JPS61282560A - Earthquake-proof surface having flexibility - Google Patents

Earthquake-proof surface having flexibility

Info

Publication number
JPS61282560A
JPS61282560A JP12383885A JP12383885A JPS61282560A JP S61282560 A JPS61282560 A JP S61282560A JP 12383885 A JP12383885 A JP 12383885A JP 12383885 A JP12383885 A JP 12383885A JP S61282560 A JPS61282560 A JP S61282560A
Authority
JP
Japan
Prior art keywords
earthquake
brace
braces
column
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12383885A
Other languages
Japanese (ja)
Inventor
伊達 忠則
米谷 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP12383885A priority Critical patent/JPS61282560A/en
Publication of JPS61282560A publication Critical patent/JPS61282560A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、特に鉄骨造の平屋又はせいぜい3〜4階程
度の建物の建築施工の分野において、柱梁フレーム面内
にブレースを入れて壁面構成の  。
Detailed Description of the Invention (Field of Industrial Application) This invention is particularly useful in the field of construction of one-story steel-framed buildings or buildings with at most three or four stories. of configuration.

一つとして実施される耐震構・面に係り、さらにいえば
剛性調節が可能な可撓性をもつ耐震構面に関する。
The present invention relates to an earthquake-resistant structure/surface implemented as a single unit, and more particularly to an earthquake-resistant structure/surface having flexibility whose rigidity can be adjusted.

(従来の技術) 従来、ブレースによる耐震構面としては、通常第8図に
モデル化して示したよう叫、柱梁フレームa、b面内の
対角線方向に90X90X7位のL形鋼や平鋼、丸鋼な
どによるブレースCを組入れた構成が一般的であった。
(Prior art) Conventionally, earthquake-resistant structural surfaces using braces are usually made of L-shaped steel or flat steel of about 90 x 90 x 7 in the diagonal direction in planes a and b of the column and beam frames, as shown in the model in Figure 8. A configuration incorporating a brace C made of round steel or the like was common.

また、剛性ysmが可能な耐震構面としては、第9図に
モデル化して示したように、一端を左右の対角の一つに
連結した2木のブレースC,Cを対称的配置に、かつ非
交叉の配置で設置した構成の耐震構面も実施されてはい
る。
In addition, as an earthquake-resistant structural surface capable of achieving rigidity ysm, as shown in the model in Figure 9, two wooden braces C and C, one end of which is connected to one of the left and right diagonals, are arranged symmetrically. In addition, earthquake-resistant structures constructed in a non-intersecting arrangement have also been implemented.

(この発明が解決しようとする技術的課題)ところで、
ブレースによる耐震構面については2、一般的に構面に
集中しやすい水平力を一般のラーメン架橋とバランスよ
く処理するこ−とが要求され、よって剛性(可撓性)の
調節が可能であることが必要とされる。
(Technical problem to be solved by this invention) By the way,
2. Regarding earthquake-resistant structural surfaces using braces, it is required to handle the horizontal forces that generally tend to concentrate on the structural surface in a well-balanced manner with general rigid frame bridges, and therefore the rigidity (flexibility) can be adjusted. That is required.

しかし、第8図に示した従来の耐震構面の場合、柱梁フ
レームa、b及びブレースCは共に水平力Pを軸圧縮力
として負担し処理するので、そのP−δ線図を第6図中
の曲線イで示したように、初期剛性及び強度は高いけれ
ども、変形が少なく、即ち剛性調節は困難であった。従
って、所謂柔構造建物の耐震構面としては適性に乏しく
However, in the case of the conventional earthquake-resistant structural surface shown in Fig. 8, the column and beam frames a, b, and brace C both bear and process the horizontal force P as an axial compressive force, so the P-δ diagram is As shown by curve A in the figure, although the initial stiffness and strength were high, there was little deformation, that is, it was difficult to adjust the stiffness. Therefore, it is not suitable as an earthquake-resistant structure for so-called flexible structure buildings.

しかも水平力がブレースに集中し地震の被害としてブレ
ースが破断ないし座屈するというような問題点があった
Moreover, horizontal force concentrates on the braces, causing problems such as the braces breaking or buckling as a result of earthquake damage.

また、第9図の耐震構面の場合、ブレースCの角度によ
り剛性調節はある程度可能であるが、やはりブレースC
には圧縮力が集中的に作用する構成なので、必然、ブレ
ースCの部材サイズは予想される圧縮力に耐えるだけの
大きなものとなった0例えばブレースCにL形鋼を使用
する場合、そのサイズは90X 90X ?又は75X
 ?5X 13位のものが必要であった。従って、大f
fi建物等において、大きな水平力Pが作用する場合に
使用されるのが一般的であり、よって鉄骨造の平屋又は
せいぜい3〜4階程度の小規模建物への適性は欠けると
いう問題点があった。
In addition, in the case of the earthquake-resistant structure shown in Figure 9, although it is possible to adjust the rigidity to some extent by changing the angle of brace C,
Since the structure is such that compressive force acts intensively on Brace C, the member size of Brace C must be large enough to withstand the expected compressive force.For example, when using L-beam steel for Brace C, its size is 90X 90X? or 75X
? 5X 13th place was needed. Therefore, large f
It is generally used in buildings where a large horizontal force P is applied, and therefore it has the problem that it is not suitable for steel-framed one-story buildings or small-scale buildings of 3 to 4 floors at most. Ta.

その上、第8図、第9図の構面の場合、各ブレースの配
置について意匠的なデザインの幅がないという問題点も
指摘されていた。
Furthermore, in the case of the compositions shown in FIGS. 8 and 9, it has been pointed out that there is no flexibility in terms of design regarding the arrangement of each brace.

従って、この発明の目的は、鉄骨造の平屋又はせいぜい
3〜4階程度の小規模建物への適性があり、しかも変形
が十分に伸びて剛性の調節が容易で、水平力を一般のラ
ーメン架橋とバランスよく処理することができ、また小
細物事一部材をブレースとして使用することが可能で、
その上′意匠的な配慮に基いてブレースの構成を調整で
きる構成の耐震構面を提供することにある。
Therefore, it is an object of this invention to be suitable for steel-framed one-story or small-scale buildings of 3 to 4 floors at most, to have sufficient deformation, easy to adjust rigidity, and to reduce horizontal force to ordinary rigid frame bridges. It can be processed in a well-balanced manner, and it is also possible to use some small parts as braces.
Furthermore, it is an object of the present invention to provide an earthquake-resistant structure having a configuration in which the configuration of the braces can be adjusted based on design considerations.

(問題点を解決するための手段) 上記問題点を解決するための手段として、この発明の可
撓性をもつ耐震構面は、第1図〜第5mに示した実施例
の如く、柱梁フし−ム1,2面内にブレース3を配設し
て成る耐震構面に関して。
(Means for Solving the Problems) As a means for solving the above problems, the flexible earthquake-resistant structural surface of the present invention has the following advantages: Concerning an earthquake-resistant structure comprising braces 3 arranged within frames 1 and 2.

(イ)ブレース3・・・は引張力に十分抵抗する複数本
の小細物事一部材、例えば小サイズの丸鋼、平鋼を所定
の間隔で平行に等配したものの集合体として構成した。
(a) The brace 3 is constructed as an assembly of a plurality of small pieces that can sufficiently resist tensile force, such as small round steel and flat steel, arranged equally in parallel at predetermined intervals.

(ロ)また、ブレース3は、柱梁フレーム1.2の面内
に、同フレーム面4における対角4aと4a’及び4b
と4b’の一つ又は二つとも外した位置。
(B) Also, the brace 3 is placed in the plane of the column-beam frame 1.2 at diagonal corners 4a, 4a' and 4b on the frame surface 4.
The position where one or both of and 4b' are removed.

又は向きに、しかも全て対称的に交叉する態様で配設し
た。
Alternatively, they are arranged in a manner that they all intersect in a symmetrical manner.

(ハ)ソして、ブレース3と柱梁フレーム1,2との各
接点はフレシキブルなピン接合とし、かつブレース3.
3′相互の交点もフレシキブルにピン連結している。
(c) Then, each contact point between the brace 3 and the column and beam frames 1 and 2 is a flexible pin joint, and the brace 3.
3' mutual intersections are also flexibly connected with pins.

(作  用) つまり、ブレース3は必要量のブレース断面を細分化し
たに等しい複数本の集合体から成るものとし、これを柱
梁フレーム1.2面内に取り付けるので、意匠的な配慮
によるブレースの構成方法あるいは調整が多様に可能で
あり、その構成方法あるいは調整の結果剛性が調節され
ることにもなる。
(Function) In other words, the brace 3 is made up of a plurality of aggregates equivalent to the required amount of subdivided brace cross sections, and this is installed within the column and beam frame 1. Various construction methods or adjustments are possible, and the stiffness can be adjusted as a result of the construction method or adjustment.

また、ブレース3は、柱梁フレーム1.2面内  ゛の
対角の一つ又は二つとも外した位置又は向きに配設する
と共にブレース3と柱梁フレーム1.2との各接点はフ
レシキブルなピン接合としているので、ブレース3は引
張材としてのみ6g、柱l又は梁2の両方又は一方に曲
げ変形を期待できるのであり、フレームの変形は大きく
伸びる。換言すれば、柱1、梁2にどれ程の曲げ変形を
生じさせ得るかを、ブレースの構成方法、配置により調
整できるのであり、即ち剛性の調節が容易に可能なので
ある。
In addition, the brace 3 is arranged at a position or in a direction in which one or both of the diagonal corners of the column frame 1.2 are removed, and each contact point between the brace 3 and the column and beam frame 1.2 is flexible. Since the brace 3 is made of a pin joint, the brace 3 is only 6g as a tensile member, and one or both of the columns 1 and the beams 2 can be expected to undergo bending deformation, and the deformation of the frame will be large. In other words, the amount of bending deformation that can be caused in the columns 1 and beams 2 can be adjusted by the construction method and arrangement of the braces, that is, the rigidity can be easily adjusted.

ちなみに、第7図Aに示したモデルの如く、ブレース3
の左下端のみを対角4bに取り付け、右上端は上梁2と
ピン接合した構成の場合、同ブレニス3の一端のみが上
梁2の曲げ変形を生じさせ得るので、そのP−δ線図は
第6図の曲線(ロ)で示したように、従来例の曲線(イ
)に比して初期剛性1強度ともに下がるが、変形δはよ
く伸びるのである。
By the way, as in the model shown in Figure 7A, brace 3
In the case of a configuration in which only the lower left end of the Brennis 3 is attached to the diagonal 4b and the upper right end is pin-connected to the upper beam 2, only one end of the Brennis 3 can cause bending deformation of the upper beam 2, so its P-δ diagram As shown by the curve (B) in FIG. 6, both initial stiffness and strength are lower than the curve (A) of the conventional example, but the deformation δ is well extended.

また、第7図Bに示したモデルの如く、ブレース3の両
端を対角4b、4b’から外した構造の場合、同ブレー
ス3の両端が上下の梁?、2の曲げ変形を生じさせ得る
ため、そのP−δ曲線図は第6図中の曲線(ハ)で示し
たように、初期剛性、強度ともに曲線(ロ)よりも下が
るが、両者は大体同じ挙動を呈し、変形δは良く伸びる
のである。
In addition, in the case of a structure in which both ends of the brace 3 are removed from the diagonals 4b and 4b' as in the model shown in FIG. 7B, both ends of the brace 3 are connected to the upper and lower beams? , 2 can occur, so the initial stiffness and strength of the P-δ curve, as shown by curve (c) in Figure 6, are lower than those of curve (b), but both are roughly the same. They exhibit the same behavior, and the deformation δ stretches well.

即ち、曲線(イ)と曲線(ロ)(ハ)の変形量の差分(
ホ)は、結局、柱梁フレーム1.2の軸力のみによる変
形量と、軸カブラス曲げモーメントによる変形量の差と
いうことができるのである。
In other words, the difference (
E) can be said to be the difference between the amount of deformation due to only the axial force of the column-beam frame 1.2 and the amount of deformation due to the axial cabrus bending moment.

そして、上述の如くブレース3には主として引張力が作
用するので、ブレース3は、その負荷引張力に耐えられ
る限り部材断面積が小さくても良く、よって従来構成な
らブレース材として90X 90×7又は75X 75
X 9のアングルが必要であるところを、餌ば50×9
の平鋼3本又はφ20の鉄筋3本の如き小細物部材の集
合体に置き替えた構成にできるのである。
As mentioned above, tensile force mainly acts on the brace 3, so the brace 3 may have a small cross-sectional area as long as it can withstand the applied tensile force. 75X 75
Where an angle of 9x is required, the angle is 50x9.
It is possible to replace the structure with an assembly of small members such as three flat steel bars or three reinforcing bars with a diameter of 20 mm.

なお、ブレース3.3′相互の交点をピン連結するのは
、交番的な圧縮力の作用に対してブレース3がバックリ
ングを防ぐためである。
The reason why the intersections of the braces 3 and 3' are connected with pins is to prevent the braces 3 from buckling against the action of alternating compressive forces.

また、ブレース3を対称的に交叉する態様で配設するの
は、柱梁フレーム1.2に対して水平力が交番的に作用
することに対処するためである。
Furthermore, the reason why the braces 3 are arranged in a symmetrical and intersecting manner is to cope with the alternating horizontal forces acting on the beam-column frame 1.2.

(実施例) 次に、第1図〜第5図に示したこの発明の詳細な説明す
る。
(Example) Next, the present invention shown in FIGS. 1 to 5 will be described in detail.

まず第1vlJAに示した耐震構面は、第1図Bに基本
モデルを示した如く、一対のブレース3.3′の一端だ
けを柱梁フレーム1.2の対角4b、4a’にピン接合
し、他端は対角4a、4b’から外して左右対称的に交
叉させ、上梁2とピン接合しだ構成とされている。つま
り、第7図Aのモデルと同じ構成である。
First, the earthquake-resistant structural surface shown in 1st vlJA is as shown in the basic model in Fig. 1B, where only one end of the pair of braces 3.3' is pinned to the diagonal corners 4b and 4a' of the column and beam frame 1.2. However, the other end is removed from the diagonal corners 4a and 4b', crossed symmetrically, and is connected to the upper beam 2 with a pin. In other words, it has the same configuration as the model in FIG. 7A.

各ブレース3,3′は、それぞれ3本(但し。Each brace 3, 3' has three pieces (however.

本数はこの限りではない)づつの小細物単−材、例えば
50×8の平鋼3本又は中20の鉄筋の集合体として構
成されている。そして各小細−単一材は所定の間隔で平
行に配設し、もって幾何学模様状の意匠的美観が工夫さ
れている。
It is constructed as an assembly of small single pieces of material (the number is not limited to this), for example, three 50 x 8 flat bars or 20 medium reinforcing bars. The small single pieces of material are arranged in parallel at predetermined intervals, creating a beautiful geometric design.

なお、ブレース3.3′の傾角は1図示例の限りではな
い、ブレース3.3′の本数が増えてブレース断面積が
増大すれば、当然P−δ曲線の初期剛性、強度ともに増
大するのであり、この点は以下の各実施例についても同
様である。
The angle of inclination of the braces 3.3' is not limited to the one shown in the example shown in the figure. If the number of braces 3.3' increases and the cross-sectional area of the braces increases, the initial stiffness and strength of the P-δ curve will naturally increase. This point also applies to each of the following examples.

(第2の実施例) 第2図Aに示した耐震構面は、第2図Bに基本モデルを
示した如く、一対のブレース3,3′の両端とも柱梁フ
レームl、2の対角4a、4a’及び4b、4b’から
外して左右対称的に交叉させ、各ブレース3.3′の両
端は上下の梁2,2とビン接合した構成とされている。
(Second Embodiment) The earthquake-resistant structural surface shown in Fig. 2A is as shown in the basic model shown in Fig. 2B. 4a, 4a' and 4b, 4b' and intersect with each other symmetrically, and both ends of each brace 3.3' are joined to the upper and lower beams 2, 2 by a pin.

つまり、第7図Bのモデルと同じ構成である。In other words, it has the same configuration as the model shown in FIG. 7B.

勿論、各ブレース3.3′は3本ずつの小細物単−材の
集合体として構成されているが、そめ本数、傾角は図示
例の限りではない。
Of course, each brace 3.3' is constructed as an assembly of three small single pieces, but the number of pieces and the angle of inclination are not limited to the illustrated example.

(第3実施例) 第3図Aに示した耐震構面は、第3図Bに基本モデルを
示した如く、左右に一対づつ合計二対の  ゛ブレース
3.3′を用いているが、それぞれ各ブ ・レースの一
端のみを対角4a、4b及びh′、4b’にピン接合し
て対称的に交叉させ、他端は上下の梁2,2における中
間点よりも少し端寄り位置にビン接合した構成とされて
いる。いわば第7図Aのモデルの変形応用の構成である
(Third Embodiment) The earthquake-resistant structure shown in Fig. 3A uses two pairs of braces 3.3', one on each side, as shown in the basic model in Fig. 3B. Only one end of each brace is pin-joined to the diagonals 4a, 4b and h', 4b' so that they intersect symmetrically, and the other end is placed at a position slightly closer to the end than the midpoint between the upper and lower beams 2, 2. It has a bottle-jointed configuration. This is, so to speak, a configuration of a modified application of the model in FIG. 7A.

もっとも、梁2が極端に長いフレーム構造であって第3
図B中の立寸法が大なるときは、この中間部分にも一対
ないし複数対のブレース3.3′を配設することもある
。逆に、見寸法を零の構成とすることもあり得る。
However, if the beam 2 is an extremely long frame structure and the third
When the vertical dimension in FIG. B is large, one or more pairs of braces 3.3' may also be provided in this intermediate portion. On the contrary, it is also possible to have a configuration in which the apparent dimensions are zero.

(第4の実施例) 第4図Aに示した耐震構面は、その基本モデルを第4図
Bに示した如く、一対のブレース3゜3′の両端とも柱
梁フレーム1,2の対角4a、4a’及び4b、 4b
’から外して左右対称的に交叉させ、各ブレースの両端
を柱1,1とビン接合した構成とされている。いわば第
7図Bのモデルを900回転した構成例である。
(Fourth Embodiment) The basic model of the earthquake-resistant structural surface shown in Fig. 4A is shown in Fig. 4B. Corners 4a, 4a' and 4b, 4b
', the braces are crossed symmetrically, and both ends of each brace are joined to the pillars 1, 1 by means of a pin. This is, so to speak, a configuration example obtained by rotating the model in FIG. 7B by 900 revolutions.

(第5の実施例) 第5図に示した耐震構面は、ブレース3.3′の配置こ
そ基本的に第1図Aの耐震構面と共通する構成であるが
、交叉したブレース3.3′が形成する枡形の中にさら
に小ブレース5.5′を交叉状又は非交叉状の配置で組
入れた構成とされている。小ブレース5.5′に力学的
意味はなく、単に耐震構面の意匠的美感の配慮によるも
のである。従って、第2図〜第4図の実施例についても
同様に採用される。
(Fifth Embodiment) The earthquake-resistant structure shown in FIG. 5 basically has the same configuration as the earthquake-resistant structure shown in FIG. In the square shape formed by 3', small braces 5.5' are further incorporated in a criss-cross or non-cross-shape arrangement. The small brace 5.5' has no mechanical meaning and is simply a consideration for the aesthetic aesthetics of the earthquake-resistant structure. Therefore, the same applies to the embodiments shown in FIGS. 2 to 4.

(発明の効果) 以上に実施例と併せて詳述したとおりであって、この発
明に係る可撓性をもつ耐震構面は、剛性の調整が容易に
可能で、変形が十分に伸びるので、耐震性能に優れ、水
平力を一般のラーメン架橋とバランスよく翅理させられ
るから、耐震建物の設計、施工に適用性が広い。
(Effects of the Invention) As described in detail above in conjunction with the embodiments, the flexible earthquake-resistant structural surface according to the present invention allows for easy adjustment of rigidity and sufficient deformation. It has excellent earthquake resistance and can balance horizontal forces with ordinary rigid frame bridges, making it widely applicable to the design and construction of earthquake-resistant buildings.

また、意匠的な配慮でブレースの構成方法を広く調節で
きるので、建物の意匠設計に幅広いバリエーシゴンをも
たせることができる。
Furthermore, since the construction method of the braces can be widely adjusted based on design consideration, a wide range of variations can be provided in the architectural design of the building.

さらに、ブレースは引張力に抵抗するだけの小細物単一
部材によって構成され、従来塁構面のブレースと同程度
の部材断面で耐震構面が成立し安価であると共に、ブレ
ース断面サイズが小さくスマートなので、特に鉄骨造の
平屋又はせいぜい3〜4階程度の建物の耐震構面として
広〈実施できるのである。
Furthermore, the brace is constructed from a single small member that only resists tensile force, and the earthquake-resistant structural surface is achieved with the same cross-section as conventional braces for the embankment surface, making it inexpensive, and the cross-sectional size of the brace is small. Because it is smart, it can be widely used as an earthquake-resistant structure, especially for steel-framed one-story buildings or buildings with three or four floors at most.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、B〜第4図A、Bはこの発明の実施例たる耐
震構面とその基本モデルを示した立面図、第5図は異な
る耐震構面の立面図、第6図は耐震構面のP−δ線図、
第7図A、Bはこの発明の考え方を示すモデルの立面図
、第8図と第9図は従来例のモデルを示す立面図である
。 出願人     株式会社 竹中工務店、代理人弁理士
  山 名 正 彦 叱     −− \j 3 −     z 第6図 −8(変形) 第7図    第8図 第9図 手続補正書1(自発) 昭和60年12月5日
1A, B to 4A, B are elevational views showing an earthquake-resistant structure according to an embodiment of the present invention and its basic model, FIG. 5 is an elevational view of a different earthquake-resistant structure, and FIG. 6 is the P-δ diagram of the earthquake-resistant structure,
FIGS. 7A and 7B are elevational views of a model showing the concept of the present invention, and FIGS. 8 and 9 are elevational views showing conventional models. Applicant: Takenaka Corporation, Patent Attorney: Masahiko Yamana -- \j 3 - z Figure 6-8 (Modification) Figure 7 Figure 8 Figure 9 Procedural Amendment 1 (Voluntary) 1988 December 5th

Claims (1)

【特許請求の範囲】[Claims] (1)柱梁フレーム面内にブレースを配設して成る耐震
構面において、 (イ)ブレース(3)は引張力に抵抗する複数本の細物
部材の集合体として構成され、 (ロ)ブレース(3)は柱梁フレーム(1)(2)面内
に同フレーム面(4)における対角(4a)(4b)と
(4a′)(4b′)の一つ又は二つとも外した位置又
は向きに対称的に交叉する態様で配設されており、 (ハ)ブレース(3)と柱梁フレーム(1)(2)との
接点はピン接合とされ、ブレース(3)相互の交点もピ
ン連結されている、 ことを特徴とする可撓性をもつ耐震構面。
(1) In an earthquake-resistant structural surface consisting of braces arranged within the plane of the column and beam frame, (a) the brace (3) is constructed as an assembly of multiple thin members that resist tensile force, and (b) The brace (3) is placed in the column and beam frame (1) and (2) by removing one or both of the diagonals (4a), (4b) and (4a') (4b') in the same frame plane (4). (c) The contact points between the brace (3) and the column and beam frames (1) and (2) are pin connections, and the intersection points between the braces (3) are A flexible earthquake-resistant structure characterized by the fact that both are connected by pins.
JP12383885A 1985-06-07 1985-06-07 Earthquake-proof surface having flexibility Pending JPS61282560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12383885A JPS61282560A (en) 1985-06-07 1985-06-07 Earthquake-proof surface having flexibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12383885A JPS61282560A (en) 1985-06-07 1985-06-07 Earthquake-proof surface having flexibility

Publications (1)

Publication Number Publication Date
JPS61282560A true JPS61282560A (en) 1986-12-12

Family

ID=14870631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12383885A Pending JPS61282560A (en) 1985-06-07 1985-06-07 Earthquake-proof surface having flexibility

Country Status (1)

Country Link
JP (1) JPS61282560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161463A (en) * 2004-12-09 2006-06-22 Tsuru Gakuen Reinforcing method of steel member within steel structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876353A (en) * 1972-01-14 1973-10-15
JPS5827447B2 (en) * 1978-08-24 1983-06-09 竹本電機計器株式会社 Measuring and blending control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876353A (en) * 1972-01-14 1973-10-15
JPS5827447B2 (en) * 1978-08-24 1983-06-09 竹本電機計器株式会社 Measuring and blending control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161463A (en) * 2004-12-09 2006-06-22 Tsuru Gakuen Reinforcing method of steel member within steel structure

Similar Documents

Publication Publication Date Title
US6412237B1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
JPS61282560A (en) Earthquake-proof surface having flexibility
JP5873194B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
TWI736494B (en) Reinforced concrete coupling beam confined by discontinuous steel plates
US20040003548A1 (en) Framed structures with coupled girder system and method for dissipating seismic energy
JP2527975B2 (en) Building structure
Blume Structural dynamics of cantilever-type buildings
Matthewson et al. Design of an earthquake resisting building using precast concrete cross-braced panels and incorporating energy absorbing devices
JP7463877B2 (en) Mixed-structure building
JP6951851B2 (en) High-rise earthquake-resistant building
JPH0742805B2 (en) Steel bar truss built-in rebar concrete column
JPH11200487A (en) Diagonal reinforcing material, building and unit building
JPH07100978B2 (en) Reinforcement method of structure and its structure
JP2584844Y2 (en) Reinforced concrete columns using flat steel lattice hoops
JPS6233974A (en) Ultrahigh building structure
JPH07269165A (en) Vibration control structure
Sai et al. Seismic Response of RC Framed Structures Having Plan and Vertical Irregularities with and Without Masonry Infill Action
JPH0438853B2 (en)
JPH09228649A (en) Earthquake-resisting reinforcing structure of existing building
McMullin Concrete Lateral Design
JPH03217541A (en) Column/slab jointing construction in flat slab structure
JPS6164935A (en) H-frame type earthquake-proof element
JPH0367175B2 (en)
JPS63265038A (en) Earthquake resistant apparatus
JPH0233804B2 (en)