JP2006147821A - Air-core toroidal coil manufacturing method and toroidal coil - Google Patents

Air-core toroidal coil manufacturing method and toroidal coil Download PDF

Info

Publication number
JP2006147821A
JP2006147821A JP2004335502A JP2004335502A JP2006147821A JP 2006147821 A JP2006147821 A JP 2006147821A JP 2004335502 A JP2004335502 A JP 2004335502A JP 2004335502 A JP2004335502 A JP 2004335502A JP 2006147821 A JP2006147821 A JP 2006147821A
Authority
JP
Japan
Prior art keywords
bobbin
winding
core
toroidal coil
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004335502A
Other languages
Japanese (ja)
Inventor
Masaharu Maesaka
昌春 前坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosel Co Ltd
Original Assignee
Cosel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosel Co Ltd filed Critical Cosel Co Ltd
Priority to JP2004335502A priority Critical patent/JP2006147821A/en
Publication of JP2006147821A publication Critical patent/JP2006147821A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a toroidal coil which is capable of forming the toroidal coil easily without using a dedicated winding machine. <P>SOLUTION: The method of forming the toroidal coil 24 comprises a first process of forming a cylindrical bobbin 10 using a flexible and non-magnetic material, a second process of enabling a rigid shaft 20 to penetrate through the bobbin 10, a third process of winding a winding 22 on the bobbin 10 which is fixed and held by the shaft 20, a fourth process of pulling out the shaft 20 from the bobbin 10 wound with the winding 22, and a fifth process of fitting a fitting unit 12 into a fitting receiver 14 located at the end of the bobbin 10 from which the shaft has been pulled out to turn the bobbin 10 in annular shape for the formation of the toroidal coil 24. As mentioned above, the shaft 20 is inserted into the bobbin 10, so that the winding 22 can be easily wound on the cylindrical bobbin 10 by a conventional winding machine. The bobbin 10 can be easily turned in annular shape when the shaft 20 is pulled out after the winding 22 is wound on the bobbin 10. After the bobbin 10 is turned in annular shape, the fitting unit 12 provided to the one end of the bobbin 10 is fitted into the fitting receiver 14 provided to the other end of the bobbin 10, whereby the toroidal coil 24 can be easily formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高い周波数でスイッチング動作を行うスイッチング電源に用いられる空芯トロイダルコイルの製造方法およびトロイダルコイルに関する。
The present invention relates to an air core toroidal coil manufacturing method and a toroidal coil used for a switching power supply that performs a switching operation at a high frequency.

入力電圧と異なる電圧を得る電源装置として、入力電源を断続制御してトランスにより電圧変換するスイッチング電源があり、従来はトランスにEI形状コアが用いられていたが、漏れインダクタンスが少なく、外部へのノイズを放散しにくい規格が要求されるスイッチング電源には図7のようなトロイダル形状コア1に巻線2を巻いたロイダルトランスが用いられることがある。
特開平9−027425号公報 実開平10−050534号公報
As a power supply device that obtains a voltage different from the input voltage, there is a switching power supply in which the input power supply is intermittently controlled and voltage conversion is performed by a transformer. Conventionally, an EI-shaped core has been used for the transformer, but there is little leakage inductance, and the external power supply A switching power supply that requires a standard that hardly dissipates noise may use a toroidal core 1 in which a winding 2 is wound around a toroidal core 1 as shown in FIG.
JP-A-9-027425 Japanese Utility Model Publication No. 10-050534

しかしながらトロイダル形状のコイルの巻き線作業はEI形状コアのトランスよりも巻き線作業が難しく、作業時間もEI形状コアのトランスよりも長くなり作業性が悪いために、専用の巻線機によりコイルを巻くようにしているが、汎用性に欠けるたため、少量多品種生産には適しないという課題を有していた。   However, the winding work of the toroidal coil is more difficult to wind than the transformer of the EI shape core, and the work time is longer than that of the transformer of the EI shape core. Although it is made to wind, since it lacked versatility, it had the subject that it was not suitable for small-lot, multi-product production.

したがって、本発明は、作業性を向上させたトロイダルコイルの製造方法及びおよびトロイダルコイルを提供することを目的とする。
Accordingly, an object of the present invention is to provide a toroidal coil manufacturing method and a toroidal coil with improved workability.

このような課題を解決するために本発明は、可撓性及び非磁性をもつ素材により棒状のボビンを形成する第1過程と、ボビンに剛性をもつ芯棒を貫通する第2過程と、芯棒で固定保持されたボビンに巻線を巻く第3過程と、巻線を巻いたボビンから芯棒を抜き外す第4過程と、芯棒を抜いたボビンの両端を連結して環状に形成する第5過程によって空芯トロイダルコイルを製造することを特徴とする。このような製造方法をとることで従来は専用の製造機械を用いたり、長い製造時間が必要であったものが、簡単にかつ短時間で巻線を形成することができる。   In order to solve such problems, the present invention includes a first process of forming a rod-shaped bobbin with a flexible and non-magnetic material, a second process of penetrating a bobbin having a rigid bobbin, a core, A third process of winding a winding on a bobbin fixed and held by a rod, a fourth process of removing the core rod from the bobbin wound with the winding, and connecting the both ends of the bobbin from which the core rod is removed to form an annular shape. An air core toroidal coil is manufactured by a fifth process. By adopting such a manufacturing method, it has been possible to form a winding easily and in a short time using a dedicated manufacturing machine or a device that previously required a long manufacturing time.

また本発明は、ボビン嵌合構造を特徴とするもので、第1過程は、棒状のボビンの一端に嵌合部と嵌合受部を形成することを特徴とする。このように構成することで環状にした形状を容易に保持することができる。   The present invention is characterized by a bobbin fitting structure, and the first step is characterized in that a fitting portion and a fitting receiving portion are formed at one end of a rod-shaped bobbin. With this configuration, the annular shape can be easily held.

また本発明はボビンの断面形状を特徴とするもので、第1過程は、棒状のボビンの断面形状を楕円又は矩形を含む任意の形状に形成することを特徴とする。このように構成することで従来は構成しにくかった円筒形などの特殊形状のコアも容易に実現することができる。   The present invention is characterized by the cross-sectional shape of the bobbin, and the first step is characterized in that the cross-sectional shape of the rod-shaped bobbin is formed into an arbitrary shape including an ellipse or a rectangle. With this configuration, it is possible to easily realize a specially shaped core such as a cylindrical shape that has been difficult to configure in the past.

また本発明はボビンに高熱伝導素材を使用することを特徴とするもので、第1過程は、更に熱伝導率の高い素材により前記棒状のボビンを形成することを特徴とする。   The present invention is characterized in that a high thermal conductivity material is used for the bobbin, and the first process is characterized in that the rod-shaped bobbin is formed of a material having a higher thermal conductivity.

また本発明はボビンに埋め巻きできる構造としたことを特徴とし、第3過程は、巻線を芯棒で固定保持されたボビンの外周に食い込むように巻き付けることを特徴とする。   Further, the present invention is characterized in that the bobbin can be embedded and wound, and the third process is characterized in that the winding is wound so as to bite into the outer periphery of the bobbin fixedly held by the core rod.

また本発明は可撓性性及び非磁性をもつ棒状の素材の両端を連結してドーナツ状に形成したボビンと、ボビンの外周に食い込み状態で巻かれた巻線で構成したコイルそのものを形成することを特徴とする。   Further, the present invention forms a coil itself composed of a bobbin formed in a donut shape by connecting both ends of a flexible and non-magnetic rod-shaped material, and a winding wound around the outer periphery of the bobbin. It is characterized by that.

また本発明は放熱構造を特徴としたもので、ボビンを挟んで配置される放熱部材を備えたことを特徴とする。このように、熱伝導率の高い材質でボビンを形成したり、放熱部材で挟むことで放熱効率を向上させることができる。更にボビンの外周に食い込み状態で巻線を巻くことで、放熱部材にコイルが接触することを防止でき、絶縁性の問題を解決することもできる。   Further, the present invention is characterized by a heat dissipation structure, and is characterized by including a heat dissipation member disposed with a bobbin interposed therebetween. Thus, heat dissipation efficiency can be improved by forming the bobbin with a material having high thermal conductivity or sandwiching the bobbin with the heat dissipation member. Further, by winding the winding around the outer periphery of the bobbin, the coil can be prevented from coming into contact with the heat radiating member, and the insulation problem can be solved.

また本発明は巻線をツイスト線、融着多芯線で形成したことを特徴とし、第3過程は、芯棒で固定保持されたボビンにツイスト線又は融着多芯線を巻くことを特徴とする。このように構成することで、一度の巻線によって巻線比1:1のトランスを容易に得ることができる。この場合、1本の線で巻けばチョークコイルになる。また、巻き数を複数回個別に巻くことで任意の巻き数比のトロイダルトランスが得られる。
Further, the present invention is characterized in that the winding is formed of a twisted wire or a fused multi-core wire, and the third process is characterized in that a twisted wire or a fused multi-core wire is wound around a bobbin fixedly held by a core rod. . With this configuration, a transformer having a winding ratio of 1: 1 can be easily obtained by a single winding. In this case, if it winds with one line, it will become a choke coil. In addition, a toroidal transformer having an arbitrary winding ratio can be obtained by individually winding a plurality of turns.

本発明に従えば、剛性を持つ心棒を貫通させた可撓性を有する素材からなるボビンに巻線を巻き、巻き終わったら心棒を抜き取って、ボビンを環状に変形させ端部を結合するだけの作業で良いため、軸回りにボビンを回転させるだけで巻線作業ができ、巻線作業が簡単になるとともに、トロイダル形状への変形も容易に行えるという効果が得られる。   According to the present invention, a winding is wound around a bobbin made of a flexible material through which a rigid mandrel is passed, and when the winding is finished, the mandrel is pulled out, the bobbin is deformed into an annular shape, and the ends are joined. Since the work is sufficient, the winding work can be performed only by rotating the bobbin around the axis, and the winding work can be simplified and the deformation to the toroidal shape can be easily performed.

また、端部の結合はボビンの一端に嵌合部を設け、他端にその嵌合部と嵌合する嵌合受部を形成しておけばボビンが可撓性を有することから、容易に環状に形成することができる。   In addition, it is easy to connect the end part by providing a fitting part at one end of the bobbin and forming a fitting receiving part that fits the fitting part at the other end, because the bobbin has flexibility. It can be formed in an annular shape.

また、ボビンの断面形状を楕円、矩形などの任意の形状とすることも容易であり、形状の自由度が大きいことから実装効率が良くなると言う効果を有する。   Moreover, it is easy to make the cross-sectional shape of the bobbin an arbitrary shape such as an ellipse or a rectangle, and since the degree of freedom of the shape is large, there is an effect that mounting efficiency is improved.

また、ボビンに熱伝導率の高い素材を用いれば放熱効率を向上させることができる。   Further, if a material having high thermal conductivity is used for the bobbin, the heat radiation efficiency can be improved.

また、ボビンに柔らかい素材を用いることによって、巻線をボビンの外周に食い込むように巻くことができ、この場合はボビンに放熱板で挟む構造としてもコイルが損傷しないという効果を有する。   Further, by using a soft material for the bobbin, the winding can be wound so as to bite into the outer periphery of the bobbin. In this case, even if the structure is sandwiched between the heat sinks on the bobbin, the coil is not damaged.

また、巻線にツイスト線あるいは融着多芯線を用いることによって容易にトランスとすることができるという効果を有する。   In addition, there is an effect that a transformer can be easily formed by using a twisted wire or a fused multi-core wire for the winding.

また、柔らかい素材でボビンを構成したので、振動に対しても強く、シリコンゴムでボビンを形成すればシリコンとの融着性も向上して強固に固定でき、電源全体をポッティングすることもできる。   In addition, since the bobbin is made of a soft material, it is strong against vibration. If the bobbin is formed of silicon rubber, it can be firmly fixed with improved fusion with silicon, and the entire power supply can be potted.

図1は本発明を適用したトロイダルコアの製造工程を示す図であり、図1(A)は第1行程を示す図であり、例えばシリコンゴムのように可撓性を有し非磁性の物理的性質を有する素材で棒状のボビン10を形成し、棒状のボビン10の一端に例えばキノコ状の嵌合部12を設け、他端にその嵌合部12と嵌合する嵌合受部14を形成している。   FIG. 1 is a diagram showing a manufacturing process of a toroidal core to which the present invention is applied, and FIG. 1 (A) is a diagram showing a first process. For example, a flexible and non-magnetic physical material such as silicon rubber. A rod-shaped bobbin 10 is formed of a material having a natural property, a mushroom-shaped fitting portion 12 is provided at one end of the rod-shaped bobbin 10, and a fitting receiving portion 14 to be fitted to the fitting portion 12 is provided at the other end. Forming.

図1(B)は第2行程を示す図であり、棒状のボビン10に巻線が巻くときボビン10は可撓性があり巻線の作業性が悪いので、剛性を有する芯棒20をボビン10挿入することでボビン全体に剛性を持たせ、巻線作業を容易にしている。図1(C)は第3行程を示す図であり、剛性を持たせたボビン10に線を巻いて巻線22を形成する。この場合、巻線22は芯棒20で固定保持されたボビン10に食い込むように巻き付けても良い。巻線22を巻く場合、芯棒20で固定保持されたボビン10にツイスト線又は融着多芯線を巻いても良く、1本の線で巻いた場合はチョークコイルになり、ツイスト線又は融着多芯線で巻いた場合は巻線比1:1のトランスになるが、巻線比の違うものが必要な場合は別途必要な巻線を設ければよい。   FIG. 1B is a diagram showing the second stroke. When the winding is wound around the rod-shaped bobbin 10, the bobbin 10 is flexible and the workability of the winding is poor. Inserting 10 makes the entire bobbin rigid and facilitates the winding work. FIG. 1C is a diagram showing a third stroke, in which the winding 22 is formed by winding a wire around the bobbin 10 having rigidity. In this case, the winding 22 may be wound so as to bite into the bobbin 10 fixedly held by the core rod 20. When winding the winding 22, a twisted wire or a fused multi-core wire may be wound around the bobbin 10 fixedly held by the core rod 20, and when wound with one wire, a choke coil is formed, and the twisted wire or the fused wire is fused. When it is wound with a multi-core wire, it becomes a transformer with a winding ratio of 1: 1, but if a different winding ratio is required, a separate winding may be provided.

図1(D)は第4行程を示す図であり、巻線が終了したら心棒20を抜き外す。図1(E)は第5行程を示す図であり、芯棒20を抜き外すと素材が可撓性を有するため容易に環状にすることができることから、嵌合部12を嵌合受部14に嵌合させることで、トロイダルコイル24が形成される。   FIG. 1D is a diagram showing the fourth stroke. When the winding is completed, the mandrel 20 is removed. FIG. 1 (E) is a diagram showing the fifth stroke. When the core rod 20 is removed, the material is flexible and can be easily formed into an annular shape. As a result, the toroidal coil 24 is formed.

なお、芯棒20を通し易くするために嵌合部12から嵌合受部14まで貫通孔を設けても良い。   A through hole may be provided from the fitting portion 12 to the fitting receiving portion 14 so that the core rod 20 can be easily passed.

図2は他の実施態様を示す図であり、図1(A)において嵌合部12はキノコ状のものを一つだけ形成しているが、図2に示すように複数形成すれば、復元力の強い素材を用いても結合状態を確保しやすい。   FIG. 2 is a diagram showing another embodiment, and in FIG. 1A, only one mushroom-shaped fitting portion 12 is formed. However, if a plurality of fitting portions 12 are formed as shown in FIG. Even if a strong material is used, it is easy to secure a bonded state.

このようにして構成したトロイダルコイルはボビン10を用いているが、ボビン10は非磁性体を用いているため、磁性材料を用いたものに比べると漏れ磁束が多く結合も良くないが、トロイダル形状にすることでこれらの欠点をカバーできる。またスイッチング電源のスイッチング周波数を数MHz以上にした場合、磁性材料を用いたものでは鉄損が増加したり、透磁率が低下したりするので実際には数MHz以上のスイッチング周波数を使用できないことが多いが、本願発明のように磁性体を用いないことから鉄損が発生せず、透磁率低下の問題も起きないので、従来は用いることが困難であった高い周波数のいスイッチング電源を構成することが容易になる。   The toroidal coil constructed in this way uses the bobbin 10, but since the bobbin 10 uses a non-magnetic material, the leakage flux is large and the coupling is not good compared to the one using a magnetic material. To cover these drawbacks. In addition, when the switching frequency of the switching power supply is set to several MHz or more, the use of a magnetic material increases the iron loss or decreases the magnetic permeability, so that the switching frequency of several MHz or more cannot actually be used. However, unlike the present invention, since no magnetic material is used, iron loss does not occur, and there is no problem of low magnetic permeability. Therefore, a switching power supply having a high frequency, which has been difficult to use in the past, is configured. It becomes easy.

図3は他の実施態様を示す図であり、トロイダルコイルを製作する場合、円筒形のものは製作しにくいが、ボビン10の形状は自在に形成できるので、断面が扁平のボビン10を使用すれば図3(A)のように円筒形のトロイダルコイル24も容易に形成できる。このように円筒形にして面積を小さくして実装効率を上げることができる。図3(B)は図3(A)の部分断面図であり、この例では楕円形の断面を有しているが、長方形断面あるいは任意の断面形状にしても良い。   FIG. 3 is a diagram showing another embodiment. When a toroidal coil is manufactured, it is difficult to manufacture a cylindrical one, but since the shape of the bobbin 10 can be freely formed, the bobbin 10 having a flat cross section is used. For example, a cylindrical toroidal coil 24 can be easily formed as shown in FIG. In this way, it is possible to increase the mounting efficiency by reducing the area by using a cylindrical shape. FIG. 3B is a partial cross-sectional view of FIG. 3A, and in this example, it has an elliptical cross section, but may have a rectangular cross section or an arbitrary cross section.

この場合、図示していないが嵌合部、嵌合受部はボビン10の一端及び他端にそれぞれ複数箇所形成しておけば嵌合性が確実になる。   In this case, although not shown in the drawing, the fitting portion and the fitting receiving portion are formed at a plurality of locations at one end and the other end of the bobbin 10 to ensure fitting properties.

ボビン10は可撓性を有するために任意形状に変形でき、例えば図4のように自在な形状にすることもできるので、実装スペースに合わせた形とすれば、装置内の空きスペースに実装でき、実装効率も良くなる。この場合、密閉空間に収容すると放熱の問題が発生するようで有れば、ボビン10を熱伝導率の高いものとし、ボビン10を筐体などの放熱効果の高いものに接触させることで放熱の問題を解決できる。更に発熱が問題になるようで有れば、耐熱性あるいは難燃性の素材、あるいは熱によって物理組成の変化しにくい材料を用いることも考えられる。   Since the bobbin 10 has flexibility, it can be deformed into an arbitrary shape. For example, the bobbin 10 can be formed into a free shape as shown in FIG. The mounting efficiency is also improved. In this case, if the problem of heat dissipation seems to occur when enclosed in a sealed space, the bobbin 10 has a high thermal conductivity, and the bobbin 10 is brought into contact with a high heat dissipation effect such as a housing to reduce heat dissipation. Can solve the problem. Furthermore, if heat generation seems to be a problem, it is conceivable to use a heat-resistant or flame-retardant material or a material whose physical composition does not easily change due to heat.

図5は他の実施例を示す図であり、熱伝導率の高い棒状のボビン10の外周に食い込むように巻線22を巻き付けた後にボビン10を環状に形成したトロイダルコイルである。図6は図5のように構成したトロイダルコイルのボビン10を放熱板26と基板28によって挟み込み、放熱効果を向上させるものであり、巻線22が放熱板26に直接接触しないので、絶縁が確保しやすい。またこの場合、基板28もボビン10と接触する部分に銅箔を残しておけばより放熱効果が期待できる。この基板28は渦電流による損失を減らすため、電気抵抗が高いものが望ましく、また熱抵抗の小さいものを使用することで放熱効果を期待できる。   FIG. 5 is a view showing another embodiment, which is a toroidal coil in which the bobbin 10 is formed in an annular shape after the winding 22 is wound around the outer periphery of the rod-shaped bobbin 10 having high thermal conductivity. FIG. 6 shows the toroidal coil bobbin 10 configured as shown in FIG. 5 sandwiched between the heat radiating plate 26 and the substrate 28 to improve the heat radiating effect, and the winding 22 does not directly contact the heat radiating plate 26, thus ensuring insulation. It's easy to do. In this case, more heat dissipation can be expected if the copper foil is left in the portion where the substrate 28 is also in contact with the bobbin 10. In order to reduce loss due to eddy current, the substrate 28 preferably has a high electrical resistance, and a heat dissipation effect can be expected by using a substrate having a low thermal resistance.

また、また、柔らかい素材でボビンを構成しているので、振動に対しても強い。更にシリコンゴムでボビンを形成すればシリコンとの融着性も向上して強固に固定でき、電源全体をポッティングすることもできる。
Moreover, since the bobbin is made of a soft material, it is strong against vibration. Further, if the bobbin is formed of silicon rubber, the fusion with silicon can be improved and firmly fixed, and the entire power supply can be potted.

製造工程を示す図Diagram showing manufacturing process ボビンの他の実施態様を示す図The figure which shows the other embodiment of a bobbin 円筒形のボビンを形成する説明のための図Illustration for forming a cylindrical bobbin 任意形状のボビンを形成する説明のための図Illustration for forming an arbitrarily shaped bobbin ボビンの外周に食い込み状態で巻線を巻いたトロイダルコイルを示す図Diagram showing a toroidal coil wound around the bobbin's outer periphery. ボビンの外周に食い込み状態で巻線を巻いたトロイダルコイルを放熱板と基板で挟み込んだ状態を示す図Diagram showing a state where a toroidal coil wound around the bobbin's outer periphery is sandwiched between a heat sink and a substrate 従来のトロイダルコイルを示す斜視図A perspective view showing a conventional toroidal coil

符号の説明Explanation of symbols

10: ボビン
12: 嵌合部
14: 嵌合受部
16: 貫通孔
20: 芯棒
22: 巻線
24: トロイダルコイル
26: 放熱板
28: 基板
10: Bobbin 12: Fitting portion 14: Fitting receiving portion 16: Through hole 20: Core rod 22: Winding 24: Toroidal coil 26: Heat sink 28: Substrate

Claims (9)

可撓性及び非磁性をもつ素材により棒状のボビンを形成する第1過程と、
前記ボビンに剛性をもつ芯棒を貫通する第2過程と、
前記芯棒で固定保持されたボビンに巻線を巻く第3過程と、
前記巻線を巻いたボビンから芯棒を抜き外す第4過程と、
前記芯棒を抜いたボビンの両端を連結して環状に形成する第5過程と、
を備えたことを特徴とする空芯トロイダルコイルの製造方法。
A first step of forming a rod-shaped bobbin with a flexible and non-magnetic material;
A second process of penetrating the bobbin with a rigid core,
A third step of winding a winding around a bobbin fixedly held by the core rod;
A fourth step of removing the core rod from the bobbin wound with the winding;
A fifth step of connecting the both ends of the bobbin from which the core rod has been pulled out to form an annular shape;
An air core toroidal coil manufacturing method characterized by comprising:
請求項1記載の空芯トロイダルコイルの製造方法に於いて、前記第1過程は、前記棒状のボビンの一端に嵌合部と嵌合受部を形成することを特徴とする空芯トロイダルコイルの製造方法。
2. The method of manufacturing an air core toroidal coil according to claim 1, wherein the first step includes forming a fitting portion and a fitting receiving portion at one end of the rod-shaped bobbin. Production method.
請求項1記載の空芯トロイダルコイルの製造方法に於いて、前記第1過程は、前記棒状のボビンの断面形状を楕円又は矩形を含む任意の形状に形成することを特徴とする空芯トロイダルコイルの製造方法。
2. The method of manufacturing an air-core toroidal coil according to claim 1, wherein the first step forms the cross-sectional shape of the rod-shaped bobbin into an arbitrary shape including an ellipse or a rectangle. Manufacturing method.
請求項1記載の空芯トロイダルコイルの製造方法に於いて、前記第1過程は、更に熱伝導率の高い素材により前記棒状のボビンを形成することを特徴とする空芯トロイダルコイルの製造方法。
2. The method of manufacturing an air-core toroidal coil according to claim 1, wherein the first step forms the rod-shaped bobbin with a material having a higher thermal conductivity.
請求項1記載の空芯トロイダルコイルの製造方法に於いて、前記第3過程は、前記巻線を前記芯棒で固定保持されたボビンの外周に食い込むように巻き付けることを特徴とする空芯トロイダルコイルの製造方法。
2. The method of manufacturing an air core toroidal coil according to claim 1, wherein in the third step, the winding is wound so as to bite into an outer periphery of a bobbin fixedly held by the core rod. Coil manufacturing method.
請求項1記載の空芯トロイダルコイルの製造方法に於いて、前記第3過程は、前記芯棒で固定保持されたボビンにツイスト線又は融着多芯線を巻くことを特徴とする空芯トロイダルコイルの製造方法。
2. The air core toroidal coil manufacturing method according to claim 1, wherein the third step comprises winding a twisted wire or a fused multi-core wire around a bobbin fixedly held by the core rod. Manufacturing method.
請求項1記載の空芯トロイダルコイルの製造方法に於いて、前記第3過程は、前記芯棒で固定保持されたボビンにトランス製造時は複数本の巻線を巻き、チョークコイル製造時は1本の巻線を巻くことを特徴とする空芯トロイダルコイルの製造方法。
2. The method of manufacturing an air-core toroidal coil according to claim 1, wherein the third step includes winding a plurality of windings on a bobbin fixed and held by the core rod at the time of manufacturing a transformer and 1 at the time of manufacturing a choke coil. An air-core toroidal coil manufacturing method characterized by winding a winding of a book.
可撓性及び非磁性をもつ棒状の素材の両端を連結して環状に形成したボビンと、
前記ボビンの外周に食い込み状態で巻かれた巻線と、
を備えたことを特徴とするトロイダルコイル。
A bobbin formed into an annular shape by connecting both ends of a flexible and non-magnetic rod-shaped material;
A winding wound around the outer periphery of the bobbin;
A toroidal coil characterized by comprising:
請求項8記載のトロイダルコイルに於いて、更に、前記ボビンを挟んで配置される放熱部材を備えたことを特徴とするトロイダルコイル。   9. The toroidal coil according to claim 8, further comprising a heat radiating member disposed with the bobbin interposed therebetween.
JP2004335502A 2004-11-19 2004-11-19 Air-core toroidal coil manufacturing method and toroidal coil Pending JP2006147821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335502A JP2006147821A (en) 2004-11-19 2004-11-19 Air-core toroidal coil manufacturing method and toroidal coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335502A JP2006147821A (en) 2004-11-19 2004-11-19 Air-core toroidal coil manufacturing method and toroidal coil

Publications (1)

Publication Number Publication Date
JP2006147821A true JP2006147821A (en) 2006-06-08

Family

ID=36627162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335502A Pending JP2006147821A (en) 2004-11-19 2004-11-19 Air-core toroidal coil manufacturing method and toroidal coil

Country Status (1)

Country Link
JP (1) JP2006147821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111942A1 (en) * 2012-01-26 2013-08-01 창원대학교 산학협력단 Superconducting dc reactor
JP2015115448A (en) * 2013-12-11 2015-06-22 アイシン精機株式会社 Inductor
US20190122813A1 (en) * 2017-10-23 2019-04-25 Schweitzer Engineering Laboratories, Inc. Current transformer with flexible secondary winding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619026U (en) * 1979-07-20 1981-02-19
JPS57147227A (en) * 1981-03-07 1982-09-11 Keihin Seiki Mfg Co Ltd Manufacture of coil bobbin
JPH0163119U (en) * 1987-10-15 1989-04-24
JPH08130134A (en) * 1994-11-02 1996-05-21 Agency Of Ind Science & Technol Superconducting coreless transformer
JP2004147259A (en) * 2002-10-28 2004-05-20 Nitto Denko Corp Voice coil bobbin for speaker
JP2004158684A (en) * 2002-11-07 2004-06-03 Yazaki Corp Toroidal coil and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619026U (en) * 1979-07-20 1981-02-19
JPS57147227A (en) * 1981-03-07 1982-09-11 Keihin Seiki Mfg Co Ltd Manufacture of coil bobbin
JPH0163119U (en) * 1987-10-15 1989-04-24
JPH08130134A (en) * 1994-11-02 1996-05-21 Agency Of Ind Science & Technol Superconducting coreless transformer
JP2004147259A (en) * 2002-10-28 2004-05-20 Nitto Denko Corp Voice coil bobbin for speaker
JP2004158684A (en) * 2002-11-07 2004-06-03 Yazaki Corp Toroidal coil and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111942A1 (en) * 2012-01-26 2013-08-01 창원대학교 산학협력단 Superconducting dc reactor
KR101308138B1 (en) 2012-01-26 2013-09-12 창원대학교 산학협력단 High Temperature Superconductor DC reactor
US9640309B2 (en) 2012-01-26 2017-05-02 Industry-Academic Cooperation Foundation Changwon National University Superconducting DC reactor
JP2015115448A (en) * 2013-12-11 2015-06-22 アイシン精機株式会社 Inductor
US20190122813A1 (en) * 2017-10-23 2019-04-25 Schweitzer Engineering Laboratories, Inc. Current transformer with flexible secondary winding
US10777349B2 (en) * 2017-10-23 2020-09-15 Schweitzer Engineering Laboratories, Inc. Current transformer with flexible secondary winding

Similar Documents

Publication Publication Date Title
KR100686711B1 (en) Surface mount type power inductor
JP2005340812A (en) Coil structure and method of manufacturing the same
KR101120923B1 (en) Transformer and electronic apparatus having thereof
JPWO2008053613A1 (en) Sheet type transformer and discharge lamp lighting device
JPH11251164A (en) Compact choke coil
JP2006147821A (en) Air-core toroidal coil manufacturing method and toroidal coil
JP2006013094A (en) Transformer structure
JPH0864432A (en) Electromagnetic device
JP2011023561A (en) Braided wire toroidal coil and manufacturing method thereof
JP4550469B2 (en) Inductor manufacturing method
KR101105573B1 (en) Planar Transformer and method for manufacturing thereof
JP2007173263A (en) Edgewise winding electromagnetic coil and its manufacturing method
KR101328286B1 (en) Transformer
US10102957B2 (en) Method for manufacturing transformer apparatus
JP4386697B2 (en) Composite core reactor and induction power receiving circuit
JP2010153460A (en) Coil component
JP2015053369A (en) Coil component and power supply device using the same
JP4183194B2 (en) Inductance element
JP2007318011A (en) Choke coil
JP2008270272A (en) Inductance element
JP2015130540A (en) Annular coil
JP2003234234A (en) Transformer, inductor, and manufacturing methods thereof
JP2007188988A (en) Edgewise wound electromagnetic coil and method for manufacturing same
JP2007201235A (en) Sheet-winding-wire and sheet winding transformer
CN210956373U (en) Magnetic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518