JP2000064505A - Carbon fiber reinforced plastic composite steel member - Google Patents

Carbon fiber reinforced plastic composite steel member

Info

Publication number
JP2000064505A
JP2000064505A JP24029598A JP24029598A JP2000064505A JP 2000064505 A JP2000064505 A JP 2000064505A JP 24029598 A JP24029598 A JP 24029598A JP 24029598 A JP24029598 A JP 24029598A JP 2000064505 A JP2000064505 A JP 2000064505A
Authority
JP
Japan
Prior art keywords
steel
aggregate
reinforced plastic
carbon fiber
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24029598A
Other languages
Japanese (ja)
Other versions
JP4115599B2 (en
Inventor
Akira Fukuda
章 福田
Satoshi Satsugawa
聡 佐津川
Michio Ono
通夫 大野
Minoru Nakamura
実 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Daiwa House Industry Co Ltd
Original Assignee
Toray Industries Inc
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Daiwa House Industry Co Ltd filed Critical Toray Industries Inc
Priority to JP24029598A priority Critical patent/JP4115599B2/en
Publication of JP2000064505A publication Critical patent/JP2000064505A/en
Application granted granted Critical
Publication of JP4115599B2 publication Critical patent/JP4115599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent rusting and thermal deformation of a steel member and reduce its weight and a used amount of steel while ensuring strength and rigidity by covering a steel member with a carbon fiber reinforced plastic covering layer. SOLUTION: This carbon fiber reinforced plastic composite steel member 1 is covered with a carbon fiber reinforced plastic(CFRP) for all the surface on the external peripheral surface of a steel member 2 made of a square steel tubing. The CFRP of the covering layer 3 is arranged so as to align the carbon fibers in the longitudinal direction of the steel member 1, and the CFRP member is adhered to the steel member 2 with an adhesive in such a manner that the CFRP members are subdivided to cover every part of the cross section of the steel member 2. A thermosetting resin such as an epoxy-based resin or a phenol- based resin is used for the resin of CFRP. And the carbon fibers are made and used by carbonizing fibers such as layon, pitch, polyacrylonitrile or the like. And the CFRP composite steel member 1 of this configuration can be used as columns, beams or the like in a structure such as steel buildings.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、鉄骨造の建物に
おける柱や梁等に用いられる建築用の炭素繊維強化プラ
スチック複合鉄骨材、並びに柱および梁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced plastic composite iron aggregate for construction, which is used for columns and beams in a steel building, and columns and beams.

【0002】[0002]

【従来の技術】鉄骨造建物の構造躯体は、形鋼,軽量形
鋼,角形鋼管等の鉄骨材のみで製作されている。しか
し、鉄骨材は、次のような不利な点がある。 a.錆に弱く、錆の発生により耐久性が低下する。 b.熱変形がある。 c.重い。 そのため、従来、錆に対しては塗装を施すことで対処
し、また熱変形に対しては、モルタルやプラスター等の
耐火被覆を塗布または吹付けにより施して対処してい
る。
2. Description of the Related Art The structural frame of a steel frame building is made of only steel frame material such as shaped steel, lightweight shaped steel and square steel pipe. However, the steel aggregate has the following disadvantages. a. It is vulnerable to rust and its durability deteriorates due to rust. b. There is thermal deformation. c. heavy. Therefore, conventionally, rust has been dealt with by coating, and thermal deformation has been dealt with by applying or spraying a fireproof coating such as mortar or plaster.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの塗装
や耐火被覆は、錆や熱変形に対処できても、鉄骨材の強
度の向上効果は得られない。そのため、鋼材使用量を節
減して強度や剛性を確保し、躯体の軽量化を図ることは
できない。
However, even if these paints and fireproof coatings can cope with rust and thermal deformation, the effect of improving the strength of the steel aggregate cannot be obtained. Therefore, it is impossible to reduce the amount of steel used, secure strength and rigidity, and reduce the weight of the skeleton.

【0004】この発明の目的は、鉄骨材の錆および熱変
形の防止と共に、強度,剛性を確保しながら、軽量化お
よび鋼材使用量の節減が図れる複合鉄骨材を提供するこ
とである。この発明の他の目的は、製造が容易で、かつ
上記各機能が得られる複合鉄骨材を提供することであ
る。この発明のさらに他の目的は、錆,熱変形の防止と
共に、強度,剛性を確保しながら、軽量化および鋼材使
用量の節減が図れる柱および梁を提供することてある。
It is an object of the present invention to provide a composite iron aggregate which can prevent rust and thermal deformation of the iron aggregate and can reduce the weight and the amount of steel used while ensuring strength and rigidity. Another object of the present invention is to provide a composite iron aggregate that is easy to manufacture and that can achieve each of the above functions. Still another object of the present invention is to provide a column and a beam that can prevent rust and thermal deformation, and can reduce the weight and the amount of steel material used while ensuring strength and rigidity.

【0005】[0005]

【課題を解決するための手段】この発明の炭素繊維強化
プラスチック複合鉄骨材は、鉄骨材の外周の全体または
一部を、炭素繊維強化プラスチックの被覆層で覆った建
築用の複合鉄骨材である。鉄骨材は、角形鋼管や丸形鋼
管の他、各種断面形状の形鋼、軽量形鋼が使用できる。
炭素繊維強化プラスチックの被覆層は、鉄骨材の外周の
全体を覆うものであっても、また一部を覆うものであっ
ても良い。炭素繊維強化プラスチックは、軽量で高強
度、高弾性率を有し、また耐食性にもすぐれる。さらに
低熱膨張率のため寸法安定性にもすぐれるという特性を
有している。ガラス繊維やその他の繊維による強化プラ
スチックと比べても、強度、弾性率において優れる。こ
のため、炭素繊維強化プラスチックを鉄骨材の被覆層と
して用い、複合鉄骨材とすることにより、防錆性、熱に
対する寸法安定性が向上すると共に、軽量で高強度,高
剛性の複合鉄骨材となる。これにより、鉄骨材を肉厚の
薄いものにするなどして、鋼材使用量を節減でき、鋼材
の有効利用率が高められる。この炭素繊維強化プラスチ
ック複合鉄骨材を柱や梁として用いた場合の各状況に応
じた機能を考えると、地震等の水平荷重により柱部に最
大の応力が発生するときには、鉄骨材と炭素繊維強化プ
ラスチックの複合部材としてその応力に抗し、火災時な
ど炭素繊維強化プラスチックの強度が期待できない場合
には、鉄骨材のみで通常の荷重を支持する構造がとれ
る。
The carbon fiber reinforced plastic composite iron aggregate of the present invention is a composite iron aggregate for construction in which the whole or part of the outer circumference of the iron aggregate is covered with a coating layer of carbon fiber reinforced plastic. . As the steel aggregate, square steel pipes, round steel pipes, shaped steels of various cross-sectional shapes, and lightweight shaped steels can be used.
The carbon fiber reinforced plastic coating layer may cover the entire outer circumference of the steel aggregate or a part thereof. The carbon fiber reinforced plastic is lightweight, has high strength and high elastic modulus, and has excellent corrosion resistance. Furthermore, it has a characteristic that it has excellent dimensional stability because of its low coefficient of thermal expansion. Excellent strength and elastic modulus compared to reinforced plastics made of glass fibers and other fibers. Therefore, by using carbon fiber reinforced plastic as a coating layer for the steel aggregate to form a composite iron aggregate, rust resistance and dimensional stability against heat are improved, and a lightweight, high-strength, high-rigidity composite iron aggregate is obtained. Become. This makes it possible to reduce the amount of steel used, such as by reducing the thickness of the steel aggregate, and increase the effective utilization rate of steel. Considering the function according to each situation when this carbon fiber reinforced plastic composite steel aggregate is used as a column or beam, when the maximum stress occurs in the column part due to horizontal load such as an earthquake, the steel aggregate and carbon fiber reinforced When the strength of the carbon fiber reinforced plastic cannot be expected as a composite member of plastic against the stress as in the case of fire, a structure can be adopted in which a normal load is supported only by the steel aggregate.

【0006】この発明において、前記炭素繊維強化プラ
スチックの被覆層は、炭素繊維が鉄骨材の長手方向に沿
うように揃えられたものであることが好ましい。炭素繊
維強化プラスチックは、繊維配向により異方性を有し、
繊維方向が強度、弾性率ともに最も大きな値を示し、ま
た熱に対する寸法変化も最も小さい。また、柱や梁で
は、圧縮荷重や引張荷重は長手方向に作用する。そのた
め、被覆層の炭素繊維が鉄骨材の長手方向に揃えられた
ものとすることで、最も効果的に鉄骨材の補強効果が得
られる。
In the present invention, it is preferable that the carbon fiber reinforced plastic coating layer is such that carbon fibers are aligned along the longitudinal direction of the iron aggregate. Carbon fiber reinforced plastic has anisotropy due to fiber orientation,
The fiber direction shows the largest value in both strength and elastic modulus, and the smallest dimensional change due to heat. In addition, in columns and beams, compressive load and tensile load act in the longitudinal direction. Therefore, when the carbon fibers of the coating layer are aligned in the longitudinal direction of the steel aggregate, the reinforcing effect of the steel aggregate is most effectively obtained.

【0007】この発明において、炭素繊維強化プラスチ
ックの被覆層は、鉄骨材に接着剤で接着されたものであ
ってもよい。このように接着するようにした場合、炭素
繊維強化プラスチックを鉄骨材と別に製造しておいて、
これを後に接着すれば良いため、簡単な設備で、複合鉄
骨材を製造することができ、製造が容易である。また、
例えば、炭素繊維強化プラスチックの被覆層は、鉄骨材
を心材として引抜成形法によっても鉄骨材に被覆でき
る。
In the present invention, the carbon fiber reinforced plastic coating layer may be adhered to the steel aggregate with an adhesive. In the case of bonding in this way, carbon fiber reinforced plastic is manufactured separately from steel aggregate,
Since this may be bonded later, the composite steel aggregate can be manufactured with simple equipment, and the manufacturing is easy. Also,
For example, the coating layer of carbon fiber reinforced plastic can be coated on the iron aggregate by the pultrusion method using the iron aggregate as the core material.

【0008】この発明において、前記鉄骨材が角形鋼管
であり、前記炭素繊維強化プラスチックの被覆層が、鉄
骨材の外周の全体を覆うものであっても良い。鉄骨材が
角形鋼管のような閉鎖断面の中空材であると、通常の柱
や梁に使用する場合、炭素繊維強化プラスチックの被覆
層は、鉄骨材の外周のみを覆うものとしても、十分な防
錆、熱に対する寸法安定効果が期待できる。
In the present invention, the iron aggregate may be a rectangular steel pipe, and the carbon fiber reinforced plastic coating layer may cover the entire outer periphery of the iron aggregate. If the steel aggregate is a hollow material with a closed cross section such as a square steel pipe, when used for ordinary columns and beams, the carbon fiber reinforced plastic coating layer is sufficient for protection even if it covers only the outer circumference of the steel aggregate. A dimensional stability effect against rust and heat can be expected.

【0009】この発明において、前記鉄骨材がH形鋼で
あり、前記炭素繊維強化プラスチックの被覆層は、鉄骨
材の両フランジのみを覆うものものであっても良い。鉄
骨材がH形鋼の場合、鉄骨材に主に作用する荷重は、フ
ランジで支持されることになるため、炭素繊維強化プラ
スチックの被覆層は、鉄骨材のウェブを露出させ、フラ
ンジを覆うもののみとすることで、少ない炭素繊維強化
プラスチックで効果的に補強効果が得られる。
In the present invention, the steel aggregate may be H-shaped steel, and the coating layer of the carbon fiber reinforced plastic may cover only both flanges of the iron aggregate. When the steel aggregate is H-shaped steel, the load that mainly acts on the steel aggregate is supported by the flange, so the carbon fiber reinforced plastic coating layer exposes the steel aggregate web and covers the flange. Only by doing so, the reinforcing effect can be effectively obtained with less carbon fiber reinforced plastic.

【0010】この発明の請求項6記載の柱は、鉄骨材を
炭素繊維強化プラスチックの被覆層で覆ったものであ
る。この柱は、請求項1ないし請求項5のいずれかに記
載の炭素繊維強化プラスチック複合鉄骨材を用いたもの
であっても、また、鉄骨材に、建築現場で建方後、また
は建方前に炭素繊維強化プラスチックの被覆層を取付け
たものであっても良い。このようにこの発明を柱に適用
した場合において、鉄骨材が角形鋼管や丸形鋼管等の閉
鎖断面の中空材である場合、鉄骨材の内部に熱容量増大
用の充填材を充填しても良い。この充填材としては、砂
や水が使用できる。このように、熱容量増大用の充填材
を充填した場合、柱全体の熱容量の増大により、防火性
能が向上する。
According to a sixth aspect of the present invention, the column is a steel aggregate covered with a coating layer of carbon fiber reinforced plastic. Even if this pillar uses the carbon fiber reinforced plastic composite iron aggregate according to any one of claims 1 to 5, the pillar is also erected on the construction site after construction or before construction. A carbon fiber reinforced plastic coating layer may be attached to the. In this way, when the present invention is applied to a pillar, when the iron aggregate is a hollow material having a closed cross section such as a square steel pipe or a round steel pipe, the inside of the iron aggregate may be filled with a filler for increasing the heat capacity. . Sand or water can be used as the filler. Thus, when the filler for increasing the heat capacity is filled, the fire capacity is improved due to the increase in the heat capacity of the entire column.

【0011】この発明の請求項8記載の梁は、鉄骨材を
炭素繊維強化プラスチックの被覆層で覆ったものであ
る。この梁は、請求項1ないし請求項5のいずれかに記
載の炭素繊維強化プラスチック複合鉄骨材を用いたもの
であっても、また、鉄骨材に、建築現場で建方後、また
は建方前に炭素繊維強化プラスチックの被覆層を取付け
たものであっても良い。
According to the eighth aspect of the present invention, the steel aggregate is covered with a coating layer of carbon fiber reinforced plastic. This beam uses the carbon fiber reinforced plastic composite iron aggregate according to any one of claims 1 to 5, and the beam is also used for the iron aggregate after erection at a construction site or before erection. A carbon fiber reinforced plastic coating layer may be attached to the.

【0012】この発明の繊維強化プラスチック複合鉄骨
材は、前記各構成の炭素繊維強化プラスチック複合鉄骨
材において、炭素繊維強化プラスチックの被覆層に代え
て、炭素繊維と共に、炭素繊維以外の繊維強化材を混入
させた混成の繊維強化プラスチックを用いたものであっ
てもよい。炭素繊維以外の繊維強化材としては、例え
ば、ガラス繊維や、アラミド繊維(芳香族ポリアミド繊
維)等が使用できる。なお、前記各炭素繊維強化プラス
チック、または混成の繊維強化プラスチックの被覆層
は、さらに適宜の充填材を配合したものであっても良
い。
The fiber-reinforced plastic composite iron aggregate of the present invention is the carbon fiber-reinforced plastic composite iron aggregate of each of the above-mentioned constitutions, in place of the carbon fiber-reinforced plastic coating layer, carbon fiber and a fiber-reinforced material other than carbon fiber are used. It is also possible to use a mixed fiber-reinforced plastic mixed. As the fiber reinforcing material other than carbon fiber, for example, glass fiber, aramid fiber (aromatic polyamide fiber) or the like can be used. The coating layer of each carbon fiber reinforced plastic or mixed fiber reinforced plastic may further contain an appropriate filler.

【0013】[0013]

【発明の実施の形態】この発明の一実施形態を図1と共
に説明する。この炭素繊維強化プラスチック複合鉄骨材
1は、鉄骨材2を炭素繊維強化プラスチック(以下「C
FRP」と略称する)の被覆層3で覆ったものである。
鉄骨材2は角形鋼管からなり、CFRPの被覆層3は、
角形鋼管の外周面の全面を覆って設けられる。被覆層3
の厚さは、この例では鉄骨材2の板厚よりも厚くしてあ
るが、要求される強度等に応じて適宜の厚さに設定され
る。被覆層3のCFRPは、炭素繊維が鉄骨材の長手方
向に沿うように揃えられたものである。被覆層3は、鉄
骨材2を心材として成形型内を挿通する連続引抜き成形
により鉄骨材2に被覆したものであっても、所定形状に
成形または切断加工された炭素繊維強化プラスチック材
(CFRP材)を接着剤等で鉄骨材1に貼付けたもので
あっても良い。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIG. In this carbon fiber reinforced plastic composite steel aggregate 1, the steel aggregate 2 is a carbon fiber reinforced plastic (hereinafter referred to as “C
It is covered with a coating layer 3 of "FRP").
The steel aggregate 2 is made of a rectangular steel pipe, and the CFRP coating layer 3 is
It is provided so as to cover the entire outer peripheral surface of the rectangular steel pipe. Coating layer 3
In this example, the thickness of is larger than the plate thickness of the steel aggregate 2, but is set to an appropriate thickness according to the required strength and the like. The CFRP of the coating layer 3 is one in which carbon fibers are aligned along the longitudinal direction of the steel aggregate. The coating layer 3 is a carbon fiber reinforced plastic material (CFRP material) formed or cut into a predetermined shape even if the coating material 3 is applied to the steel aggregate 2 by continuous pultrusion with the steel aggregate 2 as the core material and is inserted through a molding die. ) May be attached to the steel aggregate 1 with an adhesive or the like.

【0014】CFRP材を接着剤で鉄骨材2に貼付ける
場合、CFRP材は、例えば、鉄骨材2の横断面の一部
ずつを覆うものに分割されたものとする。図2(A)〜
(C)は、その分割例を示す。同図(A)の例は、被覆
層3を溝形の二つのCFRP材3aに分割したものであ
る。同図(B)は、被覆層3を、4個の断面L字状のC
FRP材3bに分割した例を示す。同図(C)は、被覆
層3を、角部の4個のCFRP材3cと、中間部の4枚
の平板状のCFRP材3dとに分割した例を示す。ま
た、CFRP材は、前記各例のように横断面において分
割されたもの、あるいは横断面では一体とされたもの
が、鉄骨材2の長手方向に複数個貼り継がれてCFRP
被覆層3を形成するものとしても良い。図3は、複数の
CFRP材3Aを長手方向に貼り継いで被覆層3とした
例を示す。なお、これら各CFRP材3a〜3d,3A
は、例えば、引き抜き成形で所定の断面形状に形成され
たものである。
When the CFRP material is attached to the steel aggregate 2 with an adhesive, it is assumed that the CFRP material is divided into, for example, those that cover a part of the cross section of the iron aggregate 2. FIG. 2 (A)-
(C) shows an example of the division. In the example of FIG. 3A, the coating layer 3 is divided into two groove-shaped CFRP materials 3a. In the same figure (B), the coating layer 3 has four C-shaped L-shaped sections.
The example divided into the FRP material 3b is shown. FIG. 2C shows an example in which the coating layer 3 is divided into four CFRP materials 3c at the corners and four flat CFRP materials 3d at the middle part. Further, the CFRP material, which is divided in the cross section as in each of the above-described examples or is integrated in the cross section, is bonded to the steel frame material 2 in the longitudinal direction to form a plurality of CFRP materials.
The coating layer 3 may be formed. FIG. 3 shows an example in which a plurality of CFRP materials 3A are bonded in the longitudinal direction to form the coating layer 3. In addition, each of these CFRP materials 3a to 3d, 3A
Is, for example, formed into a predetermined cross-sectional shape by pultrusion.

【0015】CFRPの材質例を説明する。CFRPの
樹脂には、エポキシ系樹脂またはフェノール系樹脂等の
熱硬化性樹脂が用いられる。炭素繊維には、例えば、レ
ーヨン,ピッチ,ポリアクリロニトリル(PAN)等の
繊維を炭化させてつくられる繊維等が用いられる。
An example of the material of CFRP will be described. As the CFRP resin, a thermosetting resin such as an epoxy resin or a phenol resin is used. As the carbon fibers, for example, fibers made by carbonizing fibers such as rayon, pitch, polyacrylonitrile (PAN) and the like are used.

【0016】この構成のCFRP複合鉄骨材1は、鉄骨
造建物等の構造躯体における柱や梁等に使用される。こ
の場合に、CFRPは、耐食性,熱に対する寸法安定性
に優れるうえ、圧縮強度、引張強度等の機械的特性にも
優れ、また高い弾性率を有している。ガラス繊維やその
他の繊維による強化プラスチックと比べても、強度、弾
性率において優れる。このため、CFRPを鉄骨材2の
被覆層3として用い、複合鉄骨材1とすることにより、
防錆性,熱に対する寸法安定性が向上すると共に、軽量
で高強度,高剛性の複合鉄骨材1となる。これにより、
鉄骨材2を肉厚の薄いものにするなどして、鋼材使用量
を節減でき、鋼材の有効利用率が高められる。このCF
RP複合鉄骨材1を柱や梁として用いた場合の各状況に
応じた機能を考えると、地震等の水平荷重により柱部に
最大の応力が発生するときには、鉄骨材2とCFRP被
覆層3の複合部材としてその応力に抗し、火災時などC
FRPの強度が期待できない場合には、鉄骨材2のみで
通常の荷重を支持する構造がとれる。CFRPは軽量構
造材料であり、一般には航空機関連や、スポーツ,レジ
ャー用品等に使用されているものであるが、このように
建築用の複合鉄骨材1に使用することにより、上記のよ
うな優れた効果を得ることができる。なお、CFRPを
鉄骨材と複合化せずに単独で柱や梁に使用すると、火災
時等に強度が得られないことの他に、柱,梁間等の接合
を堅固に行うことが難しいという問題があるが、複合鉄
骨材とすると、鉄骨材の部分で接合強度が確保すること
ができる。
The CFRP composite steel aggregate 1 having this structure is used for columns, beams and the like in a structural body such as a steel building. In this case, CFRP has excellent corrosion resistance, dimensional stability against heat, mechanical properties such as compressive strength and tensile strength, and a high elastic modulus. Excellent strength and elastic modulus compared to reinforced plastics made of glass fibers and other fibers. Therefore, by using CFRP as the coating layer 3 of the steel aggregate 2 to form the composite iron aggregate 1,
The composite iron aggregate 1 is improved in rust resistance and dimensional stability against heat, and is lightweight and has high strength and high rigidity. This allows
The amount of steel material used can be reduced by making the steel frame material 2 thin, and the effective utilization rate of steel material can be increased. This CF
Considering the function according to each situation when the RP composite steel aggregate 1 is used as a column or a beam, when the maximum stress is generated in the column portion due to a horizontal load such as an earthquake, the steel aggregate 2 and the CFRP coating layer 3 are As a composite member, it resists the stress and, in case of fire, C
When the strength of FRP cannot be expected, a structure in which a normal load is supported only by the steel aggregate 2 can be taken. CFRP is a lightweight structural material and is generally used for aircraft-related products, sports, leisure goods, etc. By using it for the composite iron aggregate 1 for construction as described above, You can get the effect. In addition, if CFRP is used alone for a pillar or a beam without being combined with a steel aggregate, the strength is not obtained in the event of a fire, and it is difficult to firmly bond the pillar and the beam. However, when the composite steel aggregate is used, the joining strength can be secured in the portion of the steel aggregate.

【0017】CFRP複合鉄骨材1を柱または梁として
用いる場合に、図4(A)に示すように、鉄骨材2の内
部に熱容量増大用の装填材4を充填しても良い。装填材
4には砂または水等が用いられる。このように、熱容量
増大用の装填材4を充填すると、柱または梁全体の熱容
量の増大により、防火性能が向上する。ただし、このよ
うに装填材4を充填できるのは、この実施形態等の場合
のように、鉄骨材が閉鎖断面の中空材の場合である。
When the CFRP composite steel aggregate 1 is used as a column or a beam, as shown in FIG. 4 (A), the iron aggregate 2 may be filled with a filler 4 for increasing the heat capacity. Sand, water, or the like is used for the loading material 4. As described above, when the filler 4 for increasing the heat capacity is filled, the heat capacity of the entire pillar or beam is increased, and thus the fire prevention performance is improved. However, the charging material 4 can be filled in this way when the steel aggregate is a hollow material having a closed cross section, as in the case of this embodiment and the like.

【0018】図4(B)は、この発明の他の実施形態を
示す。この例は、鉄骨材2とCFRPの被覆層3との間
にガラス層5を介在させたものである。このようにガラ
ス層5を介在させた場合、鉄とCFRPの電位差に起因
する電食を防ぐという効果が得られる。このようなガラ
ス層の介在は、鉄骨材2が角形鋼管である場合に限ら
ず、鉄骨材一般に適用できる。
FIG. 4B shows another embodiment of the present invention. In this example, a glass layer 5 is interposed between the steel aggregate 2 and the CFRP coating layer 3. In this way, when the glass layer 5 is interposed, the effect of preventing electrolytic corrosion due to the potential difference between iron and CFRP is obtained. The interposition of such a glass layer is not limited to the case where the steel aggregate 2 is a rectangular steel pipe, but can be applied to general steel aggregates.

【0019】図5(A)〜(F)は、各々この発明の他
の実施形態を示す。図5(A)は、鉄骨材2が丸形鋼管
である場合を示し、外周面の全面にCFRPの被覆層3
が設けられている。同図(B)は、鉄骨材2がH形鋼
(またはI形鋼)である場合を示し、断面の全体を覆う
ようにCFRPの被覆層3が設けられている。同図
(C)は、鉄骨材2がH形鋼(またはI形鋼)であっ
て、CFRPの被覆層3を、両フランジ2aの内外面の
みに設け、ウェブ2bを露出状態のままとした例を示
す。同図(D)は、鉄骨材2が山形鋼である場合を示
し、断面の全体を覆うようにCFRPの被覆層3が設け
られている。被覆層3は、鉄骨材2の外側面のみに設け
ても良い。同図(D)は、鉄骨材2が溝形鋼である場合
を示し、断面の全体を覆うようにCFRPの被覆層3が
設けられている。被覆層3は、同図(F)のように、鉄
骨材2の外側面のみに設けても良い。なお、図5の各例
は、鉄骨材2が重量鉄骨であっても、軽量鉄骨であって
も良い。
5 (A) to 5 (F) respectively show another embodiment of the present invention. FIG. 5A shows a case where the steel aggregate 2 is a round steel pipe, and the CFRP coating layer 3 is formed on the entire outer peripheral surface.
Is provided. FIG. 1B shows a case where the steel aggregate 2 is H-shaped steel (or I-shaped steel), and a CFRP coating layer 3 is provided so as to cover the entire cross section. In the same figure (C), the steel aggregate 2 is H-shaped steel (or I-shaped steel), the CFRP coating layer 3 is provided only on the inner and outer surfaces of both flanges 2a, and the web 2b is left exposed. Here is an example: FIG. 3D shows the case where the iron aggregate 2 is chevron steel, and the CFRP coating layer 3 is provided so as to cover the entire cross section. The coating layer 3 may be provided only on the outer side surface of the steel aggregate 2. FIG. 1D shows a case where the steel aggregate 2 is channel steel, and a CFRP coating layer 3 is provided so as to cover the entire cross section. The coating layer 3 may be provided only on the outer side surface of the iron aggregate 2 as shown in FIG. In each example of FIG. 5, the steel aggregate 2 may be a heavy steel frame or a lightweight steel frame.

【0020】図6(A)〜(D)は、各々この発明のさ
らに他の実施形態を示す。これらの実施形態は、主に鉄
骨材2が軽量鉄骨の場合に適用される。同図(A)〜
(D)に示すように、鉄骨材2は、リップ溝形、Z形、
リップ付きZ形、ハット形等のものであっても良い。C
FRPの被覆層3は、図示の例では鉄骨材2の断面の全
面を覆うように設けられているが、これらの例において
も、被覆層3は鉄骨材2の断面の一部を覆うものとして
も良い。また、これら図5および図6の各例において
も、CFRPの被覆層3は、連続引き抜き成形等で全体
が一体に鉄骨材2に被覆されたものであっても、また複
数枚のCFRP材を鉄骨材2に貼継いだものであっても
良い。
6 (A) to 6 (D) each show a further embodiment of the present invention. These embodiments are mainly applied when the steel aggregate 2 is a lightweight steel frame. Same figure (A) ~
As shown in (D), the steel aggregate 2 has a lip groove shape, a Z shape,
It may be a Z shape with a lip, a hat shape, or the like. C
The FRP coating layer 3 is provided so as to cover the entire cross section of the steel aggregate 2 in the illustrated example, but in these examples also, the coating layer 3 covers a part of the cross section of the iron aggregate 2. Is also good. In each of the examples shown in FIGS. 5 and 6, the CFRP coating layer 3 may be formed by continuously drawing the steel aggregate 2 integrally with the whole, or a plurality of CFRP materials may be formed. It may be pasted onto the steel aggregate 2.

【0021】[0021]

【実施例】つぎに、CFRPの被覆層3による強度向上
効果を数値例で説明する。表1に、鉄骨材2となる鋼材
およびCFRPの基本物性を示す。鋼材(スチール)
は、弾塑性材料であるが、CFRPは完全弾性体であ
る。
EXAMPLE Next, the strength improving effect of the CFRP coating layer 3 will be described with reference to numerical examples. Table 1 shows the basic physical properties of the steel material and CFRP that will be the steel aggregate 2. Steel material
Is an elastoplastic material, while CFRP is a fully elastic body.

【0022】[0022]

【表1】 [Table 1]

【0023】表2は柱の例である。鉄骨材2が角形鋼管
(図7(A)参照、A,Bは各辺の寸法)である場合に
つき、鉄骨材2の単独の場合と、図1の実施形態のよう
にCFRPの被覆層3を設けた場合とを比較して示す。
なお表2は理論値である。表中の長手方向圧縮強さは、
角形鋼管の場合は、材料の降伏強度を設計強度、複合角
形鋼管の場合は、CFRPの破壊歪の50%を設計歪と
した時の値を示す。表2から、鉄骨材2を単独で使用す
る場合は、板厚tが5mmで、長手方向圧縮強さが275
00kgに対して、複合化した場合は、鉄骨材2の板厚が
3mmであっても、0.6mm厚のCFRP被覆層3を設け
るだけで、長手方向の圧縮強さが28000kgとなり、
同等の長手方向圧縮強さを65%の重量で発現できるこ
とが分かる。また、圧縮剛性についても、CFRP材は
他の繊維強化プラスチック材に比べて弾性率が高いの
で、鉄骨材2の板厚が3mmであっても、2.5mmのCF
RP被覆層3を設けることで、長手方向圧縮剛性を板厚
が5mmの鉄骨材と73%の重量で同等に出来る。
Table 2 is an example of a pillar. When the steel aggregate 2 is a rectangular steel pipe (see FIG. 7A, A and B are the dimensions of each side), the case where the steel aggregate 2 is used alone and the CFRP coating layer 3 as in the embodiment of FIG. This is shown in comparison with the case where is provided.
In addition, Table 2 is a theoretical value. The longitudinal compressive strength in the table is
In the case of a square steel pipe, the yield strength of the material is the design strength, and in the case of a composite square steel pipe, the value when 50% of the fracture strain of CFRP is the design strain is shown. From Table 2, when the steel aggregate 2 is used alone, the plate thickness t is 5 mm and the longitudinal compressive strength is 275.
In the case of compounding with respect to 00 kg, even if the plate thickness of the steel aggregate 2 is 3 mm, the compressive strength in the longitudinal direction becomes 28000 kg only by providing the CFRP coating layer 3 having a thickness of 0.6 mm,
It can be seen that equivalent longitudinal compressive strength can be achieved with a weight of 65%. As for the compression rigidity, the CFRP material has a higher elastic modulus than other fiber reinforced plastic materials, so even if the thickness of the steel frame material 2 is 3 mm, the CFRP material has a CF of 2.5 mm.
By providing the RP coating layer 3, the compressive rigidity in the longitudinal direction can be made equal to that of a steel aggregate having a plate thickness of 5 mm with a weight of 73%.

【0024】[0024]

【表2】 [Table 2]

【0025】表3は床梁の例である。鉄骨材にはH形鋼
(図7(B))を用いた。表3から鉄骨材2を単独で使
用する場合にはフランジ厚t2 が9mm、ウェッブ厚t1
が6mmのもの(鉄骨材)の場合、曲げ剛性が2.24
×1012Kg・mm2 であるのに対し、複合化することで鉄
骨材2の板厚がフランジ・ウェッブとも3mmのもの(鉄
骨材)であっても重量約53%で等価剛性に出来るこ
とが分かる。また、強度については重量約48%で等強
度に出来ることが分かる。
Table 3 is an example of floor beams. H-section steel (FIG. 7 (B)) was used as the steel aggregate. From Table 3, when the steel aggregate 2 is used alone, the flange thickness t 2 is 9 mm and the web thickness t 1 is
Bending rigidity is 2.24 when the diameter is 6 mm (steel aggregate).
Although it is × 10 12 Kg · mm 2 , by combining it, even if the thickness of the steel aggregate 2 is 3 mm for both the flange and the web (steel aggregate), the equivalent rigidity can be achieved with a weight of about 53%. I understand. Further, regarding the strength, it can be seen that the strength can be made equal at a weight of about 48%.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】この発明の炭素繊維強化プラスチック複
合鉄骨材、並びに柱および梁は、鉄骨材を炭素繊維強化
プラスチックの被覆層で覆ったものであるため、鉄骨材
の錆および熱変形の防止と共に、強度,剛性を確保しな
がら、軽量化および鋼材使用量の節減を図ることができ
る。特に、炭素繊維が鉄骨材の長手方向に沿うように揃
えられたものである場合は、炭素繊維強化プラスチック
による補強効果が大きい。また、炭素繊維強化プラスチ
ックの被覆層が、鉄骨材に接着剤で接着されたものであ
る場合は、簡単な設備でこの複合鉄骨材を製造すること
ができる。
INDUSTRIAL APPLICABILITY Since the carbon fiber reinforced plastic composite iron aggregate, pillars and beams of the present invention are obtained by covering the iron aggregate with a coating layer of carbon fiber reinforced plastic, it is possible to prevent rust and thermal deformation of the iron aggregate. It is possible to reduce the weight and the amount of steel used while ensuring strength and rigidity. In particular, when the carbon fibers are aligned along the longitudinal direction of the steel aggregate, the reinforcing effect of the carbon fiber reinforced plastic is great. Further, when the coating layer of carbon fiber reinforced plastic is adhered to the steel aggregate with an adhesive, the composite iron aggregate can be manufactured with simple equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明の一実施形態にかかる複合鉄
骨材の切欠斜視図、(B)は同横断面図である。
FIG. 1A is a cutaway perspective view of a composite iron aggregate according to an embodiment of the present invention, and FIG.

【図2】(A)〜(C)は、各々この発明の他の実施形
態にかかる複合鉄骨材の横断面図である。
2A to 2C are cross-sectional views of a composite iron aggregate according to another embodiment of the present invention.

【図3】この発明のさらに他の実施形態にかかる複合鉄
骨材の中間省略側面図である。
FIG. 3 is a side view of the composite iron aggregate according to yet another embodiment of the present invention, in which an intermediate portion is omitted.

【図4】(A),(B)は各々この発明のさらに他の実
施形態にかかる複合鉄骨材の横断面図である。
4A and 4B are cross-sectional views of a composite iron aggregate according to yet another embodiment of the present invention.

【図5】(A)〜(F)は、各々この発明のさらに他の
実施形態にかかる複合鉄骨材の横断面図である。
5 (A) to (F) are cross-sectional views of a composite iron aggregate according to yet another embodiment of the present invention.

【図6】(A)〜(D)は、各々この発明のさらに他の
実施形態にかかる複合鉄骨材の横断面図である。
6 (A) to 6 (D) are cross-sectional views of a composite iron aggregate according to yet another embodiment of the present invention.

【図7】強度比較を行う各鉄骨材の寸法説明図である。FIG. 7 is a dimensional explanatory diagram of each steel aggregate for strength comparison.

【符号の説明】[Explanation of symbols]

1…炭素繊維強化プラスチック複合鉄骨材 2…鉄骨材 3…被覆層 1 ... Carbon fiber reinforced plastic composite steel aggregate 2 ... Steel aggregate 3 ... coating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐津川 聡 大阪府大阪市西区阿波座1丁目5番16号 大和ハウス工業株式会社内 (72)発明者 大野 通夫 愛媛県伊予郡松前町大字筒井1515 東レ株 式会社内 (72)発明者 中村 実 愛媛県伊予郡松前町大字筒井1515 東レ株 式会社内 Fターム(参考) 2E163 FA02 FA12 FB01 FB02 FB04 FB06 FB07 FB09 FB12 FF25 FF35 FF67 FG01 4F100 AB02A AB03A AD11B AG00 AK33 AK53 BA02 BA03 CB00 DA11B DB09 DD31 DD32 DG01B DH02B GB07 JK01 JL03 JL04 4F211 AA38 AA39 AD03 AD04 AD12 AD16 AD25 AG03 AG08 AG24 AH47 SA17 SC01 SC09 SD01 SD23 TA03 TA08 TC07 TC08   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Satoshi             1-5-16 Awaza, Nishi-ku, Osaka City, Osaka Prefecture             Daiwa House Industry Co., Ltd. (72) Inventor Michio Ohno             1515 Tsutsui, Matsumae-cho, Iyo-gun, Ehime Prefecture Toray Co., Ltd.             Inside the company (72) Inventor Minoru Nakamura             1515 Tsutsui, Matsumae-cho, Iyo-gun, Ehime Prefecture Toray Co., Ltd.             Inside the company F term (reference) 2E163 FA02 FA12 FB01 FB02 FB04                       FB06 FB07 FB09 FB12 FF25                       FF35 FF67 FG01                 4F100 AB02A AB03A AD11B AG00                       AK33 AK53 BA02 BA03 CB00                       DA11B DB09 DD31 DD32                       DG01B DH02B GB07 JK01                       JL03 JL04                 4F211 AA38 AA39 AD03 AD04 AD12                       AD16 AD25 AG03 AG08 AG24                       AH47 SA17 SC01 SC09 SD01                       SD23 TA03 TA08 TC07 TC08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 鉄骨材を炭素繊維強化プラスチックの被
覆層で覆った建築用の炭素繊維強化プラスチック複合鉄
骨材。
1. A carbon fiber reinforced plastic composite iron aggregate for construction, comprising a steel aggregate covered with a coating layer of carbon fiber reinforced plastic.
【請求項2】 前記炭素繊維強化プラスチックの被覆層
は、炭素繊維が鉄骨材の長手方向に沿うように揃えられ
たものである請求項1記載の炭素繊維強化プラスチック
複合鉄骨材。
2. The carbon fiber reinforced plastic composite iron aggregate according to claim 1, wherein the carbon fiber reinforced plastic coating layer is formed by aligning carbon fibers along the longitudinal direction of the iron aggregate.
【請求項3】 前記炭素繊維強化プラスチックの被覆層
は、鉄骨材に接着剤で接着されたものである請求項1ま
たは請求項2記載の炭素繊維強化プラスチック複合鉄骨
材。
3. The carbon fiber reinforced plastic composite iron aggregate according to claim 1, wherein the carbon fiber reinforced plastic coating layer is adhered to the iron aggregate with an adhesive.
【請求項4】 前記鉄骨材が角形鋼管であり、前記炭素
繊維強化プラスチックの被覆層は、鉄骨材の外周の全体
を覆うものとした請求項1ないし請求項3のいずれかに
記載の炭素繊維強化プラスチック複合鉄骨材。
4. The carbon fiber according to claim 1, wherein the steel aggregate is a rectangular steel pipe, and the coating layer of the carbon fiber reinforced plastic covers the entire outer periphery of the iron aggregate. Reinforced plastic composite steel aggregate.
【請求項5】 前記鉄骨材がH形鋼であり、前記炭素繊
維強化プラスチックの被覆層は、鉄骨材の両フランジの
みを覆うものとした請求項1ないし請求項3のいずれか
に記載の炭素繊維強化プラスチック複合鉄骨材。
5. The carbon according to claim 1, wherein the steel aggregate is H-shaped steel, and the coating layer of the carbon fiber reinforced plastic covers only both flanges of the iron aggregate. Fiber reinforced plastic composite steel aggregate.
【請求項6】 鉄骨材を炭素繊維強化プラスチックの被
覆層で覆った柱。
6. A column in which a steel aggregate is covered with a coating layer of carbon fiber reinforced plastic.
【請求項7】 鉄骨材が閉鎖断面の中空材であり、前記
鉄骨材の内部に熱容量増大用の装填材を充填した請求項
6記載の柱。
7. The column according to claim 6, wherein the steel aggregate is a hollow material having a closed cross section, and a filling material for increasing the heat capacity is filled inside the steel aggregate.
【請求項8】 鉄骨材を炭素繊維強化プラスチックの被
覆層で覆った梁。
8. A beam in which a steel aggregate is covered with a coating layer of carbon fiber reinforced plastic.
【請求項9】 請求項1ないし請求項5のいずれかに記
載の炭素繊維強化プラスチック複合鉄骨材において、前
記被覆層は、炭素繊維と共に、炭素繊維以外の繊維強化
材を混入させた繊維強化プラスチックを用いた繊維強化
プラスチック複合鉄骨材。
9. The carbon fiber reinforced plastic composite iron aggregate according to any one of claims 1 to 5, wherein the coating layer is a fiber reinforced plastic in which a carbon fiber and a fiber reinforcement other than carbon fiber are mixed. Fiber-reinforced plastic composite steel aggregate using.
JP24029598A 1998-08-26 1998-08-26 Carbon fiber reinforced plastic composite steel frame Expired - Fee Related JP4115599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24029598A JP4115599B2 (en) 1998-08-26 1998-08-26 Carbon fiber reinforced plastic composite steel frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24029598A JP4115599B2 (en) 1998-08-26 1998-08-26 Carbon fiber reinforced plastic composite steel frame

Publications (2)

Publication Number Publication Date
JP2000064505A true JP2000064505A (en) 2000-02-29
JP4115599B2 JP4115599B2 (en) 2008-07-09

Family

ID=17057357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24029598A Expired - Fee Related JP4115599B2 (en) 1998-08-26 1998-08-26 Carbon fiber reinforced plastic composite steel frame

Country Status (1)

Country Link
JP (1) JP4115599B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127894A (en) * 2001-10-29 2003-05-08 Hitachi Industries Co Ltd Structure using carbon fiber reinforced resin
GB2385339A (en) * 2002-02-19 2003-08-20 Roxbury Ltd Reinforced plastics load bearing member
GB2397590A (en) * 2003-01-22 2004-07-28 Miba Frictec Gmbh Steel girder with porous layer and carbon fibre friction lining
JP2006161463A (en) * 2004-12-09 2006-06-22 Tsuru Gakuen Reinforcing method of steel member within steel structure
JP2007511678A (en) * 2003-11-21 2007-05-10 メッツォ ペーパー インコーポレイテッド Method for strengthening the structure of paper web manufacturing or finishing equipment
KR100789116B1 (en) 2006-12-07 2007-12-27 에스엔유 프리시젼 주식회사 Beam of using composite material and making method thereof
KR100811202B1 (en) * 2006-03-18 2008-03-07 주식회사 케이피에스 Beam for rail and its manufacturing method
JP2008062327A (en) * 2006-09-06 2008-03-21 Asahi Machinery Ltd Cutter roll made of carbon fiber reinforced plastic, and its manufacturing method
JP2009190855A (en) * 2008-02-15 2009-08-27 Murata Mach Ltd Stacker crane
JP2010031612A (en) * 2008-07-31 2010-02-12 Tsuru Gakuen Reinforcing structure of steel structure and reinforcing method of steel structure
WO2010022204A2 (en) * 2008-08-21 2010-02-25 Cesternino Anthony J Carbon fiber reinforced beam
US7677645B2 (en) * 2006-06-14 2010-03-16 Volkswagen Ag Impact protection reinforcing element and method of producing the element
KR101113204B1 (en) * 2007-08-10 2012-02-15 니스코 주식회사 Noise-proof panel
JP2013256219A (en) * 2012-06-13 2013-12-26 Kawasaki Heavy Ind Ltd Collision energy-absorbing column and railway vehicle including the collision energy-absorbing column
KR101373914B1 (en) 2012-05-29 2014-03-12 아주대학교산학협력단 Void structures and manufacturing method thereof
WO2014112562A1 (en) * 2013-01-17 2014-07-24 日本発條株式会社 Composite material and manufacturing method for composite material
CN104328866A (en) * 2014-11-06 2015-02-04 沈阳建筑大学 Z-shaped steel pipe-steel reinforced glass concrete combined column
CN104405082A (en) * 2014-11-05 2015-03-11 沈阳建筑大学 Steel rib-steel pipe regenerated-concrete combined column with cross-shaped section
CN106835936A (en) * 2017-03-29 2017-06-13 哈尔滨工业大学 A kind of FRP constraint concrete-filled steel tubular arch
WO2019090187A1 (en) * 2017-11-03 2019-05-09 Axion Structural Innovations Structural reinforced composite beam
CN110331819A (en) * 2019-07-10 2019-10-15 中国矿业大学 A kind of high Procedures for Earthquake Resisting Ductile Reinforced Concrete component and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556713A (en) * 2013-10-30 2014-02-05 南京工业大学 Steel pipe tubular joint reinforced by carbon fiber composite reinforcing materials
CN105003027A (en) * 2015-07-29 2015-10-28 温州大学 FRP restrained pipe regenerated mixed concrete combination column

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127894A (en) * 2001-10-29 2003-05-08 Hitachi Industries Co Ltd Structure using carbon fiber reinforced resin
GB2385339A (en) * 2002-02-19 2003-08-20 Roxbury Ltd Reinforced plastics load bearing member
GB2397590A (en) * 2003-01-22 2004-07-28 Miba Frictec Gmbh Steel girder with porous layer and carbon fibre friction lining
GB2397590B (en) * 2003-01-22 2006-02-15 Miba Frictec Gmbh A friction body
JP2007511678A (en) * 2003-11-21 2007-05-10 メッツォ ペーパー インコーポレイテッド Method for strengthening the structure of paper web manufacturing or finishing equipment
JP2006161463A (en) * 2004-12-09 2006-06-22 Tsuru Gakuen Reinforcing method of steel member within steel structure
KR100811202B1 (en) * 2006-03-18 2008-03-07 주식회사 케이피에스 Beam for rail and its manufacturing method
US7677645B2 (en) * 2006-06-14 2010-03-16 Volkswagen Ag Impact protection reinforcing element and method of producing the element
JP2008062327A (en) * 2006-09-06 2008-03-21 Asahi Machinery Ltd Cutter roll made of carbon fiber reinforced plastic, and its manufacturing method
KR100789116B1 (en) 2006-12-07 2007-12-27 에스엔유 프리시젼 주식회사 Beam of using composite material and making method thereof
KR101113204B1 (en) * 2007-08-10 2012-02-15 니스코 주식회사 Noise-proof panel
JP2009190855A (en) * 2008-02-15 2009-08-27 Murata Mach Ltd Stacker crane
JP2010031612A (en) * 2008-07-31 2010-02-12 Tsuru Gakuen Reinforcing structure of steel structure and reinforcing method of steel structure
WO2010022204A2 (en) * 2008-08-21 2010-02-25 Cesternino Anthony J Carbon fiber reinforced beam
WO2010022204A3 (en) * 2008-08-21 2010-07-01 Cesternino Anthony J Carbon fiber reinforced beam
US9267286B2 (en) 2012-05-29 2016-02-23 Ajou University Industry-Academic Cooperation Foundation Hollow structure, and preparation method thereof
KR101373914B1 (en) 2012-05-29 2014-03-12 아주대학교산학협력단 Void structures and manufacturing method thereof
US20140245922A1 (en) * 2012-06-13 2014-09-04 Kawasaki Jukogyo Kabushiki Kaisha Collision energy absorption column and railroad vehicle provided with the collision energy absorption column
JP2013256219A (en) * 2012-06-13 2013-12-26 Kawasaki Heavy Ind Ltd Collision energy-absorbing column and railway vehicle including the collision energy-absorbing column
US9434392B2 (en) * 2012-06-13 2016-09-06 Kawasaki Jukogyo Kabushiki Kaisha Collision energy absorption column and railroad vehicle provided with the collision energy absorption column
WO2014112562A1 (en) * 2013-01-17 2014-07-24 日本発條株式会社 Composite material and manufacturing method for composite material
JP2014136383A (en) * 2013-01-17 2014-07-28 Nhk Spring Co Ltd Composite material and method for manufacturing the same
CN104405082A (en) * 2014-11-05 2015-03-11 沈阳建筑大学 Steel rib-steel pipe regenerated-concrete combined column with cross-shaped section
CN104328866A (en) * 2014-11-06 2015-02-04 沈阳建筑大学 Z-shaped steel pipe-steel reinforced glass concrete combined column
CN106835936A (en) * 2017-03-29 2017-06-13 哈尔滨工业大学 A kind of FRP constraint concrete-filled steel tubular arch
WO2019090187A1 (en) * 2017-11-03 2019-05-09 Axion Structural Innovations Structural reinforced composite beam
CN110331819A (en) * 2019-07-10 2019-10-15 中国矿业大学 A kind of high Procedures for Earthquake Resisting Ductile Reinforced Concrete component and preparation method thereof

Also Published As

Publication number Publication date
JP4115599B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP2000064505A (en) Carbon fiber reinforced plastic composite steel member
WO2011147194A1 (en) Frp-concrete-steel double-wall combined tubular beam and beam-plate combined structure using the same
CN105464288A (en) Composite bar-reinforced ECC and concrete composite beam and construction method thereof
KR20160120114A (en) Fiber Reinforced Concrete Structure With End Slip Prevention
US6457289B1 (en) Reinforcement for surfaces of structural elements or buildings
JP2005213791A (en) Frp soundproof wall
KR20170029322A (en) Hybrid-type timber structures member, the manufacturing method thereof and the frame system using the same
JP3532441B2 (en) REINFORCEMENT STRUCTURE AND METHOD FOR REINFORCING AT CONNECTION BETWEEN STRUCTURAL MATERIALS
JP4685737B2 (en) Reinforcing structure and reinforcing method for H-section steel material
CN102535734A (en) Fiber-reinforced multilayer cement board and manufacturing method thereof
KR101726750B1 (en) Repairing and reinfocing method for concrete structure
US20050000186A1 (en) Method of manufacturing structural units
JP2694438B2 (en) Formwork and heat insulation board
JP3779806B2 (en) Method for reinforcing concrete columnar body
JP2004244910A (en) Structural thermal insulating panel having joint section and building comprising its combination
US5770276A (en) Composite filled hollow structure
CN210002698U (en) composite section steel pipe concrete composite column
CN111236689B (en) Steel structure node reinforcing method for assembly type building
CN217299365U (en) Vertical ripple CFRP-steel sheet compound shear wall
JP2681552B2 (en) Fiber reinforced resin tubular structural member
CN216665107U (en) Historical architecture renewal structure reinforcerment system
JP2012188870A (en) Steel concrete composite column
CN216042836U (en) Angle steel reinforced structure outside reinforced concrete beam
CN213297256U (en) Cantilever beam reinforcing structure for brick-concrete structure
JP2503179B2 (en) Composite beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees