JP2006153359A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2006153359A
JP2006153359A JP2004345387A JP2004345387A JP2006153359A JP 2006153359 A JP2006153359 A JP 2006153359A JP 2004345387 A JP2004345387 A JP 2004345387A JP 2004345387 A JP2004345387 A JP 2004345387A JP 2006153359 A JP2006153359 A JP 2006153359A
Authority
JP
Japan
Prior art keywords
heat
suction pipe
capillary
temperature
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345387A
Other languages
Japanese (ja)
Other versions
JP4552623B2 (en
Inventor
Yoshito Kimura
義人 木村
Shuhei Sugimoto
修平 杉本
Shohei Inamori
昭平 稲森
Shinichi Hashimoto
晋一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004345387A priority Critical patent/JP4552623B2/en
Publication of JP2006153359A publication Critical patent/JP2006153359A/en
Application granted granted Critical
Publication of JP4552623B2 publication Critical patent/JP4552623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the impairing of heat insulating performance caused by dew condensation on a suction pipe and humidity absorption to a heat insulating material in a refrigerator where a compressor is mounted on a top face. <P>SOLUTION: This refrigerator comprises a freezing cycle formed by circularly connecting the compressor 16 mounted in a recessed portion 10 at a rear part of the top face of a heat insulating housing 1, a condenser 17, a capillary 32, an evaporator 20 and the suction pipe 33, and the suction pipe 33 is buried in a heat insulating body 24 in a state that its one side is projected from a lower portion of the recessed portion 10, and it is mounted to exchange the heat with the capillary 32, thus the movement of heat occurs by heat exchange between a refrigerant flowing in the capillary 32 of a comparatively high temperature and the suction pipe 33, the dew condensation on a surface of the suction pipe 33 can be prevented, the dew condensation water is transferred to the pipe and intruded into the heat insulating body 24, and the impairing of heat insulating performance caused by absorption of moisture can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は圧縮機を天面部に積載した冷蔵庫に関するものである。   The present invention relates to a refrigerator in which a compressor is loaded on the top surface.

近年、冷蔵庫は地球環境保護の観点から更なる省エネルギー化が進むと共に、その使い勝手や収納性の向上が求められている。   In recent years, refrigerators are required to be more energy-saving from the viewpoint of protecting the global environment, and to be improved in usability and storage.

従来のこの種の冷蔵庫は、最下部に配設された貯蔵室の収納容積のアップを図る目的のために、断熱箱体の貯蔵室内最上部の後背部が下がるように窪ませた凹み部を設け、その凹み部に冷凍サイクルの構成機器を収納するという方法がとられていた(例えば、特許文献1参照)。   In the conventional refrigerator of this type, for the purpose of increasing the storage capacity of the storage room arranged at the bottom, a recessed part that is recessed so that the back of the uppermost part of the storage room of the heat insulation box is lowered. The method of taking and providing the component apparatus of a refrigerating cycle in the recessed part was taken (for example, refer patent document 1).

図6は、特許文献1に記載された従来の冷蔵庫の構成を示すものである。   FIG. 6 shows a configuration of a conventional refrigerator described in Patent Document 1. As shown in FIG.

図6に示すように、断熱箱体1は、上から順に、冷蔵室2、冷凍室3、野菜室4を有し、冷蔵室2の前面開口には、冷蔵室回転扉5を設けている。また、断熱箱体1の中央から下方部に位置する冷凍室3と野菜室4は収納性と使い勝手を考慮して、簡易に取り出しが行える引出しタイプの冷凍室引出し扉6と野菜室引出し扉7を設けてある。冷蔵室2の庫内には複数の収納棚8が設けられており、冷凍室3と野菜室4には上面開口形状の収納容器9が取り付けてある。この収納容器9は図示しない前後方向のレールに、ローラで前後方向へ移動可能に支持されている。   As shown in FIG. 6, the heat insulating box 1 has a refrigerator compartment 2, a freezer compartment 3, and a vegetable compartment 4 in order from the top, and a refrigerator compartment rotary door 5 is provided at the front opening of the refrigerator compartment 2. . In addition, the freezer compartment 3 and the vegetable compartment 4 located in the lower part from the center of the heat insulation box 1 are a drawer-type freezer compartment drawer door 6 and a vegetable compartment drawer door 7 that can be easily taken out in consideration of storability and usability. Is provided. A plurality of storage shelves 8 are provided inside the refrigerator compartment 2, and a storage container 9 having an open top surface is attached to the freezer compartment 3 and the vegetable compartment 4. The storage container 9 is supported by a roller (not shown) so as to be movable in the front-rear direction by a roller.

断熱箱体1に設けた凹み部10は、外箱上面11と外箱背面12に渡る天面後背部を冷蔵室2の最上部の後背部が下がるように窪ませた箇所である。凹み部10はその左右が断熱箱体1の左右壁にて塞がれ上方および背方に開放しており、この凹み部10の開放部は、上板13とこれにほぼ直角な背板14とからなる凹部カバー15にて覆われている。また、凹み部カバー15はネジなどにて断熱箱体1に取外し可能に固定されている。   The recessed part 10 provided in the heat insulation box 1 is a place where the top back part over the outer box upper surface 11 and the outer box back surface 12 is recessed so that the uppermost back part of the refrigerator compartment 2 is lowered. The left and right sides of the recessed portion 10 are closed by the left and right walls of the heat insulating box 1 and open upward and to the back. The opened portion of the recessed portion 10 includes an upper plate 13 and a back plate 14 that is substantially perpendicular to the upper plate 13. It is covered with the recessed part cover 15 which consists of these. In addition, the dent cover 15 is detachably fixed to the heat insulating box 1 with screws or the like.

冷凍サイクルの構成機器である圧縮機16と凝縮器17は機械室ファン18と共に凹み部10内に収まるように配設され、凹み部カバー15にて覆われている。また、凹み部カバー15の上板13と背板14には、放熱のために複数の通風孔19が設けられている。   The compressor 16 and the condenser 17 which are components of the refrigeration cycle are disposed so as to be accommodated in the recess 10 together with the machine room fan 18, and are covered with the recess cover 15. Further, the upper plate 13 and the back plate 14 of the recess cover 15 are provided with a plurality of ventilation holes 19 for heat dissipation.

また、冷凍サイクルの構成機器である蒸発器20は冷凍室3の後背部に冷却ファン21と共に配設されており、最下部の貯蔵室である野菜室4は奥行き深く構成してある。   The evaporator 20 which is a component device of the refrigeration cycle is disposed with a cooling fan 21 at the back of the freezer compartment 3, and the vegetable compartment 4 which is the lowest storage compartment is deeply configured.

これにより、断熱箱体1の背面下部に圧縮機16や凝縮器17を収納するものと比較して、野菜室4の内容積を大きく、深く構成できる。
特開2001−99552号公報
Thereby, compared with what accommodates the compressor 16 and the condenser 17 in the back lower part of the heat insulation box 1, the internal volume of the vegetable compartment 4 can be enlarged and comprised deeply.
JP 2001-99552 A

しかしながら、上記従来の構成では、圧縮機を天面に開口する凹み部に配設しているので、前記圧縮機と蒸発器を接続する配管が凹み部の下方より突出した配置とした場合には、蒸発器から戻る低温低圧の冷媒により生じた配管結露が重力により配管を伝わり、断熱体内へと移動する。断熱体は水分を吸湿することにより断熱性能の低下が生じ、性能劣化の恐れが生じるという課題があった。この配管結露を防止する対策として断熱体からの出口部で密着シールを行うなどの対策はコストがかかる上に、長期的には配管振動などやシール部材の硬化などによりシール部にピンホールが生じたり、シール部材自体の劣化により信頼性が低下する。   However, in the above-described conventional configuration, the compressor is disposed in the recessed portion that opens to the top surface. Therefore, when the piping connecting the compressor and the evaporator protrudes from below the recessed portion, The pipe condensation caused by the low-temperature and low-pressure refrigerant returning from the evaporator is transmitted through the pipe by gravity and moves into the heat insulator. The heat insulator has a problem that the heat insulation performance is lowered by absorbing moisture, and the performance may be deteriorated. Measures such as tight sealing at the outlet from the heat insulator as a measure to prevent this pipe dew condensation are costly, and in the long term, pinholes occur in the seal due to vibration of the pipe and hardening of the seal member. Or reliability deteriorates due to deterioration of the sealing member itself.

さらに配管の固定部となる断熱体の出口部分では圧縮機から発生する振動の固定端となるので、応力が大きく発生する部位となり、よりシール信頼性を確保するのが困難である。特に天面に前記圧縮機を配設する場合には、圧縮機の振動が大きく伝わる場合があり、配管固定部のシール性確保はさらに困難となる。   Furthermore, since the exit portion of the heat insulator serving as a fixed portion of the pipe becomes a fixed end of vibration generated from the compressor, it becomes a portion where a large amount of stress is generated, and it is difficult to ensure the seal reliability. In particular, when the compressor is disposed on the top surface, the vibration of the compressor may be greatly transmitted, and it becomes more difficult to ensure the sealing performance of the pipe fixing portion.

本発明は、上記従来の課題を解決するもので、圧縮機接続配管の結露を防止し、断熱体への吸湿を防ぎ、断熱箱体の性能劣化を防止した信頼性の高い冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a highly reliable refrigerator that prevents condensation of a compressor connection pipe, prevents moisture absorption to a heat insulator, and prevents performance deterioration of the heat insulation box. With the goal.

上記従来の課題を解決するために、本発明の冷蔵庫は、内箱と外箱と発泡充填された断熱体とで構成される断熱箱体と、前記断熱箱体に設けた天面後方の凹み部と、前記凹み部に配設した圧縮機と、前記圧縮機と凝縮器とキャピラリと蒸発器と吸入配管とを環状に接続してなる冷凍サイクルとを備え、前記吸入配管は前記断熱体に埋設されるとともに一端が前記内箱内部へ突出し前記蒸発器と接続され、他端が前記凹み部の下方から突出して前記圧縮機と接続されるものであって、前記吸入配管の前記断熱体に埋設されている部分において前記吸入配管と前記キャピラリとが熱交換可能に配設された熱交換部を設けたことを特徴とする。   In order to solve the above-described conventional problems, the refrigerator of the present invention includes a heat insulating box composed of an inner box, an outer box, and a foam-filled heat insulating body, and a dent at the rear of the top surface provided in the heat insulating box. And a compressor disposed in the recess, and a refrigeration cycle in which the compressor, the condenser, the capillary, the evaporator, and the suction pipe are connected in an annular shape, and the suction pipe is connected to the heat insulator. One end protrudes into the inner box and is connected to the evaporator, and the other end protrudes from below the recess and is connected to the compressor, and is embedded in the heat insulator of the suction pipe. A heat exchanging portion in which the suction pipe and the capillary are arranged so as to be capable of exchanging heat is provided in the buried portion.

これによって、蒸発器から戻る低温低圧の冷媒により吸入配管の温度が低下すると、比較的高温のキャピラリを流れる冷媒と熱交換することで熱の移動が起こり、吸入配管は温度上昇し、吸入配管が飽和温度以下となると空気中の水分が吸入配管表面に結露するが、比較的高温となるキャピラリとの熱交換により吸入配管温度がほぼ周囲温度以上を確保できるために表面結露を防止することができるので、表面結露が自重により配管を伝わり断熱体内へと移動することを防止できるので、断熱体の水分吸湿による断熱性能の低下を防ぐことができる。   As a result, when the temperature of the suction pipe decreases due to the low-temperature and low-pressure refrigerant returning from the evaporator, heat exchange occurs due to heat exchange with the refrigerant flowing through the relatively high-temperature capillary, the temperature of the suction pipe rises, and the suction pipe is When the temperature falls below the saturation temperature, moisture in the air condenses on the surface of the suction pipe. However, surface condensation can be prevented because the suction pipe temperature can be kept above the ambient temperature by heat exchange with the capillary that is relatively hot. Therefore, it is possible to prevent surface condensation from being transferred to the heat insulating body through the pipe due to its own weight, and thus it is possible to prevent a decrease in heat insulating performance due to moisture absorption of the heat insulating body.

本発明の冷蔵庫は、庫内容積を減少させることなく、使いにくい上奥部の収納空間をなくし、使いやすい下部引出し式貯蔵室の収納量を増加させたうえで、吸入配管の結露を防止することで断熱体の吸湿による性能劣化のない信頼性の高い冷蔵庫を提供することができる。   The refrigerator of the present invention eliminates the storage space in the upper and lower part that is difficult to use without reducing the internal volume of the refrigerator, and prevents the condensation of the suction pipe while increasing the storage amount of the easy-to-use lower drawer storage room Thus, it is possible to provide a highly reliable refrigerator that does not deteriorate performance due to moisture absorption of the heat insulator.

請求項1に記載の発明は、内箱と外箱と発泡充填された断熱体とで構成される断熱箱体と、前記断熱箱体に設けた天面後方の凹み部と、前記凹み部に配設した圧縮機と、前記圧縮機と凝縮器とキャピラリと蒸発器と吸入配管とを環状に接続してなる冷凍サイクルとを備え、前記吸入配管は前記断熱体に埋設されるとともに一端が前記内箱内部へ突出し前記蒸発器と接続され、他端が前記凹み部の下方から突出して前記圧縮機と接続されるものであって、前記吸入配管の前記断熱体に埋設されている部分において前記吸入配管と前記キャピラリとが熱交換可能に配設された熱交換部を設けたことを特徴とする。   The invention according to claim 1 is a heat insulating box composed of an inner box, an outer box, and a foam-filled heat insulator, a recessed portion at the rear of the top surface provided in the heat insulating box, and the recessed portion. A compressor, a compressor, a condenser, a capillary, an evaporator, and a refrigeration cycle formed by annularly connecting a suction pipe, wherein the suction pipe is embedded in the heat insulator and has one end at the end It protrudes into the inner box and is connected to the evaporator, and the other end protrudes from below the recess and is connected to the compressor, and in the portion embedded in the heat insulator of the suction pipe A heat exchanging portion is provided in which the suction pipe and the capillary are arranged so as to be capable of exchanging heat.

これによって、蒸発器から戻る低温低圧の冷媒により吸入配管の温度が低下すると、比較的高温のキャピラリを流れる冷媒と熱交換することで熱の移動が起こり、吸入配管は温度上昇する。   As a result, when the temperature of the suction pipe is lowered by the low-temperature and low-pressure refrigerant returning from the evaporator, heat is transferred by exchanging heat with the refrigerant flowing through the relatively high-temperature capillary, and the temperature of the suction pipe rises.

吸入配管が飽和温度以下となると空気中の水分が吸入配管表面に結露する。比較的高温となるキャピラリとの熱交換により吸入配管温度がほぼ周囲温度以上を確保できるために表面結露を防止し、自重により配管を伝わり、断熱体内へと移動することが防止できるので、断熱体は水分吸湿による断熱性能の低下を防止する。   When the suction pipe becomes below the saturation temperature, moisture in the air condenses on the surface of the suction pipe. Since the suction pipe temperature can be secured above the ambient temperature by heat exchange with the relatively high temperature capillary, surface condensation is prevented, and it is possible to prevent the pipe from being transferred by its own weight and moving into the insulation body. Prevents deterioration of heat insulation performance due to moisture absorption.

請求項2に記載の発明は、請求項1に記載の発明において、吸入配管の凹み部に突出した部分にまで、前記吸入配管とキャピラリとの熱交換部を延長したので、急な負荷変動などによる吸入配管の一時的な温度低下に対しても断熱体外部まで比較的高温のキャピラリと熱交換を行うので断熱体内や断熱体出口近傍の吸入配管温度を低下させることを防ぎ、配管結露水が自重により断熱体奥部に浸透し断熱性能を防止することができる。   In the invention according to claim 2, in the invention according to claim 1, since the heat exchanging portion between the suction pipe and the capillary is extended to the portion protruding into the recess portion of the suction pipe, sudden load fluctuations, etc. Heat exchange with relatively hot capillaries to the outside of the heat insulator even when the temperature of the suction pipe is temporarily reduced by the It can penetrate into the inner part of the heat insulator by its own weight and prevent heat insulation performance.

また、キャピラリ入口部に比較的近い箇所から吸入配管との熱交換が可能であり、かつ熱交換距離も比較的長くとることができるので、吸入配管からキャピラリへの伝熱量が増加し、冷凍効果の増加による省エネ効果が期待できる。   In addition, heat exchange with the suction pipe is possible from a location relatively close to the capillary inlet, and the heat exchange distance can also be made relatively long, so that the amount of heat transfer from the suction pipe to the capillary increases, and the refrigeration effect The energy-saving effect by increase of can be expected.

請求項3に記載の発明は、請求項2に記載の発明において、吸入配管の凹み部に突出した熱交換部にキャピラリと熱交換可能に取り付けた蓄熱部材を設けたので、比較的高温のキャピラリの温度変動を緩和し一定量の熱量を蓄えることで、均一な熱交換量を確保することができる。したがって、負荷変動などによる吸入配管の一時的な温度低下に対しても断熱体出口近傍の吸入配管温度を低下させることが無く、配管結露水が重力により断熱体奥部に浸透し断熱性能を劣化させることを防ぐ。   The invention according to claim 3 is the invention according to claim 2, wherein a heat storage member attached so as to be capable of exchanging heat with the capillary is provided in the heat exchanging portion protruding from the recess portion of the suction pipe. A uniform heat exchange amount can be ensured by relieving temperature fluctuation and storing a certain amount of heat. Therefore, even if the temperature of the suction pipe temporarily drops due to load fluctuations, the temperature of the suction pipe near the outlet of the insulator is not lowered, and the condensed water in the pipe penetrates into the inner part of the insulator due to gravity and deteriorates the heat insulation performance. To prevent it.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、凹み部にファンを設け、前記凹み部の内部空間で風路を構成し、前記機械室風路内に吸入配管を配置したので、吸入配管温度が低下し一時的な結露が生じても、強制対流により結露水の再蒸発を促進する。さらに圧縮機や凝縮器などの比較的高温の冷凍サイクル構成機器を経て高温となった空気を強制対流させると一層の再蒸発促進となり効果が大きい。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, a fan is provided in the recessed portion, and an air passage is formed in the internal space of the recessed portion, and the machine room air passage is provided. Since the suction pipe is arranged inside, the re-evaporation of the condensed water is promoted by forced convection even if the temperature of the suction pipe decreases and temporary condensation occurs. Furthermore, forced convection of air that has become hot through relatively high-temperature refrigeration cycle components such as a compressor and a condenser further promotes re-evaporation and has a great effect.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の概略断面図を示すものであり、図2は冷蔵庫の断熱箱体の概略展開図を示すものであり、図3は冷蔵庫の背面配管要部概略図を示すものである。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 1)
FIG. 1 shows a schematic sectional view of a refrigerator in Embodiment 1 of the present invention, FIG. 2 shows a schematic development view of a heat insulating box of the refrigerator, and FIG. A schematic diagram is shown. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図1から図3において、断熱箱体1はABSなどの樹脂体を真空成型した内箱22とプリコート鋼板などの金属材料を用いた外箱23とで構成された空間に発泡充填する断熱体24を注入してなる断熱壁を備えている。断熱体24はたとえば硬質ウレタンフォームやフェノールフォームやスチレンフォームなどが用いられる。発泡材としてはハイドロカーボン系のシクロペンタンを用いると、温暖化防止の観点でさらによい。   1 to 3, a heat insulating box 1 is a heat insulating body 24 that foams and fills a space formed by an inner box 22 in which a resin body such as ABS is vacuum-formed and an outer box 23 using a metal material such as a pre-coated steel plate. It is equipped with a heat insulating wall. As the heat insulator 24, for example, a hard urethane foam, a phenol foam, a styrene foam, or the like is used. Use of hydrocarbon-based cyclopentane as the foaming material is better from the viewpoint of preventing global warming.

断熱箱体1は複数の断熱区画に区分されており上部を回転扉式、下部を引出し式とする構成をとってある。上から冷蔵室2、引出し式の野菜室4と引出し式の冷凍室3となっている。各断熱区画にはそれぞれ断熱扉がガスケット25を介して設けられている。上から冷蔵室回転扉5、野菜室引出し扉7、冷凍室引出し扉6である。   The heat insulation box 1 is divided into a plurality of heat insulation sections, and has a structure in which the upper part is a revolving door type and the lower part is a drawer type. From the top, there are a refrigerator compartment 2, a drawer-type vegetable compartment 4, and a drawer-type freezer compartment 3. Each heat insulation section is provided with a heat insulation door via a gasket 25. The refrigerator door 5, the vegetable compartment drawer door 7, and the freezer compartment drawer door 6 from above.

冷蔵室回転扉5には扉ポケット26が収納スペースとして設けられており、庫内には複数の収納棚8が設けられてある。また冷蔵室2の最下部には貯蔵ケース27が設けてある。   The refrigerator compartment revolving door 5 is provided with a door pocket 26 as a storage space, and a plurality of storage shelves 8 are provided in the warehouse. A storage case 27 is provided at the bottom of the refrigerator compartment 2.

また、断熱箱体1の外箱23は、天面奥部が切りかかれて鋼板をU曲げしたシェル28と底パネル29と背面パネル30と天面後方を窪ませた凹み部10を構成する機械室パネル31とをシール性を確保して組み付けられて構成されている。機械室パネル31は鋼板の絞り加工により成型されており、加工性の向上のためにコーナー部はR形状がとられている。このR形状により発泡充填する断熱体24の分岐もしくは合流部の流路が確保されて流動性が良化され、充填不足によるボイドの発生などを防止できる。   Further, the outer box 23 of the heat insulation box 1 is a machine that forms a shell 28 in which the back of the top surface is cut and a U-bent steel plate is bent, a bottom panel 29, a back panel 30, and a recess 10 in which the back of the top surface is recessed. The chamber panel 31 is assembled to ensure sealing performance. The machine room panel 31 is formed by drawing a steel plate, and the corner portion has an R shape in order to improve workability. The R shape secures a flow path at the branching or joining portion of the heat insulating body 24 to be foam-filled to improve fluidity, and can prevent generation of voids due to insufficient filling.

なお、機械室パネル31は圧縮機16の配置部を最も深くし、左右端に向かうに従って絞りが浅い形状とすることでも発泡充填する断熱体24の分岐もしくは合流部の流路が確保されて流動性が良化される。   In addition, the machine room panel 31 has a deepest arrangement part of the compressor 16 and has a narrowed shape toward the left and right ends. Sex is improved.

また、機械室パネル31は図示しない複数の空気抜き穴が各面に設けられており、外観および内観を阻害することなく残留空気によるボイドの発生や変形を防止することができる。   Further, the machine room panel 31 is provided with a plurality of air vent holes (not shown) on each surface, and can prevent the generation and deformation of voids due to residual air without impairing the appearance and the inside view.

機械室パネル31は絞り加工としたので発泡充填のためのシール部が少なくてすむので工数的に有利であるし、また、板金加工により同様の形状を構成するならば絞り金型費用が少なくて済むうえに、絞りしわのない仕上げと寸法精度をあげることが可能である。   Since the machine room panel 31 is drawn, it is advantageous in terms of man-hours because it requires less sealing parts for foam filling, and if a similar shape is formed by sheet metal processing, the cost of the drawing die is low. In addition, it is possible to increase the finish and dimensional accuracy without wrinkling.

また、内箱22は外箱23より一回り小さく、背面奥部が内側に凹んだ構成となっており、外箱23の中に組み入れることで外箱23と内箱22との間に断熱体24が発泡充填される空間が断熱箱体1に形成される。従って、機械室パネル31の左右部も断熱体24が発泡充填されて断熱壁が構成される。   Further, the inner box 22 is slightly smaller than the outer box 23, and the back portion of the inner box 22 is recessed inward. By incorporating the inner box 22 in the outer box 23, a heat insulator is provided between the outer box 23 and the inner box 22. A space in which 24 is foam-filled is formed in the heat insulating box 1. Accordingly, the right and left parts of the machine room panel 31 are also filled with the heat insulating body 24 to form a heat insulating wall.

また、冷凍サイクルは凹み部10に配設した圧縮機16と、シェル28の天面に設けた凝縮器17と、減圧器であるキャピラリ32と、水分除去を行うドライヤ(図示せず)と、野菜室4と冷凍室3の背面で冷却ファン21を近傍に配置して設けた蒸発器20と、吸入配管33とを環状に接続して構成されている。   The refrigeration cycle includes a compressor 16 disposed in the recess 10, a condenser 17 provided on the top surface of the shell 28, a capillary 32 that is a decompressor, a dryer (not shown) that removes moisture, The evaporator 20 provided with the cooling fan 21 arranged in the vicinity on the back of the vegetable compartment 4 and the freezer compartment 3 and the suction pipe 33 are connected in an annular shape.

凝縮器17は銅配管を薄型に構成し天面ダクトカバー34で覆われている。天面ダクトカバー34は前面および側壁面に吸入開口部35を設け、背面に吐出開口部36を設けてある。凹み部10には圧縮機16近傍に機械室ファン18が設けてあり、天面ダクトカバー34の吐出開口部36は圧縮機16の近傍に位置する機械室ファン18と反対側に設けられている。   The condenser 17 has a thin copper pipe and is covered with a top duct cover 34. The top duct cover 34 is provided with a suction opening 35 on the front and side walls, and a discharge opening 36 on the back. A machine room fan 18 is provided in the recess 10 in the vicinity of the compressor 16, and a discharge opening 36 of the top duct cover 34 is provided on the opposite side of the machine room fan 18 located in the vicinity of the compressor 16. .

キャピラリ32と吸入配管33は、おおむね同等の長さの銅管であり、端部を残して熱交換可能にはんだ付けされている。熱交換部37の長さを確保するために、蛇行させてコンパクトにまとめて、冷蔵室2の背面に蛇行部がくるようにして、内箱22と背面パネル30との中間に配置され断熱体24に埋設される。キャピラリ32と吸入配管33は、一方の端部を内箱22から突き出し蒸発器20と接続されており、他方の端部を機械室パネル31の淵に設けた切欠部(図示せず)から上方に突き出して凝縮器17および圧縮機16と各々接続されている。   The capillary 32 and the suction pipe 33 are copper pipes having substantially the same length, and are soldered so as to be able to exchange heat, leaving the end portions. In order to ensure the length of the heat exchanging part 37, the heat exchanger 37 is meandered to be compact and arranged in the middle of the inner box 22 and the rear panel 30 so that the meandering part comes to the back of the refrigerator compartment 2. 24 embedded. One end of the capillary 32 and the suction pipe 33 protrudes from the inner box 22 and is connected to the evaporator 20, and the other end extends upward from a notch (not shown) provided in the flange of the machine room panel 31. And are connected to the condenser 17 and the compressor 16 respectively.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず各断熱区画の温度設定と冷却方式について説明する。冷蔵室2は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。また、貯蔵ケース27は肉魚などの保鮮性向上のため比較的低めの温度、たとえば−3〜1℃で設定される。野菜室4は冷蔵室2と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。凍らない程度で低温にするほど葉野菜の鮮度を長期間維持することが可能である。   First, the temperature setting and cooling method of each heat insulation section will be described. The refrigerator compartment 2 is normally set at 1 to 5 ° C. with the lower limit of the temperature at which it is not frozen for refrigerated storage. Further, the storage case 27 is set at a relatively low temperature, for example, −3 to 1 ° C. for improving the freshness of meat fish and the like. The vegetable room 4 is often set to a temperature setting of 2 ° C. to 7 ° C., which is the same as or slightly higher than that of the refrigerator room 2. It is possible to maintain the freshness of leafy vegetables for a long period of time as the temperature is lowered so as not to freeze.

冷凍室3は冷凍保存のために通常−22〜−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30や−25℃の低温で設定されることもある。   The freezer compartment 3 is normally set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 or −25 ° C., for example, to improve the frozen storage state.

各室は異なる温度設定を効率的に維持するために断熱壁によって区分されているが、低コストでかつ断熱性能を向上させる方法として断熱体24で一体に発泡充填することが可能である。発泡スチロールのような断熱部材を用いるのに比べて約2倍の断熱性能とすることができ、仕切りの薄型化による収納容積の拡大などができる。   Each chamber is divided by a heat insulating wall in order to efficiently maintain different temperature settings. However, as a method of improving the heat insulating performance at a low cost, it is possible to perform foam filling together with the heat insulating body 24. Compared to the use of a heat insulating member such as polystyrene foam, the heat insulating performance can be increased by about twice, and the storage volume can be increased by thinning the partition.

次に冷凍サイクルの動作について説明する。庫内の設定された温度に応じて図示しない温度センサおよび制御基板からの信号により冷却運転が開始および停止される。圧縮機16の動作により吐出された高温高圧の冷媒は、凝縮器17にて放熱して凝縮液化し、キャピラリ32で減圧されて低温低圧の液冷媒となり蒸発器20に至る。   Next, the operation of the refrigeration cycle will be described. The cooling operation is started and stopped by signals from a temperature sensor (not shown) and a control board according to the set temperature in the cabinet. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 16 dissipates heat in the condenser 17 to be condensed and liquefied, and is decompressed by the capillary 32 to become a low-temperature and low-pressure liquid refrigerant and reaches the evaporator 20.

凝縮器17は機械室ファン18の動作により天面ダクトカバー34で構成された風路により強制対流放熱が行われる。前面および側面に設けた吸入開口部35より空気を吸い込み凝縮器17で熱交換した後、圧縮機16を冷却して吐出開口部36から吐出される。   In the condenser 17, forced convection heat radiation is performed by an air passage formed by the top duct cover 34 by the operation of the machine room fan 18. After sucking air from the suction openings 35 provided on the front and side surfaces and exchanging heat with the condenser 17, the compressor 16 is cooled and discharged from the discharge openings 36.

このとき吐出開口部36を通過する空気は凝縮器17および圧縮機16と熱交換するので比較的高い温度となって外気に吐出される。また、背面を室内壁にぴったり押し付けて設置された場合のために、吐出開口部36は背面側の壁面との間に吐出空気がとおる隙間を確保して配置されるとなおよい。   At this time, the air passing through the discharge opening 36 exchanges heat with the condenser 17 and the compressor 16 and is discharged to the outside air at a relatively high temperature. In addition, for the case where the back surface is installed to be pressed tightly against the indoor wall, the discharge opening 36 is more preferably disposed with a clearance through which the discharge air passes between the back surface side wall surface.

冷却ファン21の動作により、庫内の空気と熱交換されて蒸発器20内の冷媒は蒸発気化する。低温の冷気を図示しないダンパなどで分配することで各室の冷却を行う。   By the operation of the cooling fan 21, heat is exchanged with the air in the cabinet, and the refrigerant in the evaporator 20 is evaporated. Each room is cooled by distributing low-temperature cold air with a damper (not shown).

蒸発器20を出た冷媒は吸入配管33を経て圧縮機16へと吸い込まれる。このとき吸入配管33はキャピラリ32と熱交換可能にはんだ付けされて断熱体24に埋設されているので、周囲に熱が逃げることなく低温の吸入配管33から高温のキャピラリ32へと伝熱する。キャピラリ32は冷媒の減圧過程において冷却されるので比エンタルピが低下し冷凍効果が増加する。吸入配管33は冷媒温度が上昇し出口部で周囲温度とほぼ同等以上とすることができる。吸入配管33の冷媒温度が上昇するので圧縮機16に吸入される過程における熱損失は小さくて済み効率が向上する。冷凍温度を生成する冷凍サイクルは蒸発器20での冷媒温度が−20度以下の非常に低温であるために、特に熱損失を低減する効果は大きいものとなる。   The refrigerant exiting the evaporator 20 is sucked into the compressor 16 through the suction pipe 33. At this time, since the suction pipe 33 is soldered to the capillary 32 so as to be capable of exchanging heat and is embedded in the heat insulator 24, heat is transferred from the low-temperature suction pipe 33 to the high-temperature capillary 32 without escape of heat to the surroundings. Since the capillary 32 is cooled in the process of depressurizing the refrigerant, the specific enthalpy is lowered and the refrigeration effect is increased. In the suction pipe 33, the refrigerant temperature rises and can be made substantially equal to or higher than the ambient temperature at the outlet. Since the refrigerant temperature in the suction pipe 33 rises, the heat loss in the process of being sucked into the compressor 16 is small, and the efficiency is improved. The refrigeration cycle that generates the refrigeration temperature is a very low refrigerant temperature of −20 ° C. or less in the evaporator 20, so that the effect of reducing heat loss is particularly great.

さらに、断熱体24外部の吸入配管33の温度がほぼ周囲温度以上を確保できるために通常運転条件での配管表面結露を防止しすることができるので、自重により配管を伝わり断熱体24内へと移動し水分吸湿による断熱性能の低下を防止することができる。   Furthermore, since the temperature of the suction pipe 33 outside the heat insulating body 24 can be almost equal to or higher than the ambient temperature, it is possible to prevent dew condensation on the pipe surface under normal operating conditions. It is possible to prevent a decrease in heat insulation performance due to movement and moisture absorption.

また、キャピラリ32は比較的高温であるために低温部位に配置すると吸入配管33との熱交換以外に放熱が生じ、冷凍サイクルの熱損失が生じるとともに庫内への熱負荷となり省エネ性を低下させてしまうが、庫内温度の高い冷蔵室2の背面にキャピラリ32と吸入配管33を配置したので熱損失や庫内への熱負荷が大きく増加することなく、省エネ性の確保が可能である。特に熱交換部37の長さを十分に確保し、かつ冷蔵室2の背面で蛇行させてコンパクトに収納するので省エネ化と吸入配管33の十分な温度上昇が得られ、加えて、蛇行部は昇り勾配を設けトラップのない構成としてあるので、液冷媒や冷凍機油が滞留することがなく、圧力損失などの性能影響を引き起こすことがない。   In addition, since the capillary 32 is relatively hot, if it is placed in a low temperature region, heat is dissipated in addition to heat exchange with the suction pipe 33, resulting in heat loss in the refrigeration cycle and a heat load on the inside of the cabinet, reducing energy saving. However, since the capillary 32 and the suction pipe 33 are arranged on the back surface of the refrigerator compartment 2 having a high internal temperature, it is possible to ensure energy saving without greatly increasing heat loss and heat load on the internal storage. In particular, the heat exchanging portion 37 has a sufficient length and is meandered in the back of the refrigerator compartment 2 so as to be stored compactly, so that energy saving and a sufficient temperature rise of the suction pipe 33 can be obtained. Since the ascending gradient is provided and the trap is not provided, the liquid refrigerant and the refrigerating machine oil are not retained, and the performance influence such as pressure loss is not caused.

また、吸入配管33は機械室ファン18の風路下流部に配置されているので、圧縮機16や凝縮器17と熱交換した空気が吸入配管と熱交換するために一層の結露防止が可能である。特に天面ダクトカバー34に設けた吐出開口部36の近傍に配置することで、吸入配管33周囲で確実な空気の対流が発生し結露防止が行える。   In addition, since the suction pipe 33 is disposed in the downstream portion of the air passage of the machine room fan 18, the air exchanged with the compressor 16 and the condenser 17 exchanges heat with the suction pipe, thereby further preventing condensation. is there. In particular, by arranging it near the discharge opening 36 provided in the top duct cover 34, reliable air convection is generated around the suction pipe 33, and condensation can be prevented.

なお、機械室ファン18の風路上流部にあたる天面ダクトカバー34の背面部に吸入開口部35を追加し、この近傍に吸入配管33を配置することで強制対流による吸入配管33の結露防止を行ってもかまわない。これにより、吸入配管33がフレッシュな空気と熱交換するために、一時的な圧縮機16や凝縮器17の温度上昇による過加熱が生じることが無く信頼性の面で有利である。   A suction opening 35 is added to the back surface of the top duct cover 34, which is the upstream side of the air passage of the machine room fan 18, and a suction pipe 33 is arranged in the vicinity thereof to prevent condensation on the suction pipe 33 due to forced convection. You can go. Thus, since the suction pipe 33 exchanges heat with fresh air, there is no possibility of overheating due to a temporary rise in the temperature of the compressor 16 or the condenser 17, which is advantageous in terms of reliability.

またなお、凹み部10の庫内でっぱりを最小限とするために、凝縮器17を薄型とし天面に配置したが、箱型の構成として凹み部10に圧縮機16と機械室ファン18とを順番に並列配置すると、上下方向の内容積がさらに拡大できる。また凝縮器17はフィンチューブタイプやワイヤーチューブタイプやスパイラルフィンチューブタイプなど外表面積を拡大させ放熱能力を増加させると、凝縮器17の小型化や能力増加による省エネ化などで効果がある。   In addition, in order to minimize the pulling in the interior of the recess 10, the condenser 17 is thin and disposed on the top surface. However, as a box-shaped configuration, the compressor 16 and the machine room fan 18 are provided in the recess 10. When arranged in parallel, the internal volume in the vertical direction can be further expanded. Further, if the condenser 17 has a fin tube type, a wire tube type, a spiral fin tube type, etc., and its heat radiation capacity is increased by increasing the outer surface area, it is effective in reducing the size of the condenser 17 and saving energy.

なお、冷媒には地球温暖化防止の面で有利なHC600aを用いると冷媒ガスの比容積が大きく、体積流量が増加するので熱交換部の流速も増加し、伝熱促進となり吸入配管33の温度上昇とキャピラリ32の冷却による冷凍効果の増加に対し効果が向上する。   If HC600a, which is advantageous in terms of preventing global warming, is used as the refrigerant, the specific volume of the refrigerant gas is large and the volumetric flow rate increases, so the flow rate of the heat exchange section also increases, heat transfer is promoted, and the temperature of the suction pipe 33 is increased. The effect is improved against the increase of the freezing effect due to the rise and cooling of the capillary 32.

さらに、冷凍機油には相溶性のある鉱油を用いることで、配管壁面に熱伝達を阻害する油膜が形成させることがないので、伝熱促進となり吸入配管33の温度上昇とキャピラリ32の冷却による冷凍効果の増加に対し効果が向上する。   Further, by using a compatible mineral oil for the refrigerating machine oil, an oil film that hinders heat transfer is not formed on the wall surface of the pipe, so that heat transfer is promoted and refrigeration is achieved by increasing the temperature of the suction pipe 33 and cooling the capillary 32. The effect improves with respect to the increase in effect.

なお、凝縮器17は強制空冷タイプで説明したが、外箱23の内側に熱伝達よく貼り付けられた銅配管で構成される自然空冷タイプであってもよいし、各室断熱扉体間の仕切りに配設して防滴防止を行うための銅配管を組み合わせてもよい。   In addition, although the condenser 17 was demonstrated with the forced air cooling type, the natural air cooling type comprised with the copper piping affixed with good heat transfer inside the outer case 23 may be sufficient, and between each room heat insulation door bodies. You may combine the copper piping for arrange | positioning to a partition and performing drip-proof prevention.

また電動三方弁などの流路制御手段を用いて、区画構成や温度設定の構成に応じた複数の蒸発器を使い分けたり、複数のキャピラリを切り替えたり、圧縮機16の停止中にガスカットなどして更なる省エネ化を図ることができる。   In addition, by using a flow path control means such as an electric three-way valve, a plurality of evaporators according to the partition configuration and temperature setting configuration are selectively used, a plurality of capillaries are switched, and gas is cut while the compressor 16 is stopped. Energy savings.

またなお、温度区画は3区分としたが、冷蔵室が上であれば他を入れ替えても問題ないし、独立製氷室や切替室などを追加区分しても良い。   In addition, although the temperature section is divided into three sections, there is no problem if the other is replaced if the refrigerator compartment is above, and an independent ice making room, a switching room, etc. may be additionally divided.

(実施の形態2)
図4は、本発明の実施の形態2における冷蔵庫の背面配管要部概略図を示すものである。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 2)
FIG. 4 shows a schematic diagram of the main part of the rear piping of the refrigerator in the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図4において吸入配管33はキャピラリ32との熱交換部237を断熱体24内部から外部にかけて延長している。吸入配管33は断熱体24外部に突き出したのち横方向へ曲げられて配置されている。また、熱交換部237は吸入配管33の曲げ部を越えたところまで延長されている。これによって、吸入配管33の立ち上がり部の温度低下による結露を防止し、熱交換部237の先で結露が生じても断熱体24へと自重滴下し性能劣化となることがない。   In FIG. 4, the suction pipe 33 extends a heat exchanging portion 237 with the capillary 32 from the inside of the heat insulator 24 to the outside. The suction pipe 33 protrudes to the outside of the heat insulator 24 and is then bent in the lateral direction. Further, the heat exchanging portion 237 is extended to a place beyond the bent portion of the suction pipe 33. As a result, condensation due to a temperature drop at the rising portion of the suction pipe 33 is prevented, and even if condensation occurs at the tip of the heat exchanging portion 237, its own weight is dropped onto the heat insulator 24 and performance is not deteriorated.

またキャピラリ32は細管内部を液冷媒が減圧しながら流れている減圧器であるが、減圧に伴い冷媒温度も降下していくために、減圧入口部では温度が高く、出口部では温度が低いものとなっている。入口部近傍は緩やかな減圧と温度降下であるが、バブリングポイントと呼ばれる箇所を過ぎると急激に減圧と温度降下が生じている。   The capillary 32 is a pressure reducer in which the liquid refrigerant flows while reducing the pressure inside the narrow tube. The refrigerant temperature also decreases with the pressure reduction, so that the temperature is high at the pressure reducing inlet and the temperature is low at the outlet. It has become. In the vicinity of the inlet, there is a gradual pressure reduction and a temperature drop, but the pressure reduction and the temperature drop suddenly occur after passing a so-called bubbling point.

したがってキャピラリ32の入口部近傍で吸入配管33との熱交換を行うことで、温度差が大きくとれるために熱交換量を増加することができる。断熱体24外部の凹み部10内まで熱交換部237を延長することでキャピラリ32の入口部の熱交換が促進されて熱交換量の増加が可能となった。これにより省エネ化および吸入配管33の温度上昇を可能とした。   Therefore, by performing heat exchange with the suction pipe 33 in the vicinity of the inlet portion of the capillary 32, a large temperature difference can be obtained, so that the heat exchange amount can be increased. By extending the heat exchange part 237 to the inside of the recessed part 10 outside the heat insulator 24, heat exchange at the inlet part of the capillary 32 is promoted, and the heat exchange amount can be increased. As a result, energy saving and the temperature increase of the suction pipe 33 are made possible.

なお、熱交換部ははんだ付けによって行われているが、熱収縮チューブのような被覆材による圧接であっても良い。   In addition, although the heat exchange part is performed by soldering, the pressure welding by coating | covering materials like a heat contraction tube may be sufficient.

(実施の形態3)
図5は、本発明の実施の形態3における冷蔵庫の背面配管要部概略図を示すものである。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 3)
FIG. 5 shows a schematic diagram of the main part of the rear piping of the refrigerator according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図5において、吸入配管33とキャピラリ32とが断熱体24内でははんだ付けなどして熱交換可能に配設されており、一方端が断熱体24から凹み部10に突き出して構成されている。各端部は凝縮器17や圧縮機16と接続されて冷凍サイクルを構成している。   In FIG. 5, the suction pipe 33 and the capillary 32 are disposed in the heat insulator 24 so as to be able to exchange heat by soldering or the like, and one end protrudes from the heat insulator 24 into the recess 10. Each end is connected to a condenser 17 and a compressor 16 to constitute a refrigeration cycle.

吸入配管33およびキャピラリ32の断熱体24外部に突き出した部位に蓄熱部材38を巻きつけて熱交換可能にしてある。蓄熱部材38はブチルゴムなどの熱容量の大きなものであればよい。またブチルゴムのような軟質の材料であれば防振にも効果があり、密着性も良くさらに適している。また配管の溶接接続部を覆うように貼り付けると外気に触れさせないので腐食劣化などを大幅に抑制することができる。   A heat storage member 38 is wound around the portion of the suction pipe 33 and the capillary 32 that protrudes outside the heat insulator 24 so that heat can be exchanged. The heat storage member 38 only needs to have a large heat capacity such as butyl rubber. In addition, a soft material such as butyl rubber is effective for vibration isolation, and has good adhesion and is more suitable. Moreover, since it does not touch outside air if it sticks so that the welding connection part of piping may be covered, corrosion degradation etc. can be suppressed significantly.

これによって、吸入配管33の立ち上がり部の温度低下による結露を防止し、熱交換部337の先で結露が生じても断熱体24へと自重滴下し性能劣化となることがない。   As a result, condensation due to a temperature drop at the rising portion of the suction pipe 33 is prevented, and even if condensation occurs at the tip of the heat exchanging portion 337, its weight is dropped on the heat insulator 24 and performance is not deteriorated.

また、蓄熱部材38の熱容量が大きいので一時的な吸入配管33の温度低下に対しても配管温度を一定に維持することができ、性能を安定に保つことができる。   In addition, since the heat storage member 38 has a large heat capacity, the pipe temperature can be kept constant against a temporary temperature drop of the suction pipe 33, and the performance can be kept stable.

なお、キャピラリ32は蓄熱部材38に対して複数ターン巻き込むような構成をとるとさらに伝熱量が増加し、一層の省エネ化と吸入配管33の温度上昇が可能となる。   Note that if the capillary 32 is configured to wind a plurality of turns around the heat storage member 38, the amount of heat transfer is further increased, and further energy saving and a rise in the temperature of the suction pipe 33 are possible.

以上のように、本発明にかかる冷蔵庫は、吸入配管の結露を防止して断熱体の吸湿による性能劣化のない信頼性の高い冷蔵庫を提供することができ、冷蔵庫以外の冷却機器に適用できる。   As described above, the refrigerator according to the present invention can provide a highly reliable refrigerator that prevents condensation of the suction pipe and does not deteriorate performance due to moisture absorption of the heat insulator, and can be applied to cooling devices other than the refrigerator.

本発明の実施の形態1における冷蔵庫の概略断面図Schematic sectional view of the refrigerator in the first embodiment of the present invention. 本発明の実施の形態1における冷蔵庫の断熱箱体の概略展開図Schematic development view of the heat insulation box of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の背面配管要部概略図Schematic diagram of main part of rear piping of refrigerator in embodiment 1 of the present invention 本発明の実施の形態2における冷蔵庫の背面配管要部概略図Schematic diagram of main part of rear piping of refrigerator in embodiment 2 of the present invention 本発明の実施の形態3における冷蔵庫の背面配管要部概略図Schematic diagram of main part of rear piping of refrigerator in embodiment 3 of the present invention 従来の冷蔵庫の概略断面図Schematic sectional view of a conventional refrigerator

符号の説明Explanation of symbols

1 断熱箱体
2 冷蔵室(上段貯蔵室)
3 冷凍室(下段貯蔵室)
4 野菜室(下段貯蔵室)
5 冷蔵室回転扉
6 冷凍室引出し扉
7 野菜室引出し扉
10 凹み部
16 圧縮機
17 凝縮器
18 機械室ファン
20 蒸発器
21 冷却ファン
22 内箱
23 外箱
24 断熱体
31 機械室パネル
32 キャピラリ
33 吸入配管
34 天面ダクトカバー
35 吸入開口部
36 吐出開口部
37,237,337 熱交換部
38 蓄熱部材
1 Insulation box 2 Refrigerated room (upper storage room)
3 Freezing room (lower storage room)
4 Vegetable room (lower storage room)
5 Refrigerating Room Revolving Door 6 Freezing Room Drawer Door 7 Vegetable Room Drawer Door 10 Recess 16 Compressor 17 Condenser 18 Machine Room Fan 20 Evaporator 21 Cooling Fan 22 Inner Box 23 Outer Box 24 Heat Insulator 31 Machine Room Panel 32 Capillary 33 Suction piping 34 Top duct cover 35 Suction opening 36 Discharge opening 37, 237, 337 Heat exchange section 38 Heat storage member

Claims (4)

内箱と外箱と発泡充填された断熱体とで構成される断熱箱体と、前記断熱箱体に設けた天面後方の凹み部と、前記凹み部に配設した圧縮機と、前記圧縮機と凝縮器とキャピラリと蒸発器と吸入配管とを環状に接続してなる冷凍サイクルとを備え、前記吸入配管は前記断熱体に埋設されるとともに一端が前記内箱内部へ突出し前記蒸発器と接続され、他端が前記凹み部の下方から突出して前記圧縮機と接続されるものであって、前記吸入配管の前記断熱体に埋設されている部分において前記吸入配管と前記キャピラリとが熱交換可能に配設された熱交換部を設けた冷蔵庫。   A heat insulating box composed of an inner box, an outer box, and a foam-filled heat insulating body, a recessed portion at the rear of the top surface provided in the heat insulating box, a compressor disposed in the recessed portion, and the compression A refrigeration cycle in which a machine, a condenser, a capillary, an evaporator, and a suction pipe are connected in an annular shape, and the suction pipe is embedded in the heat insulator and has one end protruding into the inner box and the evaporator. The other end protrudes from below the recess and is connected to the compressor, and the suction pipe and the capillary exchange heat at a portion embedded in the heat insulator of the suction pipe. A refrigerator provided with a heat exchanging portion arranged as possible. 吸入配管の凹み部に突出した部分にまで、前記吸入配管とキャピラリとの熱交換部を延長した請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein a heat exchanging portion between the suction pipe and the capillary is extended to a portion protruding into the recess of the suction pipe. 吸入配管の凹み部に突出した熱交換部にキャピラリと熱交換可能に取り付けた蓄熱部材を設けた請求項2に記載の冷蔵庫。   The refrigerator according to claim 2, wherein a heat storage member attached so as to be capable of exchanging heat with the capillary is provided in a heat exchanging portion protruding in a recess portion of the suction pipe. 凹み部にファンを設け、前記凹み部の内部空間で風路を構成し、前記機械室風路内に吸入配管を配置した請求項1から3のいずれか一項に記載の冷蔵庫。   The refrigerator as described in any one of Claim 1 to 3 which provided the fan in the recessed part, comprised the air path in the interior space of the said recessed part, and has arrange | positioned suction | inhalation piping in the said machine room air path.
JP2004345387A 2004-11-30 2004-11-30 refrigerator Expired - Fee Related JP4552623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345387A JP4552623B2 (en) 2004-11-30 2004-11-30 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345387A JP4552623B2 (en) 2004-11-30 2004-11-30 refrigerator

Publications (2)

Publication Number Publication Date
JP2006153359A true JP2006153359A (en) 2006-06-15
JP4552623B2 JP4552623B2 (en) 2010-09-29

Family

ID=36631872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345387A Expired - Fee Related JP4552623B2 (en) 2004-11-30 2004-11-30 refrigerator

Country Status (1)

Country Link
JP (1) JP4552623B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025931A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Refrigerator
JP2012154533A (en) * 2011-01-25 2012-08-16 Toshiba Corp Refrigerator
WO2021019770A1 (en) * 2019-08-01 2021-02-04 三菱電機株式会社 Refrigerator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798761A (en) * 1981-09-24 1982-06-19 Matsushita Refrigeration Cooler
JPS6193775U (en) * 1984-11-27 1986-06-17
JPS63148063A (en) * 1986-12-08 1988-06-20 松下電器産業株式会社 Defrostation controller for heat pump type air conditioner
JPH04203756A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Refrigerator
JPH09113096A (en) * 1995-10-20 1997-05-02 Fujitsu General Ltd Electric refrigerator
JP2000110719A (en) * 1998-10-05 2000-04-18 Matsushita Electric Ind Co Ltd Closed type compressor and open type compressor
JP2000302706A (en) * 1999-04-21 2000-10-31 Matsushita Electric Ind Co Ltd Preparation of difluoromethane and recycling of ozone layer-depleting refrigerant
JP2001099552A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Cooler/refrigerator
JP2001343181A (en) * 2000-06-01 2001-12-14 Mitsubishi Electric Corp Refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798761A (en) * 1981-09-24 1982-06-19 Matsushita Refrigeration Cooler
JPS6193775U (en) * 1984-11-27 1986-06-17
JPS63148063A (en) * 1986-12-08 1988-06-20 松下電器産業株式会社 Defrostation controller for heat pump type air conditioner
JPH04203756A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Refrigerator
JPH09113096A (en) * 1995-10-20 1997-05-02 Fujitsu General Ltd Electric refrigerator
JP2000110719A (en) * 1998-10-05 2000-04-18 Matsushita Electric Ind Co Ltd Closed type compressor and open type compressor
JP2000302706A (en) * 1999-04-21 2000-10-31 Matsushita Electric Ind Co Ltd Preparation of difluoromethane and recycling of ozone layer-depleting refrigerant
JP2001099552A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Cooler/refrigerator
JP2001343181A (en) * 2000-06-01 2001-12-14 Mitsubishi Electric Corp Refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025931A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Refrigerator
JP2012154533A (en) * 2011-01-25 2012-08-16 Toshiba Corp Refrigerator
WO2021019770A1 (en) * 2019-08-01 2021-02-04 三菱電機株式会社 Refrigerator
JPWO2021019770A1 (en) * 2019-08-01 2021-02-04
JP7175399B2 (en) 2019-08-01 2022-11-18 三菱電機株式会社 refrigerator

Also Published As

Publication number Publication date
JP4552623B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US9791202B2 (en) Refrigerator and vacuum heat insulating material for use in refrigerator
US20100251744A1 (en) Refrigerator having ice making room
KR20090032733A (en) Heat radiating apparatus of refrigerator
WO2011114656A1 (en) Refrigerator
JP2007064597A (en) Refrigerator
JP2008116126A (en) Refrigerator
JP2015034646A (en) Refrigerator
JP2014048030A (en) Cooling warehouse
JP2007093112A (en) Cooling storage
JP4552623B2 (en) refrigerator
JP2008106967A (en) Refrigerator
JP4218514B2 (en) refrigerator
JP2015052400A (en) Refrigerator and method of manufacturing the same
JP2018004248A (en) Refrigerator
JP2007064598A (en) Refrigerator
JP2007078282A (en) Refrigerator
JP5985942B2 (en) Refrigerator
JP2005345061A (en) Refrigerator
WO2020121404A1 (en) Refrigerator
JP2007147100A (en) Refrigerator
RU2734934C2 (en) Refrigerator and/or freezer
JP2017026210A (en) refrigerator
EP2397797A1 (en) Refrigerator
JP2004170041A (en) Refrigerator
JP3823993B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4552623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees