 2 mm were prepared and used, all were the same as in Example 1 under the same conditions as in Example 1. It used for the compressive force provision test.

その結果は、表1に示したとおりである。
実施例3
実施例1で用いたのと同一の補強用FRP板と同一のFRP板であるが、ただし、寸法が相違する4種、各2枚の合計8枚の補強用FRP板を準備して(その1:長さ1280mm、幅50mm、厚さ2mm、その2:長さが640mm、幅が50mm、厚さ2mm、その3:長さが450mm、幅が50mm、厚さ2mm、その4:長さが210mm、幅が50mm、厚さ2mm)、実施例1と同様の山形鋼材の長さ方向中心部に対しかつ外面2枚に対して、順次寸法の大きい方から順番に階段状に貼り付けた他は実施例1と同一の条件にして実施例1記載と同様の圧縮力付与試験に供した。
The results are as shown in Table 1.
Example 3
The same FRP plate as that used in Example 1 is the same FRP plate, except that four types of reinforcing FRP plates, each of which has a different size, are prepared. 1: Length 1280 mm, width 50 mm, thickness 2 mm, 2: length 640 mm, width 50 mm, thickness 2 mm, part 3: length 450 mm, width 50 mm, thickness 2 mm, part 4: length 210 mm, width 50 mm, thickness 2 mm), and the same angle-shaped steel material as in Example 1 was attached to the center in the length direction and to the two outer surfaces in order from the larger dimension in order. Others were subjected to the same compressive force application test as described in Example 1 under the same conditions as in Example 1.

図4はその貼り付けた後の外観斜視モデル図であり、8は被補強対象物たる鋼構造物、2は補強用FRP板である。   FIG. 4 is an external perspective model view after being attached, 8 is a steel structure as an object to be reinforced, and 2 is a reinforcing FRP plate.

その結果は、表1に示したとおりである。
実施例4
実施例3で用いた補強用FRP板に代えて、実施例2で用いたのと同一の補強用FRP板と同一仕様のFRP板であるが、ただし、寸法だけを実施例3のものと同一にした8枚の補強用FRP板を準備して(その1:長さ1280mm、幅50mm、厚さ2mm、その2:長さが640mm、幅が50mm、厚さ2mm、その3:長さが450mm、幅が50mm、厚さ2mm、その4:長さが210mm、幅が50mm、厚さ2mm)、他は実施例3とすべて同一の条件にして、圧縮力付与試験に供した。
The results are as shown in Table 1.
Example 4
Instead of the reinforcing FRP plate used in the third embodiment, the same FRP plate as that used in the second embodiment and the same specification is used, but only the dimensions are the same as those in the third embodiment. 8 reinforcing FRP plates prepared (Part 1: Length 1280 mm, Width 50 mm, Thickness 2 mm, Part 2: Length 640 mm, Width 50 mm, Thickness 2 mm, Part 3: Length 450 mm, width 50 mm, thickness 2 mm, 4: length 210 mm, width 50 mm, thickness 2 mm), etc. All other conditions were the same as in Example 3 and subjected to a compressive force application test.

その結果は、表1に示したとおりである。
実施例5
実施例1で用いたと同様の補強用FRP板を4枚準備して、L字型を形成する2つの面のそれぞれの外面側に対して2枚ずつ(2枚重ね)計4枚を貼り付けた以外は、すべて実施例1と同一の条件で実施例1と同様の圧縮力付与試験に供した。
The results are as shown in Table 1.
Example 5
Prepare four FRP plates for reinforcement similar to those used in Example 1, and affix a total of four sheets (two on each side) to the outer surfaces of the two surfaces forming the L-shape. Except for the above, all were subjected to the same compressive force application test as in Example 1 under the same conditions as in Example 1.

その結果は、表1に示したとおりである。
比較例1
補強用FRP板を何ら使用しない以外は、すべて実施例1と同一の条件で実施例1と同様の圧縮力付与試験に供した。
The results are as shown in Table 1.
Comparative Example 1
Except not using any reinforcing FRP plate, all were subjected to the same compression force application test as in Example 1 under the same conditions as in Example 1.

その結果は、表1に示したとおりである。   The results are as shown in Table 1.

Figure 2006161463
Figure 2006161463

各評価パラメータにおいて、最大荷重(kN)とは、荷重負荷開始時点から荷重(圧縮力)の付与の解除までの間において、山形鋼材に加わった最大の荷重のことである。この最大荷重値まで山形鋼材が耐え得たということになるが、該最大荷重を示した後は、変形や座屈を伴いつつ、荷重自体は小さくなって、さらに塑性変形が進行していったりするものである(すぐ破壊につながるケースなどもある)。   In each evaluation parameter, the maximum load (kN) is the maximum load applied to the angle steel from the start of load application to the release of the application of the load (compression force). It can be said that the angle steel material was able to withstand this maximum load value, but after showing the maximum load, the load itself became small with further deformation and buckling, and plastic deformation progressed further. (In some cases, it can lead to immediate destruction.)

この最大荷重は高い方が良いと言える。また、最大荷重時の変位(mm)は、最大荷重が負荷されたときの変位量をいい、鋼材の中央部で圧縮力付与前と比べてどれぐらいずれているかを示す値である。この値は、小さいほど最大荷重が加わったときでさえも鋼材自身としては変形が小さいということである。   It can be said that a higher maximum load is better. Further, the displacement (mm) at the maximum load is a displacement amount when the maximum load is applied, and is a value indicating how much the center portion of the steel material is deviated from before the compression force is applied. This value means that the smaller the steel load itself, the smaller the deformation even when the maximum load is applied.

本発明によるものは、最大荷重値が、比較例1のものに比べて約2〜3倍程度は大きく、また、その最大荷重が加わったときでさえも変位は少なく、非常に耐荷性・耐久性が向上していることがわかる。   According to the present invention, the maximum load value is about 2-3 times larger than that of Comparative Example 1, and even when the maximum load is applied, the displacement is small, and the load resistance and durability are very high. It can be seen that the performance is improved.

一方、最大中央変位とは、荷重負荷開始時点から荷重(圧縮力)の付与の解除までの間において、山形鋼材の中央部における変位の最大の値のことである。   On the other hand, the maximum central displacement is the maximum value of displacement at the central portion of the angle steel between the start of load application and the release of application of load (compression force).

かかる表1からわかるように、実施例1〜5の本発明によるものは、最大荷重値が、比較例1のものに比べて約2〜3倍程度は大きく、またその最大荷重が加わった時でさえも鋼材中央部での変位は約1/3〜3/4と小さく、比較例1のものと比べて変位が少なく非常に耐荷性・耐久性が向上していることがわかる。   As can be seen from Table 1, in Examples 1 to 5 according to the present invention, the maximum load value is about 2 to 3 times larger than that in Comparative Example 1, and when the maximum load is applied. However, it can be seen that the displacement at the central part of the steel material is as small as about 1/3 to 3/4, and the displacement is less than that of Comparative Example 1 and the load resistance and durability are greatly improved.

一方で、最大中央変位は、比較例1のものは高い値(80mm)を示しているが、残留変形値も高く(75.5mm)、比較例1の場合ではもはや弾性限界を超えた塑性変形領域での変形となっていることがわかる。これに対して、本発明によるものは、比較例1のものよりは最大中央変位が小さく、かつ残留変形も小さい値を示している。   On the other hand, the maximum central displacement of Comparative Example 1 shows a high value (80 mm), but the residual deformation value is also high (75.5 mm), and in the case of Comparative Example 1, the plastic deformation no longer exceeds the elastic limit. It can be seen that the region is deformed. On the other hand, according to the present invention, the maximum central displacement is smaller than that of Comparative Example 1, and the residual deformation is also smaller.

以上のことは、本発明方法によれば、圧縮力を受けても、補強を何もしないブランク品と比較して変位も小さく、かつその変位も、より弾性変形領域のものであると判断できるものであり、圧縮力に対抗する耐荷性・耐久性と靭性が大きいものになっていると言える。すなわち、圧縮力によって座屈や変形・破壊がしにくい上に、たとえ、変形したとしても、荷重が解除されれば元の形状に復元するパワーがブランク品(比較例1)のものよりも著しく大きくて良好であるということである。   As described above, according to the method of the present invention, even when subjected to a compressive force, the displacement is smaller than that of a blank product that does not perform any reinforcement, and the displacement can be determined to be in a more elastic deformation region. It can be said that the load resistance, durability and toughness against the compressive force are large. That is, it is difficult to buckle, deform or break due to compressive force, and even if it is deformed, the power to restore the original shape when the load is released is significantly higher than that of the blank product (Comparative Example 1). It is big and good.

なお、実施例1〜5を見ればわかるように、本発明方法による場合でも、補強用FRP板の使用方法・構造等(補強繊維の配列や貼り付け方、使用量等)によっては、圧縮力に対する強さ、耐荷性・耐久性や靭性などの複数の特性について、いずれかの特性を他方特性よりも強調するように構成することもできて、それらを適宜に被補強鋼構造物の特質に対応させて使い分けるなどのことも可能なものである。
実施例6
長さ2000mmのH型鋼材柱を形成しているH型鋼の両フランジ外側に、実施例1で用いたものと同一の補強用FRP板を、それぞれ2枚ずつエポキシ樹脂を用いて貼り付けた。
As can be seen from Examples 1 to 5, even in the case of the method of the present invention, depending on the usage method / structure, etc. of the reinforcing FRP plate (arrangement and attaching method of reinforcing fibers, usage amount, etc.) Multiple properties such as strength, load resistance / durability and toughness can be configured to emphasize one of the properties over the other, and these correspond to the characteristics of the reinforced steel structure as appropriate. It is possible to use them properly.
Example 6
Two reinforcing FRP plates identical to those used in Example 1 were attached to the outer sides of both flanges of the H-shaped steel forming an H-shaped steel column having a length of 2000 mm using epoxy resin.

H型鋼の詳細は、図5(a)、(b)に示したように、鋼材長さ2000mm、H型の高さ100mm、H型の幅100mm、ウェブ部の厚さ6mm、フランジ部厚さ8mmである。   As shown in FIGS. 5A and 5B, the details of the H-shaped steel are as follows: steel length 2000 mm, H-shaped height 100 mm, H-shaped width 100 mm, web portion thickness 6 mm, flange portion thickness 8 mm.

この補強用FRP板を貼り付けたH型鋼からなる柱材に、まず、手動ジャッキで一定の圧縮力を作用させた。詳しくは、軸力(圧縮力)を200kNに保ったまま、強軸(X軸)回りに曲げモーメントをH型鋼下端部にアクチュエーターによりアームを介し載荷させた。   First, a constant compressive force was applied to the columnar member made of H-shaped steel to which the reinforcing FRP plate was attached with a manual jack. Specifically, while maintaining the axial force (compression force) at 200 kN, a bending moment about the strong axis (X axis) was loaded on the lower end of the H-shaped steel via an arm by an actuator.

このときの最大曲げモーメントと最大曲げモーメント時の変位を測定し、その結果を表2に示した。
比較例2
補強用FRP板を使用しない以外は、すべて実施例6と同一の条件にして、実施例6と同様に、軸力(圧縮力)を200kNに保ったまま、曲げモーメントをH型鋼下端部にアクチュエーターによりアームを介し載荷させた。
The maximum bending moment and the displacement at the maximum bending moment were measured, and the results are shown in Table 2.
Comparative Example 2
Except for not using the reinforcing FRP plate, the same conditions as in Example 6 were applied, and the bending moment was applied to the lower end of the H-shaped steel while maintaining the axial force (compression force) at 200 kN as in Example 6. Was loaded through the arm.

このときの最大曲げモーメントと最大曲げモーメント時の変位を測定し、その結果を表2に示した。   The maximum bending moment and the displacement at the maximum bending moment were measured, and the results are shown in Table 2.

Figure 2006161463
Figure 2006161463

かかる表2に示したように、実施例6、比較例2の比較試験において、試験体が横座屈を起こすモーメントは、無補強(比較例2)の場合で8046kN、本発明にかかる補強試験体(実施例6)で106332kNとなり、約32%の向上効果が認められた。   As shown in Table 2, in the comparative tests of Example 6 and Comparative Example 2, the moment at which the specimens cause lateral buckling is 8046 kN in the case of no reinforcement (Comparative Example 2), and the reinforced specimens according to the present invention. In (Example 6), it became 106332 kN, and the improvement effect of about 32% was recognized.

軸力を200kNに保ったまま、端部に強軸(X軸)回りに曲げモーメントを増加させていくと、あるモーメントから弱軸回りに回転が起き、急激に座屈耐力が減少するが、本発明にかかる強化用FRP板を貼り付けることにより弱軸回りの回転への移行を遅らすことができた。   If the bending moment is increased around the strong axis (X axis) at the end while maintaining the axial force at 200 kN, rotation occurs around the weak axis from a certain moment, and the buckling strength decreases rapidly. By attaching the reinforcing FRP plate according to the present invention, the transition to the rotation around the weak axis could be delayed.

図1は、本発明の鋼構造物中の鋼材の補強方法の一実施態様例をモデル的に示した概略斜視モデル図である。FIG. 1 is a schematic perspective model diagram showing an embodiment of a method for reinforcing a steel material in a steel structure according to the present invention as a model. 図2は、本発明の鋼構造物中の鋼材の補強方法の実施例1での評価をするのに採用した補強用FRPの板貼付け方を説明するための図であり、補強用FRP板を貼り付けた後の外観斜視モデル図である。FIG. 2 is a view for explaining a method of sticking a reinforcing FRP plate used for evaluation in Example 1 of a method for reinforcing a steel material in a steel structure of the present invention. It is an external appearance perspective model figure after affixing. 図3は、本発明の鋼構造物中の鋼材の補強方法の各実施例での評価をするのに採用した圧縮試験方法を説明するための図である。FIG. 3 is a diagram for explaining a compression test method employed for evaluating each method of reinforcing a steel material in a steel structure according to the present invention. 図4は、本発明の鋼構造物中の鋼材の補強方法の実施例3および実施例4で採用した試験方法を説明するための図であり、補強用FRP板を貼り付けた後の外観斜視モデル図である。FIG. 4 is a view for explaining the test methods employed in Examples 3 and 4 of the method for reinforcing a steel material in a steel structure according to the present invention, and is an external perspective view after a reinforcing FRP plate is attached. It is a model figure. 図5(a)、(b)は、実施例6で用いたH型鋼からなる柱材の概略を示したモデル図であり、(a)がH型の断面構造を示した断面概略図、(b)が正面概略図である。5 (a) and 5 (b) are model diagrams showing an outline of a columnar material made of H-shaped steel used in Example 6, and (a) is a schematic cross-sectional view showing an H-shaped cross-sectional structure; b) is a schematic front view.

符号の説明Explanation of symbols

1:被補強対象物たる鋼構造物
2:補強用FRP板
3:鋼ブレース
4:鋼柱
5:鋼梁
6:床
7:ガセットプレート
8:山形鋼材
9:方形の鋼板
1: Steel structure as an object to be reinforced 2: FRP plate for reinforcement 3: Steel brace 4: Steel pillar 5: Steel beam 6: Floor 7: Gusset plate 8: Angle steel 9: Square steel plate

Claims (5)

鋼構造物中の圧縮力または圧縮力と曲げモーメントが同時にかかる鋼材の表面に、補強用FRP板を接着剤を用いて貼り付けて補強することを特徴とする鋼構造物中の鋼材の補強方法。   A method for reinforcing a steel material in a steel structure, characterized by attaching a reinforcing FRP plate to a surface of a steel material to which a compressive force or a compressive force and a bending moment in the steel structure are simultaneously applied by using an adhesive. . 補強用FRP板が、少なくとも炭素繊維、アラミド繊維またはガラス繊維が用いられて構成されており、実質的に一方向に該繊維が配列され、板幅が10〜100mmのものであることを特徴とする請求項1記載の鋼構造物中の鋼材の補強方法。   The reinforcing FRP plate is composed of at least carbon fiber, aramid fiber or glass fiber, the fibers are arranged substantially in one direction, and the plate width is 10 to 100 mm. A method for reinforcing a steel material in a steel structure according to claim 1. 貼り付け範囲が、補強対象鋼材の表の面または/および裏面であることを特徴とする請求項1または2記載の鋼構造物中の鋼材の補強方法。   The method for reinforcing a steel material in a steel structure according to claim 1 or 2, wherein the pasting range is a front surface and / or a back surface of the steel material to be reinforced. 補強対象鋼材にかかる圧縮力方向と繊維長軸方向とが平行になるようにして補強用FRP板を貼り付けることを特徴とする請求項1、2または3記載の鋼構造物中の鋼材の補強方法。   4. The reinforcement of a steel material in a steel structure according to claim 1, wherein the reinforcing FRP plate is attached so that the direction of compressive force applied to the steel material to be reinforced is parallel to the fiber major axis direction. Method. 複数枚の補強用FRP板を貼り付けるものであり、それぞれの板面方向が交差する方向下で貼り付けられることを特徴とする請求項1、2、3または4記載の鋼構造物中の鋼材の補強方法。   5. A steel material in a steel structure according to claim 1, wherein a plurality of reinforcing FRP plates are pasted and are pasted in a direction in which the plate surface directions intersect each other. Reinforcement method.
JP2004356460A 2004-12-09 2004-12-09 Reinforcing method of steel member within steel structure Pending JP2006161463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356460A JP2006161463A (en) 2004-12-09 2004-12-09 Reinforcing method of steel member within steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356460A JP2006161463A (en) 2004-12-09 2004-12-09 Reinforcing method of steel member within steel structure

Publications (1)

Publication Number Publication Date
JP2006161463A true JP2006161463A (en) 2006-06-22

Family

ID=36663786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356460A Pending JP2006161463A (en) 2004-12-09 2004-12-09 Reinforcing method of steel member within steel structure

Country Status (1)

Country Link
JP (1) JP2006161463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031612A (en) * 2008-07-31 2010-02-12 Tsuru Gakuen Reinforcing structure of steel structure and reinforcing method of steel structure
CN107882354A (en) * 2017-12-14 2018-04-06 清华大学 The inner equilibrium steel member of Prestressed CFRP plate enhancing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282560A (en) * 1985-06-07 1986-12-12 株式会社竹中工務店 Earthquake-proof surface having flexibility
JPH09296615A (en) * 1996-05-07 1997-11-18 Toray Ind Inc Repairing and reinforcing method for structure
JPH11159011A (en) * 1997-11-25 1999-06-15 Taisei Corp Brace
JP2000064505A (en) * 1998-08-26 2000-02-29 Daiwa House Ind Co Ltd Carbon fiber reinforced plastic composite steel member
JP2002070326A (en) * 2000-08-30 2002-03-08 Kajima Corp Reinforced structure for steel frame structural material
JP2003201337A (en) * 2001-09-28 2003-07-18 Nippon Oil Corp Method for adjusting curing time of room-temperature curable epoxy resin composition and method for reinforcing concrete structure
JP2006097273A (en) * 2004-09-28 2006-04-13 Saiki Kensetsu Co Ltd Structure repairing and reinforcing sheet, and structure repaired and reinforced by sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282560A (en) * 1985-06-07 1986-12-12 株式会社竹中工務店 Earthquake-proof surface having flexibility
JPH09296615A (en) * 1996-05-07 1997-11-18 Toray Ind Inc Repairing and reinforcing method for structure
JPH11159011A (en) * 1997-11-25 1999-06-15 Taisei Corp Brace
JP2000064505A (en) * 1998-08-26 2000-02-29 Daiwa House Ind Co Ltd Carbon fiber reinforced plastic composite steel member
JP2002070326A (en) * 2000-08-30 2002-03-08 Kajima Corp Reinforced structure for steel frame structural material
JP2003201337A (en) * 2001-09-28 2003-07-18 Nippon Oil Corp Method for adjusting curing time of room-temperature curable epoxy resin composition and method for reinforcing concrete structure
JP2006097273A (en) * 2004-09-28 2006-04-13 Saiki Kensetsu Co Ltd Structure repairing and reinforcing sheet, and structure repaired and reinforced by sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031612A (en) * 2008-07-31 2010-02-12 Tsuru Gakuen Reinforcing structure of steel structure and reinforcing method of steel structure
CN107882354A (en) * 2017-12-14 2018-04-06 清华大学 The inner equilibrium steel member of Prestressed CFRP plate enhancing

Similar Documents

Publication Publication Date Title
Ghobarah et al. Behaviour of extended end-plate connections under cyclic loading
JP5265268B2 (en) Steel structure reinforcement structure and steel structure reinforcement method
Men et al. Experimental research on seismic behavior of novel composite RCS joints
CN107989450A (en) A kind of modularization assembling buckling-restrained bracing member
Miyashita et al. Repair method for corroded steel girder ends using CFRP sheet
Sundarraja et al. Behaviour of CFST members under compression externally reinforced by CFRP composites
Ulger et al. Effect of initial panel slenderness on efficiency of strengthening-by-stiffening using FRP for shear deficient steel beams
Awaludin et al. Numerical and experimental study on repaired steel beam using carbon fiber reinforced polymer
JP2006161463A (en) Reinforcing method of steel member within steel structure
Yamakawa et al. Seismic performance of aramid fiber square tubed concrete columns with metallic and/or non-metallic reinforcement
Shimazaki De-bonded diagonally reinforced beam for good repairability
Holman et al. Steel plates for torsion repair of concrete beams
Al-Azzawi et al. FRP shear strengthening of thin-walled plate girder web panels subjected to cyclic loading
Hashemi et al. Bending response of HSRC beams strengthened with FRP sheets
Egilmez et al. Cyclic testing of steel I-beams reinforced with GFRP
JP4893328B2 (en) FRP reinforcing method for structure and reinforcing structure for structure
Sim et al. Structural improvement of strengthened deck panels with externally bonded plates
JP3978282B2 (en) Reinforced wood
Pham et al. Impact resistance of FRP strengthened RC beams
Lee et al. Evaluation on the shear strengthening effect of RC columns with carbon fiber sheets
Bagale et al. FRP—Flexural strengthening of steel beams: A finite element analysis study
Chaudat et al. Shaking Table tests on RC retrofitted frame with FRP
Wu et al. Seismic performance of RC columns strengthened with dyneema fiber-reinforced polymer sheets
WAKABAYASHI et al. Experimental Investigation on the Behavior of Frames with and without Bracing under Horizontal Loading
Weng et al. Experimental study on seismic retrofitting of masonry walls using GFRP

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071010

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Effective date: 20100907

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308