JP2001343181A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2001343181A
JP2001343181A JP2000164503A JP2000164503A JP2001343181A JP 2001343181 A JP2001343181 A JP 2001343181A JP 2000164503 A JP2000164503 A JP 2000164503A JP 2000164503 A JP2000164503 A JP 2000164503A JP 2001343181 A JP2001343181 A JP 2001343181A
Authority
JP
Japan
Prior art keywords
temperature
suction pipe
machine room
compressor
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000164503A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishibashi
義弘 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000164503A priority Critical patent/JP2001343181A/en
Publication of JP2001343181A publication Critical patent/JP2001343181A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems of conventional refrigerators that the maximum safety measures must be taken against refrigerant leakage in the case of using inflammable refrigerants because of the following reasons; that flon based refrigerants used in conventional refrigerators and the like are stable in physical properties and can be treated easily, but have a considerably high GWP of about 1,300 even in the case of HFC refrigerants, which do not destroy the ozonosphere, compared with that of about 3 in the case of hydrocarbon series refrigerants, so that they cause the global warming, and that refrigerants such as the hydrocarbon series, however, are highly inflammable refrigerants so that there is the danger of fire or explosion due to an uncontrollable indoor ignition source when the refrigerants leak even if the refrigerator itself is designed to have no ignition source therein. SOLUTION: The refrigerator comprises a refrigerating cycle, in which a refrigerant discharged from a compressor flows through a condenser, a drier, a throttle device, an evaporator and a suction pipe to return to the compressor again, wherein inflammable refrigerants such as hydrocarbon series and the like are used for the refrigerants and the surface temperature of the suction pipe, at the portion thereof exposed in a machine room outside the heat insulating wall of the box, is kept at least at the dew-point temperature of air having a relative humidity of 90% at the outside temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、地球環境に悪影
響を与えることのない冷媒を用いた冷蔵庫に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator using a refrigerant that does not adversely affect the global environment.

【0002】[0002]

【従来の技術】現在、冷凍冷蔵庫の冷媒には、物性が安
定し、扱い易いのでフロン系の冷媒が用いられている。
2. Description of the Related Art At present, Freon-based refrigerants are used as refrigerants for refrigerators because they have stable physical properties and are easy to handle.

【0003】[0003]

【発明が解決しようとする課題】フロン系の冷媒は物性
が安定し扱い易いが、オゾン層を破壊しないHFC冷媒
でも地球温暖化係数GWPが1300と炭化水素系冷媒
の3程度と比べてかなり高いことから、地球温暖化に悪
影響を与えると考えられ、ドイツ・北欧では炭化水素系
冷媒が使用されている。しかしながら従来炭化水素系冷
媒を使用する冷蔵庫は封入冷媒量の少ないファンを使用
しない小型の構造に制限されている。
The CFC-based refrigerant has stable physical properties and is easy to handle. However, even an HFC refrigerant that does not destroy the ozone layer has a global warming potential GWP of 1300, which is considerably higher than that of a hydrocarbon-based refrigerant of about 3. For this reason, it is considered that this has an adverse effect on global warming, and hydrocarbon refrigerants are used in Germany and Northern Europe. However, a refrigerator using a hydrocarbon-based refrigerant has been conventionally limited to a small structure that does not use a fan with a small amount of enclosed refrigerant.

【0004】ファン式の大型冷蔵庫の場合は使用してい
る冷媒量が多く、炭化水素等の冷媒は強可燃性冷媒のた
め、冷凍サイクルから冷媒漏洩が生じた場合は冷蔵庫自
身に着火源が無い製品仕様にしても、コントロールでき
ない室内の着火源により火災等の不具合を生じる恐れが
あった。このため可燃性冷媒を使用する装置の場合は、
冷媒漏洩防止に対して最大限の安全策を施さなければな
らなかった。
In the case of a large fan-type refrigerator, a large amount of refrigerant is used. Since refrigerants such as hydrocarbons are highly flammable refrigerants, when a refrigerant leaks from the refrigeration cycle, the ignition source is generated in the refrigerator itself. Even if there is no product specification, there is a risk that a fire or other trouble may occur due to an uncontrolled indoor ignition source. Therefore, in the case of a device that uses a flammable refrigerant,
Maximum safety measures had to be taken to prevent refrigerant leakage.

【0005】ガス漏れ原因としては、ロウ付け不良や配
管共振折損等の製造工程に原因のある場合と、購入者の
実使用環境に原因のある腐食がある。製造工程の問題は
管理できるが客先の環境まではコントロールできないの
で、冷媒漏洩防止に対しては特に配管腐食に対して最大
限の安全策を講じなければならないという課題があっ
た。
[0005] Gas leakage may be caused by defects in the manufacturing process, such as poor brazing or broken piping resonance, and corrosion caused by the actual use environment of the purchaser. Since the problems in the manufacturing process can be managed but cannot be controlled even at the customer's environment, there has been a problem that maximum safety measures must be taken against refrigerant leakage, especially against pipe corrosion.

【0006】この発明は、代替冷媒として地球環境に悪
影響を与えることのない炭化水素系冷媒等の可燃性冷媒
を用い、その配管腐食に対する安全性を追求することに
よって、人と地球に優しい冷蔵庫の提供を目的としてい
る。さらに大型の信頼性の高い冷蔵庫を得ることを目的
とする。
The present invention uses a flammable refrigerant such as a hydrocarbon-based refrigerant which does not adversely affect the global environment as an alternative refrigerant, and pursues safety against corrosion of piping, thereby providing a refrigerator which is friendly to people and the earth. It is intended to be provided. Another object is to obtain a large and reliable refrigerator.

【0007】[0007]

【課題を解決するための手段】本発明の第1の発明に係
る冷蔵庫は、圧縮機から吐出された高温冷媒が凝縮器と
絞り装置と蒸発器とを通り、低温冷媒となって吸入管を
通って再び圧縮機に戻る冷凍サイクルと、冷凍サイクル
を循環する冷媒に用いられる可燃性冷媒と、蒸発器から
圧縮機へ冷媒を戻す吸入配管であって断熱箱体を出て機
械室内に露出部を有する吸入配管と、機械室内に露出す
る吸入配管の表面の温度をほぼ冷蔵庫周囲温度に近い温
度になるように吸入配管を加熱する加熱手段と、を備え
たものである。
According to a first aspect of the present invention, there is provided a refrigerator in which high-temperature refrigerant discharged from a compressor passes through a condenser, a throttle device, and an evaporator, and becomes low-temperature refrigerant to form a suction pipe. A refrigeration cycle that passes through to the compressor again, a flammable refrigerant used for the refrigerant circulating in the refrigeration cycle, and a suction pipe that returns the refrigerant from the evaporator to the compressor. And a heating means for heating the suction pipe so that the temperature of the surface of the suction pipe exposed in the machine room is substantially equal to the refrigerator ambient temperature.

【0008】本発明の第2の発明に係る冷蔵庫は、絞り
装置として毛細管を用い、蒸発器から圧縮機へ冷媒を戻
す吸入配管の断熱箱体内部において毛細管と吸入管を半
田付け等により熱交換させることによって吸入管を加熱
するものである。
A refrigerator according to a second aspect of the present invention uses a capillary tube as a throttling device, and heat exchanges by soldering or the like between the capillary tube and the suction pipe inside a heat insulating box of a suction pipe for returning refrigerant from an evaporator to a compressor. This heats the suction pipe.

【0009】本発明の第3の発明に係る冷蔵庫は、断熱
箱体の背面下部にあって圧縮機の配設してある機械室の
背面側に圧縮機カバーを設け、圧縮機カバーに通気口を
設けることで圧縮機の温度上昇を押さえながら機械室の
温度を上げることで、蒸発器から圧縮機へ冷媒を戻す吸
入配管の断熱箱体を出て機械室内露出部の温度を、ほぼ
冷蔵庫周囲温度に近い温度になるようにしたものであ
る。
In the refrigerator according to a third aspect of the present invention, a compressor cover is provided on a rear side of a machine room in which a compressor is disposed at a lower rear portion of the heat insulating box, and a vent hole is provided in the compressor cover. By raising the temperature of the machine room while suppressing the temperature rise of the compressor by providing a, the temperature of the exposed part of the machine room is almost changed around the refrigerator by leaving the heat insulation box of the suction pipe that returns the refrigerant from the evaporator to the compressor. The temperature is set to be close to the temperature.

【0010】本発明の第4の発明に係る冷蔵庫は、機械
室内に配置され機械室内の空気を循環させる機械室ファ
ンと、を備え機械室ファンの風路に吸入管の露出部を配
置したものである。
According to a fourth aspect of the present invention, there is provided a refrigerator having a machine room fan disposed in a machine room and circulating air in the machine room, wherein an exposed portion of the suction pipe is arranged in an air passage of the machine room fan. It is.

【0011】本発明の第5の発明に係る冷蔵庫は、吸入
管の露出部の表面温度に応じて機械室ファンを運転、又
は、風速を変化させるものである。
A refrigerator according to a fifth aspect of the present invention operates a machine room fan or changes a wind speed in accordance with the surface temperature of an exposed portion of a suction pipe.

【0012】本発明の第6の発明に係る冷蔵庫は、吸入
配管の表面の温度を、冷蔵庫周囲温度における相対湿度
90%時の露点温度以上としたものである。
In a refrigerator according to a sixth aspect of the present invention, the temperature of the surface of the suction pipe is equal to or higher than the dew point temperature at a relative humidity of 90% at the ambient temperature of the refrigerator.

【0013】[0013]

【発明の実施の形態】実施の形態1.以下、図1〜図7
の図面にてこの発明の実施の形態の例を具体的に説明す
る。図1はファン式冷蔵庫断面図で、1は断熱材1−a
で周囲を覆われ冷蔵物を収納する複数の庫室を有する冷
蔵庫本体、2は圧縮機7が配置された機械室、22は霜
取りヒーター、24は庫内冷気送風ファンである。冷蔵
庫の構造は、図1に示すように蒸発器13の上部に配設
された庫内冷気送風ファン24によって、蒸発器13で
冷やされた冷気を庫内の各貯蔵室に循環させて冷やす構
造となっている。この様なファン式冷蔵庫では、蒸発器
13に多量の着霜が生じるため、一定の運転時間の経過
後に、蒸発器13の下部に配設された霜取ヒータ22に
通電して、その発熱により蒸発器13の霜を取る構造に
なっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, FIGS. 1 to 7
An embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 is a sectional view of a fan-type refrigerator, and 1 is a heat insulating material 1-a.
A refrigerator main body having a plurality of storage compartments for covering the surroundings and storing refrigerated items, 2 is a machine room in which the compressor 7 is arranged, 22 is a defrost heater, and 24 is a cold air blower fan in the refrigerator. As shown in FIG. 1, the refrigerator has a structure in which cold air cooled by the evaporator 13 is circulated to each storage room in the refrigerator by a cool air blower fan 24 disposed above the evaporator 13 to cool the refrigerator. It has become. In such a fan-type refrigerator, since a large amount of frost is formed on the evaporator 13, after a certain operation time has elapsed, the defrost heater 22 disposed below the evaporator 13 is energized, and the heat generated by the heater 22 is generated. The evaporator 13 has a structure for removing frost.

【0014】図2は冷凍サイクルを示したブロック説明
図であり、8は圧縮機7から吐出された高温高圧の冷媒
を凝縮器9へ流す吐出配管、10は冷媒の中の水分を除
去するドライヤー、11は主として断熱材の中に配置さ
れ凝縮器で放熱させた高温高圧の液冷媒を膨張させて圧
力を下げる毛細管である絞り装置、20は蒸発器13か
らの低温冷媒を圧縮機7に導く吸入管である。図2の冷
凍サイクルにおいて、圧縮機7から高温高圧の冷媒が吐
出され吐出配管8を介して凝縮器9にて凝縮される。凝
縮器9で凝縮した冷媒は、ドライヤ10を経て絞り装置
11に入って減圧されながら、蒸発器13に入って蒸発
する。このとき庫内冷気送風ファン24にて送風され循
環する庫内の空気が蒸発器13を通る際に冷媒が蒸発す
る低い温度により冷却されて冷蔵庫の庫内の空気を冷却
する。
FIG. 2 is a block diagram showing a refrigeration cycle. Reference numeral 8 denotes a discharge pipe through which high-temperature and high-pressure refrigerant discharged from a compressor 7 flows to a condenser 9. Reference numeral 10 denotes a dryer for removing moisture in the refrigerant. , 11 is a throttle device which is a capillary tube which is mainly disposed in the heat insulating material and expands the high-temperature and high-pressure liquid refrigerant radiated by the condenser to reduce the pressure, and 20 guides the low-temperature refrigerant from the evaporator 13 to the compressor 7. It is a suction pipe. In the refrigeration cycle of FIG. 2, high-temperature and high-pressure refrigerant is discharged from the compressor 7 and condensed in the condenser 9 via the discharge pipe 8. The refrigerant condensed in the condenser 9 enters the expansion device 11 via the dryer 10 and enters the evaporator 13 while being decompressed, and evaporates. At this time, the air in the refrigerator, which is blown and circulated by the cool air blower fan 24 in the refrigerator, is cooled by the low temperature at which the refrigerant evaporates when passing through the evaporator 13, thereby cooling the air in the refrigerator.

【0015】図3は機械室構造説明図で3は圧縮機に送
風する機械室ファン、4は蒸発器13からの除霜水を導
くドレンパイプ5からの水をためるドレンパンである。
図3において圧縮機7を冷却する機械室ファン3が配設
されており、圧縮機7の熱や機械室ファン3の送風によ
り、蒸発器13の霜取により生じた除霜水を蒸発させる
ドレンパン4と、蒸発器13から除霜水をドレンパン4
へ導くドレンホース5が配設された構造となっている。
このように、圧縮機7を出た高温高圧の冷媒は、吐出配
管8を通って凝縮器9に入り例えば凝縮温度35゜Cで
凝縮する。凝縮器9で凝縮した冷媒は、ドライヤ10を
経て絞り装置11に入って減圧されながら、蒸発器13
に入って蒸発する。蒸発器13で蒸発した低温低圧の例
えば蒸発温度−30゜Cの冷媒は、吸入管20を通っ
て、圧縮機7に戻ってくる。したがって蒸発器13を出
た後の冷媒を流す吸入管20はこの冷媒に冷やされ、も
し周囲温度が30゜C程度とすると機械室2の中で露出
している吸入管20−aの表面に露がつくことになる。
なお図3においては吐出配管8に接続される凝縮器9は
省略されているがこの凝縮器9が発生する高温は冷蔵庫
の外部にファンなどにより排熱されている。
FIG. 3 is an explanatory view of the structure of the machine room. 3 is a machine room fan for blowing air to the compressor, and 4 is a drain pan for collecting water from a drain pipe 5 for guiding defrost water from the evaporator 13.
In FIG. 3, a machine room fan 3 for cooling the compressor 7 is provided, and a drain pan for evaporating defrost water generated by defrosting of the evaporator 13 by heat of the compressor 7 or blowing of the machine room fan 3. And the defrost water from the evaporator 13 to the drain pan 4
And a drain hose 5 for guiding the air to the drain is provided.
As described above, the high-temperature and high-pressure refrigerant that has exited the compressor 7 enters the condenser 9 through the discharge pipe 8 and condenses at, for example, a condensation temperature of 35 ° C. The refrigerant condensed in the condenser 9 enters the expansion device 11 through the dryer 10 and is decompressed.
Enter and evaporate. The low-temperature and low-pressure refrigerant evaporated at the evaporator 13 and having a vaporization temperature of −30 ° C., for example, returns to the compressor 7 through the suction pipe 20. Therefore, the suction pipe 20 through which the refrigerant after leaving the evaporator 13 flows is cooled by the refrigerant, and if the ambient temperature is about 30 ° C., the suction pipe 20 is exposed to the surface of the suction pipe 20-a exposed in the machine room 2. Dew will come.
Although the condenser 9 connected to the discharge pipe 8 is omitted in FIG. 3, the high temperature generated by the condenser 9 is exhausted outside the refrigerator by a fan or the like.

【0016】冷蔵庫本体1の背面下部に設けられた機械
室2の背面図の図3にて説明するように、冷蔵庫本体1
の断熱材部1−a内を通って機械室内2に入ってきた吸
入管20の機械室内部部分20−aの表面温度を、吸入
管を加熱して外気温度における相対湿度90%時の露点
温度以上とすると、起動時の液冷媒戻り時を除き、蒸発
器13から圧縮機7までの吸入配管20の機械室内部部
分20−aへの長時間の露付きを減らすことができると
共に、吸入管表面に付着した水分への空気中の有害物の
溶け込みも押さえることもできるため、腐食の進行によ
るガス漏れの危険性を押さえた安全性の高い炭化水素系
冷媒等の可燃性冷媒を用いた冷蔵庫等を供給することが
できる。相対湿度90%時の露点温度以上とは、理科年
表1996年度版による日本の月別平年相対湿度を見た
場合、相対湿度90%以上となる都市はごく僅かである
ことと、冷蔵庫自身が連続運転となって吸入管20−a
に運転中ずっと露が付いている状態となるのは、断熱扉
6の閉じかたが不完全な場合等であることから90%と
した。この値は冷蔵庫が使用される対象国の気象状況に
よって個々に考慮される値である。この例における吸入
管温度の確認方法としては、誤使用により連続運転にな
った場合を想定し、例えば外気温を30℃程度に設定し
た部屋で強制的に連続運転を実施し、各部の温度が安定
した状態で吸入管温度を測定して確認する。
As will be described with reference to FIG. 3 which is a rear view of the machine room 2 provided at the lower rear part of the refrigerator main body 1,
The surface temperature of the interior portion 20-a of the suction chamber 20 of the suction pipe 20 that has entered the machine chamber 2 through the interior of the heat insulator 1-a is determined by heating the suction pipe and dew point at a relative humidity of 90% at the outside air temperature. When the temperature is equal to or higher than the temperature, it is possible to reduce long-term dew on the interior portion 20-a of the suction pipe 20 from the evaporator 13 to the compressor 7 except for the return of the liquid refrigerant at the time of start-up. Since it can also suppress the dissolution of harmful substances in the air into the moisture attached to the pipe surface, a highly safe combustible refrigerant such as a hydrocarbon-based refrigerant that suppresses the risk of gas leakage due to the progress of corrosion was used. A refrigerator or the like can be supplied. Above the dew point temperature at 90% relative humidity, when looking at the monthly average relative humidity in Japan according to the 1996 edition of the science chronology, only a few cities have relative humidity of 90% or more, and the refrigerator itself is continuous. Operation and the suction pipe 20-a
The reason why the state where the dew sticks during the operation is 90% because the insulated door 6 is incompletely closed or the like. This value is individually considered depending on the weather conditions in the target country where the refrigerator is used. As a method of confirming the suction pipe temperature in this example, it is assumed that continuous operation is performed due to misuse. For example, continuous operation is forcibly performed in a room where the outside air temperature is set to about 30 ° C. Measure and confirm the suction pipe temperature in a stable condition.

【0017】図4と図5にてこの吸入管を加熱する構造
を説明する。18は絞り装置11である毛細管11−a
と吸入管20を断熱材1−aの中で接触させて熱交換部
19を形成する半田である。図4、図5に示された冷凍
サイクルを持つ冷蔵庫等に、炭化水素系のイソブタンを
冷媒として使用し、絞り装置11として毛細管11−a
を用いる一方、高温の毛細管11−aと吸入管20を断
熱箱体1の断熱材1−a内部にて熱交換部19で吸入管
20を加熱させ、蒸発器13から前記圧縮機7へ冷媒を
戻す吸入配管20の機械室内部部分20−aの表面温度
を、外気温度における相対湿度90%時の露点温度以上
としたもので、これにより吸入管20の表面に露つきを
防止できるという効果が得られる。
A structure for heating the suction pipe will be described with reference to FIGS. Reference numeral 18 denotes a capillary tube 11-a, which is a squeezing device 11.
And the suction pipe 20 are made to come into contact with each other in the heat insulating material 1-a to form the heat exchange portion 19. In a refrigerator having a refrigeration cycle shown in FIGS. 4 and 5, a hydrocarbon-based isobutane is used as a refrigerant, and a capillary tube 11-a is used as the expansion device 11.
On the other hand, the high-temperature capillary tube 11-a and the suction tube 20 are heated by the heat exchange unit 19 inside the heat-insulating material 1-a of the heat-insulating box 1, and the refrigerant is transferred from the evaporator 13 to the compressor 7 by the refrigerant. The surface temperature of the portion 20-a inside the machine chamber of the suction pipe 20 for returning pressure is set to be equal to or higher than the dew point temperature at a relative humidity of 90% at the outside air temperature, whereby the surface of the suction pipe 20 can be prevented from being dewed. Is obtained.

【0018】図1−図4の冷凍サイクルから分るよう
に、凝縮器9は冷蔵庫の周囲温度である外気に放熱する
ため「凝縮器温度>外気温」の関係に有る。毛細管入口
温度は、「凝縮器出口温度=ドライヤ温度=毛細管入口
温度」となるため、「毛細管入口温度>外気温」の関係
に有る。一方、吸入管入口温度は「吸入管入口温度=蒸
発器出口温度=蒸発温度」となるように冷媒量を設定し
ているため、霜取時を除いて「−10℃>>吸入管入口
温度」と常に低温になっている。また、相対湿度90%
時の露点温度は概ね外気温−1〜2℃位に有るため、常
に「外気温>相対湿度90%時の露点温度」の関係に有
る。そこで「毛細管入口温度>外気温>相対湿度90%
時の露点温度>>吸入管入口温度」の関係から、図5の
様に温度の高い毛細管11−aと温度の低い吸入管20
をハンダ等で接触させて熱伝導させる熱交換部19を設
けることで毛細管11−aから吸入管20へ熱が伝わ
り、吸入管の出口側である吸入管の機械室内部部分20
−aの温度を相対湿度90%時の露点温度以上にしたも
のである。
As can be seen from the refrigeration cycle shown in FIGS. 1 to 4, the condenser 9 radiates heat to the outside air, which is the ambient temperature of the refrigerator, and has a relationship of "condenser temperature> outside air temperature". Since the capillary inlet temperature is “condenser outlet temperature = dryer temperature = capillary tube inlet temperature”, there is a relationship of “capillary tube inlet temperature> outside air temperature”. On the other hand, since the amount of the refrigerant is set so that the inlet pipe inlet temperature becomes “inlet pipe inlet temperature = evaporator outlet temperature = evaporation temperature”, “−10 ° C. >>> inlet pipe inlet temperature except during defrosting. "It is always cold. The relative humidity is 90%
Since the dew point temperature at the time is approximately at the outside air temperature of -1 to 2 ° C., there is always a relationship of “outside air temperature> dew point temperature at 90% relative humidity”. Therefore, "Capillary inlet temperature> outside temperature> relative humidity 90%
From the relationship of “dew point temperature at the time >>> inlet temperature of the suction pipe”, as shown in FIG.
Is provided with a heat exchanging portion 19 for contacting with a solder or the like to conduct heat, whereby heat is transmitted from the capillary tube 11-a to the suction pipe 20, and the machine chamber inner portion 20 of the suction pipe at the outlet side of the suction pipe.
The temperature of -a is higher than the dew point temperature at a relative humidity of 90%.

【0019】図6に機械室構造側面断面図を、図7に圧
縮機カバー背面図を説明する。21は断熱扉6の反対側
に開口された機械室2の背面開口を覆う機械室カバーで
あり、21−aは機械室カバー21の上部に設けられた
通気口、25は防振ゴム26を介して冷蔵庫を支える台
板、27は断熱材で覆われることなく機械室内に露出さ
れた吸入管20−aの表面温度を計測する温度計測素子
である。
FIG. 6 is a side sectional view of the machine room structure, and FIG. 7 is a rear view of the compressor cover. Reference numeral 21 denotes a machine room cover that covers the back opening of the machine room 2 that is opened on the opposite side of the heat insulating door 6, 21 -a denotes a vent provided on the top of the machine room cover 21, and 25 denotes a vibration-proof rubber 26. A base plate 27 for supporting the refrigerator via the inside is a temperature measuring element for measuring the surface temperature of the suction pipe 20-a exposed in the machine room without being covered with the heat insulating material.

【0020】図3、図6、図7に示すように断熱箱体1
の背面下部にあって圧縮機7の配設してある機械室2の
背面側に圧縮機カバー21を設け、更に図7に示すよう
に前記圧縮機カバー21に、圧縮機の発熱などにより機
械室内部の暖まった空気が吸入管の機械室内部部分20
−aの周りを通って外部に出ていく様に通気口21−a
を設けることで、圧縮機カバー21によって機械室内に
閉じ込められて暖まった機械室の内部空気から吸入管の
機械室内部部分が暖められる。こうして蒸発器13から
圧縮機7へ冷媒を戻す吸入配管20の機械室内部部分2
0−aの表面温度を、圧縮機の温度上昇を押さえながら
上昇させることが出来るし、場合によってはこの構造と
共に2メートル近くなる半田で接合された熱交換部19
で加熱する。あるいは図3のように冷蔵庫の外から外気
を吸い込んで送風する機械室ファンを回転させ、この風
路に配置された露出した吸入管20−aの配管と空気の
伝熱を促進させる。あるいはこれと共に機械室カバーの
通気口21−aから排熱させている。これらのさまざま
な対策単独又は組み合わせて、露出した吸入管20−a
の配管の温度を外気温度近く、すなわち外気温度を30
゜Cとすると28.5゜Cとすることが出来、外気温度
における相対湿度90%時の露点温度以上としたもの
で、露出配管の露付きを防止できることになる。この時
の温度の関係は、「機械室内部空気温度>外気温度>吸
入管の機械室内部部分の温度>相対湿度90%時の露点
温度>>吸入管入口温度」の関係に有る。相対湿度90
%時の露点温度以上としたことで、起動時の液冷媒戻り
時を除き、蒸発器から圧縮機までの吸入配管への長時間
の露付きを減らすことができると共に、吸入管表面に付
着した水分への空気中の有害物の溶け込みも押さえるこ
ともできるため、腐食の進行によるガス漏れの危険性を
押さえた安全性の高い炭化水素系冷媒等の可燃性冷媒を
用いた冷蔵庫等を供給することができる。なお熱交換部
は温度差と伝熱面積の関係で伝熱量が決まるため冷凍サ
イクルの特性から、吸入管の表面温度が外気温度近くの
温度になるように熱交換部の伝熱長さを決めればよい。
As shown in FIG. 3, FIG. 6 and FIG.
A compressor cover 21 is provided on the back side of the machine room 2 in which the compressor 7 is disposed at the lower back of the compressor, and the compressor cover 21 is further provided on the compressor cover 21 as shown in FIG. The warmed air inside the room is the part of the suction pipe inside the machine room 20
Vent 21-a so as to pass through the periphery of -a and to the outside
Is provided, the portion inside the machine chamber of the suction pipe is warmed from the internal air of the machine room which is confined in the machine room by the compressor cover 21 and warmed. Thus, the inside portion 2 of the suction pipe 20 that returns the refrigerant from the evaporator 13 to the compressor 7
The surface temperature of 0-a can be raised while suppressing the temperature rise of the compressor, and in some cases, the heat exchange portion 19 joined by solder which is close to 2 meters together with this structure.
Heat with. Alternatively, as shown in FIG. 3, a machine room fan that sucks in outside air from the outside of the refrigerator and blows the air out of the refrigerator is rotated to promote heat transfer between the pipes of the exposed suction pipe 20-a disposed in the air passage and the air. Alternatively, heat is exhausted from the vent 21-a of the machine room cover. These various measures, alone or in combination, provide an exposed suction tube 20-a.
Pipe temperature near the outside air temperature, that is, when the outside air temperature is 30
If it is set to ゜ C, it can be set to 28.5 ゜ C, which is equal to or higher than the dew point temperature at a relative humidity of 90% at the outside air temperature. The relationship of the temperatures at this time has a relationship of “air temperature inside the machine room> outside air temperature> temperature inside the machine room of the suction pipe> dew point temperature at a relative humidity of 90% >> temperature at the inlet of the suction pipe”. 90 relative humidity
By setting the dew point temperature at or above the%, it is possible to reduce long-term dew on the suction pipe from the evaporator to the compressor except for the return of the liquid refrigerant at the time of start-up, and to adhere to the suction pipe surface. Supplying refrigerators and the like that use highly safe hydrocarbon-based refrigerants and other flammable refrigerants that suppress the risk of gas leakage due to the progress of corrosion because they can also suppress the dissolution of harmful substances in the air into moisture. be able to. Since the amount of heat transfer in the heat exchange section is determined by the relationship between the temperature difference and the heat transfer area, the heat transfer length of the heat exchange section must be determined from the characteristics of the refrigeration cycle so that the surface temperature of the suction pipe is close to the outside air temperature. I just need.

【0021】なお配管20は一般に銅管を使用してお
り、腐食は電池反応が基本で湿気のある雰囲気のほうが
腐食が進行しやすいので、ドレンパンから蒸発する空気
の流れと吸入管20−aを通る空気の流れは別々にする
ことが望ましいが水滴の飛散を防止して吸入管20−a
に水滴の付着がしない構造が重要である。この空気の流
れは機械室ファンの送風により簡単に区分けすることが
出来る。又硫化水素や亜硫酸ガスが存在する場合湿気が
高いところでは腐食が加速するので湿気対策が必要であ
る。すなわち、ガス漏れになるような腐食は孔触であ
り、この孔触は孔先端の金属活性面と見かけ表面との間
の電池反応で孔先端が優先的に解けて腐触が進行する。
特に塩化物や硫化物を含む酸化銅皮膜などで表面皮膜の
保護機能が不安定な状態では腐食が進行しやすく、たと
え配管表面に塗装などをしたとしても長期使用中の傷な
どから発生する。このように腐食が電池反応なのでパイ
プが露でぬれていると進行しやすく、温泉地ばかりでな
く塩化ガスや硫化ガスが存在する地域では露付きがなく
とも湿度が高ければ腐食加速が進行するので吸入管の表
面温度を外気温度前後の温度に維持することが重要であ
る。
The pipe 20 is generally a copper pipe. Corrosion is basically caused by a battery reaction, and corrosion is more likely to occur in a humid atmosphere. Therefore, the flow of air evaporating from the drain pan and the suction pipe 20-a are restricted. It is desirable that the flow of air passing through the suction pipe 20-a
A structure that does not allow water droplets to adhere to the surface is important. This air flow can be easily divided by the air blow from the machine room fan. When hydrogen sulfide or sulfurous acid gas is present, corrosion is accelerated in a high humidity area, so that a measure against moisture is required. That is, the corrosion that causes gas leakage is a hole contact, and the hole contact is preferentially melted by a battery reaction between the metal active surface and the apparent surface at the hole tip, and corrosion proceeds.
In particular, when the protective function of the surface film is unstable, such as a copper oxide film containing chloride or sulfide, the corrosion is apt to progress, and even if the piping surface is painted, it is caused by scratches during long-term use. In this way, corrosion is a battery reaction, so if the pipe is wet with dew, it will easily progress.In areas where chloride gas and sulfide gas are present, as well as in hot spring areas, even if there is no dew, if the humidity is high, corrosion acceleration will progress. It is important to maintain the surface temperature of the suction pipe at a temperature around the outside air temperature.

【0022】確実に機械室内の吸入配管の露付きを防止
し周囲の湿気を防止するため、機械室内の配管周囲の空
気温度を外気温度と同程度又はより高くすべく、吸入管
20−aの表面温度を計測し、この温度が冷蔵庫の制御
基板に配置されたマイコンに記憶させてある標準外気温
度、例えば30゜Cに対し数度、例えば25−28゜C
と低い状態であれば機械室ファンを運転状態に保った
り、あるいはファンの回転を常に高い速度として空気と
配管の伝熱を促進したりすることにより、このファンの
通風路に存在する配管の湿気や露付きを防止させること
が出来る。なお標準外気温度の代わりに冷蔵庫の周囲温
度を直接計測したり、あるいは、電灯線に信号を重畳さ
せて冷蔵庫とは全く別の装置から温度計測データ等の情
報を冷蔵庫に送信させて吸入管20−aの表面温度と比
較し機械室ファンを制御してもよい。
In order to reliably prevent dew on the suction pipe in the machine room and to prevent the surrounding humidity, the air temperature around the pipe in the machine room is set to be equal to or higher than the outside air temperature. The surface temperature is measured, and this temperature is several degrees, for example, 25-28 ° C. with respect to the standard outside temperature, for example, 30 ° C. stored in a microcomputer arranged on the control board of the refrigerator.
If the condition is low, keep the machine room fan in operation or keep the fan rotating at a high speed to promote the heat transfer between the air and the piping, thereby reducing the humidity of the piping existing in the ventilation passage of this fan. And dew can be prevented. In addition, the ambient temperature of the refrigerator is directly measured instead of the standard outside air temperature, or information such as temperature measurement data is transmitted to the refrigerator from a device completely different from the refrigerator by superimposing a signal on a power line, and the suction pipe 20 is used. The machine room fan may be controlled in comparison with the surface temperature of -a.

【0023】なお吸入配管の加熱手段として断熱材の中
で毛細管との熱交換部を設けたが吐出配管8から吸入配
管20を部分的に接触させたり、近接配置して熱交換さ
せたり、別途加熱手段を設けるなどにより湿気対策とし
てもよいことは当然で、このような吸入配管の温度を上
げたとしても冷凍サイクル全体の温度を上下させる形で
あれば冷凍サイクルの特性に大きく影響することはなく
湿気や露付き対策が行える。又上記説明では外気を吸い
込んで圧縮機の冷却を行い外部に排気する機械室ファン
で吸入管と機械室内の空気をより伝熱させる説明を行っ
ているが、吸入管周りの空気をかき混ぜればよいので別
のファンなどによりこの空気のかき混ぜを行ってもよい
ことは当然である。
Although a heat exchange section with a capillary tube is provided in the heat insulating material as a heating means of the suction pipe, the suction pipe 20 is partially brought into contact with the discharge pipe 8 or heat is exchanged by being disposed close to the suction pipe 20. Naturally, it is also possible to take measures against moisture by providing a heating means. Even if the temperature of the suction pipe is increased, if the temperature of the entire refrigeration cycle is increased or decreased, it will not greatly affect the characteristics of the refrigeration cycle. Without moisture and dew. In the above description, a machine room fan that sucks in outside air, cools the compressor, and exhausts the air to the outside is used to transfer the heat in the suction pipe and the air in the machine room more.However, if the air around the suction pipe is stirred, It is natural that this air may be stirred by another fan or the like.

【0024】[0024]

【発明の効果】以上、説明したようにこの発明によれ
ば、代替冷媒として地球環境に悪影響を与えることのな
い炭化水素系冷媒等の可燃性冷媒を用いた上で、配管腐
食による冷媒漏れの進行を押さえることができるため、
安全性の面で大変好ましいものとなり、人と地球に優し
い冷蔵庫等が得られる。
As described above, according to the present invention, a flammable refrigerant such as a hydrocarbon-based refrigerant which does not adversely affect the global environment is used as a substitute refrigerant, and refrigerant leakage due to pipe corrosion is prevented. Because it can hold down progress,
It becomes very favorable in terms of safety, and a refrigerator and the like that are friendly to people and the earth can be obtained.

【0025】又この発明は、断熱箱体内部に熱交換部を
設け効果的な伝熱を可能にしている。
Further, according to the present invention, a heat exchange section is provided inside the heat insulating box to enable effective heat transfer.

【0026】又この発明は、圧縮機の温度上昇を押さえ
ながら露出した配管の周囲の温度を外気と同程度もしく
はより高く保ち湿気を防止して冷蔵庫の信頼性を高めて
いる。
In addition, the present invention keeps the temperature around the exposed piping at the same level or higher than the outside air while suppressing the rise in the temperature of the compressor, thereby preventing moisture and improving the reliability of the refrigerator.

【0027】又この発明は、機械室内を循環する空気に
より吸入管の露付きを有効に防止できる。
According to the present invention, dew on the suction pipe can be effectively prevented by air circulating in the machine room.

【0028】又この発明は、吸入管の露出部の表面温度
に応じて機械室内の空気を循環させるのでより効率的な
湿気防止の運転が可能である。
Further, according to the present invention, the air in the machine room is circulated according to the surface temperature of the exposed portion of the suction pipe, so that a more efficient operation for preventing moisture can be performed.

【0029】又この発明は冷蔵庫の信頼性を向上させる
ことが出来る。
Further, the present invention can improve the reliability of the refrigerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の1実施の形態の例であるファン式
冷蔵庫の断面図である。
FIG. 1 is a sectional view of a fan-type refrigerator according to an embodiment of the present invention.

【図2】 この発明の冷凍サイクルを示したブロック説
明図である。
FIG. 2 is a block diagram showing a refrigeration cycle of the present invention.

【図3】 この発明の機械室構造説明図である。FIG. 3 is an explanatory diagram of a machine room structure according to the present invention.

【図4】 この発明の吸入管と毛細管との熱交換部を有
する冷凍サイクルのブロック説明図である。
FIG. 4 is a block diagram of a refrigeration cycle having a heat exchange section between a suction pipe and a capillary according to the present invention.

【図5】 この発明の吸入管と毛細管との熱交換部の断
面説明図である。
FIG. 5 is an explanatory cross-sectional view of a heat exchange part between the suction pipe and the capillary according to the present invention.

【図6】 この発明の機械室構造側面断面図である。FIG. 6 is a side sectional view of a machine room structure according to the present invention.

【図7】 この発明の圧縮機カバー背面図である。FIG. 7 is a rear view of the compressor cover of the present invention.

【符号の説明】[Explanation of symbols]

1 冷蔵庫本体、1−a 冷蔵庫本体断熱材、 2 機
械室、 3 機械室ファン、 4 ドレンパン、 5
ドレンパイプ、 6 断熱扉、 7 圧縮機、 8
吐出配管、 9 凝縮器、 10 ドライヤ、 11
絞り装置、 11−a 毛細管、 11−b 膨張弁、
12 他の毛細管、 13 蒸発器、14 フィン、
15 冷媒管、 16 ヘッダ、 17 冷媒、 1
8 ハンダ、 19 熱交換部、 20 吸入管、 2
0−a 吸入管の機械室内部部分、 21 圧縮機カバ
ー、 21−a 圧縮機カバ−の通気口、 22 霜取
ヒータ、 23 霜取ヒータルーフ、 24 庫内冷気
送風ファン、 25 台板、 26 防振ゴム、 27
温度計測素子。
DESCRIPTION OF SYMBOLS 1 Refrigerator main body, 1-a Refrigerator main body insulation material, 2 Machine room, 3 Machine room fan, 4 Drain pan, 5
Drain pipe, 6 insulated door, 7 compressor, 8
Discharge piping, 9 condenser, 10 dryer, 11
Throttle device, 11-a capillary tube, 11-b expansion valve,
12 other capillaries, 13 evaporators, 14 fins,
15 refrigerant pipe, 16 header, 17 refrigerant, 1
8 solder, 19 heat exchange section, 20 suction pipe, 2
0-a Suction pipe inner part of machine room, 21 Compressor cover, 21-a Ventilation opening of compressor cover, 22 Defrost heater, 23 Defrost heater roof, 24 Cooling air blower in cabinet, 25 plate, 26 Prevention Vibration rubber, 27
Temperature measuring element.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機から吐出された高温冷媒が凝縮器
と絞り装置と蒸発器とを通り、低温冷媒となって吸入管
を通って再び圧縮機に戻る冷凍サイクルと、前記冷凍サ
イクルを循環する冷媒に用いられる可燃性冷媒と、前記
蒸発器から前記圧縮機へ冷媒を戻す吸入配管であって断
熱箱体を出て機械室内に露出部を有する吸入配管と、前
記機械室内に露出する前記吸入配管の表面の温度をほぼ
冷蔵庫周囲温度に近い温度になるように前記吸入配管を
加熱する加熱手段と、を備えたことを特徴とする冷蔵
庫。
1. A refrigeration cycle in which high-temperature refrigerant discharged from a compressor passes through a condenser, a throttle device, and an evaporator, becomes low-temperature refrigerant, returns to a compressor again through a suction pipe, and circulates through the refrigeration cycle. A flammable refrigerant used for the refrigerant to be cooled, a suction pipe for returning the refrigerant from the evaporator to the compressor, the suction pipe having an exposed portion in the machine room coming out of the heat insulating box, and being exposed in the machine room. A refrigerator comprising: heating means for heating the suction pipe such that the temperature of the surface of the suction pipe is substantially equal to the temperature around the refrigerator.
【請求項2】 絞り装置として毛細管を用い、蒸発器か
ら圧縮機へ冷媒を戻す吸入配管の断熱箱体内部において
毛細管と吸入管を半田付け等により熱交換させることに
よって吸入管を加熱することを特徴とする請求項1記載
の冷蔵庫。
2. A method of heating a suction pipe by using a capillary tube as a throttle device and exchanging heat by soldering or the like between the capillary tube and the suction pipe inside a heat insulating box of a suction pipe for returning a refrigerant from an evaporator to a compressor. The refrigerator according to claim 1, characterized in that:
【請求項3】 断熱箱体の背面下部にあって圧縮機の配
設してある機械室の背面側に圧縮機カバーを設け、前記
圧縮機カバーに通気口を設けることで圧縮機の温度上昇
を押さえながら前記機械室内の温度を上げることで、蒸
発器から前記圧縮機へ冷媒を戻す吸入配管の断熱箱体を
出て機械室内露出部の温度を、ほぼ冷蔵庫周囲温度に近
い温度になるようにしたことを特徴とする請求項1記載
の冷蔵庫。
3. A compressor cover is provided on a rear side of a machine room in which a compressor is provided at a lower rear portion of the heat insulating box, and a ventilation port is provided on the compressor cover to increase the temperature of the compressor. By raising the temperature inside the machine room while holding down, the temperature of the exposed part of the machine room is brought out to a temperature close to the refrigerator ambient temperature by leaving the heat insulating box of the suction pipe returning the refrigerant from the evaporator to the compressor. The refrigerator according to claim 1, wherein
【請求項4】 機械室内に配置され前記機械室内の空気
を循環させる機械室ファンと、を備え前記機械室ファン
の風路に吸入管の露出部を配置したことを特徴とする請
求項1又は2又は3記載の冷蔵庫。
4. A machine room fan disposed in a machine room and configured to circulate air in the machine room, wherein an exposed portion of the suction pipe is arranged in an air passage of the machine room fan. The refrigerator according to 2 or 3.
【請求項5】 吸入管の露出部の表面温度に応じて機械
室ファンを運転、又は、風速を変化させることを特徴と
する請求項4記載の冷蔵庫。
5. The refrigerator according to claim 4, wherein the machine room fan is operated or the wind speed is changed according to the surface temperature of the exposed portion of the suction pipe.
【請求項6】 吸入配管の表面の温度を、冷蔵庫周囲温
度における相対湿度90%時の露点温度以上としたこと
を特徴とする請求項1ないし5のうちの少なくとも1記
載の冷蔵庫。
6. The refrigerator according to claim 1, wherein the temperature of the surface of the suction pipe is equal to or higher than the dew point temperature at a relative humidity of 90% at the ambient temperature of the refrigerator.
JP2000164503A 2000-06-01 2000-06-01 Refrigerator Pending JP2001343181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164503A JP2001343181A (en) 2000-06-01 2000-06-01 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164503A JP2001343181A (en) 2000-06-01 2000-06-01 Refrigerator

Publications (1)

Publication Number Publication Date
JP2001343181A true JP2001343181A (en) 2001-12-14

Family

ID=18668114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164503A Pending JP2001343181A (en) 2000-06-01 2000-06-01 Refrigerator

Country Status (1)

Country Link
JP (1) JP2001343181A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134093A (en) * 2003-10-06 2005-05-26 Sanden Corp Showcase control device
JP2006153359A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Refrigerator
JP2020085363A (en) * 2018-11-27 2020-06-04 ホシザキ株式会社 Cooler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134093A (en) * 2003-10-06 2005-05-26 Sanden Corp Showcase control device
JP2006153359A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Refrigerator
JP4552623B2 (en) * 2004-11-30 2010-09-29 パナソニック株式会社 refrigerator
JP2020085363A (en) * 2018-11-27 2020-06-04 ホシザキ株式会社 Cooler
JP7174603B2 (en) 2018-11-27 2022-11-17 ホシザキ株式会社 cooling equipment

Similar Documents

Publication Publication Date Title
WO2000070281A1 (en) Refrigerator and defrosting heater
JP2000121233A (en) Freezer/refrigerator
KR20180064059A (en) Cold-air drying device that combines refrigeration and warm-up
JPH08303932A (en) Defrosting device for freezer/refrigerator show case
JP2001343181A (en) Refrigerator
WO2020166308A1 (en) Defrosting device and refrigerator equipped with same
JP2004324902A (en) Freezing refrigerator
KR100588843B1 (en) Refrigeration system in the refrigerator and refrigeration control method implementing it
JP2004333092A (en) Freezer/refrigerator
KR100469322B1 (en) Evaporator
JP3876719B2 (en) refrigerator
KR101858227B1 (en) Refrigerator
KR100377618B1 (en) Refrigerator with Phase change material
JP2002195724A (en) Refrigerator
KR20040014137A (en) Refrigerator and defroster
JP3482405B2 (en) refrigerator
JP3567108B2 (en) refrigerator
JP3482406B2 (en) Freezer refrigerator
JPH1089831A (en) Quick refrigerator and evaporator
JP2004212001A (en) Refrigerator
JP3495956B2 (en) refrigerator
JP2000065463A (en) Freezing refrigerator
JPH11281248A (en) Refrigerator
JPH1082571A (en) Refrigerator
KR20170050637A (en) Serving as a freezing cold air drying unit and heating cabinet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916