JPH08130134A - Superconducting coreless transformer - Google Patents
Superconducting coreless transformerInfo
- Publication number
- JPH08130134A JPH08130134A JP6269494A JP26949494A JPH08130134A JP H08130134 A JPH08130134 A JP H08130134A JP 6269494 A JP6269494 A JP 6269494A JP 26949494 A JP26949494 A JP 26949494A JP H08130134 A JPH08130134 A JP H08130134A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- coil
- transformer
- wires
- bobbin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Coils Of Transformers For General Uses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超伝導鉄心型トランス
に代えて鉄心を用いないで構成した高効率な超伝導無鉄
心トランスに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-efficiency superconducting ironless transformer which is constructed without using an iron core in place of the superconducting iron core type transformer.
【0002】[0002]
【従来の技術】従来、超伝導トランスは、1次側超伝導
コイルと2次側超伝導コイルを鉄心で結合し、しかも、
鉄心で発生する熱を極低温側へ侵入させないように鉄心
部を常温の油タンク内に設置して空気冷却機で冷却し、
超伝導コイルと分離する複雑な構造をとっている。2. Description of the Related Art Conventionally, a superconducting transformer has a primary-side superconducting coil and a secondary-side superconducting coil connected by an iron core.
Install the iron core in an oil tank at room temperature and cool it with an air cooler to prevent heat generated by the iron core from entering the cryogenic side.
It has a complicated structure that separates it from the superconducting coil.
【0003】[0003]
【発明が解決しようとする課題】このような従来の超伝
導トランスでは、1次側超伝導コイルと2次側超伝導コ
イルの結合をとるために鉄心のコアを利用しているの
で、鉄のヒステリシスのため交流磁界により損失をとも
ない発熱する。この発熱を極低温で冷却するのでは総合
的な効率の低下をもたらすので、鉄心部分を超伝導コイ
ルと分離して常温の油タンク内に設置し、空気冷却を行
っている。したがって、トランスの構造が極めて複雑に
なること、および鉄心部が必要なため装置の小型化が難
しいなどの問題点があった。In such a conventional superconducting transformer, the core of the iron core is used to connect the primary-side superconducting coil and the secondary-side superconducting coil. Due to the hysteresis, heat is generated with loss due to the AC magnetic field. Since cooling this heat generation at a very low temperature brings about a decrease in overall efficiency, the iron core part is separated from the superconducting coil and installed in an oil tank at room temperature for air cooling. Therefore, there are problems that the structure of the transformer becomes extremely complicated and that it is difficult to downsize the device because the iron core portion is required.
【0004】本発明の目的は、鉄心を用いない構成で高
い結合係数が得られる超伝導無鉄心トランスを提供する
ことである。An object of the present invention is to provide a superconducting ironless core transformer which can obtain a high coupling coefficient without using an iron core.
【0005】[0005]
【課題を解決するための手段】本発明に係る超伝導無鉄
心トランスは、主な損失の原因となる鉄心を用いない無
鉄心型としたものであり、コイル間の結合を良くするた
めに絶縁された1次側コイル用と2次側コイル用の超伝
導線の2本をまとめて非磁性体からなるボビン上に巻回
して構成したものである。A superconducting ironless core transformer according to the present invention is an ironless core type which does not use an iron core which causes a main loss, and is insulated to improve the coupling between coils. The superconducting wire for the primary coil and the superconducting wire for the secondary coil are wound together on a bobbin made of a non-magnetic material.
【0006】また、1次側のコイルと2次側コイルは同
じ長さでなく、2本の超伝導体がまとめて巻回されてい
る共通巻線部と、一方の超伝導体のみが巻回されている
単独巻線部とからなるものである。The primary side coil and the secondary side coil do not have the same length, but only the common winding part in which two superconductors are wound together, and only one superconductor is wound. It consists of a single winding part that is rotated.
【0007】さらに、上記の超伝導無鉄心トランスを超
伝導体で覆い、超伝導体の反磁性によるシールド効果で
トランス外部への磁場の漏洩を防ぐ構成としたものであ
る。Further, the above-mentioned superconducting ironless core transformer is covered with a superconductor to prevent leakage of a magnetic field to the outside of the transformer due to the shielding effect of the diamagnetism of the superconductor.
【0008】[0008]
【作用】本発明においては、1次側と2次側のコイルを
形成する超伝導線が2本まとめて巻回されているので1
次側のコイルに交流電流を通じると、他方のコイルに電
圧が誘起される。In the present invention, the two superconducting wires forming the primary side coil and the secondary side coil are wound together.
When an alternating current is passed through the coil on the next side, a voltage is induced in the other coil.
【0009】また、共通巻線部と単独巻線部からなるの
で両部の巻数比を変えることで、所要の出力電圧比が得
られる。Since the common winding section and the single winding section are provided, the required output voltage ratio can be obtained by changing the winding ratio of both sections.
【0010】さらに、全体を超伝導体で覆ったので、発
生した磁場の漏洩が防止される。Furthermore, since the whole is covered with a superconductor, leakage of the generated magnetic field is prevented.
【0011】[0011]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。 〔実施例1〕図1は、本発明の第1の実施例を示す円筒
型超伝導無鉄心トランスの斜視図である。同図におい
て、1および2は、例えばNbTi超伝導線で、互いに
絶縁されており、2本をまとめて平行にして巻かれたト
ランスの1次側コイルおよび2次側コイルであり、1
a,1bは1次側コイル1の両端子、2a,2bは2次
側コイル2の両端子、3は冷却し易いように中空にして
ある磁器等の非磁性体からなる円筒型のボビンである。Embodiments of the present invention will be described below in detail with reference to the drawings. [Embodiment 1] FIG. 1 is a perspective view of a cylindrical superconducting ironless core transformer according to a first embodiment of the present invention. In the figure, 1 and 2 are, for example, NbTi superconducting wires, which are insulated from each other, and are a primary coil and a secondary coil of a transformer which are wound together in parallel.
a and 1b are both terminals of the primary coil 1, 2a and 2b are both terminals of the secondary coil 2, and 3 is a cylindrical bobbin made of a non-magnetic material such as porcelain which is hollow for easy cooling. is there.
【0012】次に、動作について説明する。1次側コイ
ル1の両端子1a,1b間に電圧を印加し、1次側コイ
ル1に電流を流すと、2次側コイル2に電圧が誘起され
両端子2a,2b間に電流を得ることができる。Next, the operation will be described. When a voltage is applied between both terminals 1a and 1b of the primary coil 1 and a current is passed through the primary coil 1, a voltage is induced in the secondary coil 2 and a current is obtained between both terminals 2a and 2b. You can
【0013】なお、上記実施例では、1次側コイル1と
2次側コイル2の両超伝導線をまとめて平行にして巻回
しているが、これは両超伝導線をツイストしながら巻線
するようにしてもよい。さらに、図2のように円筒型の
ボビン3に代えて円環型のボビン3Aを用い、トロイダ
ル型とすることもできる。 〔実施例2〕図3は、本発明の第2の実施例を示すもの
である。この実施例は2本の超伝導線をまとめて巻回し
た共通巻線部10と、1本の超伝導線を巻回した単独巻
線部20とを備え、単独巻線部20は共通巻線部10の
2本の超伝導線のうちの一方に直列接続されている。1
cは単独巻線部20の端子を示す。In the above embodiment, the superconducting wires of the primary coil 1 and the secondary coil 2 are wound together in parallel, but this is done by twisting both superconducting wires. You may do it. Further, instead of the cylindrical bobbin 3 as shown in FIG. 2, a toroidal type bobbin 3A may be used. [Embodiment 2] FIG. 3 shows a second embodiment of the present invention. This embodiment includes a common winding part 10 in which two superconducting wires are wound together and a single winding part 20 in which one superconducting wire is wound. The single winding part 20 is commonly wound. The line portion 10 is connected in series to one of the two superconducting wires. 1
Reference numeral c indicates a terminal of the individual winding section 20.
【0014】この構成において、例えば1次側コイル1
の端子1aと単独巻線部20の端子1cの間に電圧を印
加すると、2次側コイル2の端子2a,2b間に所要の
電圧が得られる。この場合、1次側と2次側を入れかえ
てもよい。そして、共通巻線部10と単独巻線部20の
巻数比を選ぶことにより1次側と2次側の電圧比を適宜
選ぶことができる。なお、図2に示すトロイダル型の場
合にも共通巻線部10と単独巻線部20とを設け得るこ
とはもちろんである。また、単独巻線部20は、共通巻
線部10の上に重ねて巻回することもできる。 〔実施例3〕図4は、本発明の第3の実施例を示す一部
を破断した斜視図である。この実施例は、図1の実施例
の超伝導無鉄心トランス全体をバルク状の超伝導体4で
覆い包み込んたものである。これによってトランスから
発生する磁場は超伝導体4の反磁性効果により完全にシ
ールドされる。この実施例では超伝導体4は図で前後に
2分割できるように構成されており、両者を嵌合して一
体としたとき空間部5が形成され、この空間部5内に図
1に示す超伝導無鉄心トランスが収容される。なお、空
間部5は樹脂等の非磁性体や非導電体がつまっていても
よい。In this configuration, for example, the primary coil 1
When a voltage is applied between the terminal 1a of the secondary coil 2 and the terminal 1c of the individual winding section 20, a required voltage is obtained between the terminals 2a and 2b of the secondary coil 2. In this case, the primary side and the secondary side may be exchanged. Then, the voltage ratio between the primary side and the secondary side can be appropriately selected by selecting the winding ratio of the common winding part 10 and the individual winding part 20. It is needless to say that the common winding portion 10 and the single winding portion 20 can be provided also in the case of the toroidal type shown in FIG. Further, the single winding part 20 can be wound on the common winding part 10 in a stacked manner. [Embodiment 3] FIG. 4 is a partially broken perspective view showing a third embodiment of the present invention. In this embodiment, the whole superconducting ironless core transformer of the embodiment shown in FIG. 1 is covered with a bulky superconductor 4. As a result, the magnetic field generated from the transformer is completely shielded by the diamagnetic effect of the superconductor 4. In this embodiment, the superconductor 4 is constructed so that it can be divided into two parts, front and rear, as shown in the figure. When the two are fitted and integrated together, a space 5 is formed, and this space 5 is shown in FIG. A superconducting ironless core transformer is housed. The space 5 may be filled with a non-magnetic material such as resin or a non-conductive material.
【0015】図5は、図2のトロイダル型の実施例を超
伝導体4でシールドした場合の断面斜視図で、超伝導体
4は上下に2分割されており、内部に丁度図2に示すト
ロイダル型の超伝導無鉄心トランスが収容されるように
形成されている。そして、作用効果は図4と同じであ
る。なお、説明の部分上、ボビン3A、1次側コイル
1、2次側コイル2等は実線で示した。FIG. 5 is a sectional perspective view of the toroidal type embodiment of FIG. 2 shielded by the superconductor 4. The superconductor 4 is vertically divided into two parts, which are exactly shown in FIG. It is formed to accommodate a toroidal type superconducting ironless core transformer. The operation and effect are the same as those in FIG. Note that the bobbin 3A, the primary coil 1, the secondary coil 2 and the like are shown by solid lines for the sake of explanation.
【0016】図6は、図3に示される超伝導無鉄心トラ
ンスに超伝導体によるシールドを施した実施例の断面図
である。図6では空間部5内とボビン3の外周を取り囲
む超伝導体4Bと、さらに全体を包み込む超伝導体4A
で構成されている。この構成によれば、1次側コイル1
と2次側コイル2とを入れかえても所期の動作、つまり
所定の電圧比e2 /e1 を得ることができる。なお、前
記のe1 ,e2 は1次側コイル1,2次側コイル2の各
端子電圧、Φは磁束を示す。FIG. 6 is a sectional view of an embodiment in which the superconducting ironless core transformer shown in FIG. 3 is shielded by a superconductor. In FIG. 6, a superconductor 4B surrounding the space 5 and the outer periphery of the bobbin 3 and a superconductor 4A further enclosing the superconductor 4B.
It is composed of According to this configuration, the primary coil 1
The desired operation, that is, a predetermined voltage ratio e 2 / e 1 can be obtained by replacing the secondary coil 2 with the secondary coil 2. In addition, the above-mentioned e 1 and e 2 are respective terminal voltages of the primary side coil 1 and secondary side coil 2, and Φ is a magnetic flux.
【0017】なお、上述した各実施例では、コイル線材
としてNbTiを用いているため液体ヘリウム温度で動
作させる必要があるが、酸化物超伝導体で良好なコイル
線材が達成できれば液体窒素温度動作とすることがで
き、トランスの構造や冷却にともなう保守が非常に簡単
になる。In each of the above-mentioned embodiments, since NbTi is used as the coil wire, it is necessary to operate at liquid helium temperature. However, if a good coil wire can be achieved with an oxide superconductor, liquid nitrogen temperature operation is possible. And the maintenance of the transformer structure and cooling becomes very easy.
【0018】図7は、本発明の超伝導無鉄心トランスの
結合係数を測定した一例を示したものである。用いた超
伝導線は、直径0.112mm、銅比1の絶縁を施した
NbTi線で、1次側コイル1および2次側コイル2の
超伝導線をアクリル性円筒型のボビン3に2本をまとめ
て平行に745回巻いたものであり、10Hz〜100
Hzの周波数で測定を行った。この図から、4.2K以
上の77Kおよび300Kの温度では、コイル巻線が超
伝導状態になっていないため安定化材としての銅に電流
が流れることなる。そのため、高い温度では、銅線を用
いた一般の無鉄心トランスと同様、周波数が低くなると
結合係数がほぼゼロになりトランスの役目を果たさなく
なる。しかし、超伝導状態になるとほぼ前周波数領域に
わたって100%の結合係数が得れるようになることが
わかる。FIG. 7 shows an example of measuring the coupling coefficient of the superconducting ironless core transformer of the present invention. The superconducting wire used is an NbTi wire having a diameter of 0.112 mm and a copper ratio of 1 and is insulated. Two superconducting wires of the primary coil 1 and the secondary coil 2 are provided on the acrylic cylindrical bobbin 3. Is wound in parallel for 745 turns, and is 10 Hz to 100 Hz.
The measurement was performed at a frequency of Hz. From this figure, at temperatures of 77K and 300K above 4.2K, the coil winding is not in the superconducting state, so that a current flows through the copper as the stabilizing material. Therefore, at a high temperature, as in a general ironless core transformer using a copper wire, the coupling coefficient becomes almost zero and the transformer cannot serve its function as the frequency becomes lower. However, it can be seen that in the superconducting state, a coupling coefficient of 100% can be obtained over almost the previous frequency range.
【0019】図8は、円筒型超伝導無鉄心トランスを用
いて2次側で電力を消費したときのトランスの効率を測
定したものである。この例では図7に用いたものと同じ
超伝導無鉄心トランスを用い、2次側コイル2には負荷
Rとして0.062Ω,0.085Ω,0.105Ωを
接続した場合を示す。商用周波数近傍はもちろん、高い
周波数帯でもかなり高い効率を示すことがわかる。FIG. 8 shows the efficiency of the transformer when the power is consumed on the secondary side by using the cylindrical superconducting ironless core transformer. In this example, the same superconducting ironless core transformer as that used in FIG. 7 is used, and a load R of 0.062Ω, 0.085Ω, and 0.105Ω is connected to the secondary coil 2. It can be seen that the efficiency is considerably high in the high frequency band as well as near the commercial frequency.
【0020】[0020]
【発明の効果】以上説明したように本発明は、非磁性体
からなるボビン上に2本がまとめてコイル状に巻回され
互いに絶縁されている超伝導線からなり、その内の1本
のコイルをトランスの1次側とし、もう1本のコイルを
トランスの2次側として構成したので、広周波数帯域に
わたってぼぼ100%の結合係数が得られ、かつ、広周
波数帯域にわたって高い効率が得られるなどの効果があ
る。As described above, the present invention comprises a superconducting wire in which two wires are wound together in a coil shape and insulated from each other on a bobbin made of a non-magnetic material, and one of them is used. Since the coil is the primary side of the transformer and the other coil is the secondary side of the transformer, a coupling coefficient of 100% is obtained over a wide frequency band, and high efficiency is obtained over a wide frequency band. And so on.
【0021】また、非磁性体からなるボビン上に2本が
まとめてコイル状に巻回され互いに絶縁されている超伝
導線からなる共通巻線部と、さらに、前記ボビン上に1
本の超伝導線が巻回され、前記共通巻線部の一方の超伝
導線に直列接続された単独巻線部とからなり、前記2本
の超伝導線の一方をトランスの1次側とし、他方を2次
側として構成したので、1次側コイルと2次側コイルの
巻数を加減することで所要の変圧比を得ることができ
る。Further, a common winding portion made of a superconducting wire which is wound in a coil shape and insulated from each other on a bobbin made of a non-magnetic material, and 1 on the bobbin.
Two superconducting wires are wound around the single winding part connected in series to one superconducting wire of the common winding part, and one of the two superconducting wires serves as the primary side of the transformer. Since the other side is configured as the secondary side, the required transformation ratio can be obtained by adjusting the number of turns of the primary side coil and the secondary side coil.
【0022】さらに、超伝導体でコイル全体を覆ったの
で、コイルで発生する磁場をシールドして外部への磁場
の影響を防止できるとともに、低周波領域における結合
係数を高めることができる。Further, since the entire coil is covered with the superconductor, the magnetic field generated in the coil can be shielded to prevent the influence of the magnetic field to the outside and the coupling coefficient in the low frequency region can be increased.
【図1】本発明の第1の実施例である円筒型超伝導無鉄
心トランスの構造を示す斜視図である。FIG. 1 is a perspective view showing a structure of a cylindrical superconducting ironless core transformer according to a first embodiment of the present invention.
【図2】本発明の第1の実施例におけるトロイダル型超
伝導無鉄心トランスの構造を示す平面図である。FIG. 2 is a plan view showing the structure of a toroidal type superconducting ironless core transformer according to the first embodiment of the present invention.
【図3】本発明の第2の実施例の円筒型超伝導無鉄心ト
ランスの構造を示す斜視図である。FIG. 3 is a perspective view showing the structure of a cylindrical superconducting ironless core transformer according to a second embodiment of the present invention.
【図4】本発明の第3の実施例の円筒型超伝導無鉄心ト
ランスの構造を示す一部を破断して示した斜視図であ
る。FIG. 4 is a partially cutaway perspective view showing the structure of a cylindrical superconducting ironless core transformer according to a third embodiment of the present invention.
【図5】本発明の第3の実施例におけるトロイダル型超
伝導無鉄心トランスの構造を示す断面斜視図である。FIG. 5 is a sectional perspective view showing a structure of a toroidal type superconducting ironless core transformer according to a third embodiment of the present invention.
【図6】本発明の第3の実施例における円筒型超伝導無
鉄心トランスの構造を示す断面図である。FIG. 6 is a sectional view showing a structure of a cylindrical superconducting ironless core transformer according to a third embodiment of the present invention.
【図7】本発明の超伝導無鉄心トランスの結合係数の測
定結果を示す特性図である。FIG. 7 is a characteristic diagram showing the measurement results of the coupling coefficient of the superconducting ironless core transformer of the present invention.
【図8】本発明の超伝導無鉄心トランスの効率の測定結
果を示す特性図である。FIG. 8 is a characteristic diagram showing measurement results of efficiency of the superconducting ironless core transformer of the present invention.
【符号の説明】 1 1次側コイル 1a〜1c 端子 2 2次側コイル 2a,2b 端子 3 円筒型のボビン 3A 円環型のボビン 4,4A,4B 超伝導体 5 空間 10 共通巻線部 20 単独巻線部 Φ 磁束[Description of Reference Signs] 1 primary coil 1a to 1c terminal 2 secondary coil 2a, 2b terminal 3 cylindrical bobbin 3A annular bobbin 4, 4A, 4B superconductor 5 space 10 common winding portion 20 Single winding Φ magnetic flux
Claims (3)
めてコイル状に巻回され互いに絶縁されている超伝導線
からなり、その内の1本のコイルをトランスの1次側と
し、もう1本のコイルをトランスの2次側として構成し
たことを特徴とする超伝導無鉄心トランス。1. A superconducting wire in which two wires are wound together in a coil shape and insulated from each other on a bobbin made of a non-magnetic material, one coil of which is the primary side of a transformer, A superconducting ironless core transformer characterized in that another coil is configured as the secondary side of the transformer.
めてコイル状に巻回され互いに絶縁されている超伝導線
からなる共通巻線部と、さらに前記ボビン上に1本の超
伝導線が巻回され、前記共通巻線部の一方の超伝導線に
直列接続された単独巻線部とからなり、前記2本の超伝
導線の一方をトランスの1次側とし、他方を2次側とし
て構成したことを特徴とする超伝導無鉄心トランス。2. A common winding part composed of superconducting wires which are wound together in a coil shape on a bobbin made of a non-magnetic material and insulated from each other, and one superconducting wire on the bobbin. And a single winding part connected in series with one of the superconducting wires of the common winding part. One of the two superconducting wires is the primary side of the transformer and the other is 2 A superconducting ironless core transformer characterized by being configured as a secondary side.
無鉄心トランスを超伝導体で覆い、発生する磁場を外部
に漏洩させないように超伝導体の反磁性効果によりシー
ルドしたことを特徴とする超伝導無鉄心トランス。3. The superconducting ironless core transformer according to claim 1 or 2 is covered with a superconductor and shielded by a diamagnetic effect of the superconductor so as to prevent the generated magnetic field from leaking to the outside. A superconducting ironless core transformer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6269494A JPH08130134A (en) | 1994-11-02 | 1994-11-02 | Superconducting coreless transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6269494A JPH08130134A (en) | 1994-11-02 | 1994-11-02 | Superconducting coreless transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08130134A true JPH08130134A (en) | 1996-05-21 |
Family
ID=17473221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6269494A Pending JPH08130134A (en) | 1994-11-02 | 1994-11-02 | Superconducting coreless transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08130134A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6479948B2 (en) * | 2000-03-10 | 2002-11-12 | Hitachi Ferrite Electronics, Ltd. | Starting device for discharge lamp |
JP2006147821A (en) * | 2004-11-19 | 2006-06-08 | Cosel Co Ltd | Air-core toroidal coil manufacturing method and toroidal coil |
WO2017005619A1 (en) * | 2015-07-09 | 2017-01-12 | Siemens Aktiengesellschaft | Transformer having superconducting windings |
WO2019206801A1 (en) * | 2018-04-27 | 2019-10-31 | Siemens Aktiengesellschaft | Superconductive electric coil device and rotor comprising a coil device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287909A (en) * | 1988-05-16 | 1989-11-20 | Toshiba Corp | Superconducting transformer |
JPH04328811A (en) * | 1991-04-26 | 1992-11-17 | Yoshiko Saitou | Transformer device |
JPH04328812A (en) * | 1991-04-26 | 1992-11-17 | Yoshiko Saitou | Transformer device |
-
1994
- 1994-11-02 JP JP6269494A patent/JPH08130134A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287909A (en) * | 1988-05-16 | 1989-11-20 | Toshiba Corp | Superconducting transformer |
JPH04328811A (en) * | 1991-04-26 | 1992-11-17 | Yoshiko Saitou | Transformer device |
JPH04328812A (en) * | 1991-04-26 | 1992-11-17 | Yoshiko Saitou | Transformer device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6479948B2 (en) * | 2000-03-10 | 2002-11-12 | Hitachi Ferrite Electronics, Ltd. | Starting device for discharge lamp |
JP2006147821A (en) * | 2004-11-19 | 2006-06-08 | Cosel Co Ltd | Air-core toroidal coil manufacturing method and toroidal coil |
WO2017005619A1 (en) * | 2015-07-09 | 2017-01-12 | Siemens Aktiengesellschaft | Transformer having superconducting windings |
CN107851504A (en) * | 2015-07-09 | 2018-03-27 | 西门子公司 | Transformer with superconduction winding |
US20180204671A1 (en) * | 2015-07-09 | 2018-07-19 | Siemens Aktiengesellschaft | Transformer Having Superconducting Windings |
CN107851504B (en) * | 2015-07-09 | 2020-04-03 | 西门子公司 | Transformer with superconducting winding |
WO2019206801A1 (en) * | 2018-04-27 | 2019-10-31 | Siemens Aktiengesellschaft | Superconductive electric coil device and rotor comprising a coil device |
AU2019260018B2 (en) * | 2018-04-27 | 2021-12-16 | Siemens Energy Global GmbH & Co. KG | Superconductive electric coil device and rotor comprising a coil device |
US11394263B2 (en) | 2018-04-27 | 2022-07-19 | Siemens Energy Global GmbH & Co. KG | Superconductive electric coil device and rotor comprising a coil device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6914511B2 (en) | Superconducting transformer | |
US7023311B2 (en) | Overlapped superconducting inductive device | |
JP2006504254A (en) | Superconducting current limiting device | |
JP2001244109A (en) | High-temperature superconducting coil device | |
US5334964A (en) | Current limiting choke coil | |
JPH08130134A (en) | Superconducting coreless transformer | |
US5539369A (en) | Multiple-toroid induction device | |
US7019608B2 (en) | Superconducting transformer | |
Tixador et al. | Design and construction of a 41 kVA Bi/Y transformer | |
Zizek et al. | End-winding region configuration of an HTS transformer | |
JP2011124252A (en) | Iron-core superconducting reactor including gap | |
Park et al. | Optimization of 1 MVA high T/sub C/superconducting transformer windings | |
Haldar et al. | Development of Bi-2223 HTS high field coils and magnets | |
JPH06151213A (en) | Twist thin type voltage converter and its use | |
Jansak et al. | Loss analysis of a model transformer winding | |
RU2082242C1 (en) | Superconducting winding | |
EP1021811B1 (en) | Superconducting coreless transformer | |
Okada et al. | Fabrication and test of superconducting air-core autotransformer | |
JPH0831671A (en) | Superconducting induction apparatus | |
Tixador et al. | Tests of a Bi/Y transformer | |
Iwakuma et al. | Feasibility study of oxide superconducting transformers for Shinkansen rolling stock | |
RU2815169C1 (en) | Superconducting hybrid transformer | |
Fontana | Coreless transformers with high coupling factor | |
Kamijo et al. | Fabrication of winding model of high-T/sub c/superconducting transformer for railway rolling stock | |
AU2001239019B2 (en) | A superconducting transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |