JP2006160788A - Heat-shrinking film - Google Patents

Heat-shrinking film Download PDF

Info

Publication number
JP2006160788A
JP2006160788A JP2004349993A JP2004349993A JP2006160788A JP 2006160788 A JP2006160788 A JP 2006160788A JP 2004349993 A JP2004349993 A JP 2004349993A JP 2004349993 A JP2004349993 A JP 2004349993A JP 2006160788 A JP2006160788 A JP 2006160788A
Authority
JP
Japan
Prior art keywords
lactic acid
heat
shrinkable film
mass
acid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004349993A
Other languages
Japanese (ja)
Other versions
JP4947892B2 (en
Inventor
Koichi Sawa
晃一 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2004349993A priority Critical patent/JP4947892B2/en
Publication of JP2006160788A publication Critical patent/JP2006160788A/en
Application granted granted Critical
Publication of JP4947892B2 publication Critical patent/JP4947892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Package Specialized In Special Use (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-shrinking film having a good shrinking characteristics even on re-heating after its heat shrink-packaging, and especially in the case of being used as a binding belt of a container heated together with its content in a microwave oven, capable of showing both of a good primary processability and the crush prevention of the container jointly. <P>SOLUTION: This heat-shrinking film consisting mainly of a lactic acid-based polymer has ≥30 and <60 % shrinking rate in at least one direction on immersing it in 80°C warm water for 10 sec, and <5 MPa shrinking stress after 1 min in 80°C silicone oil. Also, the lactic acid-based polymer may have (98:2)-(85:15) or (2:98)-(15:85) constitution ratio of D-lactic acid to L-lactic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、乳酸系重合体を主成分とする熱収縮性フィルムに関し、特に、電子レンジで内容物と供に加熱される容器の結束帯等、収縮包装後に再加熱が施される用途に好適な熱収縮性フィルムに関する。   The present invention relates to a heat-shrinkable film mainly composed of a lactic acid-based polymer, and particularly suitable for applications in which reheating is performed after shrink wrapping, such as a cable tie for a container heated together with contents in a microwave oven. Relates to a heat shrinkable film.

近年、コンビニエンスストア等で売られる弁当箱の結束用として、ポリエステル系樹脂から成る延伸フィルムに印刷を施し製袋した熱収縮性結束帯の使用が増加しつつある。しかしながら、ポリエステル系熱収縮フィルムは、収縮応力が大きいため、弁当を電子レンジ等で加熱した際のフィルムの収縮により、弁当箱が潰れるといった問題がある。   In recent years, the use of a heat-shrinkable binding band obtained by printing a stretched film made of a polyester resin and making a bag for binding lunch boxes sold at convenience stores and the like is increasing. However, since the polyester-based heat-shrinkable film has a large shrinkage stress, there is a problem that the lunch box is crushed by shrinkage of the film when the lunch is heated with a microwave oven or the like.

このため、収縮率を30%未満に下げることによって、収縮応力を5MPa未満にし、電子レンジ加熱時の弁当箱の潰れを防止する技術が提案されている(特許文献1)。   For this reason, the technique which makes a shrinkage stress less than 5 Mpa by reducing a shrinkage rate to less than 30%, and prevents crushing of the lunch box at the time of microwave oven heating is proposed (patent document 1).

一方、これらのポリエステル系樹脂からなる熱収縮性フィルムは、使用後に自然環境下に棄却された場合、安定性が高いが故に分解されることなく自然界に残留するため、景観を害する要因となったり、魚、野鳥その他の生物の生活環境を汚染したり、様々な環境問題の原因となりうることが懸念されている。   On the other hand, heat-shrinkable films made of these polyester-based resins, when discarded in the natural environment after use, remain in the natural world without being decomposed due to their high stability, which may cause damage to the landscape. There is concern that it may contaminate the living environment of fish, wild birds and other living organisms, and may cause various environmental problems.

そこで、環境適性に優れた天然素材容器として、特に容器のフタ部分、窓部分、容器の表面防湿層部分、容器を形成する積層体の構成層部分、容器の結束帯部分、オーバーラップ包装シート状物、粘着ラベルなどに、乳酸系重合体シート状物を用いることが提案されている(特許文献2)。   Therefore, as a natural material container excellent in environmental suitability, especially the lid part of the container, the window part, the surface moisture-proof layer part of the container, the constituent layer part of the laminate forming the container, the binding band part of the container, the overlapping wrapping sheet shape It has been proposed to use a lactic acid polymer sheet for a product, an adhesive label, etc. (Patent Document 2).

特開2004−67203号公報JP 2004-67203 A 特開2002−46116号公報JP 2002-46116 A

コンビニエンスストア等で売られる弁当箱は、あらかじめ、延伸フィルムに印刷を施し製袋した結束帯を加熱収縮させて、弁当箱を結束してある。そして、ユーザーが利用する際は、内容物を温めるため、結束帯が施された弁当箱ごと電子レンジで加熱する。このように、弁当箱の結束帯は、一次加熱(以下、「一次加工」ともいい、この適性を「一次加工性」という。)として、結束帯を収縮させて弁当箱に施すための加熱処理がなされ、さらに2次加熱として、内容物を温める際に電子レンジによる加熱が追加される。   Lunch boxes sold at convenience stores and the like are previously bundled by heating and shrinking a binding band obtained by printing a stretched film and making a bag. And when a user uses, in order to warm the contents, the lunch box with the binding band is heated in a microwave oven. As described above, the binding band of the lunch box is subjected to heat treatment for contracting the binding band and applying it to the lunch box as primary heating (hereinafter also referred to as “primary processing”, which is referred to as “primary workability”). Further, as secondary heating, heating by a microwave oven is added when the contents are warmed.

ここで、前記特許文献1のポリエステル系熱収縮フィルムには、収縮率を30%未満に下げることによって、収縮応力を5MPa未満となるように設計し、電子レンジ加熱時の弁当箱の潰れを防止する技術が開示されているが、収縮率が30%未満の場合には、弁当箱を結束する際の一次加工が難しく、すわわち、収縮率が低すぎてきれいに結束できないことがわかった。さらにきれいに結束させるため、一次加熱の温度を高温にしたり、処理時間を長くすると、弁当の内容物に影響を及ぼすという問題があった。
一方、一次加工を容易にするために収縮率を上げると、弁当箱の結束はきれいにできるものの、収縮応力が大きくなるため、電子レンジ加熱による2次加熱の際に、弁当箱を潰してしまう。このように従来のポリエステル系熱収縮フィルムは、弁当箱結束時の一次加工性と、電子レンジ加熱時の弁当箱の潰れ防止のバランスを取ることが難しく、使いづらいものであった。
Here, the polyester-based heat-shrinkable film of Patent Document 1 is designed so that the shrinkage stress is less than 5 MPa by reducing the shrinkage rate to less than 30%, thereby preventing the lunch box from being crushed during microwave heating. However, it has been found that when the shrinkage rate is less than 30%, it is difficult to perform primary processing when bundling the lunch box, that is, the shrinkage rate is too low to be bundled cleanly. In order to bind them more neatly, if the temperature of the primary heating is increased or the treatment time is increased, the contents of the lunch box are affected.
On the other hand, if the shrinkage rate is increased to facilitate the primary processing, the lunch box can be bundled cleanly, but the shrinkage stress increases, so that the lunch box is crushed during secondary heating by microwave heating. As described above, the conventional polyester heat-shrink film is difficult to balance because it is difficult to balance the primary workability when the lunch box is bundled with the prevention of the collapse of the lunch box when heating the microwave oven.

また、前記特許文献2には、弁当箱等の容器の結束帯として乳酸系重合体からなるシート状物を用いることが開示されているが、上記の一次加工性や電子レンジ加熱の影響等、具体的な要求品質については何ら開示されていない。   In addition, Patent Document 2 discloses that a sheet-like material made of a lactic acid-based polymer is used as a binding band for a container such as a lunch box, but the primary workability and the influence of microwave heating, etc. No specific required quality is disclosed.

本発明は、これらの問題点を解決すべくなされたものであり、すなわち、本発明の目的は、収縮包装後に再加熱が施される場合においても、良好な収縮特性をもつ熱収縮性フィルムを提供することであり、特に、電子レンジで内容物と供に加熱される容器の結束帯として用いた場合に、良好な一次加工性と、容器の潰れ防止を両立することができる熱収縮性フィルムを提供することにある。   The present invention has been made to solve these problems. That is, the object of the present invention is to provide a heat-shrinkable film having good shrinkage characteristics even when reheating is performed after shrink-wrapping. A heat-shrinkable film that can achieve both good primary processability and prevention of container collapse, especially when used as a binding band for containers heated with contents in a microwave oven. Is to provide.

(1)本発明の熱収縮性フィルムは、乳酸系重合体を主成分とする熱収縮性フィルムであって、少なくとも一方向において80℃温水に浸けた際の、10秒間での収縮率が30%以上かつ60%未満であり、80℃シリコンオイル中における1分後の収縮応力が5MPa未満であることを特徴とする。
(2)また、前記乳酸系重合体は、D乳酸とL乳酸の構成割合が98:2〜85:15又は2:98〜15:85であることができる。
(3)本発明においては、乳酸系重合体と、乳酸系重合体以外の脂肪族ポリエステル樹脂と、可塑剤とを含有する中心層を備え、その外側に、乳酸系重合体を90質量%以上含有する外側層を積層してなる構成を備えていることができる。
(4)さらに、前記脂肪族ポリエステル樹脂が、0℃以下にガラス転移温度が少なくとも一つ有するものであり、前記中心層におけるその含有量が10〜25質量%であることが好ましい。
(5)本発明の熱収縮フィルムは、収縮包装後に再加熱が施されるものであることができる。
(6)また、本発明の熱収縮性フィルムは、電子レンジで内容物と供に加熱される容器の結束帯として用いることができる。
(7)さらに、前記容器が食品容器であることができる。
(1) The heat-shrinkable film of the present invention is a heat-shrinkable film mainly composed of a lactic acid-based polymer, and has a shrinkage rate of 30 in 10 seconds when immersed in 80 ° C. warm water in at least one direction. % And less than 60%, and the shrinkage stress after 1 minute in 80 ° C. silicone oil is less than 5 MPa.
(2) In the lactic acid polymer, the constituent ratio of D lactic acid and L lactic acid may be 98: 2-85: 15 or 2: 98-15: 85.
(3) In the present invention, a central layer containing a lactic acid polymer, an aliphatic polyester resin other than the lactic acid polymer, and a plasticizer is provided, and 90% by mass or more of the lactic acid polymer is provided on the outside thereof. The structure which laminates | stacks the outer layer to contain can be provided.
(4) Furthermore, it is preferable that the aliphatic polyester resin has at least one glass transition temperature at 0 ° C. or lower, and its content in the central layer is 10 to 25% by mass.
(5) The heat-shrinkable film of the present invention can be reheated after shrink-wrapping.
(6) Moreover, the heat-shrinkable film of this invention can be used as a binding band of the container heated with a content with a microwave oven.
(7) Furthermore, the container may be a food container.

本発明によれば、収縮包装後に再加熱が施される場合においても、優れた収縮特性を有し、かつ収縮による容器等の被着体の潰れを防止でき、さらに環境適性に優れた熱収縮性フィルムを得ることができる。   According to the present invention, even when reheating is performed after shrink packaging, it has excellent shrinkage characteristics, can prevent the adherend such as a container from being crushed by shrinkage, and has excellent thermal suitability. Can be obtained.

以下、本発明を詳しく説明する。なお、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
また「乳酸系重合体を主成分とする」とは、熱収縮性フィルムの主な機能を決定する成分の一つが乳酸系重合体であり、乳酸系重合体の機能を阻害しない範囲で他の成分を含んでいてもよいという意を包含するものである。一般的には熱収縮性フィルム中の乳酸系重合体の含有割合は少なくとも50%以上、好ましくは80%以上である。
なお、本発明における数値範囲の上限値及び下限値は、本発明が特定する数値範囲から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の均等範囲に含める意を包含するものである。
The present invention will be described in detail below. In the present invention, even when referred to as “film”, “sheet” is included, and even when referred to as “sheet”, “film” is included.
“Lactic acid-based polymer as a main component” means that one of the components that determine the main function of the heat-shrinkable film is a lactic acid-based polymer, and other components within the range of not inhibiting the function of the lactic acid-based polymer. It is intended to include that components may be included. In general, the content of the lactic acid polymer in the heat-shrinkable film is at least 50% or more, preferably 80% or more.
Note that the upper and lower limits of the numerical range in the present invention are equivalent to the present invention as long as they have the same effects as those in the numerical range even if they are slightly outside the numerical range specified by the present invention. The intention to include in the range is included.

(一次加工)
本発明の熱収縮性フィルムを、弁当箱等の食品容器の結束帯として用いる場合の一次加工(一次加熱)工程について説明する。まず熱収縮性フィルムに印刷を施して、製袋機で筒状に溶剤シールされたフィルムを容器毎の枚葉品にカットする。これを弁当箱等の容器に手作業で装着させ、上下挟み込みベルトコンベアーにフィルム毎容器を流し、サイドに組み込まれた熱風ノズルから加熱エアーを吹き出して、容器側面のフィルムを収縮させることにより容器に結束するのが一般的である。従ってこの場合には、一次加熱は容器側面部分の結束帯の収縮加熱を意味している。
(Primary processing)
A primary processing (primary heating) step when the heat-shrinkable film of the present invention is used as a binding band for food containers such as lunch boxes will be described. First, the heat-shrinkable film is printed, and the film that has been solvent-sealed in a cylindrical shape by a bag making machine is cut into individual sheets for each container. This is manually attached to a container such as a lunch box, the container for each film is poured on a belt conveyor sandwiched between the upper and lower sides, heated air is blown out from a hot air nozzle built in the side, and the film on the side of the container is shrunk to the container. It is common to bind. Therefore, in this case, the primary heating means contraction heating of the binding band on the side surface portion of the container.

(熱収縮率)
本発明の熱収縮性フィルムは、主収縮方向(TD)において80℃温水で10秒間の熱収縮率が30%以上かつ60%未満であることが重要である。熱収縮率を30%以上とすることによって、充分な収縮特性をもたせることができ、特に容器の結束帯として用いた場合には良好な一次加工性を実現することが可能となる。さらに、内容物の保護、高速化といった最近の容器結束帯としての要望に対応するには、熱収縮率は35%以上であることがより好ましい。また、熱収縮率が60%未満であれば、一次加工の際に容器の潰れや切れ等の問題を生じることがない。さらに容器潰れの発生確率を抑えることを考慮すると50%以下とすることがより好ましい。
(Heat shrinkage)
It is important that the heat shrinkable film of the present invention has a heat shrinkage rate of 30% or more and less than 60% in hot shrink water at 80 ° C. for 10 seconds in the main shrink direction (TD). By setting the thermal shrinkage rate to 30% or more, sufficient shrinkage characteristics can be provided, and particularly when used as a binding band for a container, it is possible to realize good primary workability. Furthermore, it is more preferable that the thermal shrinkage rate is 35% or more in order to meet the recent demand for the container tie band such as protection of contents and speeding up. Moreover, if the heat shrinkage rate is less than 60%, problems such as crushing and cutting of the container will not occur during the primary processing. Further, considering the suppression of the occurrence probability of container collapse, it is more preferable to set it to 50% or less.

他方、縦収縮率は、低い方が好ましいが、収縮時の横シワなどを解消するために少しは収縮する方が好ましい場合もある。一般的には先に述べたように80℃温水にて10秒間の収縮率が10%以下、より好ましくは7%以下、更により好ましくは5%以下である。10%以上では必要以上にフィルムの縦方向の収縮が目立ち、収縮仕上がり性を悪化させてしまう場合がある。このような縦収縮率を低く抑えるためには縦延伸倍率を1.01〜1.20程度にすることが好ましい。   On the other hand, it is preferable that the longitudinal shrinkage rate is low, but it may be preferable to slightly shrink in order to eliminate lateral wrinkles during shrinkage. Generally, as described above, the shrinkage rate for 10 seconds in 80 ° C. hot water is 10% or less, more preferably 7% or less, and still more preferably 5% or less. If it is 10% or more, the shrinkage in the vertical direction of the film is more conspicuous than necessary, and the shrinkage finish may be deteriorated. In order to keep the longitudinal shrinkage ratio low, it is preferable that the longitudinal stretching ratio is about 1.01 to 1.20.

(収縮応力)
また、本発明の熱収縮性フィルムは、80℃シリコンオイル中における1分後の収縮応力が5MPa未満であることが重要である。収縮応力を5MPaとすることで、再加熱の際に容器等の被着体への影響を押さえることができ、特に電子レンジで内容物と供に加熱される容器の結束帯として用いた場合に優位に容器の潰れを防止することができる。さらに収縮応力は、4.0MPa以下であることが好ましく、特に3MPa以下であることが好ましい。
(Shrinkage stress)
Moreover, it is important for the heat-shrinkable film of the present invention that the shrinkage stress after 1 minute in 80 ° C. silicone oil is less than 5 MPa. By setting the shrinkage stress to 5 MPa, the influence on the adherend such as a container can be suppressed during reheating, especially when used as a binding band for a container heated together with contents in a microwave oven. It is possible to prevent the container from being crushed. Furthermore, the shrinkage stress is preferably 4.0 MPa or less, and particularly preferably 3 MPa or less.

以上のように、熱収縮率と収縮応力を適切な範囲に設定することによって、収縮包装後に再加熱が施される場合においても、良好な収縮特性をもつ熱収縮性フィルムを得ることができ、特に、電子レンジで内容物と供に加熱される容器の結束帯として用いた場合に、良好な一次加工性の保持と、容器の潰れ防止という、異なる特性を両立することが可能となるのである。   As described above, by setting the heat shrinkage rate and shrinkage stress in appropriate ranges, even when reheating is performed after shrink wrapping, a heat shrinkable film having good shrinkage properties can be obtained, In particular, when used as a tying band for a container that is heated together with the contents in a microwave oven, it becomes possible to satisfy both different characteristics of maintaining good primary workability and preventing the container from collapsing. .

(乳酸系重合体)
本発明の乳酸系重合体は、D−乳酸またはL−乳酸の単独重合体またはそれらの共重合体をいう。即ち、構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、或いは、構造単位がL−乳酸及びD−乳酸であるポリ(DL−乳酸)、或いはこれらの二種類以上の混合体或いは共重合体を包含する。
(Lactic acid polymer)
The lactic acid polymer of the present invention refers to a homopolymer of D-lactic acid or L-lactic acid or a copolymer thereof. That is, poly (L-lactic acid) whose structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, or poly (DL-) whose structural units are L-lactic acid and D-lactic acid. Lactic acid), or a mixture or copolymer of two or more of these.

乳酸系重合体のDL構成比は、D−乳酸とL−乳酸の構成割合が98:2〜85:15又は2:98〜15:85が好ましく、さらに、95:5〜85:15又は5:95〜15:85が好ましい。D−乳酸とL−乳酸の構成割合が100:0若しくは0:100である乳酸系重合体は、非常に高い結晶性樹脂となって融点も高く、耐熱性、機械的物性に優れる傾向となる。しかし、熱収縮性フィルムとして使用する場合には結晶性が非常に高いと、延伸時に延伸配向結晶化が進行してしまうため、熱収縮率を調整することが難しくなり、更には延伸条件において非結晶状態なフィルムを得ても収縮時の熱にて結晶化が進み収縮仕上がり性が低下してしまう。また、DL−乳酸の共重合体の場合、その光学異性体の割合が増えるに従って結晶性が低下することが知られている。よって、熱収縮性フィルムの材料として乳酸系重合体を使用する場合は、前述のDL構成比の範囲内で適度に結晶性を低下させることが好ましい。なお、上記D体、L体を調整する目的で、D−乳酸とL−乳酸の構成割合が異なる2種類以上の乳酸系重合体をブレンドすることも可能である。   The DL constituent ratio of the lactic acid-based polymer is preferably such that the constituent ratio of D-lactic acid and L-lactic acid is 98: 2-85: 15 or 2: 98-15: 85, and more preferably 95: 5-85: 15 or 5 : 95-15: 85 is preferable. A lactic acid polymer in which the constituent ratio of D-lactic acid and L-lactic acid is 100: 0 or 0: 100 becomes a very high crystalline resin, has a high melting point, and tends to have excellent heat resistance and mechanical properties. . However, when used as a heat-shrinkable film, if the crystallinity is very high, stretching and orientation crystallization proceeds at the time of stretching, making it difficult to adjust the heat shrinkage rate. Even if a film in a crystalline state is obtained, crystallization proceeds due to heat at the time of shrinkage, and shrinkage finish performance is lowered. In the case of a DL-lactic acid copolymer, it is known that the crystallinity decreases as the proportion of the optical isomer increases. Therefore, when a lactic acid polymer is used as the material of the heat-shrinkable film, it is preferable that the crystallinity is appropriately reduced within the range of the DL composition ratio described above. In addition, for the purpose of adjusting the D-form and the L-form, it is also possible to blend two or more types of lactic acid polymers having different constituent ratios of D-lactic acid and L-lactic acid.

本発明の乳酸系重合体は、上記いずれかの乳酸と、他のヒドロキシカルボン酸単位との共重合体であっても、また、脂肪族ジオールや脂肪族ジカルボン酸との共重合体であってもよい。ポリ乳酸系重合体に共重合される上記の「他のヒドロキシ−カルボン酸単位」としては、乳酸の光学異性体(L−乳酸に対してはD−乳酸、D−乳酸に対してはL−乳
酸)、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシn−酪酸、2−ヒドロキシ3,3−ジメチル酪酸、2−ヒドロキシ3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の2官能脂肪族ヒドロキシ−カルボン酸やカプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類などが挙げられる。
乳酸系重合体に共重合される上記「脂肪族ジオール」としては、エチレングリコール、1,4−ブタンジオール,1,4−シクロヘキサンジメタノールなどが挙げられる。
また、ポリ乳酸系重合体に共重合される上記「脂肪族ジカルボン酸」としては、コハク酸、アジピン酸、スベリン酸、セバシン酸およびドデカン二酸などが挙げられる。
The lactic acid-based polymer of the present invention may be a copolymer of any of the above lactic acids and other hydroxycarboxylic acid units, or a copolymer of an aliphatic diol or an aliphatic dicarboxylic acid. Also good. The above-mentioned “other hydroxy-carboxylic acid units” copolymerized with a polylactic acid polymer include optical isomers of lactic acid (D-lactic acid for L-lactic acid, L-lactic acid for D-lactic acid). Lactic acid), glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyn-butyric acid, 2-hydroxy3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaprone Examples thereof include bifunctional aliphatic hydroxy-carboxylic acids such as acids and lactones such as caprolactone, butyrolactone, and valerolactone.
Examples of the “aliphatic diol” copolymerized with the lactic acid-based polymer include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like.
Examples of the “aliphatic dicarboxylic acid” copolymerized with the polylactic acid polymer include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.

さらに、必要に応じ、少量共重合成分としてテレフタル酸のような非脂肪族ジカルボン酸及び/又はビスフェノールAのエチレンオキサイド付加物のような非脂肪族ジオールを用いて共重合させてもよい。また、分子量増大を目的として少量の鎖延長剤、例えばジイソシアネート化合物、エポキシ化合物、酸無水物などを共重合させることもできる。   Further, if necessary, copolymerization may be carried out using a non-aliphatic dicarboxylic acid such as terephthalic acid and / or a non-aliphatic diol such as an ethylene oxide adduct of bisphenol A as a small amount copolymerization component. A small amount of a chain extender such as a diisocyanate compound, an epoxy compound, or an acid anhydride can be copolymerized for the purpose of increasing the molecular weight.

乳酸系重合体の重合法としては、縮重合法、開環重合法、その他の公知の重合法を採用することができる。例えば、縮重合法では、L−乳酸或いはD−乳酸或いはこれらの混合物を直接脱水縮重合して任意の組成を持った乳酸系重合体を得ることができる。また、開環重合法では、乳酸の環状二量体であるラクチドを、必要に応じて重合調整剤等を用いながら、所定の触媒の存在下で開環重合して任意の組成をもつ乳酸系重合体を得ることができる。この際、ラクチドには、L−乳酸の二量体であるL−ラクチド、D−乳酸の二量体であるD−ラクチド、或いはL−乳酸とD−乳酸からなるDL−ラクチドがあり、これらを必要に応じて混合して重合することにより任意の組成及び結晶性を有する乳酸系重合体を得ることができる。   As a polymerization method for the lactic acid-based polymer, a condensation polymerization method, a ring-opening polymerization method, and other known polymerization methods can be employed. For example, in the condensation polymerization method, L-lactic acid, D-lactic acid, or a mixture thereof can be directly dehydrated and condensation polymerized to obtain a lactic acid polymer having an arbitrary composition. In addition, in the ring-opening polymerization method, lactide, which is a cyclic dimer of lactic acid, is subjected to ring-opening polymerization in the presence of a predetermined catalyst and using a lactic acid series having an arbitrary composition, if necessary, using a polymerization regulator or the like. A polymer can be obtained. In this case, lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, or DL-lactide composed of L-lactic acid and D-lactic acid. By mixing and polymerizing as necessary, a lactic acid-based polymer having an arbitrary composition and crystallinity can be obtained.

本発明に用いられる乳酸系重合体の質量平均分子量の好ましい範囲は、5万から40万、より好ましくは10万から25万である。5万以上の分子量であれば好適な実用物性を発揮し、また、40万以下であれば溶融粘度が高過ぎることなく良好な成形加工性を発揮する。なお、ポリ乳酸系重合体の代表的なものとしては、島津製作所製ラクティシリーズ、三井化学製レイシアシリーズ、カーギル・ダウ製Nature Worksシリーズなどが挙げられる。   The preferred range of the weight average molecular weight of the lactic acid polymer used in the present invention is 50,000 to 400,000, more preferably 100,000 to 250,000. If the molecular weight is 50,000 or more, suitable practical physical properties are exhibited, and if it is 400,000 or less, good moldability is exhibited without the melt viscosity being too high. Representative examples of the polylactic acid-based polymer include the Lacty series manufactured by Shimadzu Corporation, the Lacia series manufactured by Mitsui Chemicals, and the Nature Works series manufactured by Cargill Dow.

(脂肪族ポリエステル)
本発明においては、乳酸系重合体以外の脂肪族ポリエステルをブレンドすることができる。使用される脂肪族ポリエステルとしては、乳酸系重合体を除く生分解性脂肪族ポリエステル、例えば、乳酸系重合体を除くポリヒドロキシカルボン酸、脂肪族ジオールと脂肪族ジカルボン酸とを縮合して得られる脂肪族ポリエステル、環状ラクトン類を開環重合して得られる脂肪族ポリエステル、合成系脂肪族ポリエステル、菌体内で生合成される脂肪族ポリエステルなどを挙げることができる。なお、本発明で用いる脂肪族ポリエステルは、質量平均分子量1万〜40万、好ましくは分子量5万〜30万、更に好ましくは10万〜30万のポリマーとしての脂肪族ポリエステルであり、可塑剤として使用される低分子量の脂肪族ポリエステルとは区別される。両者の違いは、配合する乳酸系樹脂のガラス転移温度(Tg)の低下の有無に現れる。
(Aliphatic polyester)
In the present invention, an aliphatic polyester other than the lactic acid polymer can be blended. The aliphatic polyester used is obtained by condensing a biodegradable aliphatic polyester excluding a lactic acid polymer, for example, polyhydroxycarboxylic acid excluding a lactic acid polymer, an aliphatic diol and an aliphatic dicarboxylic acid. Examples thereof include aliphatic polyesters, aliphatic polyesters obtained by ring-opening polymerization of cyclic lactones, synthetic aliphatic polyesters, and aliphatic polyesters biosynthesized in cells. The aliphatic polyester used in the present invention is an aliphatic polyester as a polymer having a mass average molecular weight of 10,000 to 400,000, preferably 50,000 to 300,000, more preferably 100,000 to 300,000, and as a plasticizer. A distinction is made from the low molecular weight aliphatic polyesters used. The difference between the two appears in the presence or absence of a decrease in the glass transition temperature (Tg) of the lactic acid resin to be blended.

乳酸系重合体以外の上記の「ポリヒドロキシカルボン酸」としては、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等のヒドロキシカルボン酸の単独重合体や共重合体を挙げることができる。   As the above “polyhydroxycarboxylic acid” other than the lactic acid polymer, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy- Examples thereof include homopolymers and copolymers of hydroxycarboxylic acids such as 3-methylbutyric acid, 2-methyllactic acid, and 2-hydroxycaproic acid.

脂肪族ジオールと脂肪族ジカルボン酸とを縮合して得られる脂肪族ポリエステルとしては、次に説明する脂肪族ジオール及び脂肪族ジカルボン酸の中からそれぞれ1種類或いは2種類以上選んで縮合するか、或いは必要に応じてイソシアネート化合物等でジャンプアップして所望のポリマー(高分子)として得ることができる。この際の「脂肪族ジオール」としては、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等を代表的に挙げることができ、上記の「脂肪族ジカルボン酸」としては、コハク酸、アジピン酸、スベリン酸、セバシン酸およびドデカン二酸等を代表的に挙げることができる。なお、適量の芳香族ジカルボン酸を共重合した芳香族脂肪族ポリエステルもこれらの範疇に含まれる。なお、芳香族脂肪族ポリエステルにおいて生分解性を発現させるためには芳香族の合間に脂肪族鎖が存在することが必要であり、この際の芳香族ジカルボン酸成分としては、例えば、イソフタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸等を挙げることができる。   As the aliphatic polyester obtained by condensing an aliphatic diol and an aliphatic dicarboxylic acid, one or two or more kinds of aliphatic diols and aliphatic dicarboxylic acids described below are selected and condensed, or If necessary, it can be jumped up with an isocyanate compound or the like to obtain a desired polymer (polymer). Examples of the “aliphatic diol” in this case include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like, and examples of the “aliphatic dicarboxylic acid” include succinic acid. Typical examples include acids, adipic acid, suberic acid, sebacic acid and dodecanedioic acid. An aromatic aliphatic polyester copolymerized with an appropriate amount of an aromatic dicarboxylic acid is also included in these categories. In order to develop biodegradability in the aromatic aliphatic polyester, it is necessary that an aliphatic chain exists between the aromatics. As the aromatic dicarboxylic acid component at this time, for example, isophthalic acid, Examples include terephthalic acid and 2,6-naphthalenedicarboxylic acid.

環状ラクトン類を開環縮合した脂肪族ポリエステルとしては、環状モノマーであるε−カプロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン等が代表的に挙げられ、これらから1種類又はそれ以上を選択して重合することにより得ることができる。   Typical examples of the aliphatic polyester obtained by ring-opening condensation of cyclic lactones include ε-caprolactone, δ-valerolactone, β-methyl-δ-valerolactone, and the like, which are cyclic monomers, and one or more of them. Can be obtained by polymerization.

合成系脂肪族ポリエステルとしては、環状酸無水物とオキシラン類、例えば、無水コハク酸とエチレンオキサイド、プロピオンオキサイド等との共重合体等を挙げることができる。   Examples of synthetic aliphatic polyesters include cyclic acid anhydrides and oxiranes, such as copolymers of succinic anhydride with ethylene oxide, propion oxide, and the like.

菌体内で生合成される脂肪族ポリエステルとしては、アルカリゲネスユートロファスを始めとする菌体内でアセチルコエンチームA(アセチルCoA)により生合成される脂肪族ポリエステルなどを挙げることができる。この脂肪族ポリエステルは、主にポリ−β−ヒドロキシ酪酸(ポリ3HB)であるが、プラスチックとしての実用特性向上のために、吉草酸ユニット(HV)を共重合し、ポリ(3HB−CO−3HV)の共重合体にすることが工業的に有利である。一般的には、HV共重合比は0〜40%である。さらに長鎖のヒドロキシアルカノエートを共重合してもよい。   Examples of the aliphatic polyester biosynthesized in the fungus body include an aliphatic polyester biosynthesized with acetylcoenteam A (acetyl CoA) in the fungus body, such as Alkaline genus eutrophus. This aliphatic polyester is mainly poly-β-hydroxybutyric acid (poly-3HB). In order to improve practical properties as a plastic, valeric acid unit (HV) is copolymerized to produce poly (3HB-CO-3HV). It is industrially advantageous to use a copolymer of Generally, the HV copolymerization ratio is 0 to 40%. Further, a long-chain hydroxyalkanoate may be copolymerized.

本発明に用いられる脂肪族ポリエステルは、脂肪族ポリエステルのガラス転移温度(Tg)は、0℃以下に少なくとも一つあるのが好ましく、より好ましくは−20℃以下である。これによって、熱収縮性フィルムに適切な耐破断性を付与することが可能となる。脂肪族ポリエステルの融点(Tm)については特に限定しないが、融点が100℃以上の脂肪族ポリエステルを含ませることによって、主収縮方向に対して垂直な方向(MD、引取り方向、或いは縦方向とも言う。)の収縮を低減させることが可能となる。特に縦方向の収縮を出来る限り抑えたい用途に有効である。その理由は、明確に判明しているわけではないが、脂肪族ポリエステルは収縮前フィルム中で結晶化しているため、乳酸系重合体が収縮する温度領域(60℃〜100℃の範囲)ではこの脂肪族ポリエステルは収縮時においても結晶状態を保つこととなり、その結果、柱のような役割を果たすことによって縦収縮を抑えているのではないかと考えることができる。なお、本発明に用いる脂肪族ポリエステルは、共重合体であっても構わない。例えば芳香族ジカルボン酸成分を含む芳香族脂肪族ポリエステルやカーボネート基を持つ脂肪族ポリエステルカーボネイト(例えば、14ブタンジオール/コハク酸重合体にカーボネート基を持つ構造など)など、生分解性を有する脂肪族ポリエステルであればよい。   The aliphatic polyester used in the present invention preferably has at least one glass transition temperature (Tg) of 0 ° C. or less, more preferably −20 ° C. or less. This makes it possible to impart appropriate fracture resistance to the heat-shrinkable film. The melting point (Tm) of the aliphatic polyester is not particularly limited, but by including an aliphatic polyester having a melting point of 100 ° C. or higher, the direction perpendicular to the main shrinkage direction (MD, take-up direction, or longitudinal direction). )) Can be reduced. This is particularly effective for applications where longitudinal shrinkage is to be suppressed as much as possible. The reason for this is not clearly understood, but since the aliphatic polyester is crystallized in the pre-shrink film, this is not the case in the temperature range where the lactic acid polymer shrinks (range of 60 ° C. to 100 ° C.). The aliphatic polyester maintains a crystalline state even during shrinkage, and as a result, it can be considered that longitudinal shrinkage is suppressed by acting as a column. The aliphatic polyester used in the present invention may be a copolymer. For example, an aliphatic aliphatic polyester having an aromatic dicarboxylic acid component or an aliphatic polyester carbonate having a carbonate group (for example, a structure having a carbonate group in a 14-butanediol / succinic acid polymer), an aliphatic having biodegradability Any polyester may be used.

脂肪族ポリエステルの含有量は、透明性が求められる用途の場合には、当該脂肪族ポリエステルを含有する層において、10質量%〜40質量%程度であるのが好ましい。これに対し、さらに透明性が非常に高く要求される場合は、10質量%〜25質量%が好ましく、特に10質量%〜20質量%であるのがより好ましい。10質量%以上であれば耐破断性を充分に得られ、また25質量%以下であれば透明性も充分に確保することができる。   In the case where the transparency is required, the content of the aliphatic polyester is preferably about 10% by mass to 40% by mass in the layer containing the aliphatic polyester. On the other hand, when the transparency is required to be very high, the content is preferably 10% by mass to 25% by mass, more preferably 10% by mass to 20% by mass. If it is 10% by mass or more, sufficient fracture resistance can be obtained, and if it is 25% by mass or less, transparency can be sufficiently secured.

(可塑剤)
本発明の熱収縮性フィルムには、可塑剤を含有させることができる。可塑剤を含有させることによって、耐破断性を向上させることが可能となる。特に乳酸系重合体と脂肪族ポリエステル(乳酸系重合体を除く)とを併有する場合には、特定の溶解パラメータ(SP値)を示す可塑剤を含ませることが好ましい。
(Plasticizer)
The heat-shrinkable film of the present invention can contain a plasticizer. By including a plasticizer, the fracture resistance can be improved. In particular, when a lactic acid polymer and an aliphatic polyester (excluding a lactic acid polymer) are used together, it is preferable to include a plasticizer exhibiting a specific solubility parameter (SP value).

本発明に用いることができる可塑剤は、その溶解パラメータ(SP値)が、乳酸系重合体のSP値と、脂肪族ポリエステル(乳酸系重合体を除く)のSP値の中間値よりも脂肪族ポリエステルのSP値寄りであることが好ましい。即ち、通常(理論的にも)乳酸系重合体のSP値が脂肪族ポリエステル(乳酸系重合体を除く)のSP値よりも高いから、その中間値よりも低い値であるのが好ましく、中でも、乳酸系重合体のSP値と脂肪族ポリエステル(乳酸系重合体を除く)のSP値との間ではなく、脂肪族ポリエステル(乳酸系重合体を除く)のSP値を越えた範囲の値、即ち脂肪族ポリエステル(乳酸系重合体を除く)のSP値よりも低い値であるのがより好ましい。   The plasticizer that can be used in the present invention has an aliphatic parameter whose SP is less than the intermediate value between the SP value of the lactic acid polymer and the SP value of the aliphatic polyester (excluding the lactic acid polymer). It is preferably close to the SP value of polyester. That is, since the SP value of a lactic acid polymer is usually (in theory) higher than that of an aliphatic polyester (excluding a lactic acid polymer), it is preferably a value lower than the intermediate value. , Not between the SP value of the lactic acid polymer and the SP value of the aliphatic polyester (excluding the lactic acid polymer), but in a range exceeding the SP value of the aliphatic polyester (excluding the lactic acid polymer), That is, it is more preferable that the value is lower than the SP value of the aliphatic polyester (excluding the lactic acid polymer).

具体的に言えば、一般的に乳酸系重合体のSP値は11.12(cal/cm3)1/2であり、脂肪族ポリエステルとしてポリカプロラクトンを用いる場合、そのSP値は10.18(cal/cm3)1/2であるから、可塑剤のSP値は、これらの中間値である10.65よりも低い値が好ましく、中でも10.18よりも低い値であることがより好ましい。その他の脂肪族ポリエステル、例えばポリブチレンサクシネートのSP値は10.87であり、ポリブチレンサクシネート/アジペートのSP値はサクシネートとアジペートの比率により変化するが、ポリブチレンサクシネートのSP値10.87よりも低くなることを考慮すると、本発明に用いることができる可塑剤のSP値の範囲は、8.5〜9.5(cal/cm3)1/2であるのが好ましい。SP値の範囲が、8.5〜9.5(cal/cm3)1/2である可塑剤の例としては、ジブチルアジペート、ジイソブチルアジペート、ジイソノニルアジペート、ジイソデシルアジペート、ジ(2−エチルヘキシル)アジペート、ジ(n―オクチル)アジペート、ジ(n―デシル)アジペート、ジブチルジグリコールアジペート、ジブチルセバケート、ジ(2−エチルヘキシル)セバケート、ジ(n―ヘキシル)アゼレート、ジ(2−エチルヘキシル)アゼレート、ジ(2−エチルヘキシル)ドデカンジオネート等の脂肪酸エステル系可塑剤、ジイソノニルフタレート、ジイソデシルフタレート、ジ(2−エチルヘキシル)フタレート等のフタル酸エステル系可塑剤、トリ(2−エチルヘキシル)トリメリテート等のトリメリット酸エステル系可塑剤などを挙げることができるが、これらに限定されるものではない。なお、上記のSP値は、Fedors法[Polym.Eng.Sci.14(2)152,(1974)]によって算出される値である。   Specifically, the SP value of a lactic acid polymer is generally 11.12 (cal / cm 3) 1/2, and when polycaprolactone is used as the aliphatic polyester, the SP value is 10.18 (cal / Cm3) 1/2, the plasticizer SP value is preferably lower than the intermediate value of 10.65, and more preferably lower than 10.18. The SP value of other aliphatic polyesters, such as polybutylene succinate, is 10.87, and the SP value of polybutylene succinate / adipate varies with the ratio of succinate to adipate, but the SP value of polybutylene succinate is 10. In view of the fact that it is lower than 87, the range of the SP value of the plasticizer that can be used in the present invention is preferably 8.5 to 9.5 (cal / cm3) 1/2. Examples of plasticizers having an SP value in the range of 8.5 to 9.5 (cal / cm 3) 1/2 include dibutyl adipate, diisobutyl adipate, diisononyl adipate, diisodecyl adipate, di (2-ethylhexyl) adipate, Di (n-octyl) adipate, di (n-decyl) adipate, dibutyl diglycol adipate, dibutyl sebacate, di (2-ethylhexyl) sebacate, di (n-hexyl) azelate, di (2-ethylhexyl) azelate, di Fatty acid ester plasticizers such as (2-ethylhexyl) dodecanedionate, phthalic acid ester plasticizers such as diisononyl phthalate, diisodecyl phthalate, di (2-ethylhexyl) phthalate, and trimellitic acid such as tri (2-ethylhexyl) trimellitate ester And the like can be mentioned plasticizer is not limited thereto. In addition, said SP value is Fedors method [Polym. Eng. Sci. 14 (2) 152, (1974)].

上記範囲のSP値を有する可塑剤を添加することによって、脂肪族ポリエステルの量を低減しつつフィルムの耐破断性を高めることができ、透明性の低下も最小限に抑えることができる。このような効果が得られる理由は明確ではないが、次のように考えることができる。即ち、乳酸系重合体に脂肪族ポリエステルを添加することによってその耐衝撃性は向上するが、添加する脂肪族ポリエステルの量が多いと乳酸系重合体が本来有する透明性が損なわれてしまう。そこで、可塑剤によって脂肪族ポリエステルを可塑化することにより、脂肪族ポリエステルを可塑化してその耐衝撃性改良能を高めて、より少ない配合量で耐破断性を改良できるようにするのが好ましい。しかし、乳酸系重合体と脂肪族ポリエステル(乳酸系重合体以外)との混合系においては、乳酸系重合体が形成している海相に脂肪族ポリエステルの島が分散する、いわゆる海−島構造を形成するため、添加する可塑剤にの種類よっては乳酸系重合体相(海相)へ移行して乳酸系重合体相(海相)のガラス転移温度を低下させ、脂肪族ポリエステル相(島相)を可塑化しないことがある。これに対して、上記の特定の可塑剤であれば、そのSP値が脂肪族ポリエステル(乳酸系重合体を除く)のSP値に近くて相溶性が高いため、海相への移行が抑えられ島相への移行が進み、海相のガラス転移温度の低下が抑えられ、島相を形成している脂肪族ポリエステルの軟質性が向上し、かつ屈折率を低下させることができ、その結果、乳酸系重合体と脂肪族ポリエステルとの屈折率差が小さくなり、透明性を維持しつつ耐破断性を向上させることができるのではないか、と考えることができる。なお、SP値が、本規定の最低値(8.5)より低過ぎると、脂肪族ポリエステル相への移行もしづらくなり、耐破断性向上の効果が得られ難くなると考えられる。   By adding a plasticizer having an SP value in the above range, the rupture resistance of the film can be increased while reducing the amount of aliphatic polyester, and a decrease in transparency can be minimized. The reason why such an effect is obtained is not clear, but can be considered as follows. That is, the impact resistance is improved by adding an aliphatic polyester to the lactic acid polymer, but if the amount of the aliphatic polyester to be added is large, the transparency inherent in the lactic acid polymer is impaired. Therefore, it is preferable to plasticize the aliphatic polyester with a plasticizer to plasticize the aliphatic polyester to enhance its impact resistance improving ability so that the fracture resistance can be improved with a smaller amount. However, in a mixed system of a lactic acid polymer and an aliphatic polyester (other than a lactic acid polymer), a so-called sea-island structure in which the islands of the aliphatic polyester are dispersed in the sea phase formed by the lactic acid polymer. Depending on the type of plasticizer to be added, the lactic acid polymer phase (sea phase) shifts to lower the glass transition temperature of the lactic acid polymer phase (sea phase) and the aliphatic polyester phase (island Phase) may not be plasticized. On the other hand, if it is said specific plasticizer, since SP value is close to SP value of aliphatic polyester (except a lactic acid polymer) and compatibility is high, transfer to a sea phase is suppressed. The transition to the island phase is advanced, the decrease in the glass transition temperature of the sea phase is suppressed, the softness of the aliphatic polyester forming the island phase can be improved, and the refractive index can be lowered. It can be considered that the refractive index difference between the lactic acid-based polymer and the aliphatic polyester becomes small, and the fracture resistance can be improved while maintaining transparency. In addition, when SP value is too lower than the minimum value (8.5) of this prescription | regulation, it will become difficult to transfer to an aliphatic polyester phase, and it will be difficult to acquire the effect of an improvement in fracture resistance.

可塑剤の含有量は、乳酸系重合体及び脂肪族ポリエステル樹脂の合計量100質量部に対して0.5〜15質量部であるのが好ましく、さらに1〜10質量部であるのが好ましく、特に2〜5質量部であるのがより好ましい。15質量部以下の添加量であれば、混合系樹脂部のガラス転移温度を熱収縮性フィルムとして使用可能な範囲に確保することができる。   The content of the plasticizer is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the lactic acid polymer and the aliphatic polyester resin. In particular, it is more preferably 2 to 5 parts by mass. If it is an addition amount of 15 parts by mass or less, the glass transition temperature of the mixed resin part can be secured in a range that can be used as a heat shrinkable film.

(積層構成)
本発明の熱収縮性フィルムは、積層構成からなることができる。特に、乳酸系重合体と、乳酸系重合体以外の脂肪族ポリエステル樹脂と、可塑剤とを含有する中心層を備え、その外側に、乳酸系重合体を90質量%以上含有する外側層を積層してなる構成が好ましい。
(Laminated structure)
The heat-shrinkable film of the present invention can have a laminated structure. In particular, a central layer containing a lactic acid polymer, an aliphatic polyester resin other than the lactic acid polymer, and a plasticizer is provided, and an outer layer containing 90% by mass or more of the lactic acid polymer is laminated on the outside thereof. The structure formed is preferable.

外側層は、乳酸系重合体を主成分として含有することが、透明性を要求される用途において好ましい。乳酸系重合体と脂肪族ポリエステルは、延伸時の変形挙動が互いに異なるので、両樹脂の混合体を延伸する場合に表面荒れを起こしてヘーズが大幅に上昇して透明性が失われてしまう可能性がある。これは、透過光の拡散が起きるためにヘーズが上昇して透明感が低下するためである。しかし、中心層の表面に透明性の高い乳酸系重合体を主成分とする外側層を積層することにより、透過光の拡散を抑えて透明性を確保することができる。   The outer layer preferably contains a lactic acid-based polymer as a main component in applications where transparency is required. Lactic acid polymers and aliphatic polyesters have different deformation behaviors when stretched, so when stretching a mixture of both resins, surface roughness may occur and haze increases significantly, resulting in loss of transparency. There is sex. This is because the haze increases due to the diffusion of transmitted light and the transparency is lowered. However, by laminating an outer layer mainly composed of a highly transparent lactic acid polymer on the surface of the central layer, it is possible to suppress the diffusion of transmitted light and ensure transparency.

外側層での乳酸系重合体量の含有量は90質量%以上、好ましくは95質量%以上、より好ましくは100質量%である。ポリ乳酸系重合体量が90質量%以上であれば、延伸時の表面荒れが少なく外側層としての役割を充分に果たすことができる。また、外側層の乳酸系重合体は、中心層を構成する乳酸系重合体と同じ乳酸系重合体であっても、異なるものであってもよい。なお、特に限定しないが、フィルムが熱い状態のまま被覆された状態で接触しあうことによってフィルムが融着し、穴が開いてしまうことを回避するためにも、結晶性をある程度付与させることが好ましい。   The content of the lactic acid polymer in the outer layer is 90% by mass or more, preferably 95% by mass or more, and more preferably 100% by mass. When the amount of the polylactic acid polymer is 90% by mass or more, the surface roughness during stretching is small, and the role as the outer layer can be sufficiently achieved. Further, the lactic acid polymer of the outer layer may be the same lactic acid polymer as the lactic acid polymer constituting the central layer or may be different. Although not particularly limited, crystallinity may be imparted to some extent in order to prevent the film from fusing and forming holes by contacting the film while it is covered in a hot state. preferable.

外側層は、中心層表面の表面荒れの凹凸の平均高さよりも厚くなるように形成するのが好ましい。具体的には、1μm以上、好ましくは2μm以上に形成するのが好ましい。中心層の両外側に外側層を形成する場合、両方の外側層は同一厚み、同一組成とすることが収縮特性やカール防止等の点からは好ましいが、必ずしもそのように限定するものではない。   The outer layer is preferably formed so as to be thicker than the average height of the rough surface roughness of the center layer surface. Specifically, it is preferable to form 1 μm or more, preferably 2 μm or more. When the outer layers are formed on both outer sides of the central layer, it is preferable from the viewpoints of shrinkage characteristics and curling prevention that the both outer layers have the same thickness and the same composition, but it is not necessarily limited thereto.

なお、中心層の両外側に外側層を備えていなくても、本発明の特性を阻害しない範囲で、外側層の更に外側に他の層が存在していてもよい。   Even if the outer layer is not provided on both outer sides of the central layer, other layers may be present further outside the outer layer as long as the characteristics of the present invention are not impaired.

(無機粒子)
また、外層には、フィルム同士の滑り性を向上させる目的で、無機粒子を添加することができる。このような無機粒子は延伸時に表面に移行し、表面を荒らすことによって滑り性を付与する機能を有する。
(Inorganic particles)
In addition, inorganic particles can be added to the outer layer for the purpose of improving the slipperiness between films. Such inorganic particles move to the surface during stretching and have a function of imparting slipperiness by roughening the surface.

具体的な無機粒子としては、シリカ、タルク、カオリンなどの無機粒子があげられる。平均粒径は0.5〜5μm程度が好ましい。添加量は、最外層樹脂100質量部に対して、0.01部以上5.0部以下添加する事が好ましく、0.05部以上3.0部以下添加することがより好ましい。   Specific examples of inorganic particles include inorganic particles such as silica, talc, and kaolin. The average particle size is preferably about 0.5 to 5 μm. The addition amount is preferably 0.01 parts or more and 5.0 parts or less, and more preferably 0.05 parts or more and 3.0 parts or less, with respect to 100 parts by mass of the outermost resin layer.

(製造方法)
次に、本発明の熱収縮性フィルムの製造方法を具体的に説明するが、本発明の熱収縮性フィルムの製造方法が下記製造法に限定されるものではない。
(Production method)
Next, although the manufacturing method of the heat-shrinkable film of this invention is demonstrated concretely, the manufacturing method of the heat-shrinkable film of this invention is not limited to the following manufacturing method.

乳酸系重合体、必要に応じて脂肪族ポリエステル及びその他の成分を所定配合して混合する。この際、諸物性を調整する目的で、熱安定剤、光安定剤、光吸収剤、滑剤、可塑剤、無機充填剤、着色剤、顔料等を添加することができる。この混合物(混合体)を押出機で溶融させ、押出機の途中のベント溝や注入溝からの液添加によって可塑剤を所定量添加して押出す。但し、予め可塑剤を脂肪族ポリエステルに混合しておいてもよい。
押出に際しては、Tダイ法、チューブラ法などの既存の方法を任意に採用することができる。その際、分解による分子量の低下を考慮して温度設定をする必要がある。
A lactic acid polymer and, if necessary, an aliphatic polyester and other components are blended in a predetermined manner. At this time, a heat stabilizer, a light stabilizer, a light absorber, a lubricant, a plasticizer, an inorganic filler, a colorant, a pigment, and the like can be added for the purpose of adjusting various physical properties. This mixture (mixture) is melted by an extruder, and a predetermined amount of a plasticizer is added by extrusion from a vent groove or an injection groove in the middle of the extruder and extruded. However, a plasticizer may be mixed with the aliphatic polyester in advance.
In extruding, an existing method such as a T-die method or a tubular method can be arbitrarily employed. At that time, it is necessary to set the temperature in consideration of a decrease in molecular weight due to decomposition.

溶融押出された樹脂は、冷却ロール、空気、或いは水等で冷却した後、熱風、温水、赤外線、マイクロウエーブ等の適当な方法で再加熱し、ロール法、テンター法、チューブラ法等によって1軸又は2軸に延伸する。この際、延伸温度は、混合比や乳酸系重合体の結晶性など熱収縮性フィルムの要求用途に応じて調整する必要があるが、概ね70〜95℃の範囲で制御すればよい。延伸倍率は、混合比や乳酸系重合体の結晶性等、熱収縮性フィルムの要求用途に応じて調整する必要があるが、概ね主収縮方向においては1.5〜6倍の範囲で適宜決定すればよい。また、1軸延伸にするか2軸延伸にするかは目的の製品の用途によって決定すればよい。
なお、一般的には、横一軸延伸によって縦収縮を抑えるのが最も好ましいが、この場合、当該横一軸方向に対して垂直な方向は未延伸状態となるため、耐破断性が不十分となることがある。このため、当該垂直な方向にも延伸をかけることが好ましいが、例えば、上述の特定の可塑剤を添加することによって、縦収縮率と縦方向の耐破断性を両立させ、横延伸のみ或いは最小限の縦延伸のみで耐破断性を付与することができる。
The melt-extruded resin is cooled with a cooling roll, air, water, etc., and then reheated by a suitable method such as hot air, hot water, infrared rays, microwaves, etc., and uniaxially by a roll method, a tenter method, a tubular method, etc. Or it extends to biaxial. At this time, the stretching temperature needs to be adjusted according to the required application of the heat-shrinkable film such as the mixing ratio and the crystallinity of the lactic acid-based polymer, but may be controlled in the range of about 70 to 95 ° C. The draw ratio needs to be adjusted according to the required application of the heat-shrinkable film, such as the mixing ratio and the crystallinity of the lactic acid-based polymer, but is determined appropriately in the range of 1.5 to 6 times in the main shrinkage direction. do it. Whether to use uniaxial stretching or biaxial stretching may be determined depending on the intended use of the product.
In general, it is most preferable to suppress longitudinal shrinkage by lateral uniaxial stretching, but in this case, the direction perpendicular to the lateral uniaxial direction is in an unstretched state, and thus the fracture resistance is insufficient. Sometimes. For this reason, it is preferable to stretch in the vertical direction. For example, by adding the above-mentioned specific plasticizer, both the vertical shrinkage and the breakage resistance in the vertical direction can be achieved, and only the horizontal stretching or the minimum Fracture resistance can be imparted by only limited longitudinal stretching.

(ヘーズ)
更に、透明性については本発明では特に制限していないが、透明性が重視される使用態様の場合には、ヘーズ値(JIS K 7105)を10%以下、特に7%以下、中でも特に5%以下とするのが好ましい。
(Haze)
Further, the transparency is not particularly limited in the present invention. However, in the case of usage in which transparency is important, the haze value (JIS K 7105) is 10% or less, particularly 7% or less, and especially 5%. The following is preferable.

(加水分解防止剤)
また、本発明にかかる熱収縮性フィルムにおいては、高温度、高湿度における耐久性を付与する目的で、加水分解防止剤を添加することもできる。
(Hydrolysis inhibitor)
In the heat-shrinkable film according to the present invention, a hydrolysis inhibitor can be added for the purpose of imparting durability at high temperature and high humidity.

本発明に好ましく用いられる加水分解防止剤としては、カルボジイミド化合物等が挙げられる。カルボジイミド化合物としては、例えば、下記一般式の基本構造を有するものが好ましいものとして挙げられる。

―(N=C=N−R−)

式中、nは1以上の整数を示し、Rは有機系結合単位を示す。例えば、Rは脂肪族、脂環族、芳香族のいずれかであることができる。また、nは、通常、1〜50の間で適当な整数が選択される。
Examples of the hydrolysis inhibitor preferably used in the present invention include carbodiimide compounds. Preferred examples of the carbodiimide compound include those having a basic structure represented by the following general formula.

-(N = C = N-R-) n-

In the formula, n represents an integer of 1 or more, and R represents an organic bond unit. For example, R can be either aliphatic, alicyclic, or aromatic. In addition, n is generally an appropriate integer selected from 1 to 50.

具体的には、例えば、ビス(ジプロピルフェニル)カルボジイミド、ポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(p−フェニレンカルボジイミド)、ポリ(m−フェニレンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(メチル−ジイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)等、および、これらの単量体が、カルボジイミド化合物として挙げられる。これらのカルボジイミド化合物は、単独で使用しても、あるいは、2種以上組み合わせて使用してもよい。   Specifically, for example, bis (dipropylphenyl) carbodiimide, poly (4,4′-diphenylmethanecarbodiimide), poly (p-phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly (tolylcarbodiimide), poly ( Examples of the carbodiimide compound include diisopropylphenylenecarbodiimide), poly (methyl-diisopropylphenylenecarbodiimide), poly (triisopropylphenylenecarbodiimide), and the like. These carbodiimide compounds may be used alone or in combination of two or more.

本発明においては、フィルムを構成する、乳酸系重合体を主成分とする樹脂100質量部に対してカルボジイミド化合物を0.1〜3.0質量部添加することが好ましい。カルボジイミド化合物の添加量が0.1質量部以上であれば、得られるフィルムに耐加水分解性の改良効果が十分に発現される。また、カルボジイミド化合物の添加量が3.0質量部以下であれば、得られるフィルムの着色も少なく、十分な耐久性の向上を図ることができる。   In this invention, it is preferable to add 0.1-3.0 mass parts of carbodiimide compounds with respect to 100 mass parts of resin which has a lactic acid polymer as a main component which comprises a film. If the addition amount of the carbodiimide compound is 0.1 parts by mass or more, the hydrolysis resistance improving effect is sufficiently exhibited in the obtained film. Moreover, if the addition amount of a carbodiimide compound is 3.0 mass parts or less, there will be little coloring of the film obtained and sufficient durability improvement can be aimed at.

(生分解)
本発明の熱収縮性フィルムは、埋め立て処分された場合には微生物による分解が可能で、廃棄に伴う種々の問題が生じない。乳酸系重合体を主成分とする脂肪族ポリエステル系樹脂は、土壌中で、エステル結合が加水分解されて分子量が1,000程度に低下し、引き続き土壌中の微生物等により生分解される。
(Biodegradation)
The heat-shrinkable film of the present invention can be decomposed by microorganisms when disposed in landfills, and does not cause various problems associated with disposal. The aliphatic polyester resin mainly composed of a lactic acid polymer is hydrolyzed by microorganisms or the like in the soil after the ester bond is hydrolyzed in the soil and the molecular weight is reduced to about 1,000.

一方、ポリエチレンテレフタレート等の芳香族ポリエステル系樹脂は、分子内の結合安定性が高く、エステル結合部の加水分解が起こりにくい。したがって、芳香族ポリエステル系樹脂は、土壌中に埋められても分子量の低下は起こらず、微生物等による生分解も起こらない。その結果、長期にわたって土壌中に残存して、廃棄物埋め立て処理用地の短命化を促進したり、自然の景観や野生動植物の生活環境を損なう等の問題が生じる。   On the other hand, aromatic polyester-based resins such as polyethylene terephthalate have high intramolecular bond stability, and hydrolysis of ester bond portions hardly occurs. Therefore, even if the aromatic polyester resin is buried in the soil, the molecular weight does not decrease and biodegradation by microorganisms or the like does not occur. As a result, there are problems such as remaining in the soil for a long time, promoting the shortening of the landfill site for waste disposal, and damaging the natural landscape and the living environment of wild animals and plants.

以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の応用が可能である。なお、実施例に示す測定値および評価は以下に示すようにして行った。ここで、フィルムの引取り(流れ)方向をMD、その直交方向をTDと表示する。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples, and various applications are possible without departing from the technical idea of the present invention. In addition, the measured value and evaluation which are shown to an Example were performed as shown below. Here, the film take-up (flow) direction is indicated by MD, and its orthogonal direction is indicated by TD.

(測定および評価方法) (Measurement and evaluation method)

(1)フィルムのTD方向の収縮率
フィルムを測定方向に70mm、これに対する垂直方向に10mmの大きさに切り取りサンプルを作成した。そして、サンプル測定方向に50mm間隔の標線を付し、80℃の温水バスに10秒間浸漬させ、下記式により求めた。式中、Lは収縮後の標線間隔(単位mm)を表す。

収縮率=[(50−L)/50]×100(%)
(1) Shrinkage rate in the TD direction of the film A film was cut into a size of 70 mm in the measurement direction and 10 mm in the direction perpendicular to the measurement direction to prepare a sample. And the marked line of 50 mm space | interval was attached | subjected to the sample measurement direction, it was immersed in the 80 degreeC warm water bath for 10 second, and it calculated | required by the following formula. In the formula, L represents a marked line interval (unit: mm) after contraction.

Shrinkage rate = [(50−L) / 50] × 100 (%)

(2)収縮応力
各フィルムをTD方向に幅10mm長さ70mmに切り出し、50mmにてチャックしロードセルにタルミが無い様に固定した。その後、80±0.5℃のシリコンバスに試料片を浸し、1分後の応力を測定した。収縮応力は下記の式に当てはめて計算した。

収縮応力(MPa)=ロードセルにかかる応力(N)/試料片の断面積(mm2)
(2) Shrinkage stress Each film was cut into a width of 10 mm and a length of 70 mm in the TD direction, chucked at 50 mm, and fixed in a load cell so that there was no sagging. Then, the sample piece was immersed in a silicon bath at 80 ± 0.5 ° C., and the stress after 1 minute was measured. The shrinkage stress was calculated by applying the following formula.

Shrinkage stress (MPa) = stress applied to load cell (N) / cross-sectional area of sample piece (mm 2)

(3)ヘーズ
JIS K7105に準拠してヘーズを測定した。
(3) Haze Haze was measured according to JIS K7105.

(4)一次加工性
縦22cm、横14.5cm、深さ3.5cmのポリスチレン製の弁当箱に白飯500gを詰め、幅8cmで折り径(二枚に折り畳んだ際の長さ)18.4cmの各フィルムからなる結束帯を弁当箱の中央に被せ、鉄板を上部に乗せて熱風が当たらないようにした。
そして、鉄板を乗せた容器をキャタピラ式ハナガタ製熱風シュリンカー(形式T−350)へ容器のサイドに熱風が当たるように流した。熱風温度190℃,時間5秒で通過させて、弁当箱の蓋が開かずにタイトに結束されているか否かの具合を比較した。
○:弁当箱の蓋が開かずにタイトに結束されている。
△:弁当箱の蓋は開かないがフィルムがゴソゴソで外れそうである。
×(+):弁当箱のつぶれが発生した。
×(−):弁当箱の蓋は若干空き、収縮不足である。
(4) Primary workability A lunch box made of polystyrene having a length of 22 cm, a width of 14.5 cm, and a depth of 3.5 cm is filled with 500 g of white rice, and has a width of 8 cm and a folding diameter (length when folded into two) of 18.4 cm. A cable tie made of each film was placed in the center of the lunch box, and an iron plate was placed on top to prevent hot air from hitting it.
And the container which put the iron plate was flowed so that a hot air might hit the side of a container to the hot air shrinker (form T-350) made from a caterpillar type Nagata. A hot air temperature of 190 ° C. was passed for 5 seconds, and the condition of whether or not the lunch box lid was tightly bound without opening was compared.
○: The lunch box lid is tightly bound without opening.
Δ: The lunch box lid does not open, but the film is likely to come off.
× (+): The lunch box was crushed.
X (-): The lunch box cover is slightly empty and insufficiently contracted.

(5)弁当箱潰れ
縦22cm、横14.5cm、深さ3.5cmのポリスチレン製の弁当箱に白飯500gを詰め、幅8cmで折り径(二枚に折り畳んだ際の長さ)18.4cmの各フィルムからなる結束帯を弁当箱の中央に被せ、弁当箱の横からヒートガンで加熱して弁当箱の横側のみ収縮させた。その後、500Wの電子レンジにて4分間加熱を行い、弁当箱の潰れ具合を比較した。評価は次の表に示す3段階で行なった。
○:弁当箱のつぶれが発生しなかった。
×:弁当箱のつぶれが発生した。
(5) Lunch box crushing Polystyrene lunch box 22cm long, 14.5cm wide, 3.5cm deep is packed with 500g of white rice, 8cm wide and folded (length when folded into two) 18.4cm A binding band made of each film was placed on the center of the lunch box and heated by a heat gun from the side of the lunch box to shrink only the side of the lunch box. Then, it heated for 4 minutes with the 500W microwave oven, and the crushing condition of the lunch box was compared. Evaluation was performed in three stages shown in the following table.
○: The lunch box did not collapse.
X: The lunch box was crushed.

[実施例1]
乳酸系重合体1(カーギル・ダウ社製「NatureWorks4050」、L−乳酸/D−乳酸=94.5/5.5、質量平均分子量:20万)50質量%、乳酸系重合体2(カーギル・ダウ社製「NatureWorks4060」、L−乳酸/D−乳酸=88.0/12.0、質量平均分子量20万)30質量%、ポリカプロラクトン(ダイセル化学社製「セルグーリンPH−7」、融点:61℃、ガラス転移温度:−58℃)12質量%、ポリブチレンサクシネート(昭和高分子社製「ビオノーレ1010」、融点:114℃、ガラス転移温度:−32℃)8質量%からなる樹脂を中間層として、前記乳酸系重合体1を50質量%、前記乳酸系重合体2を50質量%とした混合樹脂(粒径1.6μmのアルミナシリカが0.15%添加されている)を外層原料として、中間層、外層の混合原料を別々の押出機にて190℃〜210℃にて混練し、中間層を構成する混合樹脂100質量部に対してジ(2−エチルヘキシル)アゼレート(DOZ:SP値8.96)を3質量部ベント溝より添加し、200℃でTダイ内で合流させ、表層/中間層/裏層の2種3層構造からなる溶融体を約36℃のキャスティングロールにて急冷し、未延伸シートを得た。この未延伸シートを長手方向に60℃で1.08倍のロール延伸、次いで、幅方向に65℃で3.5倍延伸し、厚さ50μmの熱収縮フィルム(積層比:5μm/40μm/5μm)を得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Example 1]
Lactic acid polymer 1 (Cargill Dow “Nature Works 4050”, L-lactic acid / D-lactic acid = 94.5 / 5.5, mass average molecular weight: 200,000) 50% by mass, lactic acid polymer 2 (Cargill “NatureWorks 4060” manufactured by Dow, L-lactic acid / D-lactic acid = 88.0 / 12.0, mass average molecular weight 200,000, 30% by mass, polycaprolactone (“Serguline PH-7” manufactured by Daicel Chemical Industries, Ltd., melting point: 61 C., glass transition temperature: -58.degree. C.) 12% by mass, polybutylene succinate (Showa Polymers "Bionore 1010", melting point: 114.degree. C., glass transition temperature: -32.degree. C.) 8% by mass of resin As a layer, a mixed resin containing 50% by mass of the lactic acid polymer 1 and 50% by mass of the lactic acid polymer 2 (0.15% of alumina silica having a particle diameter of 1.6 μm was added). The intermediate layer and the mixed raw material of the outer layer are kneaded in a separate extruder at 190 ° C. to 210 ° C., and the di (2- Ethylhexyl) azelate (DOZ: SP value 8.96) is added from 3 parts by mass vent groove, and merged in a T die at 200 ° C., and a melt composed of a two-layer three-layer structure of surface layer / intermediate layer / back layer is obtained. The sheet was quenched with a casting roll at about 36 ° C. to obtain an unstretched sheet. This unstretched sheet was roll-stretched 1.08 times at 60 ° C. in the longitudinal direction, then stretched 3.5 times at 65 ° C. in the width direction, and a heat-shrinkable film having a thickness of 50 μm (lamination ratio: 5 μm / 40 μm / 5 μm) ) Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[実施例2]
乳酸系重合体1(カーギル・ダウ社製「NatureWorks4050」、L−乳酸/D−乳酸=94.5/5.5、質量平均分子量:20万)25質量%、乳酸系重合体2(カーギル・ダウ社製「NatureWorks4060」、L−乳酸/D−乳酸=88.0/12.0、質量平均分子量20万)55質量%、ポリカプロラクトン(ダイセル化学社製「セルグーリンPH−7」、融点:61℃、ガラス転移温度:−58℃)12質量%、ポリブチレンサクシネート(昭和高分子社製「ビオノーレ1010」、融点:114℃、ガラス転移温度:−32℃)8質量%からなる樹脂を中間層として、前記乳酸系重合体1を40質量%、前記乳酸系重合体2を60質量%とした混合樹脂(粒径1.6μmのアルミナシリカが0.15%添加されている)を外層原料として、中間層、外層の混合原料を別々の押出機にて190℃〜210℃にて混練し、中間層を構成する混合樹脂100質量部に対してジ(2−エチルヘキシル)アゼレート(DOZ:SP値8.96)を5質量部ベント溝より添加し、200℃でTダイ内で合流させ、表層/中間層/裏層の2種3層構造からなる溶融体を約36℃のキャスティングロールにて急冷し、未延伸シートを得た。この未延伸シートを長手方向に60℃で1.02倍のロール延伸、次いで、幅方向に65℃で3.5倍延伸し、厚さ50μmの熱収縮フィルム(積層比:5μm/40μm/5μm)を得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Example 2]
Lactic acid-based polymer 1 (“Nature Works 4050” manufactured by Cargill Dow, L-lactic acid / D-lactic acid = 94.5 / 5.5, mass average molecular weight: 200,000) 25% by mass, lactic acid-based polymer 2 (Cargill “NatureWorks 4060” manufactured by Dow, L-lactic acid / D-lactic acid = 88.0 / 12.0, mass average molecular weight 200,000, 55% by mass, polycaprolactone (“Serguline PH-7” manufactured by Daicel Chemical Industries, Ltd., melting point: 61 C., glass transition temperature: -58.degree. C.) 12% by mass, polybutylene succinate (Showa Polymers "Bionore 1010", melting point: 114.degree. C., glass transition temperature: -32.degree. C.) 8% by mass of resin As a layer, a mixed resin containing 40% by mass of the lactic acid polymer 1 and 60% by mass of the lactic acid polymer 2 (0.15% of alumina silica having a particle diameter of 1.6 μm was added). The intermediate layer and the mixed raw material of the outer layer are kneaded in a separate extruder at 190 ° C. to 210 ° C., and the di (2- Ethylhexyl) azelate (DOZ: SP value 8.96) is added from a 5 mass part vent groove, and merged in a T-die at 200 ° C., and a melt comprising a surface layer / intermediate layer / back layer two-layer / three-layer structure is obtained. The sheet was quenched with a casting roll at about 36 ° C. to obtain an unstretched sheet. This unstretched sheet was roll-stretched 1.02 times at 60 ° C. in the longitudinal direction, and then stretched 3.5 times at 65 ° C. in the width direction to give a heat-shrinkable film having a thickness of 50 μm (lamination ratio: 5 μm / 40 μm / 5 μm). ) Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[実施例3]
乳酸系重合体1(カーギル・ダウ社製「NatureWorks4050」、L−乳酸/D−乳酸=94.5/5.5、質量平均分子量:20万)45質量%、乳酸系重合体2(カーギル・ダウ社製「NatureWorks4060」、L−乳酸/D−乳酸=88.0/12.0、質量平均分子量20万)45質量%、脂肪族ポリエステルであるポリブチレンサクシネート/アジペート(商品名:ビオノーレ#3003 :昭和高分子製)10質量%の混合樹脂を押出機にて190〜210℃で混練りし、200℃でTダイより溶融押出しし、溶融体を約36℃のキャスティングロールにて急冷し、未延伸シートを得た。この未延伸シートを長手方向に60℃で1.02倍のロール延伸、次いで、幅方向にテンターにて75℃で4.0倍延伸し、約50μmの熱収縮フィルムを得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Example 3]
Lactic acid-based polymer 1 (“Nature Works 4050” manufactured by Cargill Dow, L-lactic acid / D-lactic acid = 94.5 / 5.5, mass average molecular weight: 200,000) 45% by mass, lactic acid-based polymer 2 (Cargill “NatureWorks 4060” manufactured by Dow, L-lactic acid / D-lactic acid = 88.0 / 12.0, weight average molecular weight 200,000) 45% by mass, polybutylene succinate / adipate which is an aliphatic polyester (trade name: Bionore #) 3003: manufactured by Showa High Polymer Co., Ltd.) 10% by weight of mixed resin is kneaded at 190 to 210 ° C. with an extruder, melt extruded from a T die at 200 ° C., and the melt is rapidly cooled with a casting roll at about 36 ° C. An unstretched sheet was obtained. This unstretched sheet was roll-stretched 1.02 times at 60 ° C. in the longitudinal direction, and then stretched 4.0 times at 75 ° C. by a tenter in the width direction to obtain a heat-shrinkable film of about 50 μm. Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[実施例4]
乳酸系重合体(カーギル・ダウ社製「NatureWorks4050」、L−乳酸/D−乳酸=94.5/5.5、質量平均分子量:20万)を押出機にて190〜210℃で混練りし、200℃でTダイより溶融押出しし、溶融体を約36℃のキャスティングロールにて急冷し、未延伸シートを得た。この未延伸シートを長手方向に60℃で1.02倍のロール延伸、次いで、幅方向にテンターにて78℃で4.0倍延伸し、約50μmの熱収縮フィルムを得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Example 4]
A lactic acid-based polymer (“Nature Works 4050” manufactured by Cargill Dow, L-lactic acid / D-lactic acid = 94.5 / 5.5, mass average molecular weight: 200,000) was kneaded at 190 to 210 ° C. with an extruder. The melt was extruded through a T-die at 200 ° C., and the melt was quenched with a casting roll at about 36 ° C. to obtain an unstretched sheet. This unstretched sheet was roll-stretched 1.02 times at 60 ° C. in the longitudinal direction, and then stretched 4.0 times at 78 ° C. by a tenter in the width direction to obtain a heat-shrinkable film of about 50 μm. Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[比較例1]
実施例2と同じ構成の樹脂を同様の方法で未延伸シートを得た。この未延伸シートを長手方向に60℃で1.02倍のロール延伸、次いで、幅方向に63℃で5.0倍延伸し、厚さ50μmの熱収縮フィルム(積層比:5μm/40μm/5μm)を得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Comparative Example 1]
An unstretched sheet was obtained from the resin having the same structure as in Example 2 in the same manner. This unstretched sheet was roll-stretched 1.02 times at 60 ° C. in the longitudinal direction and then stretched 5.0 times at 63 ° C. in the width direction, and a heat-shrinkable film having a thickness of 50 μm (lamination ratio: 5 μm / 40 μm / 5 μm) ) Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[比較例2]
乳酸系重合体1(カーギル・ダウ社製「NatureWorks4050」、L−乳酸/D−乳酸=94.5/5.5、質量平均分子量:20万)45質量%、乳酸系重合体2(カーギル・ダウ社製「NatureWorks4060」、L−乳酸/D−乳酸=88.0/12.0、質量平均分子量20万)45質量%、脂肪族ポリエステルであるポリブチレンサクシネート/アジペート(昭和高分子製「ビオノーレ3003」、融点:94℃、ガラス転移温度:−45℃)10質量%からなる樹脂を中間層として、前記乳酸系重合体1を40質量%、前記乳酸系重合体2を60質量%とした混合樹脂(粒径1.6μmのアルミナシリカが0.15%添加されている)を外層原料として、中間層、外層の混合原料を別々の押出機にて190℃〜210℃にて混練し、200℃でTダイ内で合流させ、表層/中間層/裏層の2種3層構造からなる溶融体を約36℃のキャスティングロールにて急冷し、未延伸シートを得た。この未延伸シートを長手方向に60℃で1.02倍のロール延伸、次いで、幅方向に76℃で4倍延伸し、厚さ50μmの熱収縮フィルム(積層比:6μm/38μm/6μm)を得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Comparative Example 2]
Lactic acid-based polymer 1 (“Nature Works 4050” manufactured by Cargill Dow, L-lactic acid / D-lactic acid = 94.5 / 5.5, mass average molecular weight: 200,000) 45% by mass, lactic acid-based polymer 2 (Cargill “NatureWorks 4060” manufactured by Dow, L-lactic acid / D-lactic acid = 88.0 / 12.0, mass average molecular weight 200,000) 45% by mass, polybutylene succinate / adipate which is an aliphatic polyester (manufactured by Showa Polymer “ (Bionole 3003), melting point: 94 ° C., glass transition temperature: −45 ° C.) 10% by mass of resin as an intermediate layer, the lactic acid polymer 1 is 40% by mass, and the lactic acid polymer 2 is 60% by mass. The mixed resin (0.15% of alumina silica having a particle size of 1.6 μm added) was used as an outer layer raw material, and the intermediate layer and outer layer mixed raw materials were 190 ° C. in separate extruders. Kneaded at 210 ° C, merged in a T-die at 200 ° C, and rapidly melted the melt composed of two layers and three layers of surface layer / intermediate layer / back layer with a casting roll at about 36 ° C, Obtained. This unstretched sheet was roll-stretched 1.02 times at 60 ° C. in the longitudinal direction, and then stretched 4 times at 76 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of 50 μm (lamination ratio: 6 μm / 38 μm / 6 μm). Obtained. Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[比較例3]
比較例2と同じ構成の樹脂を同様の方法で未延伸シートを得た。この未延伸シートを長手方向に60℃で1.02倍のロール延伸、次いで、幅方向に76℃で3.0倍延伸し、厚さ50μmの熱収縮フィルム(積層比:6μm/38μm/6μm)を得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Comparative Example 3]
An unstretched sheet was obtained from the resin having the same structure as that of Comparative Example 2 in the same manner. This unstretched sheet was roll-stretched 1.02 times at 60 ° C. in the longitudinal direction, then stretched 3.0 times at 76 ° C. in the width direction, and a heat-shrinkable film having a thickness of 50 μm (lamination ratio: 6 μm / 38 μm / 6 μm) ) Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[比較例4]
テレフタル酸32.4kg、エチレングリコール14.5kg、ポリテトラメチレンエーテルグリコール(数平均分子量1000)12.5kgを原料とし、触媒および助触媒として、テトラブトキシチタネート3.2g、正リン酸1.3g、酢酸コバルト10.0gを使用し、平均粒径2.4μmの無定形シリカ(富士シリシア社製「サイリシア320」)50gを使用し、270℃、400Paでの直接重縮合法により共重合ポリエステル樹脂を得た。共重合ポリエステル樹脂は、重縮合槽よりストランド状に抜き出し、冷却後、ペレタイザーでカットすることによりペレット形状で回収した。得られた共重合ポリエステル樹脂の固有粘度は0.79、ポリテトラメチレンエーテルグリコールの共重合量は19.8質量%であった。そして、押出機により、上記の樹脂をTダイ口金から、真空ベントを引きつつ冷却ロール上に押出し、幅150mm厚さ0.20mmのシートを得た。その後、上記シートをT.M.Long社製「フィルムストレッチャー」を標準仕様にて使用し、延伸温度56℃、延伸速度3000%/分でキャスティング押出方向に対して垂直方向に4倍延伸を行い、厚さ50μmの熱収縮性フィルムを得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Comparative Example 4]
Starting from 32.4 kg of terephthalic acid, 14.5 kg of ethylene glycol and 12.5 kg of polytetramethylene ether glycol (number average molecular weight 1000), as a catalyst and a co-catalyst, 3.2 g of tetrabutoxytitanate, 1.3 g of normal phosphoric acid, Copolymer polyester resin was prepared by direct polycondensation at 270 ° C. and 400 Pa using 10.0 g of cobalt acetate and 50 g of amorphous silica having an average particle size of 2.4 μm (“Silysia 320” manufactured by Fuji Silysia). Obtained. The copolyester resin was extracted in the form of a strand from the polycondensation tank, cooled, and then cut with a pelletizer to be recovered in a pellet form. The copolymerized polyester resin thus obtained had an intrinsic viscosity of 0.79 and a polytetramethylene ether glycol copolymerization amount of 19.8% by mass. And with the extruder, said resin was extruded from the T-die mouthpiece on the cooling roll, pulling a vacuum vent, and the sheet | seat of width 150mm thickness 0.20mm was obtained. Thereafter, the above sheet was transferred to T.W. M.M. Using a “Film Stretcher” manufactured by Long as standard specifications, the film was stretched 4 times in the direction perpendicular to the casting extrusion direction at a stretching temperature of 56 ° C. and a stretching speed of 3000% / min. A film was obtained. Table 1 shows the evaluation results of the obtained heat-shrinkable film.

[比較例5]
以下の共重合ポリエステル樹脂Aと共重合ポリブチレンテレフタレート樹脂Bを75:25の割合で混合して原料樹脂とし、延伸温度を60℃に変更した以外は、比較例4と同様の方法でシート化および延伸を行い熱収縮性フィルムを得た。得られた熱収縮フィルムの評価結果を表1に示す。
[Comparative Example 5]
The following copolymerized polyester resin A and copolymerized polybutylene terephthalate resin B were mixed at a ratio of 75:25 to form a raw material resin, and a sheet was formed in the same manner as in Comparative Example 4 except that the stretching temperature was changed to 60 ° C. The film was stretched to obtain a heat-shrinkable film. Table 1 shows the evaluation results of the obtained heat-shrinkable film.

<共重合ポリエステル樹脂A>
ジカルボン酸成分がテレフタル酸、ジオール成分がエチレングリコールであり、共重合成分がイソフタル酸10.8モル%(全ジカルボン酸成分に対する割合)と1,4−シクロヘキサンジメタノール19.2モル%(全ジオール成分に対する割合)である共重合ポリエステル樹脂に平均粒径2.4μmの無定形シリカ(富士シリシア社製「サイリシア320」)を0.3質量%加えて調製した。
<Copolymerized polyester resin A>
The dicarboxylic acid component is terephthalic acid, the diol component is ethylene glycol, the copolymer component is 10.8 mol% isophthalic acid (ratio to the total dicarboxylic acid component), and 19.2 mol% 1,4-cyclohexanedimethanol (total diol It was prepared by adding 0.3% by mass of amorphous silica (“Silysia 320” manufactured by Fuji Silysia) having an average particle diameter of 2.4 μm to the copolyester resin, which is a ratio to the component.

<共重合ポリブチレンテレフタレート樹脂B>
ジカルボン酸成分がテレフタル酸、ジオール成分が1,4−ブタンジオールであり、共重合成分がイソフタル酸7.5モル%(全ジカルボン酸成分に対する割合)とポリテトラメチレンエーテルグリコール(数平均分子量1000)8質量%(全ジオール成分に対する割合)である。
<Copolymerized polybutylene terephthalate resin B>
The dicarboxylic acid component is terephthalic acid, the diol component is 1,4-butanediol, the copolymerization component is 7.5 mol% isophthalic acid (ratio to the total dicarboxylic acid component), and polytetramethylene ether glycol (number average molecular weight 1000). It is 8 mass% (ratio to the total diol component).

Figure 2006160788
Figure 2006160788

表1から明らかなように、実施例1,2,3,4はいずれも一次加工性が良好で電子レンジ加熱による弁当箱の潰れもなかった。また実施例1,2,4はヘーズも低く、透明性に優れていた。
なお、特に実施例1,2は、1000Wの電子レンジにて3分間加熱した場合においても、全く弁当箱の潰れはなく、実施例3,4に比較しても優れたものであった。
As can be seen from Table 1, Examples 1, 2, 3 and 4 all had good primary workability and the lunch box was not crushed by microwave heating. In Examples 1, 2, and 4, the haze was low and the transparency was excellent.
In particular, in Examples 1 and 2, even when heated in a 1000 W microwave oven for 3 minutes, the lunch box was not crushed at all and was superior to Examples 3 and 4.

これに対して、比較例1は収縮率が高いため、一次加工時に弁当箱の潰れが発生した。比較例2は一次加工は問題なくできたが、収縮応力が高いため、電子レンジ加工時に弁当潰れが発生した。比較例3は収縮率が低いため、一次加工時にフィルムがゴソゴソで抜けそうな状態であった。比較例4は、弁当箱のつぶれは発生しなかったものの、収縮率が低いため、一次加工時では弁当蓋が開く状態であった。また、比較例5は一次加工性は良好であったが、収縮応力が高いため弁当箱が潰れてしまった。

On the other hand, since the shrinkage rate of Comparative Example 1 was high, the lunch box was crushed during the primary processing. In Comparative Example 2, the primary processing could be performed without any problem, but because the shrinkage stress was high, the lunchbox collapse occurred during the microwave processing. Since the shrinkage rate of Comparative Example 3 was low, the film was likely to fall off during the primary processing. In Comparative Example 4, although the collapse of the lunch box did not occur, the rate of shrinkage was low, so that the lunch box lid was open during the primary processing. In Comparative Example 5, the primary workability was good, but the lunch box was crushed because the shrinkage stress was high.

Claims (7)

乳酸系重合体を主成分とする熱収縮性フィルムであって、少なくとも一方向において80℃温水に浸けた際の、10秒間での収縮率が30%以上かつ60%未満であり、80℃シリコンオイル中における1分後の収縮応力が5MPa未満であることを特徴とする熱収縮性フィルム。   A heat-shrinkable film having a lactic acid polymer as a main component, and having a shrinkage rate of 30% or more and less than 60% in 10 seconds when immersed in hot water at 80 ° C in at least one direction. A heat-shrinkable film, wherein the shrinkage stress after 1 minute in oil is less than 5 MPa. 前記乳酸系重合体は、D乳酸とL乳酸の構成割合が98:2〜85:15又は2:98〜15:85であることを特徴とする請求項1に記載の熱収縮性フィルム。   The heat-shrinkable film according to claim 1, wherein the lactic acid polymer has a constituent ratio of D lactic acid and L lactic acid of 98: 2 to 85:15 or 2:98 to 15:85. 乳酸系重合体と、乳酸系重合体以外の脂肪族ポリエステル樹脂と、可塑剤とを含有する中心層を備え、その外側に、乳酸系重合体を90質量%以上含有する外側層を積層してなる構成を備えていることを特徴とする請求項1または2に記載の熱収縮性フィルム。   A central layer containing a lactic acid polymer, an aliphatic polyester resin other than the lactic acid polymer, and a plasticizer is provided, and an outer layer containing 90% by mass or more of the lactic acid polymer is laminated on the outside thereof. The heat-shrinkable film according to claim 1, further comprising: 前記脂肪族ポリエステル樹脂が、0℃以下にガラス転移温度が少なくとも一つ有するものであり、前記中心層におけるその含有量が10〜25質量%であることを特徴とする請求項3に記載の熱収縮性フィルム。   4. The heat according to claim 3, wherein the aliphatic polyester resin has at least one glass transition temperature at 0 ° C. or lower, and its content in the central layer is 10 to 25 mass%. Shrink film. 収縮包装後に再加熱が施されることを特徴とする請求項1から4のいずれか1項に記載の熱収縮性フィルム。   The heat-shrinkable film according to any one of claims 1 to 4, wherein the film is reheated after shrink-wrapping. 電子レンジで内容物と供に加熱される容器の結束帯として用いられる請求項1から5のいずれか1項に記載の熱収縮性フィルム。   The heat-shrinkable film according to any one of claims 1 to 5, wherein the heat-shrinkable film is used as a binding band for a container heated together with contents in a microwave oven. 前記容器が食品容器であることを特徴とする請求項6に記載の熱収縮性フィルム。


The heat-shrinkable film according to claim 6, wherein the container is a food container.


JP2004349993A 2004-12-02 2004-12-02 Heat shrinkable film Active JP4947892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349993A JP4947892B2 (en) 2004-12-02 2004-12-02 Heat shrinkable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349993A JP4947892B2 (en) 2004-12-02 2004-12-02 Heat shrinkable film

Publications (2)

Publication Number Publication Date
JP2006160788A true JP2006160788A (en) 2006-06-22
JP4947892B2 JP4947892B2 (en) 2012-06-06

Family

ID=36663179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349993A Active JP4947892B2 (en) 2004-12-02 2004-12-02 Heat shrinkable film

Country Status (1)

Country Link
JP (1) JP4947892B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030840A (en) * 2006-07-31 2008-02-14 Fuji Seal International Inc Shrink label and labeled container
JP2008036911A (en) * 2006-08-03 2008-02-21 Japan Atomic Energy Agency Heat-shrinkable material made of polylactic acid
JP2008044364A (en) * 2006-07-19 2008-02-28 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film, molded product using it, heat-shrinkable label and container on which molded product or heat-shrinkable label is mounted
JP2008044365A (en) * 2006-07-19 2008-02-28 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film, molded product using it, heat-shrinkable label and container on which molded product or heat-shrinkable label is mounted
US7433111B2 (en) 2003-06-10 2008-10-07 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
JP2016150210A (en) * 2015-02-19 2016-08-22 花王株式会社 Microwave oven cooking container
CN113912879A (en) * 2021-08-20 2022-01-11 山东亿隆薄膜材料有限责任公司 Environment-friendly heat shrinkable film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302889A (en) * 1999-04-19 2000-10-31 Toray Ind Inc Heat-shrinkable film
JP2001151906A (en) * 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd Polylactic acid-based shrink film or sheet
JP2001151907A (en) * 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd Polylactic acid-based shrink film or sheet
JP2001226571A (en) * 2000-02-14 2001-08-21 C I Kasei Co Ltd Polylactic acid based resin material and heat-shrinkabl film
JP2004067203A (en) * 2002-08-08 2004-03-04 Mitsubishi Plastics Ind Ltd Polyester based heat-shrinkable film for binding lunch box
JP2004268372A (en) * 2003-03-07 2004-09-30 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic acid laminated film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302889A (en) * 1999-04-19 2000-10-31 Toray Ind Inc Heat-shrinkable film
JP2001151906A (en) * 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd Polylactic acid-based shrink film or sheet
JP2001151907A (en) * 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd Polylactic acid-based shrink film or sheet
JP2001226571A (en) * 2000-02-14 2001-08-21 C I Kasei Co Ltd Polylactic acid based resin material and heat-shrinkabl film
JP2004067203A (en) * 2002-08-08 2004-03-04 Mitsubishi Plastics Ind Ltd Polyester based heat-shrinkable film for binding lunch box
JP2004268372A (en) * 2003-03-07 2004-09-30 Mitsubishi Plastics Ind Ltd Heat-shrinkable polylactic acid laminated film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433111B2 (en) 2003-06-10 2008-10-07 Nippon Telegraph And Telephone Corporation Electrooptic modulation element
JP2008044364A (en) * 2006-07-19 2008-02-28 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film, molded product using it, heat-shrinkable label and container on which molded product or heat-shrinkable label is mounted
JP2008044365A (en) * 2006-07-19 2008-02-28 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film, molded product using it, heat-shrinkable label and container on which molded product or heat-shrinkable label is mounted
JP2008030840A (en) * 2006-07-31 2008-02-14 Fuji Seal International Inc Shrink label and labeled container
JP2008036911A (en) * 2006-08-03 2008-02-21 Japan Atomic Energy Agency Heat-shrinkable material made of polylactic acid
JP2016150210A (en) * 2015-02-19 2016-08-22 花王株式会社 Microwave oven cooking container
CN113912879A (en) * 2021-08-20 2022-01-11 山东亿隆薄膜材料有限责任公司 Environment-friendly heat shrinkable film

Also Published As

Publication number Publication date
JP4947892B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP2004204128A (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet, and thermoformed product using the sheet
KR20040105824A (en) Heat-shrinkable polylactic acid film
JP4949604B2 (en) Heat-shrinkable polylactic acid-based laminated film
JP4243926B2 (en) Biodegradable heat shrinkable film and shrink package using the same
JP5354848B2 (en) Heat-shrinkable pore-containing film, molded product based on the film, heat-shrinkable label, and container
JP3790399B2 (en) Polylactic acid heat-shrinkable sheet
JP4947892B2 (en) Heat shrinkable film
JP4452014B2 (en) Polylactic acid resin film and polylactic acid resin fusing seal bag
JP3718636B2 (en) Heat-shrinkable film
JP2005007610A (en) Biodegradable multilayered heat-shrinkable film and package
JP4430528B2 (en) Heat shrinkable biodegradable film
JP4518933B2 (en) Biaxially stretched biodegradable film
JP2006273346A (en) Thermally shrinkable film for container lid material, and container lid material using thermally shrinkable film
JP5620190B2 (en) Biodegradable resin laminate
JP2004051888A (en) Heat shrinkable polyester film
JP2005144726A (en) Laminated film
JP2005219487A (en) Laminated film
JP4430503B2 (en) Biodegradable biaxially stretched film
JP5092450B2 (en) Heat-shrinkable polyester film and method for producing the same
JP4669890B2 (en) Method for producing thermoformed body
JP4189722B2 (en) Heat-shrinkable polyester resin film and label using the same
JP4318440B2 (en) Biodegradable film and method for producing the same
JP2003082128A (en) Heat-shrinkable polyester film
JP2007091868A (en) Heat-shrinkable film
JP2003291294A (en) Polylactic acid multilayer sheet for thermoforming and formed article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350