WO2021019770A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2021019770A1
WO2021019770A1 PCT/JP2019/030271 JP2019030271W WO2021019770A1 WO 2021019770 A1 WO2021019770 A1 WO 2021019770A1 JP 2019030271 W JP2019030271 W JP 2019030271W WO 2021019770 A1 WO2021019770 A1 WO 2021019770A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
refrigerant circuit
refrigerant
evaporator
space
Prior art date
Application number
PCT/JP2019/030271
Other languages
French (fr)
Japanese (ja)
Inventor
松田 弘文
雄亮 田代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/030271 priority Critical patent/WO2021019770A1/en
Priority to JP2021536579A priority patent/JP7175399B2/en
Publication of WO2021019770A1 publication Critical patent/WO2021019770A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigerator.
  • a refrigerator equipped with a refrigerant circuit including a compressor, a condenser, a throttle device, and an evaporator, in which the compressor is arranged in the machine room together with the condenser.
  • Patent No. 5571606 discloses a refrigerator comprising a refrigerant circuit including a compressor, a condenser, a squeezing device, and an evaporator, the squeezing device including an electronic expansion valve and a capillary tube (hereinafter referred to as a capillary). ..
  • the capillary is in contact with a pipe connecting the evaporator and the suction port of the compressor, and the refrigerant flowing through the capillary exchanges heat with the refrigerant sucked from the evaporator into the compressor.
  • the compressor is arranged in the machine room together with the condenser, it is exposed to the atmosphere of the place where the compressor refrigerator is installed. Therefore, when the refrigerator is used in a humid area such as Southeast Asia and Hokkaido, the temperature of the refrigerant sucked into the compressor becomes lower than the dew point temperature of the atmosphere, and the suction pipe connected to the suction port of the compressor. Condensation may occur on the surface. Condensation corrodes metal members in the machine room, such as the floorboards in the machine room, and reduces the reliability of the refrigerator.
  • the superheated refrigerant flowing out of the evaporator is sucked into the compressor after exchanging heat with the refrigerant flowing through the capillary. Since the refrigerant flowing through the capillary is expanded by the electronic expansion valve and expands while flowing through the capillary, the temperature of the refrigerant flowing through the capillary is lower than the temperature of the superheated refrigerant. As a result, the temperature of the refrigerant sucked into the compressor in the refrigerator becomes lower than the temperature of the superheated refrigerant flowing out of the evaporator, and the temperature of the refrigerant sucked into the compressor in the refrigerator without the electronic expansion valve and the capillary. Compared to, it will be lower. Therefore, in the refrigerator, dew condensation is likely to occur in the suction pipe connected to the suction port of the compressor as compared with the refrigerator without the electronic expansion valve and the capillary.
  • a main object of the present invention is to provide a refrigerator in which dew condensation is less likely to occur as compared with a conventional refrigerator.
  • the refrigerator according to the present invention includes a compressor, a condenser, a squeezing device, and an evaporator, and a double tube, and the refrigerant circulates through the compressor, the condenser, the squeezing device, the evaporator, and the double tube in order. It is equipped with a refrigerant circuit.
  • the compressor includes a suction port for sucking the refrigerant.
  • the double tube has an inner tube and an outer tube arranged so as to surround the inner tube and connected to the suction port. Inside the inner pipe, a first space is formed which connects the evaporator and the suction port in the refrigerant circuit.
  • the first space is partitioned by the inner pipe
  • the second space is formed by the outer pipe, which is partitioned from the outer space of the double pipe.
  • the end portion located on the upstream side of the refrigerant circuit of the inner pipe and the end portion located on the upstream side of the refrigerant circuit of the outer pipe are hermetically sealed.
  • the end portion located on the downstream side of the refrigerant circuit of the inner pipe and the end portion located on the downstream side of the refrigerant circuit of the outer pipe are arranged at a distance from each other.
  • FIG. 1 It is a figure which shows the refrigerant circuit of the refrigerator which concerns on embodiment. It is a figure which shows a part of the refrigerant circuit of the refrigerator shown in FIG. 1 and a machine room. It is a figure which shows the arrangement example of the double tube of the refrigerator shown in FIG. It is a partial end view which shows the region IV of the double tube of the refrigerator shown in FIG. It is a partial end view which shows the modification of the double tube of the refrigerator which concerns on embodiment. It is a partial end view which shows the other modification of the double pipe of the refrigerator which concerns on embodiment. It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment. It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment. It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment. It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment. It is a partial end view which shows the further modification
  • the refrigerator 100 includes a refrigerant circuit constituting a refrigeration cycle.
  • the refrigerant circuit includes the compressor 1, the condenser 2, the drawing device 3, and the evaporator 4, and the double pipe 11, the first pipe 12, and the second pipe arranged between the evaporator 4 and the compressor 1. 13 and is included.
  • the refrigerant circuit is provided so that the refrigerant circulates in this order through the compressor 1, the condenser 2, the throttle device 3, the evaporator 4, the first pipe 12, the double pipe 11, and the second pipe 13.
  • the compressor 1 includes a suction port for sucking the refrigerant, a compression unit for compressing the refrigerant sucked from the suction port, and a discharge port for discharging the high-temperature and high-pressure vapor-phase refrigerant compressed by the compression unit.
  • the condenser 2 is provided so that the gas phase refrigerant discharged from the discharge port of the compressor 1 exchanges heat with the gas flowing along the second direction B (see FIGS. 2 and 3). As a result, the gas phase refrigerant is condensed into a liquid phase refrigerant. The flow of gas along the second direction B is formed around the condenser 2 by the blower 6.
  • the throttle device 3 has an electronic expansion valve 3A and a capillary 3B.
  • the electronic expansion valve 3A and the capillary 3B are connected in series in the refrigerant circuit.
  • the electronic expansion valve 3A is arranged closer to the condenser 2 than the capillary 3B.
  • the capillary 3B is arranged closer to the evaporator 4 than the electronic expansion valve 3A.
  • the drawing device 3 is provided so as to reduce the pressure of the liquid phase refrigerant condensed in the condenser 2. As a result, the liquid-phase refrigerant expands to become a gas-liquid two-phase refrigerant.
  • the evaporator 4 is provided so that the gas-liquid two-phase refrigerant decompressed in the throttle device 3 exchanges heat with air in a storage chamber (not shown) of the refrigerator 100. As a result, the gas-liquid two-phase refrigerant evaporates to become a gas-phase refrigerant.
  • the evaporator 4 has an outlet through which the vapor phase refrigerant flows out. The outlet of the evaporator 4 is connected to the suction port of the compressor 1 via the first pipe 12, the double pipe 11, and the second pipe 13.
  • the double pipe 11 is arranged on the downstream side of the first pipe 12 and on the upstream side of the second pipe 13 in the refrigerant circuit.
  • the extending direction of the double pipe 11 is, for example, along the vertical direction.
  • the first pipe 12 is a so-called single pipe.
  • the capillary 3B and the first pipe 12 form, for example, a heat exchange section 5.
  • the heat exchange unit 5 is provided so that the refrigerant flowing through the first pipe 12 exchanges heat with the refrigerant flowing through the capillary 3B.
  • the first pipe 12 is in contact with, for example, the capillary 3B.
  • the second pipe 13 is connected to the suction port of the compressor 1.
  • the second pipe 13 is a so-called single pipe.
  • the second pipe 13 has a bent portion 14 inside, for example, the machine room 101.
  • the second pipe 13 has, for example, a portion extending along the vertical direction and a portion extending along the horizontal direction.
  • the refrigerator 100 includes a machine room 101, a storage room (not shown), and a heat insulating portion 102.
  • the machine room 101 houses, for example, a compressor 1, a condenser 2, an electronic expansion valve 3A, a double pipe 11, a second pipe 13, and a blower 6.
  • the heat insulating portion 102 is arranged so as to surround the storage chamber cooled by the evaporator 4, and houses, for example, the evaporator 4, the capillary 3B, and the first pipe 12 inside.
  • the heat insulating portion 102 has a portion arranged above the machine room 101.
  • the double pipe 11 and the second pipe 13 are arranged inside the machine room 101.
  • the double pipe 11 is arranged only inside, for example, the machine room 101.
  • the double pipe 11 constitutes a part of the part of the refrigerant pipe connecting the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit, which is arranged in the machine room 101.
  • the second pipe 13 constitutes the rest of the portion of the refrigerant pipe connecting the evaporator 4 and the suction port of the compressor 1 that is arranged in the machine room 101.
  • the end portion of the double pipe 11 located on the upstream side of the refrigerant circuit is arranged in the boundary region adjacent to the heat insulating portion 102 in the machine room 101.
  • the end of the double pipe 11 located on the downstream side of the refrigerant circuit is arranged on the upstream side of the refrigerant circuit in the machine room 101 with respect to the bent portion 14 of the second pipe 13.
  • the double pipe 11 has an inner pipe 21 and an outer pipe 22 arranged so as to surround the inner pipe 21.
  • the first end portion 211 of the inner pipe 21 located on the upstream side of the refrigerant circuit is connected to the end portion of the first pipe 12 located on the downstream side of the refrigerant circuit.
  • the second end portion 212 of the inner pipe 21 located on the downstream side of the refrigerant circuit is arranged inside the outer pipe 22 and is open toward the downstream side of the refrigerant circuit.
  • the third end 221 located on the upstream side of the refrigerant circuit of the outer pipe 22 is connected to the first end 211 located on the upstream side of the refrigerant circuit of the inner pipe 21.
  • the third end portion 221 and the first end portion 211 are joined by, for example, a brazing material, and are hermetically sealed by this.
  • the fourth end 222 located on the downstream side of the refrigerant circuit of the outer pipe 22 is spaced apart from the second end 212 located on the downstream side of the refrigerant circuit of the inner pipe 21 in the thickness direction of the inner pipe 21. Is arranged.
  • the fourth end 222 of the outer pipe 22 located on the downstream side of the refrigerant circuit is connected to the end of the second pipe 13 located on the upstream side of the refrigerant circuit.
  • the inner pipe 21 is open on the upstream side and the downstream side of the refrigerant circuit.
  • the outer pipe 22 is closed on the upstream side of the refrigerant circuit and is open on the downstream side.
  • a first space S1 that connects the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit is formed inside the inner pipe 21 .
  • a second space S2 is formed which is partitioned from the first space S1 by the inner pipe 21 and is partitioned from the outer space of the double pipe 11 by the outer pipe 22.
  • the second space S2 is closed on the upstream side and open on the downstream side of the refrigerant circuit.
  • the second space S2 is formed in an annular shape so as to surround the first space S1, for example.
  • a third space S3 that connects the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit is formed.
  • the third space S3 is connected to the first space S1 and the second space S2.
  • the second space S2 is connected to the first space S1 via the third space S3.
  • the inner pipe 21 and the outer pipe 22 are designed so that the flow of the gas phase refrigerant in the second space S2 can be regarded as a molecular flow.
  • the inner diameter and outer diameter of the inner pipe 21 are, for example, constant.
  • the outer pipe 22 has a diameter-expanded portion in which the outer diameter increases from the upstream side to the downstream side of the refrigerant circuit.
  • the inner diameter and outer diameter of the second pipe 13 are equal to the inner diameter and outer diameter of the outer pipe 22.
  • the inner diameter and outer diameter of the first pipe 12 are equal to the inner diameter and outer diameter of the inner pipe 21.
  • the second pipe 13 and the outer pipe 22 are configured as one, for example.
  • the first pipe 12 and the inner pipe 21 are configured as one, for example.
  • the double pipe 11, the second pipe 13, and the first pipe 12 are composed of, for example, the third pipe 31 and the fourth pipe 32.
  • the outer diameter of the second pipe 13 is equal to, for example, the outer diameter of the outer pipe 22.
  • the outer diameter of the first pipe 12 is equal to, for example, the outer diameter of the inner pipe 21.
  • the inner pipe 21 of the double pipe 11 is configured as a portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit.
  • the first pipe 12 is configured as a portion of the third pipe 31 arranged on the upstream side of the refrigerant circuit.
  • the outer pipe 22 of the double pipe 11 is configured as a portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit.
  • the second pipe 13 is configured as a portion of the fourth pipe 32 arranged on the downstream side of the refrigerant circuit.
  • the double pipe 11, the second pipe 13, and the first pipe 12 shown in FIG. 4 are formed, for example, as follows.
  • the third pipe 31 and the fourth pipe 32 molded into the shape shown in FIG. 4 are prepared.
  • the portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit is reduced in diameter with respect to the portion of the fourth pipe 32 arranged on the downstream side of the refrigerant circuit.
  • the portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit is inserted into the portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit.
  • the portion of the fourth pipe 32 of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit is joined to the portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit.
  • the fourth pipe 32 may be prepared as a straight pipe whose diameter is not reduced.
  • the portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit is the portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit is upstream of the fourth pipe 32 of the refrigerant circuit. After being inserted inside the portion arranged on the side, the diameter is reduced.
  • the refrigerant circuit of the refrigerator 100 includes a double pipe 11 arranged between the evaporator 4 and the suction port of the compressor 1. While the refrigerator 100 is in steady operation, the first space S1 and the second space S2 are sucked into the compressor 1, while the gas phase refrigerant is supplied to the first space S1 from the evaporator 4 side. The vapor phase refrigerant is not supplied to the second space S2 from the evaporator 4 side.
  • the ultimate temperature of the outer pipe 22 when the refrigerator 100 is in steady operation is the amount of heat exchange between the outer pipe 22 and the air in the machine room 101, and the amount of heat transfer from the compressor 1 to the second pipe 13. , And the amount increases or decreases according to the amount of heat exchange between the inner pipe 21 and the outer pipe 22.
  • the factor that lowers the temperature of the outer pipe 22 and generates dew condensation water is the amount of heat exchange between the inner pipe 21 and the outer pipe 22.
  • the amount of heat exchange between the inner pipe 21 and the outer pipe 22 is estimated as follows.
  • k e is the heat transfer coefficient of the gas-phase refrigerant that natural convection (Unit: W / (m ⁇ K) ) is expressed by the following equation (2).
  • k is the thermal conductivity of the vapor-phase refrigerant (unit: W / (m ⁇ K))
  • L is the length of the double tube 11 in the extending direction (unit: m)
  • Gr is the Grashof number.
  • Pr is the Prandtl number.
  • C, n, and m are proportional constants determined by the fluid state and the pipe shape, and are calculated experimentally.
  • the heat transfer coefficient ke was calculated by substituting the following values for each variable in the above equation (2).
  • the Prandtl number Pr was 0.7, which is an experimental value when the extending direction of the double pipe 11 is the horizontal direction.
  • the thermal conductivity k was 0.017 W / (m ⁇ K), which is the thermal conductivity of isobutane in a superheated state sucked into the compressor 1 during the steady operation.
  • the heat transfer coefficient ke calculated from the above equation (2) and the following values derived assuming the above steady operation are substituted into each variable of the above equation (1) from the outer pipe 22.
  • the amount of heat Q transferred to the inner pipe 21 was calculated.
  • the outer tube temperature T1 was 40 ° C. (313.15K)
  • the inner tube temperature T2 was 25 ° C. (298.15K).
  • the outer diameter of the outer tube 22 was 8.00 mm
  • the outer diameter of the inner tube 21 was 6.35 mm
  • was 1.65 mm.
  • the ultimate temperature of the inner pipe 21 was calculated from the calorific value Q calculated from the above formula (1). As a result of the calculation, the ultimate temperature of the inner tube 21 was 30 ° C., and the ultimate temperature of the outer tube 22 was 35 ° C. That is, when the isobutane gas naturally convects in the second space S2 as described above, the temperature decrease of the outer tube 22 is 5 ° C. or less.
  • the refrigerator 100 it is used under operating conditions such that the temperature of the refrigerant flowing through the inner pipe 21 is 25 ° C. in an environment where the dew point temperature is about 25 ° C. (for example, the temperature is 32 ° C. and the humidity is 70%). Even in this case, since the temperature reached by the outer pipe 22 is higher than the temperature of the refrigerant flowing through the inner pipe 21 and higher than the dew point temperature, dew condensation is unlikely to occur around the outer pipe 22 of the double pipe 11.
  • the vapor phase refrigerant is supplied to the first space S1 from the evaporator 4 side, while the vapor phase refrigerant is not supplied to the second space S2 from the evaporator 4 side. Therefore, the pressure in the second space S2 is lower than the pressure in the first space S1. Pressure in the second space S2 is, for example, 10 0 Pa or less. Since the thermal conductivity of the gas phase refrigerant depends on the pressure, the thermal conductivity of the gas phase refrigerant in the second space S2 is lower than the thermal conductivity of the gas phase refrigerant in the first space S1.
  • the thermal conductivity of the gas phase refrigerant in the second space S2 is lower than the thermal conductivity k of the vapor phase refrigerant in the overheated state sucked into the compressor 1 during the steady operation.
  • the amount of heat transferred from the outer pipe 22 to the inner pipe 21 when the refrigerator 100 is in steady operation is estimated as described above. It becomes even less than the amount of heat generated, and the temperature reached by the outer tube 22 becomes even higher than the temperature estimated as described above.
  • the refrigerator 100 even when the temperature of the refrigerant flowing through the inner pipe 21 is equal to or lower than the dew point temperature under the installation environment during the steady operation, the temperature reached by the outer pipe 22 is made higher than the dew point temperature. Therefore, dew condensation is unlikely to occur around the outer pipe 22 of the double pipe 11.
  • the throttle device 3 includes an electronic expansion valve 3A and a capillary 3B.
  • the electronic expansion valve 3A and the capillary 3B are arranged in series with each other in the refrigerant circuit.
  • the capillary 3B is arranged closer to the evaporator 4 than the electronic expansion valve 3A, and is in contact with the first pipe 12 arranged between the evaporator 4 and the double pipe 11. That is, the refrigerant flowing through the first pipe 12 exchanges heat with the refrigerant flowing through the capillary 3B.
  • the temperature of the refrigerant flowing through the capillary 3B becomes lower as the opening degree of the electronic expansion valve 3A becomes smaller. Therefore, when the opening degree of the electronic expansion valve 3A is small, the temperature of the refrigerant flowing through the capillary 3B is lower than the temperature of the refrigerant flowing out of the evaporator 4, and the temperature of the refrigerant flowing through the first pipe 12 is the temperature of the refrigerant 4 It will be lower than the temperature of the refrigerant flowing out of. As a result, the temperature of the refrigerant flowing into the inner pipe 21 of the double pipe 11 is lower than the temperature of the refrigerant flowing out of the evaporator 4.
  • the refrigerant circuit of the refrigerator 100 includes, but is not limited to, the electronic expansion valve 3A and the capillary 3B as the throttle device 3, and further includes the first pipe 12 in contact with the capillary 3B.
  • the throttle device 3 may be composed of, for example, only an expansion valve.
  • the refrigerant circuit does not have to include the first pipe 12. In such a refrigerator 100, the temperature of the refrigerant flowing into the inner pipe 21 of the double pipe 11 is higher than that of the refrigerator 100, so that dew condensation is less likely to occur around the outer pipe 22 of the double pipe 11. That is, the refrigerator 100 can suppress the occurrence of dew condensation around the outer pipe 22 of the double pipe 11 regardless of the configuration of the drawing device 3.
  • the double pipe 11 constitutes a part of the refrigerant pipe connecting the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit, which is arranged in the machine room 101.
  • the second pipe 13 constitutes the rest of the above portion, but is not limited to this.
  • the double pipe 11 is arranged in the machine room 101 of the refrigerant pipes connecting the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit. It may constitute the whole of the part. That is, the end portion of the double pipe 11 located on the downstream side of the refrigerant circuit may be connected to the suction port 1H of the compressor 1.
  • the second end 212 located on the downstream side of the refrigerant circuit of the inner pipe 21 and the fourth end 222 located on the downstream side of the refrigerant circuit of the outer pipe 22 are the suction port 1H of the compressor 1. It may be connected to. Even in this way, the first space S1 and the second space S2 are formed inside the double pipe 11, and the pressure in the second space S2 is lower than the pressure in the first space S1. Therefore, such a refrigerator 100 can exert the same effect as the above-mentioned refrigerator 100. Further, in such a refrigerator 100, since the length of the double pipe 11 is longer than that of the refrigerator 100 described above, dew condensation is less likely to occur in the machine room 101. In the above case, the double pipe 11 may have a bent portion. Such a double pipe 11 can be assembled, for example, by joining a pre-bent inner pipe 21 and an outer pipe 22.
  • the outer pipe 22 has a diameter-expanded portion in which the outer diameter increases from the upstream side to the downstream side of the refrigerant circuit, but the present invention is not limited to this.
  • the second space S2 faces the enlarged diameter portion of the outer pipe 22 on the upstream side of the refrigerant circuit, but is not limited to this.
  • the inner pipe 21 may have a reduced diameter portion in which the outer diameter becomes smaller from the upstream side to the downstream side of the refrigerant circuit.
  • the second space S2 may face the reduced diameter portion of the inner pipe 21 on the upstream side of the refrigerant circuit. Further, as shown in FIG.
  • the outer pipe 22 has a diameter-expanded portion in which the outer diameter increases from the upstream side to the downstream side of the refrigerant circuit, and the inner pipe 21 of the refrigerant circuit. It may have a reduced diameter portion in which the outer diameter becomes smaller from the upstream side to the downstream side.
  • the second space S2 may face the reduced diameter portion of the inner pipe 21 and the enlarged diameter portion of the outer pipe 22 on the upstream side of the refrigerant circuit.
  • the first space S1 and the second space S2 are also formed in the double pipe 11 as described above. Therefore, the refrigerator 100 provided with the double tube 11 shown in FIG. 6 or FIG. 7 can exert the same effect as the refrigerator 100 provided with the double tube 11 shown in FIG.
  • the refrigerator 100 may have a reduced diameter portion in which the outer diameter of the second pipe 13 decreases from the upstream side to the downstream side of the refrigerant circuit.
  • the outer diameter of the portion of the second pipe 13 located on the downstream side of the refrigerant circuit from the reduced diameter portion is less than the outer diameter L2 of the outer pipe 22.
  • the first end portion 211 of the inner pipe 21 and the third end portion 221 of the outer pipe 22 are joined, but the present invention is not limited to this.
  • the first end portion 211 of the inner pipe 21 and the third end portion 221 of the outer pipe 22 may be connected via a seal member 40.
  • the inner pipe 21 and the seal member 40 are joined by, for example, a brazing material.
  • the outer pipe 22 and the seal member 40 are joined by, for example, a brazing material.
  • the thermal conductivity of the material constituting the seal member 40 is lower than the thermal conductivity of the material constituting the inner tube 21 and the outer tube 22.
  • the double pipe 11 may have at least one connecting portion for connecting the outer peripheral surface of the inner pipe 21 and the inner peripheral surface of the outer pipe 22.
  • the connecting portion is formed as, for example, a convex portion with respect to at least one of the outer peripheral surface of the inner pipe 21 and the inner peripheral surface of the outer pipe 22.
  • the inner pipe 21 has, for example, a plurality of convex portions 21p protruding from the outer peripheral surface of the inner pipe 21.
  • the plurality of convex portions 21p are arranged so as to be spaced apart from each other along the circumferential direction of the inner pipe 21.
  • Each convex portion 21p is in contact with the inner peripheral surface of the outer pipe 22, and constitutes the connection portion.
  • a plurality of second spaces S2 partitioned by a plurality of convex portions 21p are formed between the inner pipe 21 and the outer pipe 22 of the double pipe 11.
  • each convex portion 21p can suppress the deformation of the inner pipe 21 due to the pressure difference generated between the first space S1 and the second space S2. Therefore, the configuration of each convex portion 21p is determined so as to suppress the deformation of the inner tube 21 while suppressing the decrease in the reaching temperature of the outer tube 22 described above.
  • the connection portion may be configured as a separate body from the inner pipe 21 and the outer pipe 22.
  • the thermal conductivity of the material constituting the connection portion is lower than the thermal conductivity of the material constituting the inner tube 21 and the outer tube 22.

Abstract

A refrigerator (100) comprises a refrigerant circuit which includes a compressor (1), a condenser (2), a throttle device (3), an evaporator (4), and a double pipe (11) and in which refrigerant circulates through the compressor, condenser, throttle device, evaporator, and double pipe in this order. The compressor includes a suction port for sucking in refrigerant. The double pipe has an inner pipe (21) and an outer pipe (22) that is disposed so as to enclose the inner pipe and is connected to the suction port. A first space (S1) which connects the evaporator and suction port in the refrigerant circuit is formed inside the inner pipe. A second space (S2) which is demarcated from the first space by the inner pipe and is demarcated from the space outside the double pipe by the outer pipe is formed between the inner pipe and outer pipe. An end part (211) of the inner pipe and an end part (221) of the outer pipe which are located upstream of the refrigerant circuit are hermetically sealed with each other. An end part (212) of the inner pipe and an end part (222) of the outer pipe which are located downstream of the refrigerant circuit are disposed spaced apart from each other.

Description

冷蔵庫refrigerator
 本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.
 従来、圧縮機、凝縮器、絞り装置、および蒸発器を含む冷媒回路を備え、圧縮機が凝縮器とともに機械室内に配置されている冷蔵庫が知られている。 Conventionally, there is known a refrigerator equipped with a refrigerant circuit including a compressor, a condenser, a throttle device, and an evaporator, in which the compressor is arranged in the machine room together with the condenser.
 特許第5572606号には、圧縮機、凝縮器、絞り装置、および蒸発器を含む冷媒回路を備え、絞り装置が電子膨張弁とキャピラリチューブ(以下、キャピラリという)とを含む冷蔵庫が開示されている。キャピラリは蒸発器と圧縮機の吸入口との間を接続する管と接触されており、キャピラリを流れる冷媒は蒸発器から圧縮機に吸入される冷媒と熱交換する。 Patent No. 5571606 discloses a refrigerator comprising a refrigerant circuit including a compressor, a condenser, a squeezing device, and an evaporator, the squeezing device including an electronic expansion valve and a capillary tube (hereinafter referred to as a capillary). .. The capillary is in contact with a pipe connecting the evaporator and the suction port of the compressor, and the refrigerant flowing through the capillary exchanges heat with the refrigerant sucked from the evaporator into the compressor.
特許第5572606号Patent No. 557260
 従来の冷蔵庫において、圧縮機は、凝縮器とともに機械室内に配置されているため、圧縮機冷蔵庫の設置場所の雰囲気に曝されている。そのため、上記冷蔵庫が東南アジアおよび北海道などの多湿地域にて使用されたとき、圧縮機に吸入される冷媒の温度が上記雰囲気の露点温度以下となって、圧縮機の吸入口に接続された吸入配管に結露が生じる場合があった。結露は機械室の床板などの機械室内の金属製部材を腐食させ、冷蔵庫の信頼性を低下させる。 In the conventional refrigerator, since the compressor is arranged in the machine room together with the condenser, it is exposed to the atmosphere of the place where the compressor refrigerator is installed. Therefore, when the refrigerator is used in a humid area such as Southeast Asia and Hokkaido, the temperature of the refrigerant sucked into the compressor becomes lower than the dew point temperature of the atmosphere, and the suction pipe connected to the suction port of the compressor. Condensation may occur on the surface. Condensation corrodes metal members in the machine room, such as the floorboards in the machine room, and reduces the reliability of the refrigerator.
 また、特許第5572606号に記載の冷蔵庫では、蒸発器から流出した過熱冷媒は、キャピラリを流れる冷媒と熱交換した後、圧縮機に吸入される。キャピラリを流れる冷媒は、電子膨張弁にて膨張されたものであってキャピラリを流れながらも膨張するため、キャピラリを流れる冷媒の温度は、上記過熱冷媒の温度よりも低くなる。その結果、上記冷蔵庫において圧縮機に吸入される冷媒の温度は、蒸発器を流出した過熱冷媒の温度よりも低くなり、電子膨張弁およびキャピラリを備えない冷蔵庫において圧縮機に吸入される冷媒の温度と比べて、低くなる。そのため、上記冷蔵庫では、電子膨張弁およびキャピラリを備えない冷蔵庫と比べて、圧縮機の吸入口に接続された吸入配管に結露が生じやすい。 Further, in the refrigerator described in Japanese Patent No. 557260, the superheated refrigerant flowing out of the evaporator is sucked into the compressor after exchanging heat with the refrigerant flowing through the capillary. Since the refrigerant flowing through the capillary is expanded by the electronic expansion valve and expands while flowing through the capillary, the temperature of the refrigerant flowing through the capillary is lower than the temperature of the superheated refrigerant. As a result, the temperature of the refrigerant sucked into the compressor in the refrigerator becomes lower than the temperature of the superheated refrigerant flowing out of the evaporator, and the temperature of the refrigerant sucked into the compressor in the refrigerator without the electronic expansion valve and the capillary. Compared to, it will be lower. Therefore, in the refrigerator, dew condensation is likely to occur in the suction pipe connected to the suction port of the compressor as compared with the refrigerator without the electronic expansion valve and the capillary.
 本発明の主たる目的は、従来の冷蔵庫と比べて、結露が生じにくい冷蔵庫を提供することにある。 A main object of the present invention is to provide a refrigerator in which dew condensation is less likely to occur as compared with a conventional refrigerator.
 本発明に係る冷蔵庫は、圧縮機、凝縮器、絞り装置、および蒸発器と、二重管とを含み、冷媒が圧縮機、凝縮器、絞り装置、蒸発器、および二重管を順に循環する冷媒回路を備える。圧縮機は、冷媒を吸入する吸入口を含む。二重管は、内管と、内管を囲むように配置されておりかつ吸入口に接続された外管とを有している。内管の内部には、冷媒回路において蒸発器と吸入口との間を接続する第1空間が形成されている。内管と外管との間には、内管によって第1空間と区画されており、かつ外管によって二重管の外部空間と区画された第2空間が形成されている。内管の冷媒回路の上流側に位置する端部と外管の冷媒回路の上流側に位置する端部とは、気密に封止されている。内管の冷媒回路の下流側に位置する端部と外管の冷媒回路の下流側に位置する端部とは、間隔を隔てて配置されている。 The refrigerator according to the present invention includes a compressor, a condenser, a squeezing device, and an evaporator, and a double tube, and the refrigerant circulates through the compressor, the condenser, the squeezing device, the evaporator, and the double tube in order. It is equipped with a refrigerant circuit. The compressor includes a suction port for sucking the refrigerant. The double tube has an inner tube and an outer tube arranged so as to surround the inner tube and connected to the suction port. Inside the inner pipe, a first space is formed which connects the evaporator and the suction port in the refrigerant circuit. Between the inner pipe and the outer pipe, the first space is partitioned by the inner pipe, and the second space is formed by the outer pipe, which is partitioned from the outer space of the double pipe. The end portion located on the upstream side of the refrigerant circuit of the inner pipe and the end portion located on the upstream side of the refrigerant circuit of the outer pipe are hermetically sealed. The end portion located on the downstream side of the refrigerant circuit of the inner pipe and the end portion located on the downstream side of the refrigerant circuit of the outer pipe are arranged at a distance from each other.
 本発明によれば、従来の冷蔵庫と比べて、結露が生じにくい冷蔵庫を提供することができる。 According to the present invention, it is possible to provide a refrigerator in which dew condensation is less likely to occur as compared with a conventional refrigerator.
実施の形態に係る冷蔵庫の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerator which concerns on embodiment. 図1に示される冷蔵庫の冷媒回路の一部と機械室とを示す図である。It is a figure which shows a part of the refrigerant circuit of the refrigerator shown in FIG. 1 and a machine room. 図2に示される冷蔵庫の二重管の配置例を示す図である。It is a figure which shows the arrangement example of the double tube of the refrigerator shown in FIG. 図3に示される冷蔵庫の二重管の領域IVを示す部分端面図である。It is a partial end view which shows the region IV of the double tube of the refrigerator shown in FIG. 実施の形態に係る冷蔵庫の二重管の変形例を示す部分端面図である。It is a partial end view which shows the modification of the double tube of the refrigerator which concerns on embodiment. 実施の形態に係る冷蔵庫の二重管の他の変形例を示す部分端面図である。It is a partial end view which shows the other modification of the double pipe of the refrigerator which concerns on embodiment. 実施の形態に係る冷蔵庫の二重管のさらに他の変形例を示す部分端面図である。It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment. 実施の形態に係る冷蔵庫の二重管のさらに他の変形例を示す部分端面図である。It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment. 実施の形態に係る冷蔵庫の二重管のさらに他の変形例を示す部分端面図である。It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment. 実施の形態に係る冷蔵庫の二重管のさらに他の変形例を示す部分端面図である。It is a partial end view which shows the further modification of the double pipe of the refrigerator which concerns on embodiment.
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings below, the same or corresponding parts are given the same reference numbers, and the explanations are not repeated.
 <冷蔵庫の構成>
 図1に示されるように、本実施の形態に係る冷蔵庫100は、冷凍サイクルを構成している冷媒回路を備える。
<Construction of refrigerator>
As shown in FIG. 1, the refrigerator 100 according to the present embodiment includes a refrigerant circuit constituting a refrigeration cycle.
 冷媒回路は、圧縮機1、凝縮器2、絞り装置3、および蒸発器4と、蒸発器4と圧縮機1との間に配置された二重管11、第1配管12、および第2配管13とを含む。冷媒回路は、冷媒が、圧縮機1、凝縮器2、絞り装置3、蒸発器4、第1配管12、二重管11、および第2配管13を順に循環するように設けられている。 The refrigerant circuit includes the compressor 1, the condenser 2, the drawing device 3, and the evaporator 4, and the double pipe 11, the first pipe 12, and the second pipe arranged between the evaporator 4 and the compressor 1. 13 and is included. The refrigerant circuit is provided so that the refrigerant circulates in this order through the compressor 1, the condenser 2, the throttle device 3, the evaporator 4, the first pipe 12, the double pipe 11, and the second pipe 13.
 圧縮機1は、冷媒を吸入する吸入口と、上記吸入口から吸入された冷媒を圧縮する圧縮部と、該圧縮部で圧縮した高温・高圧の気相冷媒を吐出する吐出口とを含む。 The compressor 1 includes a suction port for sucking the refrigerant, a compression unit for compressing the refrigerant sucked from the suction port, and a discharge port for discharging the high-temperature and high-pressure vapor-phase refrigerant compressed by the compression unit.
 凝縮器2は、圧縮機1の吐出口から吐出された気相冷媒が第2方向B(図2および図3参照)に沿って流れる気体と熱交換するように設けられている。これにより、気相冷媒は凝縮されて液相冷媒となる。第2方向Bに沿った気体の流れは、送風機6によって凝縮器2の周囲に形成される。 The condenser 2 is provided so that the gas phase refrigerant discharged from the discharge port of the compressor 1 exchanges heat with the gas flowing along the second direction B (see FIGS. 2 and 3). As a result, the gas phase refrigerant is condensed into a liquid phase refrigerant. The flow of gas along the second direction B is formed around the condenser 2 by the blower 6.
 絞り装置3は、電子膨張弁3Aと、キャピラリ3Bとを有している。電子膨張弁3Aおよびキャピラリ3Bは、上記冷媒回路において直列に接続されている。電子膨張弁3Aは、キャピラリ3Bよりも凝縮器2側に配置されている。言い換えると、キャピラリ3Bは、電子膨張弁3Aよりも蒸発器4側に配置されている。絞り装置3は、凝縮器2において凝縮された液相冷媒を減圧するように設けられている。これにより、液相冷媒は膨張して気液2相冷媒となる。 The throttle device 3 has an electronic expansion valve 3A and a capillary 3B. The electronic expansion valve 3A and the capillary 3B are connected in series in the refrigerant circuit. The electronic expansion valve 3A is arranged closer to the condenser 2 than the capillary 3B. In other words, the capillary 3B is arranged closer to the evaporator 4 than the electronic expansion valve 3A. The drawing device 3 is provided so as to reduce the pressure of the liquid phase refrigerant condensed in the condenser 2. As a result, the liquid-phase refrigerant expands to become a gas-liquid two-phase refrigerant.
 蒸発器4は、絞り装置3において減圧された気液2相冷媒が冷蔵庫100の図示しない貯蔵室内の空気と熱交換するように設けられている。これにより、気液2相冷媒は蒸発して気相冷媒となる。蒸発器4は、気相冷媒が流出する流出口を有している。蒸発器4の流出口は、第1配管12、二重管11、および第2配管13を介して、圧縮機1の吸入口に接続されている。 The evaporator 4 is provided so that the gas-liquid two-phase refrigerant decompressed in the throttle device 3 exchanges heat with air in a storage chamber (not shown) of the refrigerator 100. As a result, the gas-liquid two-phase refrigerant evaporates to become a gas-phase refrigerant. The evaporator 4 has an outlet through which the vapor phase refrigerant flows out. The outlet of the evaporator 4 is connected to the suction port of the compressor 1 via the first pipe 12, the double pipe 11, and the second pipe 13.
 図1~図3に示されるように、二重管11は、上記冷媒回路において第1配管12よりも下流側であって第2配管13よりも上流側に配置されている。二重管11の延在方向は、例えば上下方向に沿っている。第1配管12は、いわゆる単管である。キャピラリ3Bと第1配管12とは、例えば熱交換部5を構成している。熱交換部5は、第1配管12を流れる冷媒はキャピラリ3Bを流れる冷媒とが熱交換するように設けられている。第1配管12は、例えばキャピラリ3Bに接触している。第2配管13は、圧縮機1の吸入口に接続されている。第2配管13は、いわゆる単管である。図3に示されるように、第2配管13は、例えば機械室101の内部において屈曲部14を有している。第2配管13は、例えば上下方向に沿って延在する部分と、水平方向に沿って延在する部分とを有している。 As shown in FIGS. 1 to 3, the double pipe 11 is arranged on the downstream side of the first pipe 12 and on the upstream side of the second pipe 13 in the refrigerant circuit. The extending direction of the double pipe 11 is, for example, along the vertical direction. The first pipe 12 is a so-called single pipe. The capillary 3B and the first pipe 12 form, for example, a heat exchange section 5. The heat exchange unit 5 is provided so that the refrigerant flowing through the first pipe 12 exchanges heat with the refrigerant flowing through the capillary 3B. The first pipe 12 is in contact with, for example, the capillary 3B. The second pipe 13 is connected to the suction port of the compressor 1. The second pipe 13 is a so-called single pipe. As shown in FIG. 3, the second pipe 13 has a bent portion 14 inside, for example, the machine room 101. The second pipe 13 has, for example, a portion extending along the vertical direction and a portion extending along the horizontal direction.
 図2に示されるように、冷蔵庫100は、機械室101と、図示しない貯蔵室と、断熱部102とを備える。機械室101は、例えば圧縮機1、凝縮器2、電子膨張弁3A、二重管11、第2配管13および送風機6を内部に収容している。断熱部102は、蒸発器4により冷却される貯蔵室を囲むように配置されており、例えば蒸発器4、キャピラリ3B、および第1配管12を内部に収容している。断熱部102は、機械室101よりも上方に配置された部分を有している。 As shown in FIG. 2, the refrigerator 100 includes a machine room 101, a storage room (not shown), and a heat insulating portion 102. The machine room 101 houses, for example, a compressor 1, a condenser 2, an electronic expansion valve 3A, a double pipe 11, a second pipe 13, and a blower 6. The heat insulating portion 102 is arranged so as to surround the storage chamber cooled by the evaporator 4, and houses, for example, the evaporator 4, the capillary 3B, and the first pipe 12 inside. The heat insulating portion 102 has a portion arranged above the machine room 101.
 上述のように、二重管11および第2配管13は、機械室101の内部に配置されている。二重管11は、例えば機械室101の内部にのみ配置されている。 As described above, the double pipe 11 and the second pipe 13 are arranged inside the machine room 101. The double pipe 11 is arranged only inside, for example, the machine room 101.
 二重管11は、上記冷媒回路において蒸発器4と圧縮機1の吸入口との間を接続する冷媒配管のうち機械室101内に配置されている部分の一部を構成している。第2配管13は、蒸発器4と圧縮機1の吸入口との間を接続する冷媒配管のうち機械室101内に配置されている部分の残部を構成している。二重管11の上記冷媒回路の上流側に位置する端部は、機械室101内において断熱部102と隣接する境界領域に配置されている。二重管11の上記冷媒回路の下流側に位置する端部は、機械室101内において第2配管13の屈曲部14よりも上記冷媒回路の上流側に配置されている。 The double pipe 11 constitutes a part of the part of the refrigerant pipe connecting the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit, which is arranged in the machine room 101. The second pipe 13 constitutes the rest of the portion of the refrigerant pipe connecting the evaporator 4 and the suction port of the compressor 1 that is arranged in the machine room 101. The end portion of the double pipe 11 located on the upstream side of the refrigerant circuit is arranged in the boundary region adjacent to the heat insulating portion 102 in the machine room 101. The end of the double pipe 11 located on the downstream side of the refrigerant circuit is arranged on the upstream side of the refrigerant circuit in the machine room 101 with respect to the bent portion 14 of the second pipe 13.
 図4に示されるように、二重管11は、内管21と、内管21を囲むように配置されている外管22とを有している。内管21の上記冷媒回路の上流側に位置する第1端部211は、第1配管12の上記冷媒回路の下流側に位置する端部と連なっている。内管21の上記冷媒回路の下流側に位置する第2端部212は、外管22の内部に配置されており、かつ上記冷媒回路の下流側を向いて開口している。 As shown in FIG. 4, the double pipe 11 has an inner pipe 21 and an outer pipe 22 arranged so as to surround the inner pipe 21. The first end portion 211 of the inner pipe 21 located on the upstream side of the refrigerant circuit is connected to the end portion of the first pipe 12 located on the downstream side of the refrigerant circuit. The second end portion 212 of the inner pipe 21 located on the downstream side of the refrigerant circuit is arranged inside the outer pipe 22 and is open toward the downstream side of the refrigerant circuit.
 外管22の上記冷媒回路の上流側に位置する第3端部221は、内管21の上記冷媒回路の上流側に位置する第1端部211と接続されている。第3端部221と第1端部211とは、例えばロウ材等によって接合されており、これにより気密に封止されている。外管22の上記冷媒回路の下流側に位置する第4端部222は、内管21の上記冷媒回路の下流側に位置する第2端部212と、内管21の厚み方向に間隔を隔てて配置されている。外管22の上記冷媒回路の下流側に位置する第4端部222は、第2配管13の上記冷媒回路の上流側に位置する端部と連なっている。 The third end 221 located on the upstream side of the refrigerant circuit of the outer pipe 22 is connected to the first end 211 located on the upstream side of the refrigerant circuit of the inner pipe 21. The third end portion 221 and the first end portion 211 are joined by, for example, a brazing material, and are hermetically sealed by this. The fourth end 222 located on the downstream side of the refrigerant circuit of the outer pipe 22 is spaced apart from the second end 212 located on the downstream side of the refrigerant circuit of the inner pipe 21 in the thickness direction of the inner pipe 21. Is arranged. The fourth end 222 of the outer pipe 22 located on the downstream side of the refrigerant circuit is connected to the end of the second pipe 13 located on the upstream side of the refrigerant circuit.
 つまり、内管21は、上記冷媒回路の上流側および下流側において開口している。外管22は、上記冷媒回路の上流側において閉口し、かつ下流側において開口している。 That is, the inner pipe 21 is open on the upstream side and the downstream side of the refrigerant circuit. The outer pipe 22 is closed on the upstream side of the refrigerant circuit and is open on the downstream side.
 内管21の内部には、上記冷媒回路において蒸発器4と圧縮機1の吸入口との間を接続する第1空間S1が形成されている。内管21と外管22との間には、内管21によって第1空間S1と区画されており、かつ外管22によって二重管11の外部空間と区画された第2空間S2が形成されている。第2空間S2は、上記冷媒回路の上流側において閉口し、かつ下流側において開口している。第2空間S2は、例えば第1空間S1を囲むように環状に形成されている。 Inside the inner pipe 21, a first space S1 that connects the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit is formed. Between the inner pipe 21 and the outer pipe 22, a second space S2 is formed which is partitioned from the first space S1 by the inner pipe 21 and is partitioned from the outer space of the double pipe 11 by the outer pipe 22. ing. The second space S2 is closed on the upstream side and open on the downstream side of the refrigerant circuit. The second space S2 is formed in an annular shape so as to surround the first space S1, for example.
 第2配管13の内部には、上記冷媒回路において蒸発器4と圧縮機1の吸入口との間を接続する第3空間S3が形成されている。第3空間S3は、第1空間S1および第2空間S2と接続されている。第2空間S2は、第3空間S3を介して第1空間S1と接続されている。内管21および外管22は、第2空間S2内の気相冷媒の流れを分子流とみなせるように設計されている。 Inside the second pipe 13, a third space S3 that connects the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit is formed. The third space S3 is connected to the first space S1 and the second space S2. The second space S2 is connected to the first space S1 via the third space S3. The inner pipe 21 and the outer pipe 22 are designed so that the flow of the gas phase refrigerant in the second space S2 can be regarded as a molecular flow.
 内管21の内径および外径は、例えば一定である。外管22は、上記冷媒回路の上流側から下流側に向かうにつれて外径が大きくなる拡径部を有している。第2配管13の内径および外径は、外管22の内径および外径と等しい。第1配管12の内径および外径は、内管21の内径および外径と等しい。 The inner diameter and outer diameter of the inner pipe 21 are, for example, constant. The outer pipe 22 has a diameter-expanded portion in which the outer diameter increases from the upstream side to the downstream side of the refrigerant circuit. The inner diameter and outer diameter of the second pipe 13 are equal to the inner diameter and outer diameter of the outer pipe 22. The inner diameter and outer diameter of the first pipe 12 are equal to the inner diameter and outer diameter of the inner pipe 21.
 第2配管13および外管22は、例えば一体として構成されている。第1配管12および内管21は、例えば一体として構成されている。異なる観点から言えば、二重管11、第2配管13、および第1配管12は、例えば第3配管31および第4配管32により構成されている。第2配管13の外径は、例えば外管22の外径に等しい。第1配管12の外径は、例えば内管21の外径に等しい。 The second pipe 13 and the outer pipe 22 are configured as one, for example. The first pipe 12 and the inner pipe 21 are configured as one, for example. From a different point of view, the double pipe 11, the second pipe 13, and the first pipe 12 are composed of, for example, the third pipe 31 and the fourth pipe 32. The outer diameter of the second pipe 13 is equal to, for example, the outer diameter of the outer pipe 22. The outer diameter of the first pipe 12 is equal to, for example, the outer diameter of the inner pipe 21.
 二重管11の内管21は、第3配管31の上記冷媒回路の下流側に配置されている部分として構成されている。第1配管12は、第3配管31の上記冷媒回路の上流側に配置されている部分として構成されている。 The inner pipe 21 of the double pipe 11 is configured as a portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit. The first pipe 12 is configured as a portion of the third pipe 31 arranged on the upstream side of the refrigerant circuit.
 二重管11の外管22は、第4配管32の上記冷媒回路の上流側に配置されている部分として構成されている。第2配管13は、第4配管32の上記冷媒回路の下流側に配置されている部分として構成されている。 The outer pipe 22 of the double pipe 11 is configured as a portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit. The second pipe 13 is configured as a portion of the fourth pipe 32 arranged on the downstream side of the refrigerant circuit.
 図4に示される二重管11、第2配管13、および第1配管12は、例えば以下のようにして形成される。まず、図4に示される形状に成形された第3配管31および第4配管32が準備される。第4配管32の上記冷媒回路の上流側に配置されている部分は、第4配管32の上記冷媒回路の下流側に配置されている部分に対して縮径されている。次に、第3配管31の上記冷媒回路の下流側に配置されている部分が、第4配管32の上記冷媒回路の上流側に配置されている部分の内部に挿入される。次に、第4配管32の第4配管32の上記冷媒回路の上流側に配置されている部分が第3配管31の上記冷媒回路の下流側に配置されている部分に接合される。このようにして、図4に示される二重管11、第2配管13、および第1配管12が形成される。なお、第4配管32は、縮径されていない直管として準備されてもよい。この場合、第4配管32の上記冷媒回路の上流側に配置されている部分は、第3配管31の上記冷媒回路の下流側に配置されている部分が第4配管32の上記冷媒回路の上流側に配置されている部分の内部に挿入された後、縮径される。 The double pipe 11, the second pipe 13, and the first pipe 12 shown in FIG. 4 are formed, for example, as follows. First, the third pipe 31 and the fourth pipe 32 molded into the shape shown in FIG. 4 are prepared. The portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit is reduced in diameter with respect to the portion of the fourth pipe 32 arranged on the downstream side of the refrigerant circuit. Next, the portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit is inserted into the portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit. Next, the portion of the fourth pipe 32 of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit is joined to the portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit. In this way, the double pipe 11, the second pipe 13, and the first pipe 12 shown in FIG. 4 are formed. The fourth pipe 32 may be prepared as a straight pipe whose diameter is not reduced. In this case, the portion of the fourth pipe 32 arranged on the upstream side of the refrigerant circuit is the portion of the third pipe 31 arranged on the downstream side of the refrigerant circuit is upstream of the fourth pipe 32 of the refrigerant circuit. After being inserted inside the portion arranged on the side, the diameter is reduced.
 <作用効果>
 上記冷蔵庫100の上記冷媒回路は、蒸発器4と圧縮機1の吸入口との間に配置された二重管11を含む。冷蔵庫100が定常運転している間、第1空間S1および第2空間S2は圧縮機1に吸入されるが、第1空間S1には気相冷媒が蒸発器4側から供給される一方で、第2空間S2には気相冷媒が蒸発器4側から供給されない。
<Effect>
The refrigerant circuit of the refrigerator 100 includes a double pipe 11 arranged between the evaporator 4 and the suction port of the compressor 1. While the refrigerator 100 is in steady operation, the first space S1 and the second space S2 are sucked into the compressor 1, while the gas phase refrigerant is supplied to the first space S1 from the evaporator 4 side. The vapor phase refrigerant is not supplied to the second space S2 from the evaporator 4 side.
 上記冷蔵庫100が定常運転しているときの外管22の到達温度は、外管22と機械室101内の空気との間の熱交換量、圧縮機1から第2配管13を介した伝熱量、および内管21と外管22との間の熱交換量に応じて増減する。これらのうち、外管22の温度を低下させて結露水を発生させる要因となるのは、内管21と外管22との間の熱交換量である。内管21と外管22との間の熱交換量は、以下のように見積もられる。 The ultimate temperature of the outer pipe 22 when the refrigerator 100 is in steady operation is the amount of heat exchange between the outer pipe 22 and the air in the machine room 101, and the amount of heat transfer from the compressor 1 to the second pipe 13. , And the amount increases or decreases according to the amount of heat exchange between the inner pipe 21 and the outer pipe 22. Of these, the factor that lowers the temperature of the outer pipe 22 and generates dew condensation water is the amount of heat exchange between the inner pipe 21 and the outer pipe 22. The amount of heat exchange between the inner pipe 21 and the outer pipe 22 is estimated as follows.
 まず、上記定常運転時における内管21と外管22との間の熱交換が、第2空間S2内の気相冷媒が自然対流することによって行われると考える。この仮定の下、外管22から内管21に伝わる熱量(単位:W/m2)は、以下の式(1)で表される。式(1)中、Aは熱交換面積(単位:m2)、T1は外管温度(単位:K)、T2は内管温度(単位:K)、δは外管22の外径と内管21の外径との差(単位:m)である。式(1)中、kは自然対流している気相冷媒の熱伝達率(単位:W/(m・K))であり、以下の式(2)で表される。式(2)中、kは気相冷媒の熱伝導率(単位:W/(m・K))、Lは二重管11の延在方向の長さ(単位:m)、Grはグラスホフ数、Prはプラントル数である。式(2)中、C,n,mは、流体状態および配管形状により決定される比例定数であって、実験により算出される。 First, it is considered that the heat exchange between the inner pipe 21 and the outer pipe 22 during the steady operation is performed by the natural convection of the gas phase refrigerant in the second space S2. Under this assumption, the amount of heat (unit: W / m 2 ) transferred from the outer pipe 22 to the inner pipe 21 is expressed by the following equation (1). In formula (1), A is the heat exchange area (unit: m 2 ), T1 is the outer tube temperature (unit: K), T2 is the inner tube temperature (unit: K), and δ is the outer diameter and inner diameter of the outer tube 22. This is the difference (unit: m) from the outer diameter of the pipe 21. Wherein (1), k e is the heat transfer coefficient of the gas-phase refrigerant that natural convection (Unit: W / (m · K) ) is expressed by the following equation (2). In formula (2), k is the thermal conductivity of the vapor-phase refrigerant (unit: W / (m · K)), L is the length of the double tube 11 in the extending direction (unit: m), and Gr is the Grashof number. , Pr is the Prandtl number. In equation (2), C, n, and m are proportional constants determined by the fluid state and the pipe shape, and are calculated experimentally.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 まず、上記式(2)の各変数に、以下の値を代入して熱伝達率keを算出した。プラントル数Prは、二重管11の延在方向が水平方向としたときの実験値である0.7とした。熱伝導率kは、上記定常運転時に圧縮機1に吸入される過熱状態でのイソブタンの熱伝導率である0.017W/(m・K)とした。 First, the heat transfer coefficient ke was calculated by substituting the following values for each variable in the above equation (2). The Prandtl number Pr was 0.7, which is an experimental value when the extending direction of the double pipe 11 is the horizontal direction. The thermal conductivity k was 0.017 W / (m · K), which is the thermal conductivity of isobutane in a superheated state sucked into the compressor 1 during the steady operation.
 さらに、上記式(1)の各変数に、上記式(2)から算出された熱伝達率keと、上記定常運転時を想定して導出された以下の値を代入して、外管22から内管21に伝わる熱量Qを算出した。外管温度T1は、40℃(313.15K)、内管温度T2は、25℃(298.15K)とした。外管22の外径は8.00mm、内管21の外径は6.35mmとし、δは1.65mmとした。 Further, the heat transfer coefficient ke calculated from the above equation (2) and the following values derived assuming the above steady operation are substituted into each variable of the above equation (1) from the outer pipe 22. The amount of heat Q transferred to the inner pipe 21 was calculated. The outer tube temperature T1 was 40 ° C. (313.15K), and the inner tube temperature T2 was 25 ° C. (298.15K). The outer diameter of the outer tube 22 was 8.00 mm, the outer diameter of the inner tube 21 was 6.35 mm, and δ was 1.65 mm.
 さらに、上記式(1)から算出された熱量Qから、内管21の到達温度を算出した。計算の結果、内管21の到達温度は30℃となり、外管22の到達温度は35℃となった。つまり、上記のようにイソブタンガスが第2空間S2内を自然対流する場合、外管22の温度の低下幅は5℃以下となった。 Further, the ultimate temperature of the inner pipe 21 was calculated from the calorific value Q calculated from the above formula (1). As a result of the calculation, the ultimate temperature of the inner tube 21 was 30 ° C., and the ultimate temperature of the outer tube 22 was 35 ° C. That is, when the isobutane gas naturally convects in the second space S2 as described above, the temperature decrease of the outer tube 22 is 5 ° C. or less.
 このことから、上記冷蔵庫100によれば、露点温度が25℃程度である環境下(例えば気温32℃湿度70%)において内管21を流れる冷媒の温度が25℃となるような運転条件で使用される場合にも、外管22の到達温度が内管21を流れる冷媒の温度よりも高くかつ上記露点温度よりも高いため、二重管11の外管22の周囲には結露が生じにくい。 Therefore, according to the refrigerator 100, it is used under operating conditions such that the temperature of the refrigerant flowing through the inner pipe 21 is 25 ° C. in an environment where the dew point temperature is about 25 ° C. (for example, the temperature is 32 ° C. and the humidity is 70%). Even in this case, since the temperature reached by the outer pipe 22 is higher than the temperature of the refrigerant flowing through the inner pipe 21 and higher than the dew point temperature, dew condensation is unlikely to occur around the outer pipe 22 of the double pipe 11.
 さらに、上述のように、上記定常運転時には、第1空間S1には気相冷媒が蒸発器4側から供給される一方で、第2空間S2には気相冷媒が蒸発器4側から供給されないため、第2空間S2の圧力は第1空間S1の圧力よりも低くなる。第2空間S2の圧力は、例えば100Pa以下である。気相冷媒の熱伝導率は圧力に依存するため、第2空間S2内での気相冷媒の熱伝導率は第1空間S1内での気相冷媒の熱伝導率と比べて低くなる。つまり、第2空間S2内での気相冷媒の熱伝導率は、上記定常運転時に圧縮機1に吸入される過熱状態での気相冷媒の熱伝導率kよりも低くなる。その結果、第2空間S2と第1空間S1との圧力差も考慮すれば、上記冷蔵庫100が定常運転しているときに外管22から内管21に伝わる熱量は上記のように見積もられた熱量よりもさらに少なくなり、外管22の到達温度は上記のように見積もられた温度よりもさらに高くなる。 Further, as described above, during the steady operation, the vapor phase refrigerant is supplied to the first space S1 from the evaporator 4 side, while the vapor phase refrigerant is not supplied to the second space S2 from the evaporator 4 side. Therefore, the pressure in the second space S2 is lower than the pressure in the first space S1. Pressure in the second space S2 is, for example, 10 0 Pa or less. Since the thermal conductivity of the gas phase refrigerant depends on the pressure, the thermal conductivity of the gas phase refrigerant in the second space S2 is lower than the thermal conductivity of the gas phase refrigerant in the first space S1. That is, the thermal conductivity of the gas phase refrigerant in the second space S2 is lower than the thermal conductivity k of the vapor phase refrigerant in the overheated state sucked into the compressor 1 during the steady operation. As a result, considering the pressure difference between the second space S2 and the first space S1, the amount of heat transferred from the outer pipe 22 to the inner pipe 21 when the refrigerator 100 is in steady operation is estimated as described above. It becomes even less than the amount of heat generated, and the temperature reached by the outer tube 22 becomes even higher than the temperature estimated as described above.
 よって、上記冷蔵庫100によれば、上記定常運転時において内管21を流れる冷媒の温度が設置環境下の露点温度以下となる場合にも、外管22の到達温度を上記露点温度よりも高くすることができるため、二重管11の外管22の周囲に結露が生じにくい。 Therefore, according to the refrigerator 100, even when the temperature of the refrigerant flowing through the inner pipe 21 is equal to or lower than the dew point temperature under the installation environment during the steady operation, the temperature reached by the outer pipe 22 is made higher than the dew point temperature. Therefore, dew condensation is unlikely to occur around the outer pipe 22 of the double pipe 11.
 さらに、上記冷蔵庫100では、絞り装置3が電子膨張弁3Aとキャピラリ3Bとを含む。電子膨張弁3Aおよびキャピラリ3Bは、上記冷媒回路において互いに直列に配置されている。キャピラリ3Bは、電子膨張弁3Aよりも蒸発器4側に配置されており、蒸発器4と二重管11との間に配置された第1配管12と接触している。つまり、第1配管12を流れる冷媒は、キャピラリ3Bを流れる冷媒と熱交換する。 Further, in the refrigerator 100, the throttle device 3 includes an electronic expansion valve 3A and a capillary 3B. The electronic expansion valve 3A and the capillary 3B are arranged in series with each other in the refrigerant circuit. The capillary 3B is arranged closer to the evaporator 4 than the electronic expansion valve 3A, and is in contact with the first pipe 12 arranged between the evaporator 4 and the double pipe 11. That is, the refrigerant flowing through the first pipe 12 exchanges heat with the refrigerant flowing through the capillary 3B.
 キャピラリ3Bを流れる冷媒の温度は、電子膨張弁3Aの開度が小さいほど低くなる。そのため、電子膨張弁3Aの開度が小さい場合には、キャピラリ3Bを流れる冷媒の温度は蒸発器4から流出した冷媒の温度よりも低くなり、第1配管12を流れる冷媒の温度は蒸発器4から流出した冷媒の温度よりも低くなる。その結果、二重管11の内管21に流入する冷媒の温度は、蒸発器4から流出した冷媒の温度よりも低くなる。 The temperature of the refrigerant flowing through the capillary 3B becomes lower as the opening degree of the electronic expansion valve 3A becomes smaller. Therefore, when the opening degree of the electronic expansion valve 3A is small, the temperature of the refrigerant flowing through the capillary 3B is lower than the temperature of the refrigerant flowing out of the evaporator 4, and the temperature of the refrigerant flowing through the first pipe 12 is the temperature of the refrigerant 4 It will be lower than the temperature of the refrigerant flowing out of. As a result, the temperature of the refrigerant flowing into the inner pipe 21 of the double pipe 11 is lower than the temperature of the refrigerant flowing out of the evaporator 4.
 このような場合であっても、冷蔵庫100は上述した構成を備えることにより、上記定常運転時において内管21を流れる冷媒の温度が設置環境下の露点温度以下となる場合にも、外管22の到達温度が内管21に流入する冷媒の温度よりも高くなるため、二重管11の外管22の周囲に結露が生じにくい。 Even in such a case, by providing the refrigerator 100 with the above-described configuration, even when the temperature of the refrigerant flowing through the inner pipe 21 becomes lower than the dew point temperature under the installation environment during the steady operation, the outer pipe 22 Since the temperature reached is higher than the temperature of the refrigerant flowing into the inner pipe 21, dew condensation is less likely to occur around the outer pipe 22 of the double pipe 11.
 <変形例>
 上記冷蔵庫100の上記冷媒回路は、絞り装置3として電子膨張弁3Aとキャピラリ3Bとを含み、さらにキャピラリ3Bと接触した第1配管12を含むが、これに限られるものではない。絞り装置3は、例えば膨張弁のみから成っていてもよい。上記冷媒回路は、第1配管12を含んでいなくてもよい。このような冷蔵庫100では、上記冷蔵庫100と比べて、二重管11の内管21に流入する冷媒の温度が高くなるため、二重管11の外管22の周囲には結露が生じにくい。つまり、冷蔵庫100は、絞り装置3の構成によらず、二重管11の外管22の周囲には結露が生じることを抑制できる。
<Modification example>
The refrigerant circuit of the refrigerator 100 includes, but is not limited to, the electronic expansion valve 3A and the capillary 3B as the throttle device 3, and further includes the first pipe 12 in contact with the capillary 3B. The throttle device 3 may be composed of, for example, only an expansion valve. The refrigerant circuit does not have to include the first pipe 12. In such a refrigerator 100, the temperature of the refrigerant flowing into the inner pipe 21 of the double pipe 11 is higher than that of the refrigerator 100, so that dew condensation is less likely to occur around the outer pipe 22 of the double pipe 11. That is, the refrigerator 100 can suppress the occurrence of dew condensation around the outer pipe 22 of the double pipe 11 regardless of the configuration of the drawing device 3.
 上記冷蔵庫100では、二重管11が上記冷媒回路において蒸発器4と圧縮機1の吸入口との間を接続する冷媒配管のうち機械室101内に配置されている部分の一部を構成しており、第2配管13が上記部分の残部を構成しているが、これに限られるものでもない。図5に示されるように、上記冷蔵庫100において、二重管11は、上記冷媒回路において蒸発器4と圧縮機1の吸入口との間を接続する冷媒配管のうち機械室101内に配置されている部分の全体を構成していてもよい。すなわち、二重管11の上記冷媒回路の下流側に位置する端部は、圧縮機1の吸入口1Hに接続されていてもよい。言い換えると、内管21の上記冷媒回路の下流側に位置する第2端部212、および外管22の上記冷媒回路の下流側に位置する第4端部222は、圧縮機1の吸入口1Hに接続されていてもよい。このようにしても、二重管11の内部には第1空間S1および第2空間S2が形成され、かつ第2空間S2の圧力は第1空間S1の圧力よりも低くなる。そのため、このような冷蔵庫100は、上述した冷蔵庫100と同様の効果を奏することができる。さらにこのような冷蔵庫100は、上述した冷蔵庫100と比べて、二重管11の長さが長いため、機械室101内に結露がより生じにくい。なお、上記の場合、二重管11は屈曲部を有していてもよい。このような二重管11は、例えば予め屈曲された内管21および外管22を接合することによって組み立てられ得る。 In the refrigerator 100, the double pipe 11 constitutes a part of the refrigerant pipe connecting the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit, which is arranged in the machine room 101. The second pipe 13 constitutes the rest of the above portion, but is not limited to this. As shown in FIG. 5, in the refrigerator 100, the double pipe 11 is arranged in the machine room 101 of the refrigerant pipes connecting the evaporator 4 and the suction port of the compressor 1 in the refrigerant circuit. It may constitute the whole of the part. That is, the end portion of the double pipe 11 located on the downstream side of the refrigerant circuit may be connected to the suction port 1H of the compressor 1. In other words, the second end 212 located on the downstream side of the refrigerant circuit of the inner pipe 21 and the fourth end 222 located on the downstream side of the refrigerant circuit of the outer pipe 22 are the suction port 1H of the compressor 1. It may be connected to. Even in this way, the first space S1 and the second space S2 are formed inside the double pipe 11, and the pressure in the second space S2 is lower than the pressure in the first space S1. Therefore, such a refrigerator 100 can exert the same effect as the above-mentioned refrigerator 100. Further, in such a refrigerator 100, since the length of the double pipe 11 is longer than that of the refrigerator 100 described above, dew condensation is less likely to occur in the machine room 101. In the above case, the double pipe 11 may have a bent portion. Such a double pipe 11 can be assembled, for example, by joining a pre-bent inner pipe 21 and an outer pipe 22.
 上記冷蔵庫100では、外管22が上記冷媒回路の上流側から下流側に向かうにつれて外径が大きくなる拡径部を有しているが、これに限られるものではない。言い換えると、第2空間S2は、上記冷媒回路の上流側において外管22の上記拡径部に面しているが、これに限られるものではない。図6に示されるように、内管21が上記冷媒回路の上流側から下流側に向かうにつれて外径が小さくなる縮径部を有していてもよい。第2空間S2は、上記冷媒回路の上流側において内管21の上記縮径部に面していてもよい。また、図7に示されるように、外管22が上記冷媒回路の上流側から下流側に向かうにつれて外径が大きくなる拡径部を有しており、かつ、内管21が上記冷媒回路の上流側から下流側に向かうにつれて外径が小さくなる縮径部を有していてもよい。第2空間S2は、上記冷媒回路の上流側において内管21の上記縮径部および外管22の上記拡径部に面していてもよい。これらのような二重管11にも第1空間S1および第2空間S2が形成される。そのため、図6または図7に示される二重管11を備える冷蔵庫100は、図4に示される二重管11を備える冷蔵庫100と同様の効果を奏することができる。 In the refrigerator 100, the outer pipe 22 has a diameter-expanded portion in which the outer diameter increases from the upstream side to the downstream side of the refrigerant circuit, but the present invention is not limited to this. In other words, the second space S2 faces the enlarged diameter portion of the outer pipe 22 on the upstream side of the refrigerant circuit, but is not limited to this. As shown in FIG. 6, the inner pipe 21 may have a reduced diameter portion in which the outer diameter becomes smaller from the upstream side to the downstream side of the refrigerant circuit. The second space S2 may face the reduced diameter portion of the inner pipe 21 on the upstream side of the refrigerant circuit. Further, as shown in FIG. 7, the outer pipe 22 has a diameter-expanded portion in which the outer diameter increases from the upstream side to the downstream side of the refrigerant circuit, and the inner pipe 21 of the refrigerant circuit. It may have a reduced diameter portion in which the outer diameter becomes smaller from the upstream side to the downstream side. The second space S2 may face the reduced diameter portion of the inner pipe 21 and the enlarged diameter portion of the outer pipe 22 on the upstream side of the refrigerant circuit. The first space S1 and the second space S2 are also formed in the double pipe 11 as described above. Therefore, the refrigerator 100 provided with the double tube 11 shown in FIG. 6 or FIG. 7 can exert the same effect as the refrigerator 100 provided with the double tube 11 shown in FIG.
 図8に示されるように、上記冷蔵庫100では、第2配管13が上記冷媒回路の上流側から下流側に向かうにつれて外径が小さくなる縮径部を有していてもよい。第2配管13のうち上記縮径部よりも上記冷媒回路の下流側に位置する部分の外径は、外管22の外径L2未満である。 As shown in FIG. 8, the refrigerator 100 may have a reduced diameter portion in which the outer diameter of the second pipe 13 decreases from the upstream side to the downstream side of the refrigerant circuit. The outer diameter of the portion of the second pipe 13 located on the downstream side of the refrigerant circuit from the reduced diameter portion is less than the outer diameter L2 of the outer pipe 22.
 上記冷蔵庫100では、内管21の上記第1端部211と外管22の上記第3端部221とが接合されているが、これに限られるものではない。図9に示されるように、内管21の上記第1端部211と外管22の上記第3端部221とは、シール部材40を介して接続されていてもよい。内管21とシール部材40とは、例えばロウ材によって接合されている。外管22とシール部材40とは、例えばロウ材によって接合されている。好ましくは、シール部材40を構成する材料の熱伝導率は、内管21および外管22を構成する材料の熱伝導率と比べて低い。 In the refrigerator 100, the first end portion 211 of the inner pipe 21 and the third end portion 221 of the outer pipe 22 are joined, but the present invention is not limited to this. As shown in FIG. 9, the first end portion 211 of the inner pipe 21 and the third end portion 221 of the outer pipe 22 may be connected via a seal member 40. The inner pipe 21 and the seal member 40 are joined by, for example, a brazing material. The outer pipe 22 and the seal member 40 are joined by, for example, a brazing material. Preferably, the thermal conductivity of the material constituting the seal member 40 is lower than the thermal conductivity of the material constituting the inner tube 21 and the outer tube 22.
 上記冷蔵庫100において、二重管11は、内管21の外周面と外管22の内周面とを接続する少なくとも1つの接続部を有していてもよい。上記接続部は、例えば内管21の外周面および外管22の内周面の少なくともいずれかに対する凸部として形成されている。図10に示されるように、内管21は、例えば内管21の外周面に対して突出している複数の凸部21pを有している。複数の凸部21pは、内管21の周方向に沿って互いに間隔を隔てて配置されている。各凸部21pは、外管22の内周面に接触しており、上記接続部を構成している。二重管11の内管21と外管22との間には、複数の凸部21pによって区画された複数の第2空間S2が形成される。この場合、複数の凸部21pと外管22との接触面の面積が大きいと、内管21と外管22との間の熱交換量が増加し、上述した外管22の到達温度が低下する。一方で、各凸部21pは、第1空間S1と第2空間S2との間に生じる圧力差に起因した内管21の変形を抑制し得る。そのため、各凸部21pの構成は、上述した外管22の到達温度の低下を抑制しながらも、内管21の変形を抑制し得るように決定される。なお、上記接続部は、内管21および外管22とは別体として構成されていてもよい。好ましくは、接続部を構成する材料の熱伝導率は、内管21および外管22を構成する材料の熱伝導率と比べて低い。 In the refrigerator 100, the double pipe 11 may have at least one connecting portion for connecting the outer peripheral surface of the inner pipe 21 and the inner peripheral surface of the outer pipe 22. The connecting portion is formed as, for example, a convex portion with respect to at least one of the outer peripheral surface of the inner pipe 21 and the inner peripheral surface of the outer pipe 22. As shown in FIG. 10, the inner pipe 21 has, for example, a plurality of convex portions 21p protruding from the outer peripheral surface of the inner pipe 21. The plurality of convex portions 21p are arranged so as to be spaced apart from each other along the circumferential direction of the inner pipe 21. Each convex portion 21p is in contact with the inner peripheral surface of the outer pipe 22, and constitutes the connection portion. A plurality of second spaces S2 partitioned by a plurality of convex portions 21p are formed between the inner pipe 21 and the outer pipe 22 of the double pipe 11. In this case, if the area of the contact surface between the plurality of convex portions 21p and the outer tube 22 is large, the amount of heat exchange between the inner tube 21 and the outer tube 22 increases, and the temperature reached by the outer tube 22 described above decreases. To do. On the other hand, each convex portion 21p can suppress the deformation of the inner pipe 21 due to the pressure difference generated between the first space S1 and the second space S2. Therefore, the configuration of each convex portion 21p is determined so as to suppress the deformation of the inner tube 21 while suppressing the decrease in the reaching temperature of the outer tube 22 described above. The connection portion may be configured as a separate body from the inner pipe 21 and the outer pipe 22. Preferably, the thermal conductivity of the material constituting the connection portion is lower than the thermal conductivity of the material constituting the inner tube 21 and the outer tube 22.
 以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiment of the present invention has been described as described above, it is also possible to modify the above-described embodiment in various ways. Moreover, the scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 圧縮機、2 凝縮器、3 絞り装置、3A 電子膨張弁、3B キャピラリ、4 蒸発器、5 熱交換部、6 送風機、11 二重管、12 第1配管、13 第2配管、14 屈曲部、21 内管、22 外管、31 第3配管、32 第4配管、40 シール部材、100 冷蔵庫、101 機械室、102 断熱部、211 第1端部、212 第2端部、221 第3端部、222 第4端部。 1 Compressor, 2 Condenser, 3 Squeezing device, 3A Electronic expansion valve, 3B Capillary, 4 Evaporator, 5 Heat exchange part, 6 Blower, 11 Double pipe, 12 1st pipe, 13 2nd pipe, 14 Bending part , 21 inner pipe, 22 outer pipe, 31 third pipe, 32 fourth pipe, 40 seal member, 100 refrigerator, 101 machine room, 102 heat insulation part, 211 first end, 212 second end, 221 third end Part 222, 4th end.

Claims (8)

  1.  圧縮機、凝縮器、絞り装置、および蒸発器と、二重管とを含み、冷媒が前記圧縮機、前記凝縮器、前記絞り装置、前記蒸発器、および前記二重管を順に循環する冷媒回路を備え、
     前記圧縮機は、冷媒を吸入する吸入口を含み、
     前記二重管は、内管と、前記内管を囲むように配置されておりかつ前記吸入口に接続された外管とを有し、
     前記内管の内部には、前記冷媒回路において前記蒸発器と前記吸入口との間を接続する第1空間が形成されており、
     前記内管と前記外管との間には、前記内管によって前記第1空間と区画されており、かつ前記外管によって前記二重管の外部空間と区画された第2空間が形成されており、
     前記内管の前記冷媒回路の上流側に位置する端部と前記外管の前記冷媒回路の上流側に位置する端部とは、気密に封止されており、
     前記内管の前記冷媒回路の下流側に位置する端部と前記外管の前記冷媒回路の下流側に位置する端部とは、間隔を隔てて配置されている、冷蔵庫。
    A refrigerant circuit including a compressor, a condenser, a drawing device, and an evaporator, and a double tube, in which a refrigerant circulates in this order through the compressor, the condenser, the drawing device, the evaporator, and the double tube. With
    The compressor includes a suction port for sucking the refrigerant.
    The double pipe has an inner pipe and an outer pipe arranged so as to surround the inner pipe and connected to the suction port.
    Inside the inner pipe, a first space connecting the evaporator and the suction port in the refrigerant circuit is formed.
    Between the inner pipe and the outer pipe, a second space is formed which is partitioned from the first space by the inner pipe and is partitioned from the outer space of the double pipe by the outer pipe. Ori,
    The end of the inner pipe located on the upstream side of the refrigerant circuit and the end of the outer pipe located on the upstream side of the refrigerant circuit are airtightly sealed.
    A refrigerator in which an end portion of the inner pipe located on the downstream side of the refrigerant circuit and an end portion of the outer pipe located on the downstream side of the refrigerant circuit are arranged at a distance from each other.
  2.  前記絞り装置は、前記冷媒回路において互いに直列に配置された電子膨張弁とキャピラリとを含み、
     前記キャピラリは、前記電子膨張弁よりも前記冷媒回路の上流側に配置されており、
     前記冷媒回路は、前記蒸発器と前記二重管との間に配置された第1配管をさらに含み、
     前記キャピラリと前記第1配管とは熱交換部を成している、請求項1に記載の冷蔵庫。
    The throttle device includes an electronic expansion valve and a capillary arranged in series with each other in the refrigerant circuit.
    The capillary is arranged on the upstream side of the refrigerant circuit with respect to the electronic expansion valve.
    The refrigerant circuit further includes a first pipe arranged between the evaporator and the double pipe.
    The refrigerator according to claim 1, wherein the capillary and the first pipe form a heat exchange section.
  3.  少なくとも前記圧縮機および前記凝縮器を内部に収容する機械室をさらに備え、
     前記二重管は、前記機械室の内部にのみ配置されている、請求項1または2に記載の冷蔵庫。
    Further provided with at least a machine room for accommodating the compressor and the condenser.
    The refrigerator according to claim 1 or 2, wherein the double tube is arranged only inside the machine room.
  4.  前記二重管は、前記冷媒回路において前記蒸発器と前記吸入口との間を接続する冷媒配管のうち前記機械室内に配置されている部分の全体を構成している、請求項3に記載の冷蔵庫。 The double pipe according to claim 3, wherein the double pipe constitutes the entire portion of the refrigerant pipe connecting the evaporator and the suction port in the refrigerant circuit, which is arranged in the machine chamber. refrigerator.
  5.  前記冷媒回路は、前記機械室の内部において前記二重管と前記吸入口との間に配置された第2配管とを含み、
     前記外管は、前記第2配管に接続されており、
     前記第2配管の内部には、前記冷媒回路において前記蒸発器と前記吸入口との間を接続しかつ前記第1空間および前記第2空間と接続された第3空間が形成されている、請求項3に記載の冷蔵庫。
    The refrigerant circuit includes a second pipe arranged between the double pipe and the suction port inside the machine room.
    The outer pipe is connected to the second pipe, and is connected to the second pipe.
    A third space is formed inside the second pipe, which is connected between the evaporator and the suction port in the refrigerant circuit and is connected to the first space and the second space. Item 3. The refrigerator according to item 3.
  6.  前記二重管は、前記冷媒回路において前記蒸発器と前記吸入口との間を接続する冷媒配管のうち前記機械室内に配置されている部分の一部を構成しており、
     前記第2配管は、前記冷媒回路において前記蒸発器と前記吸入口との間を接続する冷媒配管のうち前記機械室内に配置されている部分の残部を構成しており、
     前記第2配管は、前記機械室の内部において屈曲部を有している、請求項5に記載の冷蔵庫。
    The double pipe constitutes a part of a part of the refrigerant pipe connecting the evaporator and the suction port in the refrigerant circuit, which is arranged in the machine chamber.
    The second pipe constitutes the rest of the portion of the refrigerant pipe connecting the evaporator and the suction port in the refrigerant circuit, which is arranged in the machine chamber.
    The refrigerator according to claim 5, wherein the second pipe has a bent portion inside the machine room.
  7.  前記外管は、前記冷媒回路の上流側から下流側に向かうにつれて外径が大きくなる拡径部を有している、請求項1~6のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 6, wherein the outer pipe has a diameter-expanded portion in which the outer diameter increases from the upstream side to the downstream side of the refrigerant circuit.
  8.  前記内管は、前記冷媒回路の上流側から下流側に向かうにつれて外径が小さくなる縮径部を有している、請求項1~7のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 7, wherein the inner pipe has a reduced diameter portion whose outer diameter decreases from the upstream side to the downstream side of the refrigerant circuit.
PCT/JP2019/030271 2019-08-01 2019-08-01 Refrigerator WO2021019770A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/030271 WO2021019770A1 (en) 2019-08-01 2019-08-01 Refrigerator
JP2021536579A JP7175399B2 (en) 2019-08-01 2019-08-01 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030271 WO2021019770A1 (en) 2019-08-01 2019-08-01 Refrigerator

Publications (1)

Publication Number Publication Date
WO2021019770A1 true WO2021019770A1 (en) 2021-02-04

Family

ID=74228693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030271 WO2021019770A1 (en) 2019-08-01 2019-08-01 Refrigerator

Country Status (2)

Country Link
JP (1) JP7175399B2 (en)
WO (1) WO2021019770A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241488A (en) * 1993-02-23 1994-08-30 Sanyo Electric Co Ltd Radiation air conditioner
JPH08247587A (en) * 1995-03-07 1996-09-27 Matsushita Refrig Co Ltd Refrigerating system
JP2006153359A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Refrigerator
JP5572606B2 (en) * 2011-09-12 2014-08-13 日立アプライアンス株式会社 refrigerator
JP2017142061A (en) * 2015-11-18 2017-08-17 寿産業株式会社 Refrigerant treatment device and refrigeration air conditioning system
WO2018135278A1 (en) * 2017-01-22 2018-07-26 ダイキン工業株式会社 Electrical component cooling structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241488B2 (en) 2016-03-03 2017-12-06 カシオ計算機株式会社 Exercise support device, exercise support method, and exercise support program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241488A (en) * 1993-02-23 1994-08-30 Sanyo Electric Co Ltd Radiation air conditioner
JPH08247587A (en) * 1995-03-07 1996-09-27 Matsushita Refrig Co Ltd Refrigerating system
JP2006153359A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Refrigerator
JP5572606B2 (en) * 2011-09-12 2014-08-13 日立アプライアンス株式会社 refrigerator
JP2017142061A (en) * 2015-11-18 2017-08-17 寿産業株式会社 Refrigerant treatment device and refrigeration air conditioning system
WO2018135278A1 (en) * 2017-01-22 2018-07-26 ダイキン工業株式会社 Electrical component cooling structure

Also Published As

Publication number Publication date
JPWO2021019770A1 (en) 2021-02-04
JP7175399B2 (en) 2022-11-18

Similar Documents

Publication Publication Date Title
JP5944009B2 (en) Double tube heat exchanger and refrigeration cycle equipment
US7640762B2 (en) Refrigeration apparatus
CN104024782B (en) Heat exchanger and refrigerating plant
JP2008232548A (en) Heat exchanger
US11193701B2 (en) Heat exchanger and refrigeration cycle apparatus
CN110177988A (en) Heat source side unit and refrigerating circulatory device
WO2021019770A1 (en) Refrigerator
JP6878918B2 (en) Refrigeration cycle equipment
WO2016038865A1 (en) Outdoor unit and refrigeration cycle device using same
KR100713819B1 (en) Structure of condenser
JP3829648B2 (en) Internal grooved heat transfer tube
WO2021234959A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP6797304B2 (en) Heat exchanger and air conditioner
WO2020144764A1 (en) Refrigeration cycle device
JP2017133814A (en) Heat exchanger
JP6940080B2 (en) Refrigerant piping
JP6879408B1 (en) Pressure vessel and refrigeration equipment
WO2020234931A1 (en) Heat exchanger and refrigeration cycle device
JP5401876B2 (en) Refrigeration apparatus and water heat exchanger manufacturing method
WO2017168669A1 (en) Heat exchanger and refrigeration cycle apparatus
JP2004138305A (en) Liquid receiver
WO2023188386A1 (en) Heat exchanger and air conditioner
JPH10103813A (en) Condenser
WO2021009850A1 (en) Refrigeration cycle device
KR100689905B1 (en) The spiral type condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940077

Country of ref document: EP

Kind code of ref document: A1