JP2006152884A - オイルフリー圧縮機の速度制御方法 - Google Patents

オイルフリー圧縮機の速度制御方法 Download PDF

Info

Publication number
JP2006152884A
JP2006152884A JP2004342944A JP2004342944A JP2006152884A JP 2006152884 A JP2006152884 A JP 2006152884A JP 2004342944 A JP2004342944 A JP 2004342944A JP 2004342944 A JP2004342944 A JP 2004342944A JP 2006152884 A JP2006152884 A JP 2006152884A
Authority
JP
Japan
Prior art keywords
compressor
temperature
rotation speed
speed
compressor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004342944A
Other languages
English (en)
Other versions
JP4549825B2 (ja
Inventor
Masayuki Sango
正幸 山後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2004342944A priority Critical patent/JP4549825B2/ja
Publication of JP2006152884A publication Critical patent/JP2006152884A/ja
Application granted granted Critical
Publication of JP4549825B2 publication Critical patent/JP4549825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

【課題】 オイルフリー圧縮機の運転に要する消費動力を可及的に減少させることのできる速度制御方法を提供する。
【解決手段】 圧縮機本体10が吸入する吸入空気温度Tsの変化と、該圧縮機本体10が設定された最高許容温度Tdmaxの圧縮空気を吐出する回転数の変化との対応関係を予め求め、これを記憶手段44に記憶させておく。
そして、前記圧縮機本体10に吸入される吸入空気温度Tsを温度センサ等によって測定し、前記記憶手段44に記憶させておいた前記対応関係に基づいて、測定された吸入空気温度Tsから、前記最高許容温度Tdmaxを発生する圧縮機本体10の回転数を算出し、該算出された回転数を前記アンロード回転数Nminとしてインバータ31に対して出力・設定する。
【選択図】 図1

Description

本発明はオイルフリー圧縮機の速度制御方法に関し、より詳細には、オイルフリー圧縮機の圧縮機本体の吐出側圧力の変化に応じて、この圧縮機本体の吐出側圧力を設定された目標圧力に一致すべく、圧縮機本体の回転数を該圧縮機本体の回転数の上限である定格回転数と、回転数の下限であるアンロード回転数間において変化させることにより行うオイルフリー圧縮機の速度制御において、前記アンロード回転数を可及的に低速とすることのできる、オイルフリー圧縮機の速度制御方法に関する。
オイルフリー圧縮機は、被圧縮気体の圧縮に際して圧縮作用空間内に潤滑、冷却、密封のためのオイルの注入を必要とせず、従って油分を含まない清浄な圧縮気体の供給源として広く使用されており、一例として医療、製薬、食品加工等の各種の分野において、例えば圧縮空気を得るために使用されている。
このように、オイルフリー圧縮機は圧縮作用空間内にオイルの注入が行われないことから、圧縮機本体のシリンダ内において、おす・めすのスクリュロータがシリンダの内壁やスクリュロータ相互で接触することのないように、これらの間に微少な隙間を持たせてシリンダ内に収納すると共に、スクリュロータが相互の隙間を維持したまま、非接触の状態で回転することができるよう両スクリュロータの回転をタイミングギヤにより規制している。
このように、オイルフリースクリュ圧縮機にあっては圧縮作用空間内にオイルの導入を行わないために、シリンダ内壁とスクリュロータ間、又はスクリュロータ相互間に形成された微小間隙等の存在により圧縮作用空間が完全に密閉されたものとはなっていない。
そのため、圧縮作用空間内で圧縮途中にある被圧縮気体が、これらの微小間隙等を介して逆流するおそれがあるために、このような逆流を防止し、被圧縮気体を確実に圧縮することができるように油冷式のスクリュ圧縮機と比較してスクリュロータを高速で回転させている。
そして、このようなスクリュロータの高速回転を得るために、オイルフリー圧縮機の圧縮機本体は、エンジンやモータ等の駆動源によって発生された回転駆動力を増速してスクリュロータに伝達するための増速装置を備えており、一例として、駆動源より出力された1,500min−1程度の回転駆動力を、増速装置により20,000min−1程度に増速してスクリュロータを回転させている。
このように構成されたオイルフリー圧縮機において、圧縮機本体を駆動する駆動源としてモータを使用する場合にあっては、圧縮機本体の吐出側圧力に応じてモータの回転数をインバータ制御し、吐出側の圧力が一定になるよう圧縮機本体の回転制御が行われている(特許文献1〜3参照)。
この発明の先行技術文献情報としては次のものがある。
特開2001− 50185号公報 特開2001−342982号公報 特開平 9−119379号公報
オイルフリー圧縮機は前述のように、おす・めすの両スクリュロータがシリンダの内壁やロータ相互間で接触しないように、これらの間に微小間隙を設けて回転させ、しかもこのような微小間隙を密封し得るオイルの注入も行われないために、ロータ間の接触やオイルによる密封により被圧縮気体の逆流等が防止されている油冷式の圧縮機本体とは異なり被圧縮気体の逆流が生じ易い構造となっており、このような逆流を防止するために、前述のようにスクリュロータを高速で回転させる必要があるものとなっている。
そのため、圧縮機本体が比較的低速で運転される場合には、吐出側に比べて圧力の低い吸入側に位置する圧縮作用空間に逆流する被圧縮気体の量が増えてしまい、このようにして逆流した被圧縮気体が再度圧縮されることにより、圧縮機本体から吐出される圧縮気体の温度が上昇する。
そのために、オイルの導入による冷却が行われておらず、しかも高速回転することにより油冷式の圧縮機本体に比較してただでさえ圧縮気体の温度が高温となるオイルフリースクリュ圧縮機の圧縮気体がさらに高温となり、おす・めすのスクリュロータが、前述の微小間隙以上に熱膨張して、シリンダの内壁やスクリュロータ相互間が接触して破損するおそれがある。
このことから、吐出気体の温度が圧縮機本体に破損等を生じさせることのない許容範囲の温度で運転することができるように、圧縮機本体の最低回転数、すなわちアンロード回転数が決定され、このアンロード回転数を制御の際の下限となる回転数として、圧縮機本体の速度制御を行うと共に、吐出気体の温度が、圧縮機本体を破損させるおそれのある温度(非常停止温度)以上になると圧縮機を停止させる非常停止回路を設け、圧縮機本体の破損を防止している。
このアンロード回転数の決定に際し、従来の速度制御方法にあっては、圧縮機本体に導入される吸入気体温度Tsとして、想定される最高値Tsmaxの吸入気体温度(一例として40℃)のときに、圧縮機本体の吐出気体温度が最高許容温度Tdmax(一例として230℃)未満となる圧縮機本体の回転数N1を、当該圧縮機本体のアンロード回転数Nminとして設定していた(なお、このときの非常停止温度は一例として250℃)。
そして、吸入気体温度Tsが変化しても、アンロード回転数Nminの設定を変更することはなかった。
しかし、一例として図4及び図5に示すように、吸入気体温度Tsが、例えば前述の想定される最高値Tsmaxより低いTs1(例えば0℃)のときには、圧縮機本体のアンロード回転数Nminを、回転数N1よりN2に低下させたとしても、この圧縮機本体の吐出気体温度Tdは、最高許容温度Tdmax(一例として230℃)の範囲内であり、圧縮機本体にロータの焼き付き等による破損のおそれは生じない。
このように、通常、アンロード回転数Nminは、吸入気体温度Tsが、想定される最高値Tsmaxである場合においても、圧縮機本体より吐出される圧縮気体の温度を最高許容温度(Tdmax)以下で安全に運転することのできる回転数に設定しているが、通常の使用状態において最高値であるTsmaxの温度(前述の例では40℃)の気体を圧縮機本体に吸入することは稀であり、圧縮機本体の最低回転数(アンロード回転数Nmin)を前述のN1に設定する場合には、圧縮機本体より吐出される吐出気体の実際の温度は、最高許容温度Tdmax乃至は非常停止温度に対して過剰に余裕を持たせた温度となっている。
そのため、吸入気体温度が、想定される最高値Tsmaxを下回る環境下においてこのオイルフリー圧縮機を使用する場合には、圧縮機本体の回転数を更に低下させたとしても、吐出気体の最高許容温度Tdmaxを越えることなく圧縮機本体を運転することが可能である。
このように、従来のオイルフリー圧縮機にあっては、想定される吸入気体温度Tsの最高値Tsmaxに基づいてアンロード回転数Nminが決定されているため、アンロード回転数Nminは定格回転数Nmaxの約30%程度しか低減することができないものとなっていた。
また、圧縮機本体の吐出側の圧力、すなわち目標圧力Ptを低下させる場合、一例として目標圧力Ptの設定を例えば0.7MPaから0.5MPaに変更したときには、図4に示すように吸入気体温度Tsとアンロード回転数Nminとの関係を示すグラフが、図中下方へシフトし、同じ吸入気体温度Tsであっても目標圧力Ptが低いときには、圧縮機本体が吐出する圧縮気体の温度が低下する。
しかし、従来の速度制御方法にあっては、このように目標圧力Ptを変更した場合であっても、圧縮機本体のアンロード回転数Nminを変更することなく、速度制御を行っていた。
ところで、圧縮機本体を駆動する駆動源、一例としてモータの消費動力は回転数に比例して増加することから(図6参照)、前述のように吸入気体温度Tsや目標圧力Ptの変化に応じてアンロード回転数Nminを低下させることができれば、軽負荷運転時及びアンロード運転時において圧縮機本体の駆動に要する消費動力を更に一層低減することができ、経済的に運転を行うことができるオイルフリー圧縮機を提供することが可能となる。
因みに、図6に示すグラフにおいては、圧縮機本体のアンロード回転数をN1からN2迄低下する場合には、アンロード運転時における駆動源の消費動力をW1からW2に減少することができる。
本発明は、上述したように圧縮機本体の吐出気体温度Tdは、圧縮機本体の回転数のみにより決定されるものではなく、他の要因、例えば吸入気体温度Tsや圧縮機本体の吐出側圧力(目標圧力Pt)等にも依存し、これらの要因との相対的な関係において、圧縮機本体の速度制御の際の下限となる回転数(アンロード回転数Nmin)を可変とすることにより、アンロード回転数Nminを一定とする従来の速度制御方法に比較して軽負荷運転時及びアンロード運転時における消費動力をさらに低減することができる点に着目してなされたものであり、前記要因との関係において圧縮機本体の最低回転数(アンロード回転数Nmin)を吐出気体温度の最高許容温度Tdmaxを超えない範囲において可及的に低い値に設定することにより、オイルフリー圧縮機の運転に要する消費動力を可及的に減少させることのできるオイルフリー圧縮機の速度制御方法を提供することを目的とする。
上記目的を達成するために、本発明のオイルフリー圧縮機の速度制御方法は、圧縮機本体10の吐出側圧力Pdが予め設定された目標圧力Ptに一致すべく圧縮機本体10の回転数を、回転数の上限である定格回転数Nmaxと下限であるアンロード回転数Nmin間で制御するオイルフリー圧縮機の速度制御において、
前記圧縮機本体10の吐出気体温度Tdの最高許容温度Tdmaxを予め設定し、前記アンロード回転数Nminにおける前記圧縮機本体10の吐出気体温度Tdが、前記最高許容温度Tdmaxと一致するよう前記圧縮機本体10のアンロード回転数Nminを設定することを特徴とする(請求項1)。
前述のオイルフリースクリュ圧縮機の速度制御方法において、前記圧縮機本体10が吸入する吸入気体温度Tsの変化と、該圧縮機本体10が前記最高許容温度Tdmaxの圧縮気体を吐出する回転数の変化との対応関係を予め求めておくと共に、
前記圧縮機本体10に吸入される吸入気体温度Tsを測定し、予め求めておいた前記対応関係に基づいて、該測定された吸入気体温度Tsにおいて前記最高許容温度Tdmaxを発生する圧縮機本体10の回転数を得、この得られた回転数を前記アンロード回転数Nminとすることができる(請求項2)。
または、所定の回転数(例えば定格回転数Nmax)において前記圧縮機本体10が吐出する吐出気体温度と、該圧縮機本体10が最高許容温度Tdmaxの圧縮気体を吐出する回転数の変化との対応関係を予め求めておくと共に、
前記所定の回転数(例えば定格回転数Nmax)において前記圧縮機本体10が吐出する圧縮気体の温度Tdを測定し、予め求めておいた前記対応関係に基づいて、前記最高許容温度Tdmaxを発生する圧縮機本体10の回転数を得、この得られた回転数を前記アンロード回転数Nminとしても良い(請求項3)。
さらに、圧縮機本体10の回転数を前記定格回転数Nmaxから低下させる時、前記圧縮機本体10が吐出する圧縮気体温度Tdを測定すると共に前記圧縮機本体10において予め設定した前記最高許容温度Tdmaxと比較して、前記測定された圧縮気体温度Tdを前記最高許容温度Tdmaxと一致させる前記圧縮機本体の回転数を前記アンロード回転数Nminとすることもできる(請求項4)。
さらに、前記目標圧力Ptの設定を可変と成すと共に、該目標圧力Ptの変化と、該圧縮機本体10が最高許容温度Tdmaxの圧縮気体を吐出する回転数の変化との対応関係を予め求めておくと共に、
前記予め求めた対応関係に基づいて、変化後の目標圧力Ptにおいて前記圧縮機本体10が前記最高許容温度Tdmaxの圧縮気体を吐出する回転数を得、この得られた回転数を前記アンロード回転数Nminとすることもできる(請求項5)。
前述のように、前記目標圧力Ptの設定を可変と成す場合において、予め求めておいた対応関係に基づき圧縮機本体10の吸入気体温度Tsに応じて前記アンロード回転数Nminを設定する場合(請求項2)、及び、圧縮機本体10の吐出気体温度Tdに応じて、前記アンロード回転数Nminを設定する場合(請求項3)には、該目標圧力Ptの変化に対応して前述の対応関係をそれぞれ求めておき、
前記アンロード回転数Nminを設定するに際し、設定した目標圧力Ptに対応する前記対応関係に基づいて、前記アンロード回転数Nminを設定するものとしても良い(請求項6)。
なお、前記各構成の速度制御方法において、圧縮機本体10が吐出する吐出気体温度Tdが、該圧縮機本体10を破損させるおそれのある温度に対して所定温度低く設定された警戒温度となったとき、圧縮機本体10の回転数を上昇させる速度制御を行うように構成しても良い(請求項7)。
以上説明した本発明の構成により、圧縮機本体10の吸入気体温度Ts、吐出気体温度Td、及び/又は目標圧力Pt等の運転条件の変化に応じて圧縮機本体10のアンロード回転数Nminを設定することにより、アンロード回転数Nminを前記各条件の変化に応じて可及的に低い値に設定することができ、圧縮機本体10の速度制御の範囲を低速側に拡張することができた。
その結果、圧縮機本体10の低負荷運転時や、アンロード運転時における回転数を可及的に低速とすることができ、消費動力を低減して経済的に運転を行うことのできるオイルフリー圧縮機の速度制御方法を提供することができた。
特に、圧縮機本体10が吐出する圧縮流体の温度Tdを測定すると共に、この測定された圧縮流体の温度Tdを最高許容温度Tdmaxと一致させる圧縮機本体10の回転数をアンロード回転数Nminとする場合には、アンロード回転数Nminを常に最も低い回転数に維持することができ、消費動力を可及的に低減させることが可能である。
さらに、圧縮機本体の吐出気体温度Tdが、該圧縮機本体10を破損させるおそれのある温度に対して所定温度低く設定された警戒温度以上になったとき、圧縮機本体10の回転数を増加する速度制御を行う場合には、この回転数の増加により圧縮機本体10の吐出気体温度Tdを低下させることができ、圧縮機本体10を停止することなく圧縮機本体10のロータの焼き付きによる破損等の発生を好適に防止することができた。
次に、本発明の実施形態について添付図面を参照しながら以下説明する。
なお、以下に示す実施形態にあっては、オイルフリー圧縮機を空気を圧縮する空気圧縮機として説明するが、本発明の制御方法が適用されるオイルフリー圧縮機は、空気圧縮機に限定されず、他の気体、例えば都市ガス等の燃料ガス等を圧縮する圧縮機に対しても適用可能である。
〔実施形態1〕
1.オイルフリー圧縮機の全体構成
図1において、1はオイルフリー圧縮機であり、図示の実施形態においてこのオイルフリー圧縮機1は、オイルフリースクリュ型の圧縮機本体10と、この圧縮機本体10の駆動源であるモータ15、及び交流電源からの電流の周波数を変換して前記モータ15に出力するインバータ31を備え、前記モータ15により圧縮機本体10を駆動することにより、該圧縮機本体10の吸入口10aに連結された吸入弁33及び、この吸入弁33に吸入通路32を介して連通された吸入フィルタ34を介して圧縮機本体10のシリンダ内に外気が導入されると共に、このシリンダ内に導入された外気がロータの回転により圧縮され、得られた圧縮空気が圧縮機本体10の吐出口10bより吐出されるように構成されている。
なお、図1を参照して説明する以下の実施形態にあっては、圧縮機本体10の駆動源として前述のようにモータ15を使用すると共に、このモータ15の回転数を制御するためのインバータ31を設けたオイルフリー圧縮機を例として説明するが、圧縮機本体10の駆動源は以下に説明するモータ15に限定されず、これをエンジンとすることもでき、この場合には、前述のインバータ31に代え、エンジンの回転数制御を行う例えば電子ガバナ等を設けても良い。
このような基本構成を備えたオイルフリー圧縮機1において、圧縮機本体10の吐出口10bには、吐出通路61を介して圧縮空気の冷却手段であるアフタクーラ12に連通されていると共に、該アフタクーラ12には、このアフタクーラ12により冷却された圧縮空気を図示せざる空気作業機等が接続された消費側に導入するための供給通路63が連通されている。
2.容量制御装置
以上のような基本構成を備えたオイルフリー圧縮機1には、圧縮機本体10の回転速度を制御する速度制御手段と、圧縮機本体10に対する空気の吸入量を制御する吸入制御手段とから成る容量制御装置が設けられている。
そしてこの速度制御手段が、圧力センサ等の圧力検出手段50によって検出された前記圧縮機本体10の吐出側圧力Pd(本実施形態にあっては、前述の供給通路63内の圧力)を、予め設定された目標圧力Ptと一致させるように、モータ15の回転数、従ってこのモータ15によって駆動される圧縮機本体10の回転数を制御し、また、吸入制御装置が、前記圧縮機本体10の吐出側圧力Pdに応じて、前記圧縮機本体10の吸入口10aに設けられた吸入弁33の開閉制御乃至は開度制御を行うことにより、圧縮機本体10に対する空気の吸入量を制御し、このような速度制御と吸気制御とによって、圧縮機本体10の吐出側圧力が、目標圧力Ptに近付いて、略一定の圧力の圧縮空気を消費側に供給することができるように構成されている。
2−1.吸入制御手段
前述の容量制御装置を構成する一方の構成手段である前述の吸入制御手段は、図示の実施形態において、前述の吸入弁33、該吸入弁33を開閉するシリンダ36、及び該シリンダ36の作動圧室に連通された図示せざる油圧ポンプにより構成されており、圧縮機本体10の吐出側圧力Pdに応じて吸入弁33を開閉制御することにより圧縮機本体10の吸入量を制御して、圧縮機本体10の吐出側圧力Pdが設定された目標圧力Ptとなるように制御する。
本実施形態にあっては、圧縮機本体10の吐出側圧力Pdが目標圧力Ptよりも若干高く設定している圧力、すなわち、圧縮機本体の回転数Nが、後述する速度制御手段によってアンロード回転数Nminまで低下する圧力以上になると、前述の図示せざる油圧ポンプからの作動油がシリンダ36の受圧室内に導入されてシリンダ36が作動し、このシリンダ36の作動によって吸入弁33が吸入通路32を閉じ、圧縮機本体10は、その吸入口10aが閉ざされた無吸気の状態で運転される(アンロード運転)と共に、放気弁を開いて圧縮機本体から逆止弁間の圧縮空気を大気に放出するように図示せざる電磁弁へ指令信号を出力し、その後吐出通路内の圧力Pdが記憶手段に記憶する目標圧力Pt(0.7MPa)以下まで下降すると、シリンダを作動して吸入弁で吸入通路を開くと共に放気弁を閉じるように図示せざる電磁弁へ指令信号を出力する。
なお、圧縮機本体10の吐出口10bに連通された吐出通路61には、これを分岐して形成された放気通路35が設けられていると共に、この放気通路35を開閉する放気弁37を設け、圧縮機本体10の吐出側圧力Pdが目標圧力Ptを越えて目標圧力Ptよりも若干高く設定している圧力以上になると、シリンダ36を作動して放気弁37で放気通路35を開き、サイレンサ38を介して放気することで、圧縮機本体10の吐出口10bの圧力を低下させてアンロード運転時の動力を低減している。
また、その後吐出通路内の圧力(吐出側圧力)Pdが目標圧力Pt以下まで下降すると、シリンダ36を作動して吸入弁33で吸入通路32を開くと共に放気弁37で放気通路35を閉じて、圧縮機本体10は吸気を再開して消費側へ圧縮空気の供給をする。
2−2.速度制御手段
前述の容量制御装置の他方の構成手段である速度制御手段は、検出された圧縮機本体10の吐出側圧力Pdに応じて圧縮機本体10の回転数Nを制御して、回転数の下限であるアンロード回転数Nminと、回転数の上限である定格回転数Nmaxとの間で圧縮機本体10の回転数を、圧縮機本体10の吐出側圧力Pdが目標圧力Ptに一致すべく制御するものであり、本発明の速度制御方法を実施する速度制御手段は、圧縮機本体10に吸入される吸入空気温度Tsに応じて圧縮機本体10より吐出される圧縮空気の温度として許容し得る温度の上限(最高許容温度Tdmax)を発生する圧縮機本体10の回転数を、前述のアンロード回転数Nminとして設定し、この設定されたアンロード回転数Nminと前記定格回転数Nmaxとの間で前述の速度制御を行う。
この速度制御手段は、圧縮機本体10の吐出側圧力(本実施形態にあっては供給通路63内の圧力)Pdを検出する圧力検出手段50と、圧縮機本体10に対する吸入空気温度を測定する吸入空気温度検出手段52、圧縮機本体の吐出空気温度を検出する吐出空気温度検出手段54、交流電源より入力される電源周波数を所望の出力周波数に変換して前記圧縮機本体10を駆動するモータ15に出力するインバータ31、及び、前記インバータ31に対し、モータ15に出力する駆動信号の周波数変更を指令する指令信号を出力する制御装置40によって構成されている。
(1)インバータ
前述のうちのインバータ31は、後述する制御装置40より受信した指令信号に従って、これに対応する駆動信号の出力周波数を演算する図示せざるPI演算回路乃至はPID演算回路が設けられており、インバータ31は、この演算回路による演算結果に従った出力周波数の駆動信号をモータ15に出力することで、圧縮機本体の運転速度の制御を行っている。
このPI演算回路乃至はPID演算回路により算出される出力周波数は、前記モータ15の回転数を、圧縮機本体の吐出側の圧力Pd(本実施形態にあっては供給通路63内の圧力)と、予め設定された目標圧力Ptとを一致させるように変化させるもので、後述する制御装置40より受信した指令信号に含まれる、吐出側圧力Pdのデータと、目標圧力Ptのデータとに従って、モータ15に対して出力する駆動信号の周波数を演算し、得られた周波数の駆動信号がモータ15に入力される。
これにより、圧縮機本体10の吐出側圧力Pdが速度制御のために予め設定された目標圧力Pt以下のとき、インバータ31は、モータ15の回転数を定格回転数Nmaxまで上昇させるようにモータに出力する駆動信号の周波数を徐々に上昇して圧縮機本体10の運転速度を定格回転数Nmax迄増加させる一方、圧縮機本体10の吐出側圧力Pdが設定された前記目標圧力Ptを越える場合には、モータ15の回転数を、圧縮機本体10の回転数をアンロード回転数Nminまで減少させるように前記モータ15に出力する駆動信号の周波数を徐々に減少させて、圧縮機本体10の運転速度をアンロード回転数Nminまで減少させる速度制御を行う。
なお、圧縮機本体10の吐出側圧力Pdが予め設定された目標圧力Ptと一致する場合には、前記圧力が一致したときのモータ15の回転数を維持するように、モータ15に対して出力する駆動信号の出力周波数を、増減せずに一定に維持して出力する。
(2)制御装置
前述のインバータ31に対し、前記指令信号を出力する前述の制御装置40は、前述の吸入空気温度検出手段52、吐出空気温度検出手段54、及び圧力検出手段50の各検出手段からの検出信号に基づいて、インバータ31へ出力する指令信号、その他の信号を生成し、これらを前記インバータ31に対して出力することによりモータ15に対して出力する駆動信号の周波数変更、その他の動作を前記インバータ31に対して行わせる。
この制御装置40は、例えば所定の記憶領域(例えば図1中の記憶手段44等)に予め記憶されたプログラムを実行することにより必要な処理を行う、例えばマイクロプロセッサ等の処理手段を備えた電子制御装置によって構成することができ、前記処理手段が前記プログラムを実行することにより、本発明の方法による速度制御を行うために必要な手段が、該電子制御装置において実現するように構成されている。
本実施形態にあっては、この制御装置40においてアンロード回転数設定手段41、指令信号発生手段42、及び停止信号発生手段43が実現され、これらの各手段がそれぞれ下記の動作を行うことにより、本発明の速度制御方法が実行される。
(2-1) アンロード回転数設定手段
前述のアンロード回転数設定手段41は、予め実験等により求められ、前記記憶手段44に記憶された、圧縮機本体10に対する吸入空気温度Tsの変化と、この吸入空気温度Tsを変化させた場合において、圧縮機本体10の吐出空気温度Tdが、最高許容温度Tdmaxとなる圧縮機本体10の回転数の変化との対応関係(図4参照)に従って、吸入空気温度検出手段52が検出した吸入空気温度Tsに基づいて該圧縮機本体10が前記最高許容温度Tdmaxを発生する回転数を演算して求め、この求められた回転数を速度制御の際の前述のアンロード回転数Nminとしてインバータ31に対して出力・設定する。
なお、ここで前述の最高許容温度Tdmaxとは、当該圧縮機本体10の吐出空気温度の上限値として設定された温度であり、該圧縮機本体10を破損させるおそれのある温度(例えば、後述する非常停止温度;一例として250℃)を前述の最高許容温度Tdmaxとして設定しても良く、又は、この温度に対して所定の余裕分低く設定された温度(一例として、230℃)を最高許容温度Tdmaxとしても良い。
また、前記アンロード回転数設定手段41により演算して求められたアンロード回転数Nminは、吸入空気温度検出手段52により検出された吸入空気温度Tsの変化に応じて随時変化するように構成し、その都度インバータ31に対して出力・設定しても良い。
さらに、圧縮機本体10に吸入される空気の温度を検出する前述の吸入空気温度検出手段52は、図示の実施形態にあっては圧縮機本体10の吸入口10aに連通された吸入通路32内の温度を検出するように構成しているが、この吸入空気温度検出手段52は、図示の位置に限定されず、例えば圧縮機本体10のパッケージ内の空気温度、又はパッケージ外の空気温度を検出する等、圧縮機本体10に吸入される空気の温度を検出可能なものであれば、その配置は図示の例に限定されない。
(2-2) 指令信号発生手段
制御装置40において実現される手段のうち、前述の指令信号発生手段42は、速度制御の際の動作の基準となる圧力として予め設定され、前述の記憶手段44に記憶された目標圧力Ptと、圧力検出手段50により検出された供給通路63内の吐出側圧力Pdとを、インバータ31のPI演算回路乃至はPID演算回路が利用可能な目標圧力信号と吐出側圧力信号の指令信号に変換してインバータへ出力する。
なお、この目標圧力Ptは、これを前記記憶手段44に記憶することなく、制御装置40に別途設けられた目標圧力設定手段の操作により変更できるようにしてもよい。
この、指令信号発生手段42によって出力された指令信号を受信したインバータ31は、吐出通路内の圧力Pdが目標圧力Pt以下の場合、モータ15の最高出力を超えない範囲で圧縮機本体10の回転数Nを定格回転数Nmaxまで上昇するように周波数を徐々に上昇させ、供給通路63内の圧力Pdが目標圧力Ptを超える場合、圧縮機本体10の回転数Nをアンロード回転数Nminを下限として周波数を徐々に減少させ、これにより、圧縮機本体10の吐出側圧力Pdを目標圧力Ptに近付ける。
(2-3) 停止信号発生手段
さらに、前述の停止信号発生手段43は、前述の吐出空気温度検出手段54及びインバータ31と共働して吐出空気温度が圧縮機本体を破損させるおそれのある温度(非常停止温度;一例として250℃)以上になると圧縮機を停止させる非常停止回路を構成するもので、圧縮機本体に破損を生じさせるおそれのある温度として記憶手段44に記憶された吐出空気温度(非常停止温度;一例として250℃)と吐出空気温度検出手段54が検出する吐出空気温度Tdとを比較し、吐出空気温度Tdが前記非常停止温度以上となったときインバータ31へ停止信号を出力する。
停止信号を受信したインバータ31は、モータ15に対する駆動信号の出力を停止してモータ15を停止させ、従って圧縮機本体10が停止して、温度の過剰な上昇によるロータの焼き付き等による圧縮機本体10の破損等が防止されている。
この吐出空気温度検出手段54は、圧縮機本体10のケーシングに形成された吐出口10b内の圧縮空気温度を検出するようにしてもよく、また吐出口10bを出た後の吐出通路61内の圧縮空気の温度を検出するようにしてもよい。
吐出空気温度検出手段54は、温度スイッチ、温度センサのいずれでもよく、非常停止温度で作動する接点を備える温度スイッチを使用する場合には、吐出空気温度検出手段54の検出信号により吐出空気温度Tdが非常停止温度を越えていることが判定できるため、この場合には制御装置40の記憶手段44に非常停止温度を記憶させることを要しない。
なお、この停止信号発生手段43にあっては、圧縮機本体10の吐出空気温度が非常停止温度以上となったとき、圧縮機本体10の回転を停止させるものであるが、圧縮機本体10の吐出空気温度が過剰に上昇することによるロータの焼き付き等を防止するための構成として、前述の停止信号発生手段43と共に、制御装置40において増速指令信号発生手段(図示せず)を設けるものとしても良い。
この増速指令信号発生手段は、前述の吐出空気温度検出手段54により検出された吐出空気温度Tdが、非常停止温度に対して所定の温度低く設定された警戒温度となったとき、インバータ31に対してモータ15を増速させる指令信号を出力し、これにより圧縮機本体10の回転数を上昇させて、圧縮機本体10より吐出される圧縮空気の温度Tdを低下させるものである。
このように、停止信号発生手段43に代えて増速指令信号発生手段を設ける場合には、圧縮機本体10を停止させることなく圧縮機本体10の吐出空気温度Tdを低下させることができる。
そのため、前述のように圧縮機本体10を停止する場合には、該オイルフリー圧縮機1より圧縮空気の供給を受けて作動する図示せざる空気作業機等についても、圧縮機本体10の停止後、再始動により圧縮機本体10の吐出側圧力Pdが再度目標圧力Ptに上昇する迄作業が停止されるが、このように圧縮機本体10の回転数を増加させることにより吐出空気温度Tdを低下する場合には、このような空気作業機等の停止を行う必要がない。
なお、増速指令信号発生手段より出力される増速指令信号は、吐出空気温度検出手段によって検出された圧縮空気の温度Tdが、前述の警戒温度以下となる迄徐々に圧縮機本体10の回転数を上昇させる周波数変化をインバータ31に対して行わせるものであっても良く、又は、予め設定された所定の回転数に圧縮機本体の回転数を増速させるものであっても良く、圧縮機本体10の増速により、圧縮機本体10より吐出される圧縮空気の温度を警戒温度以下とすることができるものであれば、その制御方法は前述のものに限定されない。
〔実施形態2〕
以上、実施形態1として説明した速度制御方法にあっては、制御装置40のアンロード回転数設定手段41は、吸入空気温度検出手段52によって検出された、圧縮機本体10に導入される空気の温度Ts、図示の実施形態にあっては吸入通路32内の空気温度に基づいて、アンロード回転数Nminを設定するものとして説明したが、制御装置40のアンロード回転数設定手段41によるアンロード回転数Nminの設定は、圧縮機本体10より吐出される圧縮空気の温度Tdに基づいて行うように構成しても良い。
この場合には、制御装置40の記憶手段44には、所定の回転数、例えば定格回転数Nmaxで圧縮機本体10を駆動した際において該圧縮機本体10が吐出する圧縮空気の温度と、この条件で運転されている圧縮機本体10が、最高許容温度Tdmaxの圧縮空気を吐出する回転数との対応関係を予め記憶させておき、圧縮機本体10の始動後、定格回転数Nmaxで運転された際の吐出空気の温度Tdを吐出空気温度検出手段54で検出し、この吐出空気温度検出手段54によって検出された吐出空気温度Tdに基づいて、アンロード回転数設定手段41がアンロード回転数Nminを算出し、記憶手段44に記憶・設定するように構成しても良い。
このアンロード回転数Nminの設定により、制御装置40の指令信号発生手段42は、インバータ31に対する指令信号の出力に際し、設定されたアンロード回転数Nminが圧縮機本体10の回転数の下限となるように圧縮機本体10の速度制御を行う指令信号をインバータ31に対して出力する。
このように、圧縮機本体10より吐出される吐出空気温度Tdに基づいてアンロード回転数Nminを設定する場合には、吸入空気温度Tsに基づいてアンロード回転数Nminを設定する場合に比較して誤差が少なく、アンロード回転数Nminの設定をより一層低速とすることが可能であり、その結果、圧縮機本体の消費動力Wをさらに低減することができる。
〔実施形態3〕
以上説明した実施形態にあっては、圧縮機本体10に吸入される空気の温度Ts、圧縮機本体10より吐出される圧縮空気の温度Tdを測定し、吸入空気温度Ts乃至は吐出空気温度Tdと、予め求めておいた圧縮機本体10の回転数との対応関係に基づいて、アンロード回転数Nminを決定するものとして説明したが、このような対応関係を予め求めておくことなく、測定された圧縮機本体10の吐出空気温度Tdに基づいて直接、アンロード回転数Nminを決定するよう構成しても良い。
この場合には、圧縮機本体10の吐出側圧力Pdが目標圧力Pt以上となり、圧縮機本体10の回転数が定格回転数Nmaxから徐々に低下してアンロード運転に移行する過程において、圧縮機本体10が吐出する吐出空気温度Tdを吐出空気温度検出手段54により検出し、検出された吐出空気温度Tdが、予め設定された最高許容温度Tdmaxとなる迄、圧縮機本体10の回転数を低下させていき、圧縮機本体10の吐出空気温度Tdを最高許容温度Tdmaxと一致させる圧縮機本体10の回転数をアンロード回転数Nminとする。
このような速度制御を行う制御装置の基本的な構成については、図1を参照して説明した前述の実施形態1と同様の構成を採用することができるが、アンロード回転数Nminの決定方法の相違により制御装置40の各手段、特にアンロード回転数設定手段41及び指令信号発生手段42の動作が異なり、一例として図2に示すように、圧力検出手段50によって検出された圧縮機本体10の吐出側圧力Pdが目標圧力Pt以上になると(Pd≧Pt)、指令信号発生手段42が、インバータ31に対し、圧縮機本体10の回転数を予め設定された所定の回転数(一例として、仮設定されたアンロード回転数Nmin’)に低下させる速度制御を開始する。
また、圧縮機本体10の吐出側圧力Pdが目標圧力Pt以上になると(Pd≧Pt)、制御装置40のアンロード回転数設定手段41も起動して、吐出空気温度検出手段54によって検出された吐出空気温度Tdが、記憶手段44に予め記憶された最高許容温度Tdmaxと比較される。
この比較の結果、検出された吐出空気温度Tdが、最高許容温度Tdmax未満(Td<Tdmax)であると、アンロード回転数設定手段41は、前記仮設定されたアンロード回転数Nmin’から、所定回転数ΔNを減算した回転数Nmin’’を算出し、指令信号発生手段42は、前記仮設定アンロード回転数Nmin’を、前記アンロード回転数設定手段41によって算出された新たな仮設定アンロード回転数Nmin’’に置き換え、圧縮機本体10の回転数Nが、この新たな仮設定アンロード回転数Nmin’’となるようにインバータ31に対する指令信号を出力する。
そして、アンロード回転数設定手段41は、この新たな仮設定アンロード回転数Nmin’’で運転されている圧縮機本体10の吐出空気温度Tdをさらに最高許容温度Tdmaxと比較し、吐出空気温度Tdが未だ最高許容温度Tdmax未満である場合には、この比較結果に従って前記算出された仮設定アンロード回転数Nmin’’よりさらに回転数をΔN減少した回転数を算出して、この算出された回転数を前記仮設定アンロード回転数と置き換える。この作業を圧縮機本体10の吐出空気温度Tdが、最高許容温度Tdmaxと一致する迄行って、指令信号発生手段42に段階的に圧縮機本体10の回転数を減速させる動作を行わせる。
なお、前述の所定回転数ΔNは、これを一定値としても良いが、測定された吐出空気温度Tdと、前記最高許容温度Tdmaxとの差が大きいとき、ΔNを大きく、差が縮まるにつれてΔNを減少するように制御しても良い。
また、アンロード回転数設定手段41は、仮設定アンロード回転数がNmin’,Nmin’’・・・と減少することにより、検出された圧縮機本体10の吐出空気温度Tdが最高許容温度Tdmaxを越えた場合、図3に示すように、圧縮機本体10の回転数を例えばΔN増加する制御を行っても良く、測定された吐出空気温度Tdの変化に対応して、アンロード回転数Nminは増減するものとしても良い。
なお、以上の説明にあっては、指令信号発生手段42は、圧縮機本体10の吐出側圧力Pdが目標圧力Pt以上となったとき、圧縮機本体10の回転数を所定の仮設定アンロード回転数Nmin’に低下させる速度制御を開始するものとして説明したが、指令信号発生手段42を、圧縮機本体10の吐出側圧力Pdが目標圧力Pt以上になったときに圧縮機本体10の回転数Nをリニアに低下する指令信号を変化させてインバータ31に出力するように構成すると共に、アンロード回転数設定手段41が圧縮機本体の吐出空気温度Tdと最高許容温度Tdmaxとの一致を検出したとき、前記指令信号発生手段42が指令信号の変化を停止して、アンロード回転数設定手段41が圧縮機本体の吐出空気温度Tdと最高許容温度Tdmaxとの一致を検出したときの圧縮機本体10の回転数をアンロード回転数Nminとしても良く、この場合には、例えば記憶手段44に前述の仮設定アンロード回転数Nmin’や、減算する回転数ΔN等を記憶させておくことを要しない。
なお、制御装置40には、前述の実施形態1の場合と同様に圧縮機本体10の吐出空気温度Tdが非常停止温度(例えば、250℃)以上となったときにモータ15を停止する停止信号発生手段43を設けることができ、この場合には、好ましくは前述の最高許容温度Tdmaxを、前記非常停止温度以下の温度に設定する。
以上説明した本実施形態の速度制御方法にあっては、圧縮機本体10の吐出空気温度Tdに従って圧縮機本体10のアンロード回転数Nminが決定されることから、圧縮機本体10のアンロード回転数Nminを最高許容温度Tdmaxを発生する回転数に正確に一致させることが可能となり、圧縮機本体10の低速側の回転速度を可及的に拡張することができるものとなっている。
〔実施形態4〕
以上説明した実施形態にあっては、制御装置40のアンロード回転数設定手段41は、圧縮機本体10に吸入される空気の温度Ts、又は、圧縮機本体10より吐出される圧縮空気の温度Tdに基づいて、圧縮機本体10のアンロード回転数Nminを設定するものとして説明したが、これらの構成に代えて、又は実施形態1又は2の構成にあってはこれらの構成と共に、圧縮機本体10の吐出側圧力Pdの目標とする前述の目標圧力Ptを可変としたオイルフリー圧縮機1にあっては、この目標圧力Ptの変化に対応して圧縮機本体10のアンロード回転数Nminを可変とする構成としても良い。
なお、前述の実施形態3の速度制御方法にあっては圧縮機本体10の吐出空気温度Tdを直接最高許容温度Tdmaxと比較するため、目標圧力Ptの変更に伴う吐出空気温度Tdの変化は、直接圧縮機本体10のアンロード回転数Nminに反映されることから、以下の構成を組み合わせる必要はない。
図4を参照して説明したように、目標圧力Ptを低く設定する場合には、吐出側圧力Pdが低下して、目標圧力Ptを高く設定した場合に比較して吐出空気温度Tdが低下する。
従って、圧縮機本体10の吐出側における目標圧力Ptを低圧に設定する場合には、圧縮機本体10のアンロード回転数Nminを低速とした場合であっても、圧縮機本体10の吐出空気温度を比較的低温に維持することができる。
このように、圧縮機本体10の吐出側における目標圧力Ptを可変とする場合には、前述の制御装置40の記憶手段44に、目標圧力Ptの変化と最高許容温度Tdmaxを発生する圧縮機本体10の回転数の変化との対応関係を予め記憶させておき、この対応関係に基づいて制御装置40のアンロード回転数設定手段41が、設定された目標圧力Ptに対応したアンロード回転数Nminを設定するように構成しても良い。
また、前述のように圧縮機本体10の吸入空気温度Tsを検出して、この検出された吸入空気温度Tsに対応したアンロード回転数Nminを設定可能に構成する場合には吸入空気温度Tsの変化と圧縮機本体10が最高許容温度Tdmaxを発生する回転数の変化の対応関係を、例えば、目標圧力Ptとして設定可能な数値毎に記憶する等、目標圧力Ptの変化に対応して記憶手段に記憶しておく。
また、同様に、圧縮機本体10の吐出空気温度Tdを検出してアンロード回転数Nminを設定可能に構成する場合には、圧縮機本体10より吐出される圧縮空気温度Tdの変化と、最高許容温度Tdmaxを発生させる圧縮機本体10の回転数の変化との対応関係を、目標圧力Ptの変化に対応して記憶手段に記憶しておく。
そして、アンロード回転数設定手段41が、設定された目標圧力Ptと、吸入空気温度検出手段52又は吐出空気温度検出手段54が検出した空気温度に基づいて、記憶手段44に記憶された対応関係の中から、設定された目標圧力Ptに応じた対応関係を参照して、前述のアンロード回転数Nminの設定を行うように構成しても良い。
オイルフリー圧縮機の構成を示す説明図。 実施形態3におけるアンロード回転数の設定手順を示すフロー。 実施形態3における別のアンロード回転数の設定手順を示すフロー。 吸入空気温度の変化と最高許容温度Tdmaxを発生する圧縮機本体の回転数の変化の対応関係を示すグラフ。 吸入空気温度40℃及び0℃における圧縮機本体の回転数の変化と吐出空気温度の変化との対応関係を示すグラフ。 圧縮機本体の回転数と消費動力との関係を示すグラフ。
符号の説明
1 オイルフリー圧縮機
10 圧縮機本体
10a 吸入口
10b 吐出口
12 アフタクーラ
15 モータ
31 インバータ
32 吸入通路
33 吸入弁
34 吸入フィルタ
35 放気通路
36 シリンダ
37 放気弁
38 サイレンサ
40 制御装置
41 アンロード回転数設定手段
42 指令信号発生手段
43 停止信号発生手段
44 記憶手段
50 圧力検出手段(圧力センサ)
52 吸入空気温度検出手段
54 吐出空気温度検出手段
61 吐出通路
63 供給通路

Claims (7)

  1. 圧縮機本体の吐出側圧力が予め設定された目標圧力に一致すべく圧縮機本体の回転数を、回転数の上限である定格回転数と下限であるアンロード回転数間で制御するオイルフリー圧縮機の速度制御において、
    前記圧縮機本体の吐出気体温度の最高許容温度を予め設定し、前記アンロード回転数における前記圧縮機本体の吐出気体温度が、前記最高許容温度と一致するよう前記圧縮機本体のアンロード回転数を設定することを特徴とするオイルフリー圧縮機の速度制御方法。
  2. 前記圧縮機本体が吸入する吸入気体温度の変化と、該圧縮機本体に前記最高許容温度の圧縮気体を吐出させる回転数の変化との対応関係を予め求めておくと共に、
    前記圧縮機本体に吸入される吸入気体温度を測定し、予め求めておいた前記対応関係に基づいて、該測定された吸入気体温度において前記最高許容温度を発生する圧縮機本体の回転数を得、この得られた回転数を前記アンロード回転数とすることを特徴とする請求項1記載のオイルフリー圧縮機の速度制御方法。
  3. 所定の回転数において前記圧縮機本体が吐出する吐出気体温度の変化と、該圧縮機本体に前記最高許容温度の圧縮気体を吐出させる回転数の変化との対応関係を予め求めておくと共に、
    前記所定の回転数において前記圧縮機本体が吐出する圧縮気体の温度を測定し、予め求めておいた前記対応関係に基づいて、前記最高許容温度を発生する圧縮機本体の回転数を得、この得られた回転数を前記アンロード回転数とすることを特徴とする請求項1記載のオイルフリー圧縮機の速度制御方法。
  4. 前記圧縮機本体の回転数を前記定格回転数から低下させる時、前記圧縮機本体が吐出する圧縮気体温度を測定して前記最高許容温度と比較し、前記測定された圧縮気体温度を前記最高許容温度と一致させる前記圧縮機本体の回転数を前記アンロード回転数とすることを特徴とする請求項1記載のオイルフリー圧縮機の速度制御方法。
  5. 前記目標圧力の設定を可変と成すと共に、該目標圧力の変化と、該圧縮機本体に前記最高許容温度の圧縮気体を吐出させる回転数の変化との対応関係を予め求めておくと共に、
    前記予め求めた対応関係に基づいて、変化後の目標圧力において前記圧縮機本体が前記最高許容温度の圧縮気体を吐出する回転数を得、この得られた回転数を前記アンロード回転数とすることを特徴とする請求項1記載のオイルフリー圧縮機の速度制御方法。
  6. 前記目標圧力の設定を可変と成すと共に、前記対応関係を該目標圧力の変化に対応して予め求めておき、
    前記アンロード回転数を設定するに際し、設定した目標圧力に対応する前記対応関係に基づいて、前記アンロード回転数を設定することを特徴とする請求項2又は3記載のオイルフリー圧縮機の速度制御方法。
  7. 圧縮機本体が吐出する吐出気体温度が、該圧縮機本体を破損させるおそれのある温度に対して所定温度低く設定された警戒温度となったとき、前記圧縮機本体の回転数を上昇させることを特徴とする請求項1〜6いずれか1項記載のオイルフリー圧縮機の速度制御方法。
JP2004342944A 2004-11-26 2004-11-26 オイルフリー圧縮機の速度制御方法 Active JP4549825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342944A JP4549825B2 (ja) 2004-11-26 2004-11-26 オイルフリー圧縮機の速度制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342944A JP4549825B2 (ja) 2004-11-26 2004-11-26 オイルフリー圧縮機の速度制御方法

Publications (2)

Publication Number Publication Date
JP2006152884A true JP2006152884A (ja) 2006-06-15
JP4549825B2 JP4549825B2 (ja) 2010-09-22

Family

ID=36631472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342944A Active JP4549825B2 (ja) 2004-11-26 2004-11-26 オイルフリー圧縮機の速度制御方法

Country Status (1)

Country Link
JP (1) JP4549825B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161734A (ja) * 2004-12-09 2006-06-22 Hitachi Industries Co Ltd スクリュー圧縮機およびその運転制御方法
JP2009079950A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 情報処理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014952B (zh) * 2016-07-12 2017-10-20 山东宏润空压机科技有限公司 一种智能化无油润滑空压机控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119379A (ja) * 1995-10-25 1997-05-06 Ishikawajima Harima Heavy Ind Co Ltd 空気圧縮装置
JP2001050185A (ja) * 1999-08-11 2001-02-23 Hitachi Ltd インバータ駆動形無給油式スクリュー圧縮機とその運転制御方法
JP2001342982A (ja) * 2000-06-02 2001-12-14 Hitachi Ltd スクリュー圧縮装置とその運転制御方法
JP2005042635A (ja) * 2003-07-23 2005-02-17 Kobe Steel Ltd スクリュ圧縮機の運転方法
JP2005069100A (ja) * 2003-08-25 2005-03-17 Hitachi Industrial Equipment Systems Co Ltd 無給油式スクリュー圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119379A (ja) * 1995-10-25 1997-05-06 Ishikawajima Harima Heavy Ind Co Ltd 空気圧縮装置
JP2001050185A (ja) * 1999-08-11 2001-02-23 Hitachi Ltd インバータ駆動形無給油式スクリュー圧縮機とその運転制御方法
JP2001342982A (ja) * 2000-06-02 2001-12-14 Hitachi Ltd スクリュー圧縮装置とその運転制御方法
JP2005042635A (ja) * 2003-07-23 2005-02-17 Kobe Steel Ltd スクリュ圧縮機の運転方法
JP2005069100A (ja) * 2003-08-25 2005-03-17 Hitachi Industrial Equipment Systems Co Ltd 無給油式スクリュー圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161734A (ja) * 2004-12-09 2006-06-22 Hitachi Industries Co Ltd スクリュー圧縮機およびその運転制御方法
JP2009079950A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 情報処理装置

Also Published As

Publication number Publication date
JP4549825B2 (ja) 2010-09-22

Similar Documents

Publication Publication Date Title
EP1851438B1 (en) System and method for controlling a variable speed compressor during stopping
US6599093B2 (en) Compressor having speed and intake regulation valve control
US8241007B2 (en) Oil-injection screw compressor
US11725662B2 (en) Method of pumping in a system of vacuum pumps and system of vacuum pumps
JP7118940B2 (ja) 圧縮機、監視システム、及び圧縮機の監視方法
KR101253086B1 (ko) 흡입 공기 제어장치를 통한 에너지 절감형 스크류 공기압축기 장치
CN108700051B (zh) 检测冷却剂压缩机阀闭锁的方法及冷却剂压缩机的控制系统
JP6997648B2 (ja) 圧縮機システム
JP4549825B2 (ja) オイルフリー圧縮機の速度制御方法
WO2020213353A1 (ja) 気体圧縮機
CN100585185C (zh) 压缩机及其运转方法
JP2010185458A (ja) スクリュー圧縮機の運転方法
JP2007085360A (ja) スクリュー圧縮機の運転方法
JP6812248B2 (ja) 多段オイルフリースクリュ圧縮機の容量制御方法及び多段オイルフリースクリュ圧縮機
JP4608289B2 (ja) スクリュ圧縮機の運転制御方法
JP2005069100A (ja) 無給油式スクリュー圧縮機
JP4463011B2 (ja) 流体圧縮機の容量制御方法及び容量制御装置
CN115836163A (zh) 供油设备及其异常检测方法
JP5422431B2 (ja) 流体圧縮機の制御方法及び流体圧縮機
JP2008185039A (ja) 無給油式スクリュー圧縮機
JP6720802B2 (ja) 水添加式の圧縮機の水添加開始方法
JP5674586B2 (ja) 油冷式スクリュー圧縮機
JP2005351169A (ja) スクリュー圧縮機及びその運転制御方式
JP6454607B2 (ja) オイルフリー圧縮機
JP5105854B2 (ja) インバータ駆動圧縮機における運転制御方法及びインバータ駆動圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4549825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160716

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250