JP2006160962A - Joining method, joined structure and joining apparatus - Google Patents

Joining method, joined structure and joining apparatus Download PDF

Info

Publication number
JP2006160962A
JP2006160962A JP2004357444A JP2004357444A JP2006160962A JP 2006160962 A JP2006160962 A JP 2006160962A JP 2004357444 A JP2004357444 A JP 2004357444A JP 2004357444 A JP2004357444 A JP 2004357444A JP 2006160962 A JP2006160962 A JP 2006160962A
Authority
JP
Japan
Prior art keywords
adhesive
energy
curing
energy beam
curable adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004357444A
Other languages
Japanese (ja)
Inventor
Yusuke Taneda
裕介 種子田
Hisayoshi Oshima
久慶 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004357444A priority Critical patent/JP2006160962A/en
Publication of JP2006160962A publication Critical patent/JP2006160962A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining a bonding object to an adherend using an energy ray-curable adhesive following positioning the bonding object and the adherend in high accuracy, so as to avoid the deviation of bonding position in curing due to cure shrinkage and that due to change with time irrespective of bonding mode or the like in a simple apparatus construction, and to provide a joined structure and a joining apparatus for the method. <P>SOLUTION: The method for joining a bonding object 2 to an adherend 1 using an energy ray-curable adhesive 3 comprises the following practice: While giving curing energy in advance to the adhesive 3, the adhesive 3 is applied to the adherend 1 or the bonding object 2 to form the layer of the adhesive 3 with a predetermined distribution of curing energy levels; wherein the region in the layer with the least above curing energy is ensured not to cover the adherend 1 and the bonding object 2, thereafter the curing energy is uniformly given to the whole layer to effect complete curing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エネルギ線硬化特性を有する接着剤を用いて、被着物に接着物を接合する接合方法、接合構造および接合装置に関するものである。   The present invention relates to a bonding method, a bonding structure, and a bonding apparatus for bonding an adhesive to an adherend using an adhesive having energy ray curing characteristics.

被着物に接着物を接合する接着剤として、熱硬化型や光硬化型等のエネルギ線硬化型接着剤が従来から種々知られており、これらのエネルギ線硬化型接着剤は、反応速度が速く硬化時間が短く、したがって、生産工程の効率化が図られことから、様々な技術分野で利用されている(例えば、特許文献1ないし6参照)。
ところで、このエネルギ線硬化型接着剤は、硬化する際に硬化収縮を生じ、この硬化収縮に伴って応力が発生する。一般に、アクリル系紫外線硬化型樹脂では5〜10%、エポキシ系紫外線硬化型樹脂では2〜5%程度硬化収縮し、この硬化収縮量に比例した硬化収縮力が発生する。
この硬化収縮力による接着強度への影響は僅かであるが、この硬化収縮力が被着物と接着物との間に硬化時の接着位置にずれを生じさせる原因となる。また硬化収縮力が硬化後に内部応力として残留すると、この内部残留応力が時間の経過に伴って解放され、この残留応力の経時変化のために、被着物と接着物との間に接着位置にずれを生じるようになり、これによって、精密組み立て部品の所期の機能が低下し、高精度性能が劣化することがある。
図14(a)〜(c)は一般的な接着方法を示す図であり、(a)は硬化前の状況、(b)はUV光照射後の状況を示す図、(c)は接着硬化後の状況を示す図である。同図において21は被着物、22は接着物、23はUV硬化型接着剤である。まず(a)に示すように被着物21と接着物22との間に接着剤23を塗布し、その後UV光6を照射すると、(b)に示すように接着剤23のうちUV光に近い接着層の上層から下層へと順に硬化が進む(図では硬化エネルギを受け硬化反応が進むほど濃い色で示した)。これはエネルギ線硬化接着剤が所定の吸光率を有しているためであり、接着層の下層に行く程UV光の減衰が大きくなるために必然的に起こる。
この場合、接着層の上層全域で硬化が始まるが、接着物22と被着物21との間のこの領域内でのエネルギ線硬化接着剤23の流動性は無くなり硬化収縮が発生し、位置ずれを生じさせる。また接着層の上層全域で同時に硬化が起こるためエネルギ線硬化接着剤23が流動できず、収縮した分を補充できずに内部残留応力が発生する。
続いて、この層より下層部の硬化が始まるが、この領域内においても同様に硬化収縮と内部残留応力が発生する。その際、上層においては硬化が終了しているにも拘わらず下層の硬化収縮の影響を受けることとなり、さらなる内部残留応力を蓄えてしまい、結果として(c)に示すように接着層に膨大な内部残留応力が蓄積され、接着直後(硬化収縮時)の位置ずれ(d1)だけでなく、経時変化による位置ずれが大きくなる。
このような問題点があるため、特許文献1では、接着剤の粘度を低下させ、加圧して、接着剤層を薄くかつ均一にすることにより、接着剤の硬化収縮や温度変化による体積変化が小さく均一に起こるような工夫を開示している。特許文献2では、半硬化工程と本硬化工程に分けるような工夫を開示している。
Various types of energy ray curable adhesives such as thermosetting and photocuring types have been known as adhesives for bonding an adhesive to an adherend, and these energy ray curable adhesives have a high reaction rate. Since the curing time is short and the production process can be made more efficient, it is used in various technical fields (see, for example, Patent Documents 1 to 6).
By the way, this energy ray curable adhesive causes curing shrinkage when cured, and stress is generated along with this curing shrinkage. Generally, an acrylic ultraviolet curable resin is cured and contracted by about 5 to 10%, and an epoxy ultraviolet curable resin is approximately 2 to 5%, and a curing shrinkage force proportional to the amount of curing shrinkage is generated.
Although the influence of the curing shrinkage force on the adhesive strength is slight, the cure shrinkage force causes a shift in the bonding position during curing between the adherend and the adhesive. Also, if the curing shrinkage force remains as internal stress after curing, this internal residual stress is released over time, and due to the change over time of this residual stress, it shifts to the bonding position between the adherend and the adhesive. As a result, the intended function of the precision assembly part is lowered, and the high precision performance may be deteriorated.
14 (a) to 14 (c) are diagrams showing a general bonding method, (a) is a situation before curing, (b) is a diagram showing a situation after UV light irradiation, and (c) is an adhesive curing. It is a figure which shows the subsequent situation. In the figure, 21 is an adherend, 22 is an adhesive, and 23 is a UV curable adhesive. First, as shown in (a), when an adhesive 23 is applied between the adherend 21 and the adhesive 22 and then irradiated with UV light 6, the adhesive 23 is close to UV light as shown in (b). Curing proceeds in order from the upper layer to the lower layer of the adhesive layer (shown in darker color as the curing reaction proceeds in response to the curing energy). This is because the energy ray curable adhesive has a predetermined light absorption rate, and inevitably occurs because the attenuation of UV light increases toward the lower layer of the adhesive layer.
In this case, curing starts in the entire upper layer of the adhesive layer. However, the fluidity of the energy beam curing adhesive 23 in this region between the adhesive 22 and the adherend 21 is lost and curing shrinkage occurs, resulting in misalignment. Cause it to occur. Further, since the curing occurs simultaneously in the entire upper layer of the adhesive layer, the energy ray curing adhesive 23 cannot flow, and the contracted portion cannot be replenished, and an internal residual stress is generated.
Subsequently, the lower layer begins to harden from this layer, but also in this region, hardening shrinkage and internal residual stress occur. At that time, the upper layer is affected by the shrinkage of the lower layer in spite of the fact that the curing has been completed, and further internal residual stress is accumulated. As a result, as shown in FIG. The internal residual stress is accumulated, and not only the positional deviation (d1) immediately after bonding (at the time of curing shrinkage) but also the positional deviation due to a change with time increases.
Because of such problems, in Patent Document 1, the viscosity of the adhesive is lowered and pressed to make the adhesive layer thin and uniform, whereby the volume change due to the curing shrinkage of the adhesive and the temperature change is caused. A device that is small and uniform occurs is disclosed. Patent Document 2 discloses a device that can be divided into a semi-curing process and a main curing process.

また特許文献3では、平均粒径10μm以下の酸化物セラミック微粒子を添加して接着剤そのものの硬化収縮や温度変化による体積変化が小さくなるような工夫を開示している。特許文献4では、複数のレンズを接合する接着剤の硬化収縮に伴う接合層の収縮に追従してレンズの少なくとも一方を押圧しながら接合し、収縮に起因した応力を低減するような工夫を開示している。
さらに特許文献5では、接着物と被着物の間に中間保持部材を設け、充填接着並みの調整代を許容して、薄い接着剤層のため、接着剤の硬化収縮や温度変化による体積変化が小さくなるような工夫を開示している。また、特許文献6では、粒径と密度を揃えた充填剤を添加し、接着剤そのものの硬化収縮や温度変化による体積変化が小さくなるような工夫を開示している。
なおさらに、未発表の本出願人の研究には、複数の接着剤を用いて複数層構造にすることで、硬化タイミングをずらして他のエネルギ線硬化型接着剤を硬化させて接着硬化を行い、硬化収縮による位置ずれを極力防ぐ技術または照射制御を行うことで、硬化プロセスの進度に空間的に勾配を持たせ、硬化収縮による内部応力を低減させることで、硬化収縮による経時変化を極力防ぐ技術がある。
特開2000−090481公報 特開平06−188550号公報 特開平07−201028号公報 特開平09−197105号公報 特開平10−309801号公報 特開平10−121013号公報
Further, Patent Document 3 discloses a contrivance such that oxide ceramic fine particles having an average particle size of 10 μm or less are added to reduce the volume change due to curing shrinkage and temperature change of the adhesive itself. Patent Document 4 discloses a device that reduces the stress caused by shrinkage by joining while pressing at least one of the lenses following the shrinkage of the joining layer accompanying the curing shrinkage of the adhesive that joins a plurality of lenses. is doing.
Further, in Patent Document 5, an intermediate holding member is provided between an adhesive and an adherend, and an adjustment allowance similar to that of filling adhesion is allowed. Because of a thin adhesive layer, volume change due to curing shrinkage of the adhesive or temperature change is caused. The idea of making it smaller is disclosed. Further, Patent Document 6 discloses a device in which a filler having a uniform particle diameter and density is added so that volume change due to curing shrinkage and temperature change of the adhesive itself is reduced.
Furthermore, the unpublished research by the present applicant has made a multi-layer structure using a plurality of adhesives, and stiffens other energy ray curable adhesives at different curing timings to perform adhesive curing. By applying technology or irradiation control to prevent misalignment due to curing shrinkage as much as possible, the progress of the curing process has a spatial gradient, and internal stress due to curing shrinkage is reduced to prevent changes due to curing shrinkage as much as possible. There is technology.
JP 2000-090481 A Japanese Patent Laid-Open No. 06-188550 Japanese Patent Application Laid-Open No. 07-201028 JP 09-197105 A JP-A-10-309801 JP-A-10-121013

しかしながら、前述した問題を回避するためになされた上記の種々の技術開発において、特許文献1および5に記載されたような1つ目の方法は、使用(塗布)する接着剤を薄く少量とし、硬化時の位置ずれや温度変動等による経時変化を低減する方法である。しかし、これらの方法では被着物と接着物との接着構造が限定される上、間接接着であるため別部品を必要とし、接着箇所が増えるという不具合がある。
また、特許文献3および6に記載されたような2つ目の方法は、接着剤自体に手を加える方法であり、具体的にはセラミックス微粒子添加や充填材添加で接着剤の硬化収縮を小さくし、硬化時の位置ずれを抑え、内部残留応力を低減することで温度変動等による経時変化を低減する技術である。そしてこの接着剤開発が近年盛んに行われている。
しかし、この場合は、特殊な接着剤が必要であり、また接着剤量が増えるに伴って硬化収縮量が増え、そのために内部残留応力が大きくなるという不具合がある。
さらに、特許文献2に記載されたような3つ目の方法は、接着剤を半硬化させる工程と本硬化させる工程にわける方法であり、半硬化工程で大部分の収縮力を取り除いた後、本硬化工程で完全硬化させる技術である。
しかし、この方法では、本硬化工程で多少の硬化時の位置ずれが発生し、また内部残留応力は変わらず存在してしまうため、経時ずれを防止することもできない。
さらにまた、特許文献4に記載されたような4つ目の方法は、接着剤の硬化収縮に伴う接合層の収縮に追従して接合層の厚みを調整しながら接合し、収縮に起因した応力を低減する技術である。
しかし、この技術は、基本的に面接着であり接着構造が限定され、また、硬化収縮する接着剤と収縮しない部品の界面に起きる応力のみを低減できるにすぎず、さらに、硬化後の接着剤内部の残留応力を大きく低減することはできないので経時ずれを防止することもできない。
However, in the above-described various technological developments made to avoid the above-mentioned problems, the first method as described in Patent Documents 1 and 5 is to use a thin amount of adhesive to be used (applied), This is a method of reducing the change over time due to misalignment or temperature fluctuation during curing. However, in these methods, the adhesion structure between the adherend and the adhesive is limited, and since it is indirect adhesion, another part is required and there are problems that the number of adhesion points increases.
The second method as described in Patent Documents 3 and 6 is a method in which the adhesive itself is modified. Specifically, the curing shrinkage of the adhesive is reduced by adding ceramic fine particles or fillers. In this technique, the positional deviation at the time of curing is suppressed, and the internal residual stress is reduced to reduce the change with time due to temperature fluctuations. In recent years, this adhesive has been actively developed.
However, in this case, a special adhesive is required, and as the amount of the adhesive increases, the amount of cure shrinkage increases, which causes a problem that the internal residual stress increases.
Furthermore, the third method as described in Patent Document 2 is a method that divides the adhesive into a semi-curing step and a main curing step, and after removing most of the shrinkage force in the semi-curing step, This is a technology for complete curing in the main curing process.
However, in this method, a slight misalignment during curing occurs in the main curing step, and the internal residual stress remains unchanged.
Furthermore, the fourth method as described in Patent Document 4 is a method in which bonding is performed while adjusting the thickness of the bonding layer following the shrinkage of the bonding layer accompanying the curing shrinkage of the adhesive. This is a technology for reducing
However, this technique is basically surface bonding, the bonding structure is limited, can only reduce the stress that occurs at the interface between the adhesive that cures and shrinks and the part that does not shrink, and the adhesive after curing. Since the internal residual stress cannot be greatly reduced, it is also impossible to prevent a time lag.

上述した未発表の本出願人の研究を用いれば、硬化収縮力を緩和させることで、硬化時の接着位置のずれを抑え、また、内部残留応力を低減させ経時変化を抑制できるが、複数の接着剤が必要であったり、照射装置側で大掛かりな制御が必要になったりするため、余計な装置が必要となり、小型の部品の接着では設計上配置することが難しくなり、これを製作するために大掛かりな装置が必要となってしまう。
そこで、本発明の目的は、上述した実情を考慮して、被着物と接着物を高精度に位置決めした後、被着物と接着物とをエネルギ線硬化型接着剤を用いて被着物に接着物を接合する方法について、簡単な装置構成で、接着形態等に拘わらず硬化収縮による硬化時の接着位置のずれと、経時変化による接着位置のずれを回避する接合方法、接合構造および接合装置を提供することにある。
By using the above-mentioned unpublished research by the present applicant, it is possible to reduce the adhesive shrinkage during curing by reducing the curing shrinkage force, and to reduce the internal residual stress and suppress the change with time. Adhesive is required or large-scale control is required on the irradiation device side, so an extra device is required, and it is difficult to arrange by design when bonding small parts, and to produce this Therefore, a large-scale device is required.
In view of the above-described circumstances, the object of the present invention is to position the adherend and the adhesive with high accuracy, and then attach the adherend and the adhesive to the adherend using the energy ray curable adhesive. Provides a bonding method, a bonding structure, and a bonding apparatus that avoids the deviation of the bonding position during curing due to curing shrinkage and the deviation of the bonding position due to changes over time, regardless of the bonding form, etc., with a simple apparatus configuration. There is to do.

上記の課題を解決するために、請求項1に記載の発明は、エネルギ線硬化特性を有する接着剤を用い被着物に接着物を接合する接合方法において、エネルギ線硬化型接着剤へ硬化エネルギを予め与えつつ該エネルギ線硬化型接着剤を被着物若しくは接着物に塗布することにより、硬化エネルギ量に所定の分布を持たせたエネルギ線硬化型接着剤の接着層を形成し、かつ前記エネルギ線硬化型接着剤に与えられた前記硬化エネルギが最も少ない接着層内の領域が前記被着物と前記接着物とに架かることがないようにし、その後、前記接着層全体へ一様な硬化エネルギを付与し完全硬化させる接合方法を特徴とする。
請求項2記載の発明は、請求項1記載の接合方法において、前記硬化エネルギが前記接着層内で段階的に変化するようにエネルギ線硬化型接着剤へ硬化エネルギを与えたことを特徴とする。
請求項3記載の発明は、請求項1または2記載の接合方法において、ノズルから吐出されるエネルギ線硬化型接着剤へ照射するエネルギ線の照射強度を予め変化させつつエネルギ線硬化型接着剤を被着物若しくは接着物に塗布することを特徴とする。
請求項4記載の発明は、請求項1または2記載の接合方法において、ノズルから吐出されるエネルギ線硬化型接着剤へ照射するエネルギ線の照射時間を予め変化させつつエネルギ線硬化型接着剤を被着物若しくは接着物に塗布することを特徴とする。
請求項5記載の発明は、請求項1ないし4のいずれか1項記載の接合方法において、硬化エネルギ量を多く与えられたエネルギ線硬化型接着剤の部分から被着物若しくは接着物に塗布していくことを特徴とする。
請求項6記載の発明は、エネルギ線硬化特性を有する接着剤を用いて、被着物に接着物を接合する接合構造において、エネルギ線硬化型接着剤へ硬化エネルギを予め与えつつ該エネルギ線硬化型接着剤を被着物若しくは接着物に塗布することにより、硬化エネルギ量に所定の分布を持たせたエネルギ線硬化型接着剤の接着層を形成し、かつ前記エネルギ線硬化型接着剤に与えられた前記硬化エネルギが最も少ない接着層内の領域が前記被着物と前記接着物とに架かることがないよう構成した接合構造を特徴とする。
In order to solve the above-described problems, the invention described in claim 1 is a bonding method in which an adhesive is bonded to an adherend using an adhesive having energy beam curing characteristics, and curing energy is applied to the energy beam curable adhesive. By applying the energy ray curable adhesive to the adherend or the adhesive while applying in advance, an adhesive layer of the energy ray curable adhesive having a predetermined distribution in the amount of curing energy is formed, and the energy ray The region in the adhesive layer with the least curing energy applied to the curable adhesive is not covered with the adherend and the adhesive, and then uniform curing energy is applied to the entire adhesive layer. It is characterized by a joining method in which it is completely cured.
According to a second aspect of the present invention, in the bonding method according to the first aspect, the curing energy is applied to the energy beam curable adhesive so that the curing energy changes stepwise in the adhesive layer. .
According to a third aspect of the present invention, in the joining method according to the first or second aspect, the energy beam curable adhesive is changed while the irradiation intensity of the energy beam irradiated to the energy beam curable adhesive discharged from the nozzle is changed in advance. It is characterized by being applied to an adherend or an adhesive.
According to a fourth aspect of the present invention, in the joining method according to the first or second aspect, the energy beam curable adhesive is applied while the irradiation time of the energy beam irradiated to the energy beam curable adhesive discharged from the nozzle is changed in advance. It is characterized by being applied to an adherend or an adhesive.
According to a fifth aspect of the present invention, in the joining method according to any one of the first to fourth aspects of the present invention, the energy beam curable adhesive portion provided with a large amount of curing energy is applied to an adherend or an adhesive. It is characterized by going.
According to a sixth aspect of the present invention, there is provided a bonding structure in which an adhesive is bonded to an adherend using an adhesive having energy beam curing characteristics, while the energy beam curable adhesive is applied to the energy beam curable adhesive in advance. An adhesive layer of an energy beam curable adhesive having a predetermined distribution in the amount of curing energy was formed by applying the adhesive to an adherend or an adhesive, and applied to the energy beam curable adhesive The bonding structure is configured such that a region in the adhesive layer having the least curing energy does not span the adherend and the adhesive.

請求項7記載の発明は、請求項6記載の接合構造において、前記硬化エネルギが前記接着層内で段階的に変化するようにエネルギ線硬化型接着剤へ硬化エネルギを与えたことを特徴とする。
請求項8記載の発明は、エネルギ線硬化型接着剤を塗布する接着剤塗布手段と、塗布時に前記エネルギ線硬化型接着剤へ所定の硬化エネルギ量を付与できる第1のエネルギ線照射手段と、この第1のエネルギ線照射手段の硬化エネルギ量を制御する第1の照射量制御手段と、前記エネルギ線硬化型接着剤を完全硬化させるための第2のエネルギ線照射手段と、前記第2のエネルギ線照射手段を制御する第2の照射量制御手段とを備える接合装置を特徴とする。
請求項9記載の発明は、請求項8記載の接合装置において、第1の照射量制御手段がエネルギ線硬化型接着剤へ照射するエネルギ線の照射強度を変化させることを特徴とする。
請求項10記載の発明は、請求項8記載の接合装置において、第1の照射量制御手段がエネルギ線硬化型接着剤へ照射するエネルギ線の照射時間を変化させることを特徴とする。
請求項11記載の発明は、請求項8記載の接合装置において、前記接着剤塗布手段が吐出したエネルギ線硬化型接着剤の所望の範囲のみに、前記第1のエネルギ線照射手段から照射する硬化エネルギを付与できる照射範囲制御手段を備えたことを特徴とする。
The invention according to claim 7 is characterized in that, in the joint structure according to claim 6, the energy energy is applied to the energy ray curable adhesive so that the curing energy changes stepwise in the adhesive layer. .
The invention according to claim 8 is an adhesive application unit that applies an energy beam curable adhesive, a first energy beam irradiation unit that can impart a predetermined amount of curing energy to the energy beam curable adhesive during application, A first irradiation amount control means for controlling a curing energy amount of the first energy ray irradiation means; a second energy ray irradiation means for completely curing the energy ray curable adhesive; and the second energy ray irradiation means. A bonding apparatus including a second dose control unit that controls the energy beam irradiation unit is characterized.
A ninth aspect of the invention is characterized in that, in the joining device according to the eighth aspect, the first irradiation amount control means changes the irradiation intensity of the energy beam applied to the energy beam curable adhesive.
A tenth aspect of the present invention is the bonding apparatus according to the eighth aspect, characterized in that the first irradiation amount control means changes the irradiation time of the energy beam applied to the energy beam curable adhesive.
The invention according to claim 11 is the bonding apparatus according to claim 8, wherein the first energy beam irradiating means irradiates only a desired range of the energy beam curable adhesive discharged by the adhesive applying unit. An irradiation range control means capable of applying energy is provided.

本発明によれば、接着層全体に硬化エネルギを与え硬化開始させても、その硬化途中で流動性を保持した部分と硬化収縮を起こす部分に分けることができるので、流動性を保持した部分が流動変形して硬化収縮に伴う引っ張り応力を吸収することが可能となる。
また、塗布した時点で、接着層が流動性を保持した部分と硬化収縮を起こす部分とを備えているのでオフライン工程で行うことが可能であり、工程時間の短縮ができる。さらに、インライン工程での照射制御を行うことがなく、大掛かりな制御や高価な装置が必要とせず、それによる設置場所を確保する必要がないため既存の設備に置き換え易い。
According to the present invention, even if curing energy is given to the entire adhesive layer to start curing, it can be divided into a part that retains fluidity during the curing and a part that undergoes curing shrinkage. It is possible to absorb the tensile stress accompanying the flow deformation and curing shrinkage.
In addition, since the adhesive layer includes a portion in which fluidity is maintained and a portion that undergoes shrinkage at the time of application, it can be performed in an off-line process, and the process time can be shortened. Furthermore, irradiation control in the in-line process is not performed, large-scale control and expensive equipment are not required, and it is not necessary to secure an installation place thereby, so that it is easy to replace existing equipment.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。ここでは、エネルギ線硬化型接着剤(例えば、光硬化型接着剤(UV硬化型接着剤、可視光線硬化型接着剤)、放射線硬化型接着剤、X線硬化型接着剤)を対象として説明する。
これは、熱硬化型接着剤の場合は、硬化させるためにオーブン等で熱を加える必要があり、生産効率の向上の妨げになったり、被着物または接着物によっては熱を許容できなかったりすることがあるためである。
また、嫌気硬化型接着剤の場合は、硬化させるために空気を遮断する必要があり、そのために接着形態が限定される可能性がある。光硬化型接着剤にはこのような問題がなく、熱硬化型接着剤や嫌気硬化型接着剤に比べて取り扱いが容易で実用的だからである。
通常、被着物に接着物を例えばUV硬化型接着剤にて接着接合する場合、接着剤を2部材の界面に塗布し、これにUV(紫外線)光を照射することにより接着剤が硬化して接着される。この接着剤硬化時には、硬化収縮現象が発生し、一般のアクリル系紫外線硬化性樹脂は5〜10%、エポキシ系紫外線硬化性樹脂は2〜5%前後収縮する。
この収縮力による接着強度の低下は僅かであるが、硬化収縮により引っ張り応力を生じ初期の接着位置を保持できなくなってしまう。また硬化後に内部残留応力として存在すると、経時変化として内部残留応力が開放され、初期の接着位置を保持できなくなる。
この硬化収縮による引っ張り応力と内部残留応力は接着剤の硬化収縮と周辺接着剤の流動性に起因しており、硬化収縮により接着剤の体積が減少した際に周辺の接着剤に流動性を保持でき、収縮した分を補充できれば応力は発生しない。すなわち、硬化収縮により接着剤の体積が減少した際に周辺の接着剤も硬化して流動性が無ければ、応力が発生してしまう。
そこで本発明では硬化収縮により接着剤の体積が減少しても、硬化収縮が生じている周辺の接着剤に流動性を保持し、発生する応力を流動性を有する部分で吸収することができる接合方法、接合構造、及び接合装置を提供するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, an energy beam curable adhesive (for example, a photo curable adhesive (UV curable adhesive, visible light curable adhesive), a radiation curable adhesive, an X-ray curable adhesive) will be described. .
This is because in the case of a thermosetting adhesive, it is necessary to apply heat in an oven or the like in order to cure it, which hinders the improvement of production efficiency or may not allow heat depending on the adherend or adhesive. Because there are things.
In the case of an anaerobic curable adhesive, it is necessary to block air in order to cure the adhesive, which may limit the bonding form. This is because the photo-curing adhesive does not have such a problem, and is easier to handle and practical than the thermosetting adhesive and the anaerobic curing adhesive.
Usually, when an adhesive is bonded to an adherend with, for example, a UV curable adhesive, the adhesive is cured by applying the adhesive to the interface of the two members and irradiating the adhesive with UV (ultraviolet) light. Glued. When this adhesive is cured, a curing shrinkage phenomenon occurs, and a general acrylic ultraviolet curable resin contracts by about 5 to 10%, and an epoxy ultraviolet curable resin contracts by about 2 to 5%.
Although the decrease in the adhesive strength due to the contraction force is slight, a tensile stress is generated by the curing contraction, and the initial adhesion position cannot be maintained. Further, if it exists as an internal residual stress after curing, the internal residual stress is released as a change with time, and the initial bonding position cannot be maintained.
The tensile stress and internal residual stress due to this curing shrinkage are due to the curing shrinkage of the adhesive and the fluidity of the peripheral adhesive. When the volume of the adhesive is reduced by the curing shrinkage, the surrounding adhesive retains fluidity. If the shrinkage can be replenished, no stress is generated. That is, when the volume of the adhesive is reduced due to curing shrinkage, the surrounding adhesive is also cured and has no fluidity, so that stress is generated.
Therefore, in the present invention, even if the volume of the adhesive is reduced due to cure shrinkage, the fluidity is retained in the surrounding adhesive where cure shrinkage occurs, and the generated stress can be absorbed by the portion having fluidity. A method, a joining structure, and a joining apparatus are provided.

図1は本発明による接合方法を実施する接着装置の実施の形態を示す図、図2(a)〜(c)は硬化エネルギ量が部分的に異なるような照射を説明するための図である。
これらの図において、1は被着物、2は接着物、3は接着剤、5aは第1のエネルギ線照射手段、5bは第2のエネルギ線照射手段、6はエネルギ線、7aは第1のエネルギ線照射制御手段、7bは第2のエネルギ線照射制御手段、8は接着剤塗布手段、9は塗布手段用動作手段、10は動作制御手段、11は全体の制御手段である。第1および第2のエネルギ線照射手段は硬化エネルギ線を放射するエネルギ源と、放射されたエネルギ線を所定位置まで導光する光ファイバと、導光されたエネルギ線を硬化箇所に集光するための集光レンズまたは発散レンズとを備えている。
FIG. 1 is a view showing an embodiment of a bonding apparatus for performing a bonding method according to the present invention, and FIGS. 2A to 2C are views for explaining irradiation in which the amount of curing energy is partially different. .
In these drawings, 1 is an adherend, 2 is an adhesive, 3 is an adhesive, 5a is a first energy beam irradiation means, 5b is a second energy beam irradiation means, 6 is an energy beam, and 7a is a first energy beam irradiation means. Energy beam irradiation control means, 7b is second energy ray irradiation control means, 8 is adhesive application means, 9 is application means operation means, 10 is operation control means, and 11 is overall control means. The first and second energy beam irradiating means condenses the energy source that radiates the curing energy beam, the optical fiber that guides the radiated energy beam to a predetermined position, and the cured energy beam at the curing site. And a condensing lens or a diverging lens.

まず、接着物2と被着物1とを接着剤3で接着する場合、接着剤塗布手段8と、該接着剤塗布手段8を任意位置へ動作させる塗布手段用動作手段9と、該塗布手段用動作制御手段の動作制御手段10と全体の制御手段11により、エネルギ線硬化接着剤3を所望の配置へ塗布すると同時に、接着剤塗布手段8と連動して動く第1のエネルギ線照射手段5aからエネルギ線硬化接着剤3に対応したエネルギ線6を第1のエネルギ線照射制御手段7aで制御して射出させ、エネルギ線硬化接着剤3を完全に硬化させないようにかつ接着層に与えられる硬化エネルギ量が部分的に異なるように照射する(図2(a)、(b)参照)。
次に、(c)に示すように、接着物2をセットし、接着物2と被着物1の相対位置を決め、第2のエネルギ線照射手段5bからエネルギ線硬化接着剤3にエネルギ線6を第2のエネルギ線照射制御手段7bで制御して射出させ、エネルギ線硬化接着剤3の全体に一様に照射して完全に硬化させる。装置全体の動作やタイミングの制御は全体の制御手段11で行う。
このように、エネルギ線硬化接着剤3に硬化エネルギを予め与えておけば、その分の硬化エネルギ量は蓄積されるので、硬化エネルギを与えていないエネルギ線硬化接着剤3よりも完全硬化までの時間が早くなり、必然的に硬化収縮に伴う硬化収縮力を外部へ伝えられる到達タイミングも早くなる。
First, when the adhesive 2 and the adherend 1 are bonded with the adhesive 3, the adhesive applying means 8, the applying means operating means 9 for moving the adhesive applying means 8 to an arbitrary position, and the applying means From the first energy ray irradiation means 5a that moves in conjunction with the adhesive application means 8 at the same time that the energy ray curable adhesive 3 is applied to a desired arrangement by the operation control means 10 and the overall control means 11 of the operation control means. The energy beam 6 corresponding to the energy beam-curing adhesive 3 is controlled and ejected by the first energy beam irradiation control means 7a so that the energy beam-curing adhesive 3 is not completely cured and is applied to the adhesive layer. Irradiation is performed so that the amount is partially different (see FIGS. 2A and 2B).
Next, as shown in (c), the adhesive 2 is set, the relative position between the adhesive 2 and the adherend 1 is determined, and the energy beam 6 is transferred from the second energy beam irradiation means 5b to the energy beam curing adhesive 3. Is controlled and ejected by the second energy beam irradiation control means 7b, and the entire energy beam curing adhesive 3 is uniformly irradiated and completely cured. The overall control means 11 controls the operation and timing of the entire apparatus.
In this way, if the energy energy is applied to the energy beam curing adhesive 3 in advance, the amount of curing energy corresponding to the energy energy is accumulated. Time is shortened, and inevitably the arrival timing at which the curing shrinkage force accompanying the curing shrinkage is transmitted to the outside is also accelerated.

図3は塗布装置周辺の構成の第1の実施の形態を示す図であり、図1および2と同一の部位には同一の符号を付している。図3に示した構成は集光レンズ12を用いることにより、接着剤塗布手段8のノズルから出てくるエネルギ線硬化接着剤3へエネルギ線照射手段5aからのエネルギ線6を正確に照射することができる。このように、塗布手段8(図1参照)のノズルから吐出した部分(範囲)のみに硬化エネルギが与えられるよう第1のエネルギ線照射手段5aからのエネルギ線6を集光レンズ12により集光させるものであれば、接着層の他の部分に必要以上の硬化エネルギが加わることがなくより正確に接着層を構成できる。
図4は塗布装置周辺の構成の第2の実施の形態を示す図であり、図1および2と同一の部位には同一の符号を付している。図4に示した構成は接着剤塗布手段8のノズル側面に無数の穴14を設け、該穴部分を透明な材質でふさぐことにより、エネルギ線硬化接着剤3が接着剤塗布手段8のノズルを通過する間にエネルギ線6を照射するものである。また、穴14を設ける代わりにノズル全体または一部を透明な材質で構成し、エネルギ線硬化接着剤3が接着剤塗布手段8のノズルを通過する間にエネルギ線6を照射するようにしてもよい。
FIG. 3 is a diagram showing a first embodiment of the configuration around the coating device, and the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals. The configuration shown in FIG. 3 accurately irradiates the energy beam 6 from the energy beam irradiation unit 5a to the energy beam curing adhesive 3 coming out of the nozzle of the adhesive application unit 8 by using the condenser lens 12. Can do. In this way, the energy beam 6 from the first energy beam irradiation unit 5a is condensed by the condenser lens 12 so that the curing energy is given only to the portion (range) discharged from the nozzle of the coating unit 8 (see FIG. 1). If it makes it possible, the adhesive layer can be constructed more accurately without applying excessive curing energy to other parts of the adhesive layer.
FIG. 4 is a diagram showing a second embodiment of the configuration around the coating apparatus, and the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals. In the configuration shown in FIG. 4, an infinite number of holes 14 are provided on the side surface of the nozzle of the adhesive application means 8, and the hole portion is covered with a transparent material, so that the energy ray curable adhesive 3 causes the nozzle of the adhesive application means 8 to The energy beam 6 is irradiated while passing. Further, instead of providing the hole 14, the entire nozzle or a part of the nozzle is made of a transparent material, and the energy beam 6 is irradiated while the energy beam curable adhesive 3 passes through the nozzle of the adhesive application means 8. Good.

図5は塗布装置周辺の構成の第3の実施の形態をA−A’断面とともに示す図であり、図1および2と同一の部位には同一の符号を付している。図5に示した構成は、接着剤塗布手段8のノズルの外周部にエネルギ線照射手段(図示せず)のエネルギ線6を伝達させるファイバ13(A−A’断面で示す)を埋め込んでおき、接着剤塗布手段8のノズルから出てくるエネルギ線硬化接着剤3へエネルギ線6を照射できる。
このようにして塗布したエネルギ線硬化接着剤3は、所定の硬化エネルギを介在した状態で、接着層の一点に塗布された状態となる。硬化エネルギ量の制御はエネルギ線照射強度×照射時間で決まる。そのため、エネルギ線硬化型接着剤に予め与える硬化エネルギ量の制御はエネルギ線の照射強度を変化させつつ塗布して行うか、照射強度を一定にして塗布する時間を変化させることで可能となる。
本発明の骨子は、1つの接着剤で硬化プロセスの進度(進み具合)を段階的に変化させ、硬化する接着剤の隣接部(の接着剤3)に流動性を確保し、接着直後(硬化収縮時)の位置ずれと内部残留応力の低減による経時変化後の位置ずれを防止して極めて高精度な接着(接合)を可能とするものである。
FIG. 5 is a view showing a third embodiment of the configuration around the coating apparatus together with the AA ′ cross section, and the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals. In the configuration shown in FIG. 5, a fiber 13 (shown in the AA ′ cross section) for transmitting the energy beam 6 of the energy beam irradiation unit (not shown) is embedded in the outer peripheral portion of the nozzle of the adhesive application unit 8. The energy beam 6 can be irradiated to the energy beam curing adhesive 3 coming out from the nozzle of the adhesive application means 8.
The energy ray curable adhesive 3 applied in this way is in a state where it is applied to one point of the adhesive layer with predetermined curing energy interposed. Control of the amount of curing energy is determined by energy beam irradiation intensity × irradiation time. Therefore, the amount of curing energy given to the energy beam curable adhesive in advance can be controlled by changing the irradiation intensity of the energy beam, or by changing the application time with the irradiation intensity kept constant.
The gist of the present invention changes the progress (advance) of the curing process step by step with one adhesive, ensures fluidity in the adjacent part (adhesive 3) of the adhesive to be cured, and immediately after bonding (curing) It is possible to prevent misalignment at the time of shrinkage) and misalignment after a change due to reduction of internal residual stress, thereby enabling extremely high precision bonding (joining).

図6(a)〜(c)は本発明による接着(接合)方法を示す図であり、従来技術で説明した従来の接着方法(図14)と比較するために用いる説明図である。まず(a)に示すようエネルギ線硬化接着剤3に硬化エネルギを照射して硬化させる際に、エネルギ線硬化接着剤3の流動性がなくなって、外部と接した箇所を通して硬化収縮力を外部へ伝えられるまでの硬化エネルギ量が異なるように、接着(エネルギ線硬化接着剤3)層の部分ごとに硬化エネルギ量を予めコントロールして照射し、塗布して接着層を形成する。3aは硬化エネルギ量の最も少ない部分、3bは硬化エネルギ量の多い部分である。接着層は、硬化エネルギ量の最も少ない部分3aが被着物1と接着物2とに架かることがないように分断した構造とする。
このため、(b)に示すように接着層3a、3b全体に硬化エネルギであるエネルギ線6を与え硬化を開始させても、その硬化途中で流動性を保持した部分3aと硬化収縮を起こす部分3bに分かれ、流動性を保持した部分3aが流動変形して接着層3bの硬化収縮に伴う引っ張り応力を矢印に示したように吸収することが可能となる。
より具体的には、エネルギ線硬化型接着剤3a、3bが硬化する際に、硬化収縮に伴う硬化収縮力を外部へ伝えられる到達タイミングの早い部分3bと遅い部分3aができる。予めエネルギ線を所定量照射された到達タイミングの早い部分3bが硬化収縮力を外部へ伝えられる到達タイミングに達した時点では、残余の部分のエネルギ線硬化型接着剤3aは未だ流動性を保っている状態となる。
FIGS. 6A to 6C are views showing an adhesion (joining) method according to the present invention, and are explanatory diagrams used for comparison with the conventional adhesion method (FIG. 14) explained in the prior art. First, as shown in (a), when the energy beam curing adhesive 3 is irradiated with curing energy to be cured, the energy beam curing adhesive 3 loses its fluidity, and the curing shrinkage force is transmitted to the outside through the portion in contact with the outside. An adhesive layer is formed by applying and applying the curing energy amount in advance for each portion of the adhesive (energy ray curing adhesive 3) layer so that the amount of curing energy to be transmitted is different. 3a is a portion having the least amount of curing energy, and 3b is a portion having a large amount of curing energy. The adhesive layer has a structure in which the portion 3a having the smallest amount of curing energy is divided so as not to be placed on the adherend 1 and the adhesive 2.
For this reason, as shown in (b), even when the energy line 6 as the curing energy is applied to the entire adhesive layers 3a and 3b and the curing is started, the portion 3a that retains the fluidity during the curing and the portion that causes the curing shrinkage. It is possible to absorb the tensile stress accompanying the shrinkage of the adhesive layer 3b as indicated by the arrow by dividing the fluid into the part 3b and maintaining the fluidity 3a.
More specifically, when the energy ray curable adhesives 3a and 3b are cured, a portion 3b having a quick arrival timing and a portion 3a having a late arrival timing capable of transmitting the curing shrinkage force accompanying the curing shrinkage to the outside are formed. At the time when the part 3b, which has been irradiated with a predetermined amount of energy rays in advance and reaches the arrival timing at which the cure shrinkage force can be transmitted to the outside, has reached the arrival timing, the remaining part of the energy ray curable adhesive 3a still maintains fluidity. It becomes a state.

ここで硬化収縮に伴う硬化収縮力を外部へ伝えられる到達タイミングとは、接着部の層のそれぞれにおいてエネルギ線硬化型接着剤の流動性がなくなり被着物1または接着物2をずらすことができる瞬間をいう。
エネルギ線硬化型接着剤3a、3bが硬化すると硬化収縮が起こり、引っ張り応力が発生するが、到達タイミングの早い部分3bの引っ張り応力が発生する際には残余の部分3aによって到達タイミングの早い部分3bが被着物1と接着物2とに架かることがないように形成されている。
したがって、この引っ張り応力は残余の流動性を保持した部分のエネルギ線硬化型接着剤3aにのみ働き、流動性を保持したエネルギ線硬化型接着剤3aは硬化収縮によって生じる硬化収縮分を補填(補充)するように流動変形し、この引っ張り応力が被着物1まで伝播することなく、被着物1に対する接着物2の位置ずれは発生しない。
また、到達タイミングの早い部分3bでは被着物1と接着物2とに硬化収縮を阻害されず自由に硬化できるため、内部残留応力が発生しない。内部残留応力は経時変化を起こす重要な要素であるので、内部残留応力を抑えることで経時変化を抑えることができる。
続いて、(c)に示すように残余の到達タイミングの遅い部分3aが到達タイミングに達する過程においても硬化収縮は起こり引っ張り応力が発生する。到達タイミングが遅い部分3aが硬化する際に発生する引っ張り応力は他に吸収されず、接着物2に伝播し、その結果、被着物1に対する接着物2の位置ずれは生じてしまうものの、すでに発生した引っ張り応力は吸収されてしまっている分、ずれ幅は小さく抑えられる。
すなわち、図14(a)〜(c)に示したように、硬化収縮力を外部へ伝えられる到達タイミングの異なる複数の部分を有さず、接着部を構成するエネルギ線硬化型接着剤3を均等に硬化させる接合構造の場合、エネルギ線硬化型接着剤の硬化収縮に伴う引っ張り応力を吸収するものがなく、したがって、この引っ張り応力が被着物21から接着物22にまで直接伝播するため、エネルギ線硬化型接着剤23の硬化に伴う硬化収縮分がそのまま被着物21に対する接着物22の位置ずれ分になって現れ、ずれ幅の大きい位置ずれが発生するが、本発明に係る接合方法では図6(a)〜(c)に示すようにエネルギ線硬化型接着剤の硬化に伴う硬化収縮を接着剤の一部で吸収するのでずれ幅を小さくすることができる。
Here, the arrival timing at which the curing shrinkage force accompanying the curing shrinkage can be transmitted to the outside means the moment when the adherend 1 or the adhesive 2 can be shifted because the fluidity of the energy beam curable adhesive is lost in each of the layers of the adhesive portion. Say.
When the energy ray curable adhesives 3a and 3b are cured, curing shrinkage occurs, and tensile stress is generated. However, when tensile stress is generated in the portion 3b with early arrival timing, the remaining portion 3a causes the portion 3b with early arrival timing. Is formed so as not to hang over the adherend 1 and the adhesive 2.
Therefore, the tensile stress acts only on the energy ray-curable adhesive 3a in the portion that retains the remaining fluidity, and the energy ray-curable adhesive 3a that retains the fluidity compensates (replenishes) the cure shrinkage caused by the cure shrinkage. ) And the tensile stress does not propagate to the adherend 1, and the positional deviation of the adhesive 2 with respect to the adherend 1 does not occur.
In addition, in the portion 3b having a quick arrival timing, the adherend 1 and the adhesive 2 can be cured without being inhibited by curing shrinkage, so that no internal residual stress is generated. Since the internal residual stress is an important factor that causes a change over time, the change over time can be suppressed by suppressing the internal residual stress.
Subsequently, as shown in (c), curing shrinkage occurs and tensile stress is generated even in the process in which the remaining portion 3a having a late arrival timing reaches the arrival timing. The tensile stress generated when the portion 3a having a late arrival timing is cured is not absorbed elsewhere and propagates to the adhesive 2, and as a result, the positional deviation of the adhesive 2 with respect to the adherend 1 occurs, but has already occurred. As the tensile stress is absorbed, the shift width can be kept small.
That is, as shown in FIGS. 14A to 14C, the energy beam curable adhesive 3 that forms the adhesive portion without having a plurality of portions having different arrival timings that can transmit the curing shrinkage force to the outside. In the case of a joint structure that cures evenly, there is nothing that absorbs the tensile stress associated with the curing shrinkage of the energy beam curable adhesive, and therefore, this tensile stress propagates directly from the adherend 21 to the adhesive 22. The curing shrinkage due to the curing of the linear curable adhesive 23 appears as it is as the positional deviation of the adhesive 22 with respect to the adherend 21, and a positional deviation with a large deviation occurs. However, in the joining method according to the present invention, FIG. As shown in 6 (a) to (c), the shrinkage width can be reduced because the shrinkage caused by the curing of the energy ray curable adhesive is absorbed by a part of the adhesive.

図7はエネルギ線照射、重合率および位置ずれの関係をグラフで示す図である。同図に示すようにエネルギ線照射に応じて重合率が所定時間経過後に変動し、さらに重合率の変動から所定時間経過後に位置ずれが発生する。なお、前述したように、硬化収縮に伴う硬化収縮力を外部へ伝えられる到達タイミングとは、接着部の層のそれぞれにおいてエネルギ線硬化型接着剤の流動性がなくなり被着物1または接着物2をずらすことができる瞬間をいい、この瞬間は、必ずしも重合率などで示すものではなく、エネルギ線硬化型接着剤3の粘度と被着物1または接着物2の重さ、摩擦係数に密接に関係するものである。
図8(a)〜(c)は本発明による接着(接合)方法の第2の実施の形態を示す図である。
本発明によれば、エネルギ線硬化型接着剤3に硬化エネルギを照射して硬化する際に、エネルギ線硬化型接着剤3の流動性がなくなって、外部と接した箇所を通して硬化収縮力を外部へ伝えられるまでの硬化エネルギ量が異なるように、接着層(エネルギ線硬化型接着剤層)3の部分ごとに硬化エネルギ量を予めコントロールして照射しながら塗布して接着層を形成する。
そのとき、エネルギ線硬化型接着剤3の硬化エネルギ量を段階的に変化させ、硬化するエネルギ線硬化型接着剤3の隣接部(の接着剤)に流動性を確保するように構成する。図8(a)においてはエネルギ線硬化型接着剤3の右側の硬化エネルギ量が高く、左側の硬化エネルギ量が低い状態を示している。
この状態で接着硬化した場合、図8(b)に示すように、接着層には最も硬化が遅い部分のみ(図においては左端)に内部残留応力が蓄積するため、エネルギ線硬化型接着剤3が保有する内部残留応力量が圧倒的に少なくなり、経時変化後の位置ずれを防止して極めて高精度な接着(接合)を可能とするものである。また、接着層に付与する硬化エネルギ量が多い箇所からエネルギ線硬化型接着剤を塗布することで、接着層の他の部分に硬化エネルギが伝達するのを極力防ぎ、正確に接着層を構成できる。
FIG. 7 is a graph showing the relationship between energy beam irradiation, polymerization rate, and positional deviation. As shown in the figure, the polymerization rate fluctuates after the elapse of a predetermined time according to the energy beam irradiation, and further, the position shift occurs after the elapse of the predetermined time from the fluctuation of the polymerization rate. As described above, the arrival timing at which the curing shrinkage force accompanying the curing shrinkage can be transmitted to the outside means that the adherend 1 or the adhesive 2 is removed because the fluidity of the energy ray curable adhesive is lost in each of the layers of the adhesive portion. The moment that can be shifted is referred to, and this moment is not necessarily indicated by the polymerization rate or the like, but is closely related to the viscosity of the energy beam curable adhesive 3, the weight of the adherend 1 or the adhesive 2, and the friction coefficient. Is.
FIGS. 8A to 8C are views showing a second embodiment of the bonding (joining) method according to the present invention.
According to the present invention, when the energy beam curable adhesive 3 is irradiated with curing energy and cured, the fluidity of the energy beam curable adhesive 3 is lost, and the curing shrinkage force is externally applied through the portion in contact with the outside. The adhesive layer is formed by applying the irradiation while controlling the amount of curing energy for each part of the adhesive layer (energy ray curable adhesive layer) 3 in advance so that the amount of curing energy transmitted to is different.
At that time, the amount of curing energy of the energy beam curable adhesive 3 is changed stepwise, and fluidity is secured in the adjacent portion (adhesive) of the energy beam curable adhesive 3 to be cured. FIG. 8A shows a state in which the amount of curing energy on the right side of the energy beam curable adhesive 3 is high and the amount of curing energy on the left side is low.
When the adhesive is cured in this state, as shown in FIG. 8B, the internal residual stress accumulates only in the slowest curing portion (the left end in the figure) in the adhesive layer. The amount of internal residual stress possessed by is significantly reduced, and positional deviation after aging is prevented to enable extremely high precision bonding (joining). In addition, by applying an energy ray curable adhesive from a location where the amount of curing energy applied to the adhesive layer is large, it is possible to prevent the transmission of curing energy to other parts of the adhesive layer as much as possible, and to accurately configure the adhesive layer. .

図9(a)〜(c)は本発明に係る接合方法の第1乃至第2の実施の形態における硬化エネルギ量の分布の一例をグラフで示す図である。
接着層を構成するときの硬化エネルギ量の分布は、主として接着直後(硬化収縮時)の位置ずれを防止する場合には、流動性を保持する部分をできるだけ少なくし、早いタイミングの部分と遅いタイミングの部分とが明確に分かれた方が好ましい。このためには図6(a)〜(c)に示したような接合方法を用い、図9(a)のような硬化エネルギ量の分布を持たせると良い。
また、最終的に位置ずれを起こす部分のタイミングが明確であれば良いため、図8(a)〜(c)に示したような接合方法を用い、図9(b)に示したように硬化エネルギ量に傾きを設けたり、あるいは図9(c)に示したように硬化エネルギ量を複数段階に別かれるように設定しても良い。
図10(a)〜(c)は本発明に係る接合方法による硬化エネルギ量分布の他の例を示す図である。接着層を構成するときの硬化エネルギ量の分布は、主として経時変化後の位置ずれを防止する場合には、同時に硬化する部分をできるだけ少なくすれば良いので、図10(a)〜(c)に示すように端部〜中央〜端部にかけて硬化エネルギ量が最も高い部分があり、そこから連続的に低下するように分布を持たせると良い。
この硬化エネルギ量を含んだ接着部に一様にエネルギ照射すると、最も硬化エネルギ量の高い部分が最も早く硬化プロセスが進み、硬化エネルギ量が少ない部分へ行くほど硬化プロセスの進度が遅く硬化する。特に、図9(b)に示した硬化エネルギ量分布の場合には接着直後の位置ずれ防止と経時変化後の位置ずれ防止の両方の性質を備えることができるため、最も好ましい形態となる。
図11(a)〜(c)はそれぞれ肉盛接着(接合)に適応した場合を示す斜視図、硬化エネルギ量の分布をグラフで示す図、肉盛接着を示す部分図である。接着方法や原理については、図1〜図10記載の面接着の場合と同様であるので省略する。
FIGS. 9A to 9C are graphs showing an example of the distribution of the amount of curing energy in the first and second embodiments of the joining method according to the present invention.
The distribution of the amount of curing energy when forming the adhesive layer is mainly to prevent misalignment immediately after bonding (at the time of curing shrinkage). It is preferable that this part is clearly separated. For this purpose, it is preferable to use a joining method as shown in FIGS. 6A to 6C and to have a distribution of the curing energy amount as shown in FIG.
Further, since it is sufficient if the timing of the portion that finally causes the positional deviation is clear, the bonding method as shown in FIGS. 8A to 8C is used, and the curing is performed as shown in FIG. 9B. The energy amount may be provided with an inclination, or the curing energy amount may be set to be divided into a plurality of stages as shown in FIG.
10A to 10C are diagrams showing other examples of the curing energy amount distribution by the joining method according to the present invention. The distribution of the amount of curing energy when forming the adhesive layer is mainly shown in FIGS. 10 (a) to 10 (c), since it is sufficient to minimize the portion that is cured at the same time in order to prevent misalignment after a change with time. As shown, there is a portion with the highest amount of curing energy from the end to the center to the end, and it is preferable to have a distribution so as to continuously decrease from there.
When energy is uniformly irradiated to the bonded portion including the amount of curing energy, the portion having the highest amount of curing energy proceeds the fastest in the curing process, and as the portion having the smaller amount of curing energy proceeds, the progress of the curing process is delayed. In particular, in the case of the curing energy amount distribution shown in FIG. 9B, since it can have both properties of preventing misalignment immediately after bonding and preventing misalignment after aging, it is the most preferable mode.
11 (a) to 11 (c) are a perspective view showing a case where it is applied to build-up bonding (joining), a diagram showing a distribution of the amount of curing energy, and a partial view showing build-up bonding. The bonding method and principle are the same as those in the case of surface bonding shown in FIGS.

図12(a)〜(c)はそれぞれ充填接着(接合)とよばれる接着形態を示す斜視図、硬化エネルギ量の分布をグラフで示す図、充填接着を示す断面図である。
図12(a)〜(c)に示すような充填接着は、被着物1と接着物2の相対的位置関係の調整軸数が多い場合にとくに用いられ、図のように、被着物1、接着物2のどちらか一方にピンを、他方に穴を設け、位置調整後、エネルギ線硬化型接着剤3を充填して接着する。この場合も充填接着の場合も面接着や肉盛接着と同様に考えることができる。
被着物1はガラス板、セラミックス板、金属板等の光学ベースから構成されている。また、接着物2はレンズ、回折格子、ミラー等の光学素子、受光素子、発光素子、CCD等の固体撮像素子等の光学部品から構成されている。
12A to 12C are a perspective view showing an adhesion form called filling adhesion (joining), a diagram showing a distribution of the amount of curing energy, and a cross-sectional view showing filling adhesion, respectively.
Filling adhesion as shown in FIGS. 12A to 12C is particularly used when the number of adjustment axes of the relative positional relationship between the adherend 1 and the adherend 2 is large, and as shown in FIG. A pin is provided on one side of the adhesive 2 and a hole is provided on the other side. After adjusting the position, the energy ray curable adhesive 3 is filled and bonded. In this case as well as in the case of filling bonding, it can be considered in the same manner as surface bonding or overlay bonding.
The adherend 1 is composed of an optical base such as a glass plate, a ceramic plate, or a metal plate. The adhesive 2 is composed of optical components such as an optical element such as a lens, a diffraction grating, and a mirror, a light receiving element, a light emitting element, and a solid-state imaging element such as a CCD.

図13は本発明の接着(接合)方法の全体の制御の流れを説明するフローチャートである。先ず、接着物2、被着物1を調整により所定の位置にセットする(S1)。次にエネルギ線硬化型接着剤3を所定の硬化エネルギ量に基づいたエネルギ線照射を行いながら塗布し、硬化エネルギ量の分布を持たせた接着層をセットする(S2)。次に、エネルギ線硬化型接着剤3に対応する照射条件(積算光量)をセットし(S3)、硬化箇所にエネルギ線照射を行う(S4)。この際、エネルギ線照射光量を算出し(S5)、算出された積算光量と予め設定されているエネルギ線硬化型接着剤3の硬化が終了する積算光量とを比較して、積算光量が設定値(硬化が終了する積算光量)に到達したかどうか判定し(S6)、積算光量が設定値に達していない場合(ステップS6にて“N”)にはステップS4に戻り、一方、積算光量が設定値に達した場合(ステップS6にて“Y”)には、照射を終了する。
エネルギ線硬化型接着剤3の硬化の判断は、例えばエネルギ線照射強度が予め判っているので、エネルギ線照射強度×照射時間=積算光量の関係から照射時間を測ることで積算光量が判り、この積算光量とエネルギ線硬化型接着剤3の硬化に必要な積算光量と比較することにより行う。
また、制御フローのステップS1〜S2までは塗布工程、ステップS3〜S6までは調整・接着硬化工程であり、2つの工程に分けて、並列して作業することでタクト時間の短縮を行うことも可能になる。
FIG. 13 is a flowchart for explaining the overall control flow of the bonding (joining) method of the present invention. First, the adhesive 2 and the adherend 1 are set at predetermined positions by adjustment (S1). Next, the energy ray curable adhesive 3 is applied while irradiating energy rays based on a predetermined amount of curing energy, and an adhesive layer having a distribution of the amount of curing energy is set (S2). Next, the irradiation condition (integrated light quantity) corresponding to the energy ray curable adhesive 3 is set (S3), and the cured portion is irradiated with energy rays (S4). At this time, the energy beam irradiation light quantity is calculated (S5), and the calculated integrated light quantity is compared with a preset integrated light quantity at which the curing of the energy beam curable adhesive 3 is completed, so that the integrated light quantity is a set value. It is determined whether or not (the integrated light amount at which curing is completed) has been reached (S6). If the integrated light amount has not reached the set value ("N" in step S6), the process returns to step S4, while the integrated light amount is When the set value is reached (“Y” in step S6), the irradiation is terminated.
The determination of the curing of the energy beam curable adhesive 3 is, for example, that the energy beam irradiation intensity is known in advance, so that the integrated light amount can be determined by measuring the irradiation time from the relationship of energy beam irradiation intensity × irradiation time = integrated light amount. This is performed by comparing the integrated light amount with the integrated light amount necessary for curing the energy beam curable adhesive 3.
Further, steps S1 to S2 of the control flow are application processes, and steps S3 to S6 are adjustment / adhesion curing processes, and the tact time can be shortened by working in parallel in two processes. It becomes possible.

上記のように本発明に係る接合方法では、エネルギ線硬化型接着剤に硬化エネルギを照射して硬化する際に、エネルギ線硬化型接着剤の流動性がなくなって、外部と接した箇所を通して硬化収縮力を外部へ伝えられるまでの硬化エネルギ量が異なるように、接着層の部分ごとに硬化エネルギ量を予めコントロールして照射しつつ塗布して接着層を形成するので、硬化エネルギ量の最も少ない部分によって他の部分の硬化収縮に伴う引っ張り応力を吸収することができる。
したがって、接着層には最も硬化が遅い部分のみに内部残留応力が蓄積し、エネルギ線硬化型接着剤が保有する内部残留応力量が圧倒的に少なくなるので経時変化後の位置ずれを防止して極めて高精度な接着接合を可能とすることができる。
また、塗布した時点で、上記の構造を満たすことができるのでオフライン工程で行うことが可能であり、工程時間の短縮ができる。さらに、インライン工程での照射制御を行うことがなく、大掛かりな制御や高価な装置が必要とせず、それによる設置場所を確保する必要がないため既存の設備に置き換え易い。
As described above, in the bonding method according to the present invention, when the energy beam curable adhesive is cured by irradiating the curing energy, the energy beam curable adhesive loses its fluidity and is cured through a portion in contact with the outside. Since the amount of curing energy until the contraction force can be transmitted to the outside differs, the adhesive layer is formed by applying the irradiation while controlling the amount of curing energy for each part of the adhesive layer in advance. The tensile stress accompanying the shrinkage | hardening shrinkage of another part by a part can be absorbed.
Therefore, internal residual stress accumulates only in the slowest-curing part of the adhesive layer, and the amount of internal residual stress held by the energy beam curable adhesive is overwhelmingly reduced. It is possible to achieve extremely high-precision adhesive bonding.
Moreover, since it can satisfy | fill said structure at the time of apply | coating, it can carry out by an offline process and can shorten process time. Furthermore, irradiation control in the in-line process is not performed, large-scale control and expensive equipment are not required, and it is not necessary to secure an installation place thereby, so that it is easy to replace existing equipment.

本発明による接合方法を実施する接着装置の実施の形態を示す図である。It is a figure which shows embodiment of the adhesion | attachment apparatus which enforces the joining method by this invention. (a)は硬化エネルギ量が部分的に異なるような照射を説明する図、(b)は被着物上の接着剤を示す図、(c)は第2のエネルギ線照射手段からの接着剤に対応したエネルギ線照射を示す図である。(A) is a diagram for explaining irradiation in which the amount of curing energy is partially different, (b) is a diagram showing an adhesive on the adherend, and (c) is an adhesive from the second energy beam irradiation means. It is a figure which shows corresponding energy ray irradiation. 塗布装置周辺の構成の第1の実施の形態を示す概略図である。It is the schematic which shows 1st Embodiment of a structure around a coating device. 塗布装置周辺の構成の第2の実施の形態を示す概略図である。It is the schematic which shows 2nd Embodiment of a structure around a coating device. 塗布装置周辺の構成の第3の実施の形態をA−A’断面とともに示す概略図である。It is the schematic which shows 3rd Embodiment of a structure around a coating device with an A-A 'cross section. (a)は本発明による接着(接合)方法を示す図、(b)は本発明による接着方法におけるUV光の照射を示す図、(c)は本発明による接着方法での接着硬化を示す図である。(A) is a figure which shows the adhesion (joining) method by this invention, (b) is a figure which shows irradiation of UV light in the adhesion method by this invention, (c) is a figure which shows adhesion hardening by the adhesion method by this invention It is. エネルギ線照射、重合率および位置ずれの関係をグラフで示す図である。It is a figure which shows the relationship of energy beam irradiation, a polymerization rate, and position shift with a graph. (a)は本発明による接着(接合)方法の第2の実施の形態を示す図、(b)は本発明による接着方法におけるUV光の照射を示す図、(c)は本発明による接着方法での接着硬化を示す図である。(A) is a figure which shows 2nd Embodiment of the adhesion | attachment (joining) method by this invention, (b) is a figure which shows irradiation of UV light in the adhesion | attachment method by this invention, (c) is the adhesion | attachment method by this invention It is a figure which shows the adhesion hardening by. (a)〜(c)は硬化エネルギ量の分布の例をグラフで示す図である。(A)-(c) is a figure which shows the example of distribution of hardening energy amount with a graph. (a)〜(c)は硬化エネルギ量の分布の他の例をグラフで示す図である。(A)-(c) is a figure which shows the other example of distribution of hardening energy amount with a graph. (a)は肉盛接着(接合)に適応した場合を示す斜視図、(b)はその場合の硬化エネルギ量の分布をグラフで示す図、(c)は肉盛接着を示す部分図である。(A) is a perspective view which shows the case where it adapts to build-up adhesion (joining), (b) is a figure which shows distribution of the amount of hardening energy in that case, and (c) is a fragmentary figure which shows build-up adhesion. . (a)は充填接着(接合)とよばれる接着形態を示す斜視図、(b)はその場合の硬化エネルギ量の分布をグラフで示す図、(c)は充填接着を示す断面図である。(A) is a perspective view which shows the adhesion | attachment form called filling adhesion | attachment (joining), (b) is a figure which shows distribution of the amount of hardening energy in that case, and (c) is sectional drawing which shows filling adhesion | attachment. 本発明の接着(接合)方法の全体の制御の流れを説明するフローチャートである。It is a flowchart explaining the flow of the whole control of the adhesion | attachment (joining) method of this invention. (a)〜(c)は一般的な接着方法を示す図である。(A)-(c) is a figure which shows the general adhesion | attachment method.

符号の説明Explanation of symbols

1 被着物
2 接着物
3 エネルギ線硬化型接着剤(接着層)
3a 流動性を保持した部分
3b 硬化収縮を起こす部分
5a 第1のエネルギ線照射手段
5b 第2のエネルギ線照射手段
6 エネルギ線
7a 第1のエネルギ線照射制御手段
7b 第2のエネルギ線照射制御手段
8 接着剤塗布手段
9 塗布手段用動作手段
10 動作制御手段
11 全体の制御手段
DESCRIPTION OF SYMBOLS 1 Adhering material 2 Adhesive material 3 Energy-beam curable adhesive (adhesive layer)
3a Part holding fluidity 3b Part causing curing shrinkage 5a First energy beam irradiation means 5b Second energy beam irradiation means 6 Energy beam 7a First energy beam irradiation control means 7b Second energy beam irradiation control means 8 Adhesive application means 9 Application means operation means 10 Operation control means 11 Overall control means

Claims (11)

エネルギ線硬化特性を有する接着剤を用い被着物に接着物を接合する接合方法において、エネルギ線硬化型接着剤へ硬化エネルギを予め与えつつ該エネルギ線硬化型接着剤を被着物若しくは接着物に塗布することにより、硬化エネルギ量に所定の分布を持たせたエネルギ線硬化型接着剤の接着層を形成し、かつ前記エネルギ線硬化型接着剤に与えられた前記硬化エネルギが最も少ない接着層内の領域が前記被着物と前記接着物とに架かることがないようにし、その後、前記接着層全体へ一様な硬化エネルギを付与し完全硬化させることを特徴とする接合方法。   In a bonding method of bonding an adhesive to an adherend using an adhesive having energy beam curing characteristics, the energy beam curable adhesive is applied to the adherend or the adhesive while applying energy to the energy beam curable adhesive in advance. By forming the adhesive layer of the energy beam curable adhesive having a predetermined distribution in the amount of curing energy, and in the adhesive layer with the least curing energy applied to the energy beam curable adhesive A bonding method characterized in that a region does not extend over the adherend and the adhesive, and thereafter uniform curing energy is applied to the entire adhesive layer to completely cure it. 前記硬化エネルギが前記接着層内で段階的に変化するようにエネルギ線硬化型接着剤へ硬化エネルギを与えたことを特徴とする請求項1記載の接合方法。   The bonding method according to claim 1, wherein curing energy is applied to the energy ray curable adhesive so that the curing energy changes stepwise in the adhesive layer. ノズルから吐出されるエネルギ線硬化型接着剤へ照射するエネルギ線の照射強度を予め変化させつつエネルギ線硬化型接着剤を被着物若しくは接着物に塗布することを特徴とする請求項1または2記載の接合方法。   3. The energy beam curable adhesive is applied to an adherend or an adhesive while changing the irradiation intensity of the energy beam irradiated to the energy beam curable adhesive discharged from the nozzle in advance. Joining method. ノズルから吐出されるエネルギ線硬化型接着剤へ照射するエネルギ線の照射時間を予め変化させつつエネルギ線硬化型接着剤を被着物若しくは接着物に塗布することを特徴とする請求項1または2記載の接合方法。   3. The energy beam curable adhesive is applied to an adherend or an adhesive while changing the irradiation time of the energy beam irradiated to the energy beam curable adhesive discharged from the nozzle in advance. Joining method. 硬化エネルギ量を多く与えられたエネルギ線硬化型接着剤の部分から被着物若しくは接着物に塗布していくことを特徴とする請求項1ないし4のいずれか1項記載の接合方法。   5. The bonding method according to claim 1, wherein the energy beam curable adhesive is applied to the adherend or the adhesive from a portion of the energy ray curable adhesive provided with a large amount of curing energy. エネルギ線硬化特性を有する接着剤を用いて、被着物に接着物を接合する接合構造において、エネルギ線硬化型接着剤へ硬化エネルギを予め与えつつ該エネルギ線硬化型接着剤を被着物若しくは接着物に塗布することにより、硬化エネルギ量に所定の分布を持たせたエネルギ線硬化型接着剤の接着層を形成し、かつ前記エネルギ線硬化型接着剤に与えられた前記硬化エネルギが最も少ない接着層内の領域が前記被着物と前記接着物とに架かることがないよう構成したことを特徴とする接合構造。   In a bonding structure in which an adhesive is bonded to an adherend using an adhesive having energy beam curing characteristics, the energy beam curable adhesive is applied to the adherend or the adhesive while pre-applying curing energy to the energy beam curable adhesive. The adhesive layer of the energy beam curable adhesive having a predetermined distribution in the amount of curing energy is applied to the adhesive layer, and the adhesive layer having the least curing energy applied to the energy beam curable adhesive is formed. A joining structure characterized in that an inner region does not span the adherend and the adhesive. 前記硬化エネルギが前記接着層内で段階的に変化するようにエネルギ線硬化型接着剤へ硬化エネルギを与えたことを特徴とする請求項6記載の接合構造。   The joining structure according to claim 6, wherein curing energy is applied to the energy ray curable adhesive so that the curing energy changes stepwise in the adhesive layer. エネルギ線硬化型接着剤を塗布する接着剤塗布手段と、塗布時に前記エネルギ線硬化型接着剤へ所定の硬化エネルギ量を付与できる第1のエネルギ線照射手段と、この第1のエネルギ線照射手段の硬化エネルギ量を制御する第1の照射量制御手段と、前記エネルギ線硬化型接着剤を完全硬化させるための第2のエネルギ線照射手段と、前記第2のエネルギ線照射手段を制御する第2の照射量制御手段とを備えることを特徴とする接合装置。   Adhesive applying means for applying an energy ray curable adhesive, first energy ray irradiating means capable of imparting a predetermined amount of curing energy to the energy ray curable adhesive during application, and the first energy ray irradiating means A first irradiation amount control means for controlling the amount of curing energy, a second energy ray irradiation means for completely curing the energy ray curable adhesive, and a second energy ray irradiation means for controlling the second energy ray irradiation means. And a second dose control means. 第1の照射量制御手段がエネルギ線硬化型接着剤へ照射するエネルギ線の照射強度を変化させることを特徴とする請求項8記載の接合装置。   9. The bonding apparatus according to claim 8, wherein the first irradiation amount control means changes the irradiation intensity of the energy beam irradiated to the energy beam curable adhesive. 第1の照射量制御手段がエネルギ線硬化型接着剤へ照射するエネルギ線の照射時間を変化させることを特徴とする請求項8記載の接合装置。   9. The bonding apparatus according to claim 8, wherein the first irradiation amount control means changes the irradiation time of the energy beam applied to the energy beam curable adhesive. 前記接着剤塗布手段が吐出したエネルギ線硬化型接着剤の所望の範囲のみに、前記第1のエネルギ線照射手段から照射する硬化エネルギを付与できる照射範囲制御手段を備えたことを特徴とする請求項8記載の接合装置。   An irradiation range control unit capable of applying curing energy irradiated from the first energy beam irradiation unit only to a desired range of the energy beam curable adhesive discharged by the adhesive application unit. Item 9. The joining apparatus according to Item 8.
JP2004357444A 2004-12-09 2004-12-09 Joining method, joined structure and joining apparatus Pending JP2006160962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357444A JP2006160962A (en) 2004-12-09 2004-12-09 Joining method, joined structure and joining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357444A JP2006160962A (en) 2004-12-09 2004-12-09 Joining method, joined structure and joining apparatus

Publications (1)

Publication Number Publication Date
JP2006160962A true JP2006160962A (en) 2006-06-22

Family

ID=36663339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357444A Pending JP2006160962A (en) 2004-12-09 2004-12-09 Joining method, joined structure and joining apparatus

Country Status (1)

Country Link
JP (1) JP2006160962A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126723A (en) * 1977-04-11 1978-11-06 Takiron Co Floor material
JPS63135207A (en) * 1986-11-28 1988-06-07 Dainippon Ink & Chem Inc Joining method
JPH0598218A (en) * 1991-10-04 1993-04-20 Three Bond Co Ltd Method of bonding adherends
JPH06220404A (en) * 1993-01-22 1994-08-09 Nissan Motor Co Ltd Method for bonding structure
JPH08209075A (en) * 1995-02-02 1996-08-13 Ricoh Co Ltd Bonding
JPH11185954A (en) * 1997-12-17 1999-07-09 Nec Corp Organic thin film el device and its manufacture
JPH11189748A (en) * 1997-12-26 1999-07-13 Dainippon Ink & Chem Inc Pasting together, device therefor, and production of light disk
JPH11273164A (en) * 1998-03-24 1999-10-08 Dainippon Ink & Chem Inc Production of disk and disk production apparatus
JP2002214499A (en) * 2001-01-22 2002-07-31 Fuji Photo Film Co Ltd Fixing method for optical element and optical element unit
JP2004115545A (en) * 2002-09-20 2004-04-15 Ricoh Co Ltd Method for position control-type bonding and joining and apparatus therefor
JP2004151388A (en) * 2002-10-30 2004-05-27 Canon Inc Method of manufacturing optical element unit
JP2004247015A (en) * 2003-02-17 2004-09-02 Tdk Corp Manufacturing method of optical recording medium
JP2004323666A (en) * 2003-04-24 2004-11-18 Ricoh Co Ltd Bonding method, boding device and part bonding apparatus using the boding device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126723A (en) * 1977-04-11 1978-11-06 Takiron Co Floor material
JPS63135207A (en) * 1986-11-28 1988-06-07 Dainippon Ink & Chem Inc Joining method
JPH0598218A (en) * 1991-10-04 1993-04-20 Three Bond Co Ltd Method of bonding adherends
JPH06220404A (en) * 1993-01-22 1994-08-09 Nissan Motor Co Ltd Method for bonding structure
JPH08209075A (en) * 1995-02-02 1996-08-13 Ricoh Co Ltd Bonding
JPH11185954A (en) * 1997-12-17 1999-07-09 Nec Corp Organic thin film el device and its manufacture
JPH11189748A (en) * 1997-12-26 1999-07-13 Dainippon Ink & Chem Inc Pasting together, device therefor, and production of light disk
JPH11273164A (en) * 1998-03-24 1999-10-08 Dainippon Ink & Chem Inc Production of disk and disk production apparatus
JP2002214499A (en) * 2001-01-22 2002-07-31 Fuji Photo Film Co Ltd Fixing method for optical element and optical element unit
JP2004115545A (en) * 2002-09-20 2004-04-15 Ricoh Co Ltd Method for position control-type bonding and joining and apparatus therefor
JP2004151388A (en) * 2002-10-30 2004-05-27 Canon Inc Method of manufacturing optical element unit
JP2004247015A (en) * 2003-02-17 2004-09-02 Tdk Corp Manufacturing method of optical recording medium
JP2004323666A (en) * 2003-04-24 2004-11-18 Ricoh Co Ltd Bonding method, boding device and part bonding apparatus using the boding device

Similar Documents

Publication Publication Date Title
KR101276504B1 (en) Bonding method, bonded structure, method for producing optical module, and optical module
KR20030082367A (en) Image pickup device and producing method thereof
JP2010160474A (en) Diffractive optical element, laminated diffractive optical element, and its manufacturing method
JP2014120604A (en) Imprint device, method of manufacturing device and mold for use in imprint device
JP4976889B2 (en) Fixing method of optical components
US7294293B2 (en) Method for manufacturing diffraction optical element
JP2004115545A (en) Method for position control-type bonding and joining and apparatus therefor
JP4822386B2 (en) Part joining method
JP2006160962A (en) Joining method, joined structure and joining apparatus
JP2010243566A (en) Adhesion fixing method and method of fixing optical element
JP4593100B2 (en) Article having bonding structure and bonding method thereof
JP4366142B2 (en) Position-controlled adhesive bonding method
JP4307897B2 (en) Joining method, joining apparatus, and component joining apparatus using the joining apparatus
US20180301355A1 (en) Control warpage in a semiconductor chip package
JP2006062270A (en) Joint structure, jointing method and jointing apparatus
JP4554646B2 (en) Resin film forming method and resin film forming apparatus
JP7188316B2 (en) Camera module manufacturing method
JP4278141B2 (en) Bonding method and apparatus
JP4546719B2 (en) Position control type adhesive bonding method and apparatus
JP2005281608A (en) Method for adhesively bonding part and apparatus for adhesively bonding part
JP6650396B2 (en) Optical device manufacturing method and optical device
JP4486326B2 (en) Component joining method and apparatus
JP2005015719A (en) Bonded structure, bonding method and bonding apparatus
JP2006084654A (en) Lens unit optical axis adjusting device and lens unit optical axis adjusting method
JP2008299148A (en) Junction type optical element and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

RD02 Notification of acceptance of power of attorney

Effective date: 20090806

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524