JP2006144563A - Emission control device - Google Patents

Emission control device Download PDF

Info

Publication number
JP2006144563A
JP2006144563A JP2004331564A JP2004331564A JP2006144563A JP 2006144563 A JP2006144563 A JP 2006144563A JP 2004331564 A JP2004331564 A JP 2004331564A JP 2004331564 A JP2004331564 A JP 2004331564A JP 2006144563 A JP2006144563 A JP 2006144563A
Authority
JP
Japan
Prior art keywords
electrode
dielectric
plasma
electrode rod
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004331564A
Other languages
Japanese (ja)
Inventor
Takatoshi Furukawa
卓俊 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004331564A priority Critical patent/JP2006144563A/en
Publication of JP2006144563A publication Critical patent/JP2006144563A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a plasma assist type emission control device employing barrier discharge which implements easy manufacture of electrodes having a ventilation structure in which the surface is insulation-coated with a dielectric material. <P>SOLUTION: A plasma assist type emission control device is equipped with a flat-shaped electrode 15 (electrode plate) having a ventilation structure, a plurality of electrodes 18 which are arranged so as to sandwich a plasma generating space 16 having a uniform interval with respect to a surface of the flat-shaped electrode 15 and whose surfaces are insulation-coated with dielectric material 17, and a filter means formed in the flat-shaped electrode 15 itself, wherein exhaust gas 8 is made to flow so as to pass through the plasma generating space 16 and the flat-shaped electrode 15 from a clearance in a row group of electrodes 18 and voltage required for discharge can be applied between each flat-shaped electrode 15 and each electrode 18. The electrode 18 is inserted into the dielectric material 17 formed to be tubular so as to be subjected to an insulating coating on the electrode 18. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディーゼルエンジン等の内燃機関の排気ガス中からパティキュレートを除去する排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device that removes particulates from exhaust gas of an internal combustion engine such as a diesel engine.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of soot made of carbonaceous matter and SOF content (Soluble Organic Fraction) made of high-boiling hydrocarbon components. The composition contains a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter is installed in the middle of the exhaust pipe through which the exhaust gas flows. It has been done conventionally.

この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   This type of particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the flow paths partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. About the flow path, the exit is sealed, and only the exhaust gas which permeate | transmitted the porous thin wall which divides each flow path is discharged | emitted downstream.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積し、排気温度が高い運転領域に移行した際に自然燃焼して除去されるようになっているが、例えば都内の路線バス等のように渋滞路ばかりを走行するような車両では、必要な所定温度以上での運転が長く継続しないため、パティキュレートの処理量よりも堆積量の方が上まわり、パティキュレートフィルタが目詰まりを起こす虞れがあった。   Particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, and are spontaneously combusted and removed when the exhaust gas moves to an operating region. For example, in a vehicle that travels only on a congested road such as a route bus in Tokyo, the accumulated amount is higher than the processing amount of particulates because the operation above the required predetermined temperature does not continue for a long time. There is a possibility that the particulate filter may be clogged.

このため、排気温度が低い運転領域でもパティキュレートを良好に燃焼除去し得るようプラズマアシスト型の排気浄化装置の開発が進められており、この種の排気浄化装置で排気ガス中に放電してプラズマを発生させれば、排気ガスが励起してOラディカルやOHラディカル等の活性のラディカルが発生し、これらの排気ガス励起成分が活性化状態となっていることから、排気温度が低い運転領域でもパティキュレートを良好に燃焼除去(酸化処理)することが可能となる。   For this reason, plasma-assisted exhaust purification devices are being developed so that particulates can be burned and removed well even in the operating region where the exhaust temperature is low, and this type of exhaust purification device discharges into the exhaust gas to generate plasma. The exhaust gas is excited and active radicals such as O radicals and OH radicals are generated, and these exhaust gas excitation components are in an activated state, so even in an operation region where the exhaust temperature is low. It is possible to burn and remove the particulates (oxidation treatment) satisfactorily.

例えば、下記の特許文献1や特許文献2には、穿孔処理された円筒状ステンレススチールから成る外側電極と内側電極との間に誘電体を成すセラミックスのペレットを充填し、該ペレットの充填層を通過するように排気ガスを流して該排気ガス中のパティキュレートを捕集する一方、外側電極と内側電極との間で放電してプラズマを発生させるようにしたプラズマアシスト型の排気浄化装置が提案されている。
特表2002−501813号公報 特表2002−511332号公報
For example, in Patent Document 1 and Patent Document 2 below, ceramic pellets forming a dielectric material are filled between an outer electrode and an inner electrode made of cylindrical stainless steel that has been perforated, and a packed layer of the pellet is formed. A plasma-assisted exhaust purification system is proposed in which exhaust gas is allowed to flow and particulates in the exhaust gas are collected, while plasma is generated by discharging between the outer electrode and the inner electrode. Has been.
Japanese translation of PCT publication No. 2002-501813 Japanese translation of PCT publication No. 2002-511332

尚、これら特許文献1,2には特に明確な記述が成されていないが、特許文献1,2の如きプラズマアシスト型の排気浄化装置においては、外側電極と内側電極の何れか一方(若しくは両方)を誘電体で絶縁被覆し、これによりバリア放電を起こして低温プラズマ(非熱平衡プラズマ)を発生させ、該低温プラズマを用いてパティキュレートの燃焼除去をより安全に助勢する必要があると考えられている。   In addition, although these patent documents 1 and 2 do not have a clear description, in the plasma assist type exhaust gas purification apparatus as in patent documents 1 and 2, either the outer electrode or the inner electrode (or both) is used. ) Is insulated with a dielectric material, thereby causing a barrier discharge to generate a low temperature plasma (non-thermal equilibrium plasma), and it is considered necessary to help burn and remove particulates more safely using the low temperature plasma. ing.

即ち、外側電極と内側電極の何れか一方(若しくは両方)を誘電体で絶縁被覆してバリア放電を起こさせるようにすれば、一方の電極から他方の電極へ向け直接的に電子が飛ばなくなるため、アーク放電への移行を防ぎつつ低温プラズマ(非熱平衡プラズマ)を安定して発生させることが可能となり、しかも、外側電極や内側電極へのパティキュレートの付着堆積による予期しない短絡を未然に回避できるからである。   That is, if either one (or both) of the outer electrode and the inner electrode is covered with a dielectric to cause barrier discharge, electrons will not fly directly from one electrode to the other. In addition, it is possible to stably generate low-temperature plasma (non-thermal equilibrium plasma) while preventing the transition to arc discharge, and it is possible to avoid an unexpected short circuit due to the deposition of particulates on the outer and inner electrodes. Because.

しかしながら、このような従来提案されているプラズマアシスト型の排気浄化装置にあっては、ペレットの充填層を電極ごと横断させて排気ガス中のパティキュレートを捕集するようになっていて、各電極が金属メッシュやパンチングメタル等で構成された通気構造を成していたため、このような電極を誘電体で絶縁被覆することが技術的に難しいという問題があった。   However, in such a plasma assist type exhaust gas purification device that has been proposed in the past, the particulate packing in the exhaust gas is collected by traversing the packed bed of pellets together with each electrode. However, there is a problem that it is technically difficult to insulate and cover such an electrode with a dielectric because it has a ventilation structure composed of a metal mesh, a punching metal, or the like.

例えば、金属メッシュやパンチングメタル等で構成された各電極に誘電体で絶縁被覆する場合、各電極に対しセラミックコーティング等の手段を採ることができるが、金属メッシュやパンチングメタル等の細いものにコーティングすると、熱膨張差によりひびや割れ等の問題を招いてしまう。   For example, when insulatingly coating each electrode composed of a metal mesh or punching metal with a dielectric, means such as ceramic coating can be applied to each electrode, but coating on thin objects such as a metal mesh or punching metal Then, problems such as cracks and cracks are caused by the difference in thermal expansion.

本発明は上述の実情に鑑みてなしたもので、誘電体により表面を絶縁被覆された通気構造の電極を容易に製作し得るようにしてバリア放電によるプラズマアシスト型の排気浄化装置を実現することを目的としている。   The present invention has been made in view of the above-described circumstances, and realizes a plasma-assisted exhaust purification device by barrier discharge so that a gas-permeable electrode whose surface is covered with a dielectric can be easily manufactured. It is an object.

本発明は、通気構造の電極板と、該電極板の面に対し一様な間隔のプラズマ発生空間を挟んで配列され且つ表面を誘電体により絶縁被覆された複数本の電極棒と、電極板及びプラズマ発生空間の少なくとも何れか一方に構成されたフィルタ手段とを備え、排気ガスを電極棒の列群の隙間からプラズマ発生空間及び電極板を通過させるように流し且つ各電極板と各電極棒との間に放電に必要な電圧を印加し得るようにしたプラズマアシスト型の排気浄化装置であって、表面を絶縁被覆された電極棒を構成するにあたり、管状を成すように形成した誘電体の中に電極棒を挿入したことを特徴とするものである。   The present invention relates to an electrode plate having a ventilation structure, a plurality of electrode rods arranged with a plasma generation space at a uniform interval with respect to the surface of the electrode plate, and having a surface insulated by a dielectric, and an electrode plate And a filter means configured in at least one of the plasma generation spaces, the exhaust gas is allowed to flow through the plasma generation space and the electrode plates through the gaps between the electrode rod rows, and each electrode plate and each electrode rod Is a plasma-assisted exhaust purification device that can apply a voltage required for discharge between the electrode and the dielectric rod formed so as to form a tubular shape when forming an electrode rod whose surface is insulated. An electrode rod is inserted therein.

このようにすれば、管状を成すように形成した誘電体の中に電極棒を挿入するだけで簡単に表面を絶縁被覆された電極棒が製作されることになり、しかも、この電極棒を電極板の面に対し一様な間隔のプラズマ発生空間を挟んで複数本配列することで電極平面が形成され且つその列群の隙間を通すことで通気構造も実現されることになる。   In this way, an electrode rod whose surface is insulated and coated can be easily manufactured by simply inserting the electrode rod into a dielectric formed to have a tubular shape. An electrode plane is formed by arranging a plurality of plasma generation spaces with a uniform interval with respect to the surface of the plate, and a ventilation structure is also realized by passing through the gaps in the row group.

更に、管状の誘電体の中に電極棒を挿入した構造によれば、管状の誘電体の中で電極棒が熱膨張しても、外側の誘電体とは独立して膨張することになるため、外側の誘電体に割れやひび等が発生せず、絶縁性が失われる虞れが未然に回避される。   Further, according to the structure in which the electrode rod is inserted into the tubular dielectric, even if the electrode rod is thermally expanded in the tubular dielectric, it expands independently of the outer dielectric. In addition, no cracks or cracks are generated in the outer dielectric, and the possibility of loss of insulation is avoided in advance.

そして、実際の使用に際し、排気ガスを電極棒の列群の隙間からプラズマ発生空間及び電極板を通過させるように流すと、その排気ガスが電極板及びプラズマ発生空間の少なくとも何れか一方に構成されたフィルタ手段を通過する際にパティキュレートが捕集されていくので、必要時に電極板と各電極棒との間に必要な電圧を印加すると、表面を絶縁被覆された各電極棒と電極板との間でバリア放電が起こり、これによりプラズマ発生空間に低温プラズマ(非熱平衡プラズマ)が生じる結果、排気ガスが励起してOラディカルやOHラディカル等の活性のラディカルが発生し、これらの排気ガス励起成分による助勢を受けてパティキュレートが効果的に燃焼除去(酸化処理)されることになる。   In actual use, when exhaust gas is allowed to flow through the plasma generation space and the electrode plate through the gap between the electrode rod rows, the exhaust gas is configured in at least one of the electrode plate and the plasma generation space. When the necessary voltage is applied between the electrode plate and each electrode rod when necessary, each electrode rod and electrode plate whose surfaces are insulated and coated are collected. As a result, a barrier discharge occurs between them, and as a result, low-temperature plasma (non-thermal equilibrium plasma) is generated in the plasma generation space. As a result, exhaust gas is excited and active radicals such as O radicals and OH radicals are generated. The particulates are effectively burned and removed (oxidized) with the help of the components.

この際、電極板に対し複数本の電極棒は曲率の小さな曲面形状を成して対向しているので、単純に一対の電極板同士を対向させた場合よりも局所的に強い電場を形成し易く、あまり高い電圧をかけなくても低温プラズマを発生させることが可能となる。   At this time, since the plurality of electrode bars are opposed to the electrode plate in a curved shape with a small curvature, an electric field that is locally stronger than when a pair of electrode plates are simply opposed to each other is formed. It is easy to generate low-temperature plasma without applying a very high voltage.

また、同様のプラズマアシスト型の排気浄化装置に関して、表面を絶縁被覆された電極棒を構成するにあたり、管状を成すように形成した誘電体の内周面に電極材料をコーティングして電極棒としても良く、このようにすれば、管状を成すように形成した誘電体の内周面に電極材料をコーティングするだけで簡単に表面を絶縁被覆された電極棒が製作されることになる。   In addition, regarding the same plasma-assisted exhaust gas purification apparatus, when forming an electrode bar whose surface is covered with insulation, an electrode material may be coated on the inner peripheral surface of a dielectric formed so as to form a tubular shape. In this way, an electrode rod having a surface that is simply covered with an insulating material can be manufactured simply by coating an electrode material on the inner peripheral surface of the dielectric formed to have a tubular shape.

しかも、このように管状の誘電体の内周面に電極材料をコーティングして電極棒とした構造によれば、外側の誘電体と内側の電極棒との間に隙間が全くなくなり、この間で無駄な放電が起こる虞れが未然に回避されることになる。   In addition, according to the structure in which the electrode material is coated on the inner peripheral surface of the tubular dielectric as described above, there is no gap between the outer dielectric and the inner electrode rod, and there is no waste between the two. The possibility that a serious discharge will occur is avoided in advance.

尚、管状の誘電体の内周面にコーティングした電極棒が熱膨張しても、該電極棒を成すコーティング層が局所的に皺になったりするだけで外側の誘電体に割れやひび等を生じさせるような強い応力は発生しない。   Even if the electrode rod coated on the inner peripheral surface of the tubular dielectric is thermally expanded, the coating layer forming the electrode rod only becomes wrinkles locally, and the outer dielectric is cracked or cracked. There is no strong stress that can be generated.

更に、本発明においては、管状の誘電体の表面に多数のエッジ部を形成しておくことが好ましく、このようにすれば、各エッジ部に局所的に強い電場が形成され易くなり、低温プラズマをより一層発生し易くすることが可能となる。   Furthermore, in the present invention, it is preferable to form a large number of edge portions on the surface of the tubular dielectric, and in this way, a strong electric field is easily formed locally at each edge portion, and low temperature plasma is formed. Can be further easily generated.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1、2に記載の発明によれば、管状を成すように形成した誘電体の中に電極棒を挿入したり、管状を成すように形成した誘電体の内周面に電極材料をコーティングして電極棒としたりすることによって、誘電体により表面を絶縁被覆された通気構造の電極を複数本の電極棒の列群として容易に製作することができ、バリア放電によるプラズマアシスト型の排気浄化装置の実現を図ることができる。   (I) According to the first and second aspects of the present invention, an electrode rod is inserted into a dielectric formed to form a tube, or the inner circumference of the dielectric formed to form a tube. By coating the surface with an electrode material to form an electrode rod, it is possible to easily manufacture a gas-permeable structure electrode whose surface is covered with a dielectric as a group of a plurality of electrode rods. A plasma-assisted exhaust purification device can be realized.

(II)本発明の請求項1に記載の発明によれば、管状の誘電体の中で電極棒が熱膨張しても外側の誘電体に割れやひび等が発生しないので、絶縁性を長期間に亘り安定維持することができる。   (II) According to the invention described in claim 1 of the present invention, since the outer dielectric does not crack or crack even if the electrode rod is thermally expanded in the tubular dielectric, the insulation is long. It can be kept stable over a period of time.

(III)本発明の請求項2に記載の発明によれば、外側の誘電体と内側の電極棒との間の隙間をなくすことができるので、この間で無駄な放電が起こる虞れを未然に回避することができる。   (III) According to the invention described in claim 2 of the present invention, since the gap between the outer dielectric and the inner electrode rod can be eliminated, there is a possibility that wasteful discharge may occur between them. It can be avoided.

(IV)本発明の請求項3に記載の発明によれば、管状の誘電体の表面に形成した多数のエッジ部に局所的に強い電場が形成され易くなるので、低温プラズマをより一層発生し易くすることができる。   (IV) According to the invention described in claim 3 of the present invention, since a strong electric field is likely to be locally formed at a large number of edge portions formed on the surface of the tubular dielectric, low temperature plasma is further generated. Can be made easier.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図4は本発明を実施する形態の一例を示すもので、図1中における符号の1はターボチャージャ2を搭載したディーゼルエンジン(内燃機関)を示しており、エアクリーナ3から導いた吸気4を吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへ導いて加圧し、その加圧された吸気4をインタークーラ6を介しディーゼルエンジン1の各気筒に分配して導入するようにしてある。   1 to 4 show an example of an embodiment of the present invention. Reference numeral 1 in FIG. 1 denotes a diesel engine (internal combustion engine) equipped with a turbocharger 2, and intake air introduced from an air cleaner 3. 4 is introduced into the compressor 2a of the turbocharger 2 through the intake pipe 5 and pressurized, and the pressurized intake air 4 is distributed and introduced to each cylinder of the diesel engine 1 via the intercooler 6.

また、このディーゼルエンジン1の各気筒から排気マニホールド7を介し排出された排気ガス8を前記ターボチャージャ2のタービン2bへ送り、該タービン2bを駆動した排気ガス8を、排気管9途中のプラズマアシスト型の排気浄化装置10を通してパティキュレートを捕集した上で排出するようにしてある。   Further, exhaust gas 8 discharged from each cylinder of the diesel engine 1 through the exhaust manifold 7 is sent to the turbine 2b of the turbocharger 2, and the exhaust gas 8 driving the turbine 2b is supplied to the plasma assist in the middle of the exhaust pipe 9. Particulates are collected through the exhaust gas purification device 10 and then discharged.

この排気浄化装置10は、図2及び図3に示す如き概略構造を有し、その必要数を筐体12(図2に一部のみを図示)によりまとめられて排気管9途中のケーシング11内に収容されており、より具体的には、所要の隙間を隔てて対向配置された通気構造を成す一対の平板電極15(電極板)と、該各平板電極15間に各平板電極15の夫々の面に対し一様な間隔のプラズマ発生空間16を挟んで平行に数mmギャップで配列され且つ表面を誘電体17により絶縁被覆された複数の電極棒18とを備え、これら各平板電極15と各電極棒18の両端部が絶縁構造物13,14により支持されたものとなっている。   This exhaust purification device 10 has a schematic structure as shown in FIGS. 2 and 3, and the required number thereof is collected by a casing 12 (only a part is shown in FIG. More specifically, a pair of flat plate electrodes 15 (electrode plates) forming a ventilation structure facing each other with a required gap therebetween, and each flat plate electrode 15 between each flat plate electrode 15. A plurality of electrode rods 18 arranged in parallel with a gap of several millimeters across a plasma generation space 16 with a uniform spacing with respect to the surface of the surface, and having a surface insulated by a dielectric 17. Both ends of each electrode rod 18 are supported by insulating structures 13 and 14.

ここで、図2及び図3に図示している例では、前記平板電極15自体がフィルタ手段として構成されている場合を例示しており、パティキュレートを捕集可能な金属フィルタにより前記平板電極15が通気構造を成すようにしてある。   Here, in the example shown in FIGS. 2 and 3, the case where the plate electrode 15 itself is configured as a filter means is illustrated, and the plate electrode 15 is formed by a metal filter capable of collecting particulates. Has a ventilation structure.

尚、この種の金属フィルタには、ミクロンオーダーの金属繊維を積層焼結したもの、金属粉末の焼結体、金属メッシュを積層焼結したもの、金属メッシュに金属粉末を焼結させたもの等を採用すれば良い。   This type of metal filter includes micron-order metal fibers laminated and sintered, metal powder sintered bodies, metal mesh laminated and sintered, metal mesh sintered metal powder, etc. Should be adopted.

ただし、プラズマ発生空間16に、コージェライトハニカムフィルタ、セラミックス繊維フィルタ、セラミックスフォーム、アルミナペレット等をフィルタ手段として介装することも可能であり、このようにした場合には、前記平板電極15を必ずしもフィルタ手段として構成しなくても良く、金属メッシュやパンチングメタル等により単純な通気構造を有する平板電極15として構成すれば良い。勿論、高捕集率を得る目的で平板電極15自体をフィルタ手段として構成した上にプラズマ発生空間16にフィルタ手段を併用しても良い。   However, a cordierite honeycomb filter, a ceramic fiber filter, a ceramic foam, an alumina pellet or the like can be interposed as a filter means in the plasma generation space 16, and in this case, the plate electrode 15 is not necessarily provided. It does not need to be configured as a filter means, and may be configured as a flat plate electrode 15 having a simple ventilation structure made of a metal mesh, punching metal, or the like. Of course, for the purpose of obtaining a high collection rate, the plate electrode 15 itself may be configured as a filter means, and a filter means may be used in the plasma generation space 16 together.

因みに、プラズマ発生空間16にセラミックペレット等の誘電体の粒状物を充填してフィルタ手段とした場合には、粒状物の夫々の接点に電荷が集中して強い局所電場が形成されることで低温プラズマが発生し易くなり、また、プラズマ発生空間16に介装したフィルタ手段により平板電極15と電極棒18の対向方向に延びる多数の平面を形成させれば、この平面に沿う沿面放電が促されて低温プラズマが発生し易くなる。   Incidentally, when the plasma generating space 16 is filled with a dielectric granular material such as ceramic pellets to form a filter means, electric charges concentrate at each contact point of the granular material to form a strong local electric field, thereby reducing the temperature. Plasma is easily generated, and if a plurality of planes extending in the opposing direction of the plate electrode 15 and the electrode rod 18 are formed by the filter means interposed in the plasma generation space 16, creeping discharge along this plane is promoted. Therefore, low temperature plasma is likely to be generated.

他方、前記前側の絶縁構造物13に、前記電極棒18の二つの列群により挟まれた導入空間19に排気ガス8を導き入れるためのガス入口20が開口されていると共に、前記後側の絶縁構造物14は排気ガス8の流れを堰き止める閉塞構造となっており、上流側からガス入口20を介し導入空間19に導入した排気ガス8が、各電極棒18の各列群の隙間からプラズマ発生空間16及び平板電極15を通過して下流側に流れるようにしてある。   On the other hand, a gas inlet 20 for introducing the exhaust gas 8 into the introduction space 19 sandwiched between the two rows of the electrode rods 18 is opened in the front insulating structure 13, and the rear side The insulating structure 14 has a closed structure that blocks the flow of the exhaust gas 8, and the exhaust gas 8 introduced into the introduction space 19 from the upstream side through the gas inlet 20 passes through the gaps between the row groups of the electrode rods 18. It passes through the plasma generation space 16 and the plate electrode 15 and flows downstream.

更に、各電極棒18の後側の端部は、後側の絶縁構造物14を貫通して該絶縁構造物14の外側に導体板から成る給電部22を形成しており、この給電部22に対し筐体12を貫通して電源21が接続され且つ各平板電極15が接地されていて、各平板電極15と各電極棒18との間に放電に必要な交流高電圧(直流パルス高電圧でも可)が印加されるようになっている。   Further, the rear end of each electrode rod 18 penetrates the rear insulating structure 14 to form a power feeding portion 22 made of a conductor plate outside the insulating structure 14. In contrast, a power source 21 is connected through the housing 12 and each plate electrode 15 is grounded, and an AC high voltage (DC pulse high voltage) necessary for discharge is generated between each plate electrode 15 and each electrode rod 18. However, it is possible to apply).

ここで、本形態例においては、表面を絶縁被覆された電極棒18を構成するにあたり、図4に示す如く、管状を成すように形成した誘電体17の中に電極棒18を挿入して該電極棒18の絶縁被覆を行うようにしている。   Here, in this embodiment, when the electrode rod 18 whose surface is insulated is formed, as shown in FIG. 4, the electrode rod 18 is inserted into a dielectric 17 formed in a tubular shape. Insulating coating of the electrode rod 18 is performed.

このようにすれば、管状を成すように形成した誘電体17の中に電極棒18を挿入するだけで簡単に表面を絶縁被覆された電極棒18が製作されることになり、しかも、この電極棒18を平板電極15の面に対し一様な間隔のプラズマ発生空間16を挟んで複数本配列することで電極平面が形成され且つその列群の隙間を通すことで通気構造も実現されることになる。   In this way, the electrode rod 18 whose surface is covered with insulation can be easily manufactured simply by inserting the electrode rod 18 into the dielectric 17 formed to have a tubular shape. An electrode plane is formed by arranging a plurality of rods 18 with the plasma generation space 16 having a uniform interval with respect to the surface of the plate electrode 15, and a ventilation structure is also realized by passing through the gaps in the row group. become.

更に、管状の誘電体17の中に電極棒18を挿入した構造によれば、管状の誘電体17の中で電極棒18が熱膨張しても、外側の誘電体17とは独立して膨張することになるため、外側の誘電体に割れやひび等が発生せず、絶縁性が失われる虞れが未然に回避される。   Further, according to the structure in which the electrode rod 18 is inserted into the tubular dielectric body 17, even if the electrode rod 18 is thermally expanded in the tubular dielectric body 17, it expands independently of the outer dielectric body 17. As a result, the outer dielectric is not cracked or cracked, and the risk of loss of insulation is avoided.

そして、実際の使用に際し、ガス入口20から導入空間19に導入された排気ガス8を電極棒18の各列群の隙間からプラズマ発生空間16及び平板電極15を通過させるように流すと、この排気ガス8が金属フィルタを成す平板電極15を通過する際にパティキュレートが捕集されていくので、必要時に各平板電極15と各電極棒18との間に直流パルス高電圧(直流パルス高電圧でも可)を印加すると、表面を誘電体17により絶縁被覆された各電極棒18と平板電極15との間でバリア放電が起こり、これによりプラズマ発生空間16に低温プラズマ(非熱平衡プラズマ)が生じる結果、排気ガス8が励起して活性のラディカルが発生し、これらの排気ガス励起成分による助勢を受けてパティキュレートが効果的に燃焼除去(酸化処理)されることになる。   When the exhaust gas 8 introduced into the introduction space 19 from the gas inlet 20 is caused to flow through the plasma generation space 16 and the plate electrode 15 through the gaps between the row groups of the electrode rods 18 in actual use, Since the particulates are collected when the gas 8 passes through the flat plate electrode 15 forming the metal filter, a DC pulse high voltage (even with a DC pulse high voltage) is provided between each flat plate electrode 15 and each electrode rod 18 when necessary. As a result, barrier discharge occurs between each electrode rod 18 whose surface is insulated with a dielectric 17 and the plate electrode 15, thereby generating low-temperature plasma (non-thermal equilibrium plasma) in the plasma generation space 16. The exhaust gas 8 is excited to generate active radicals, and the particulates are effectively removed by combustion with the assistance of these exhaust gas excitation components (oxidation treatment). It is is will be.

この際、平板電極15に対し複数本の電極棒18は曲率の小さな曲面形状を成して対向しているので、単純に一対の平板電極15同士を対向させた場合よりも局所的に強い電場を形成し易く、あまり高い電圧をかけなくても低温プラズマを発生させることが可能となる。   At this time, since the plurality of electrode rods 18 are opposed to the flat plate electrode 15 with a curved surface having a small curvature, an electric field that is locally stronger than when the pair of flat plate electrodes 15 are simply opposed to each other. It is possible to generate low temperature plasma without applying a very high voltage.

従って、上記形態例によれば、管状を成すように形成した誘電体17の中に電極棒18を挿入することによって、誘電体17により表面を絶縁被覆された通気構造の電極を複数本の電極棒18の列群として容易に製作することができるので、バリア放電によるプラズマアシスト型の排気浄化装置の実現を図ることができ、しかも、管状の誘電体17の中で電極棒18が熱膨張しても外側の誘電体17に割れやひび等が発生しないので、絶縁性を長期間に亘り安定維持することができる。   Therefore, according to the above-described embodiment, by inserting the electrode rod 18 into the dielectric 17 formed in a tubular shape, a plurality of electrodes having a ventilation structure whose surface is insulated by the dielectric 17 are formed. Since it can be easily manufactured as a group of rods 18, it is possible to realize a plasma-assisted exhaust purification device by barrier discharge, and the electrode rod 18 is thermally expanded in the tubular dielectric 17. However, since the outer dielectric 17 is not cracked or cracked, the insulating property can be stably maintained for a long period of time.

図5は本発明の別の形態例を示すもので、表面を絶縁被覆された電極棒18を構成するにあたり、管状を成すように形成した誘電体17の内周面に銀等の電極材料をペースト状にしたものをコーティングして電極棒18としても良く、このようにすれば、管状を成すように形成した誘電体17の内周面に電極材料をコーティングするだけで簡単に表面を絶縁被覆された電極棒18が製作されることになる。   FIG. 5 shows another embodiment of the present invention. In constructing the electrode rod 18 whose surface is insulated, an electrode material such as silver is applied to the inner peripheral surface of the dielectric 17 formed in a tubular shape. The electrode rod 18 may be coated by pasting it into a paste form. In this way, the surface can be easily insulated by simply coating the inner peripheral surface of the dielectric 17 formed in a tubular shape with an electrode material. The electrode rod 18 is manufactured.

しかも、このように管状の誘電体17の内周面に電極材料をコーティングして電極棒18とした構造によれば、外側の誘電体17と内側の電極棒18との間に隙間が全くなくなり、この間で無駄な放電が起こる虞れを未然に回避することもできる。   In addition, according to the structure in which the electrode material is coated on the inner peripheral surface of the tubular dielectric body 17 as described above, there is no gap between the outer dielectric body 17 and the inner electrode bar 18. In addition, it is possible to avoid the possibility that wasteful discharge occurs during this time.

尚、管状の誘電体17の内周面にコーティングした電極棒18が熱膨張しても、該電極棒18を成すコーティング層が局所的に皺になったりするだけで外側の誘電体17に割れやひび等を生じさせるような強い応力は発生しない。   Note that even if the electrode rod 18 coated on the inner peripheral surface of the tubular dielectric 17 is thermally expanded, the coating layer forming the electrode rod 18 cracks into the outer dielectric 17 only by locally becoming wrinkles. Strong stress that causes cracks or the like does not occur.

また、先に図4や図5に示した通り、管状を成すように形成した誘電体17の中に電極棒18を挿入したり、管状を成すように形成した誘電体17の内周面に電極材料をコーティングして電極棒18としたりする場合に、図6に示す如く、管状の誘電体17の表面に円周方向に溝を彫る等の加工を施して多数のエッジ部17aを形成しておくことが好ましく、このようにすれば、各エッジ部17aに局所的に強い電場が形成され易くなり、低温プラズマをより一層発生し易くすることができる。   Further, as shown in FIGS. 4 and 5, the electrode rod 18 is inserted into the dielectric 17 formed so as to form a tube, or the inner peripheral surface of the dielectric 17 formed so as to form a tube. When the electrode material is coated to form the electrode rod 18, as shown in FIG. 6, a large number of edge portions 17a are formed by performing processing such as engraving grooves on the surface of the tubular dielectric 17 in the circumferential direction. In this way, a strong electric field is easily formed locally at each edge portion 17a, and low temperature plasma can be more easily generated.

更に、以上に述べた説明では、通気構造の電極板を平面型の平板電極15とした場合を例示しているが、図7に示す如く、通気構造の電極板として円筒型の円筒電極15’を採用しても良く、このようにした場合には、該円筒電極15’の内周面に対し一様な間隔のプラズマ発生空間16を挟んで複数本の電極棒18を環状に配列させるようにすれば良い。   Further, in the above description, the case where the gas-permeable electrode plate is the flat plate electrode 15 is illustrated, but as shown in FIG. 7, the cylindrical electrode 15 ′ is a cylindrical electrode as the gas-permeable electrode plate. In such a case, a plurality of electrode rods 18 are arranged in an annular shape with a plasma generation space 16 having a uniform interval with respect to the inner peripheral surface of the cylindrical electrode 15 '. You can do it.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、通気構造の電極板には円筒型以外の曲面形状を付しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiments. The electrode plate having a ventilation structure may be provided with a curved surface shape other than a cylindrical shape. Of course, various changes can be made without departing from the scope of the invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の排気浄化装置の概略構造を示す平面図である。It is a top view which shows schematic structure of the exhaust gas purification apparatus of FIG. 図2のIII−III矢視の断面図である。It is sectional drawing of the III-III arrow of FIG. 図1の電極棒の詳細を拡大して示す斜視図である。It is a perspective view which expands and shows the detail of the electrode rod of FIG. 本発明の別の形態例を示す斜視図である。It is a perspective view which shows another example of a form of this invention. 管状を成すように形成した誘電体の変形例を示す斜視図である。It is a perspective view which shows the modification of the dielectric material formed so that a tubular shape might be comprised. 通気構造の電極板に円筒型の円筒電極を採用した例を示す断面図である。It is sectional drawing which shows the example which employ | adopted the cylindrical cylindrical electrode for the electrode plate of a ventilation structure.

符号の説明Explanation of symbols

8 排気ガス
10 排気浄化装置
15 平板電極(フィルタ手段)
15’ 円筒電極(フィルタ手段)
16 プラズマ発生空間
17 誘電体
17a エッジ部
18 電極棒
21 電源
22 給電部
8 Exhaust gas 10 Exhaust gas purification device 15 Flat plate electrode (filter means)
15 'cylindrical electrode (filter means)
16 Plasma generation space 17 Dielectric 17a Edge portion 18 Electrode rod 21 Power source 22 Power feeding portion

Claims (3)

通気構造の電極板と、該電極板の面に対し一様な間隔のプラズマ発生空間を挟んで配列され且つ表面を誘電体により絶縁被覆された複数本の電極棒と、電極板及びプラズマ発生空間の少なくとも何れか一方に構成されたフィルタ手段とを備え、排気ガスを電極棒の列群の隙間からプラズマ発生空間及び電極板を通過させるように流し且つ各電極板と各電極棒との間に放電に必要な電圧を印加し得るようにしたプラズマアシスト型の排気浄化装置であって、表面を絶縁被覆された電極棒を構成するにあたり、管状を成すように形成した誘電体の中に電極棒を挿入したことを特徴とする排気浄化装置。   An electrode plate having a ventilation structure, a plurality of electrode rods arranged with a plasma generation space at a uniform interval with respect to the surface of the electrode plate, and having a surface insulated by a dielectric, and the electrode plate and the plasma generation space And at least one of the filter means, the exhaust gas is allowed to flow through the plasma generation space and the electrode plate through the gap between the electrode rod rows, and between each electrode plate and each electrode rod. A plasma-assist type exhaust purification device capable of applying a voltage required for discharge, wherein an electrode rod is formed in a dielectric formed in a tubular shape when forming an electrode rod with an insulating coating on the surface. An exhaust emission control device characterized by having inserted. 通気構造の電極板と、該電極板の面に対しプラズマ発生空間を挟んで平行に配列され且つ表面を誘電体により絶縁被覆された複数本の電極棒と、電極板及びプラズマ発生空間の少なくとも何れか一方に構成されたフィルタ手段とを備え、排気ガスを電極棒の列群の隙間からプラズマ発生空間及び電極板を通過させるように流し且つ各電極板と各電極棒との間に放電に必要な電圧を印加し得るようにしたプラズマアシスト型の排気浄化装置であって、表面を絶縁被覆された電極棒を構成するにあたり、管状を成すように形成した誘電体の内周面に電極材料をコーティングして電極棒としたことを特徴とする排気浄化装置。   At least one of an electrode plate having a ventilation structure, a plurality of electrode rods arranged in parallel with the surface of the electrode plate across the plasma generation space and having a surface insulated by a dielectric, and the electrode plate and the plasma generation space Filter means arranged on either side, and exhaust gas is allowed to flow through the plasma generation space and the electrode plates through the gaps between the electrode rod rows, and is necessary for discharge between each electrode plate and each electrode rod A plasma assist type exhaust gas purification device that can apply a voltage to an inner surface of a dielectric formed in a tubular shape when forming an electrode rod whose surface is insulated. An exhaust purification device characterized in that it is coated into an electrode rod. 管状の誘電体の表面に多数のエッジ部を形成したことを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein a large number of edge portions are formed on the surface of the tubular dielectric.
JP2004331564A 2004-11-16 2004-11-16 Emission control device Pending JP2006144563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331564A JP2006144563A (en) 2004-11-16 2004-11-16 Emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004331564A JP2006144563A (en) 2004-11-16 2004-11-16 Emission control device

Publications (1)

Publication Number Publication Date
JP2006144563A true JP2006144563A (en) 2006-06-08

Family

ID=36624561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331564A Pending JP2006144563A (en) 2004-11-16 2004-11-16 Emission control device

Country Status (1)

Country Link
JP (1) JP2006144563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504039A (en) * 2008-09-30 2012-02-16 パーキンズ エンジンズ カンパニー リミテッド Method and apparatus for regenerating a filter
KR101190208B1 (en) * 2010-02-22 2012-10-16 서울대학교산학협력단 Atmospheric-pressure cold plasma generation apparatus with electrode cooling system for surface treatment
CN102852595A (en) * 2012-04-19 2013-01-02 绍兴文理学院 Oxygen plasma purification device of automobile exhaust PM2.5 particles and purification method thereof
CN107089704A (en) * 2016-02-17 2017-08-25 松下知识产权经营株式会社 Liquid handling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57321A (en) * 1980-06-03 1982-01-05 Matsushita Electric Ind Co Ltd Dust collector for exhaust gas of internal combustion engine
JPH07197806A (en) * 1993-12-29 1995-08-01 Aqueous Res:Kk Plasma discharge tube for processing exhaust gas
WO2003074184A1 (en) * 2002-03-01 2003-09-12 Per-Tec Limited Electrode mounting
JP2003528714A (en) * 2000-03-30 2003-09-30 チョウ,ムンキ Water purification system and method
JP2004293417A (en) * 2003-03-27 2004-10-21 Isuzu Motors Ltd Exhaust emission control method of internal combustion engine and its device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57321A (en) * 1980-06-03 1982-01-05 Matsushita Electric Ind Co Ltd Dust collector for exhaust gas of internal combustion engine
JPH07197806A (en) * 1993-12-29 1995-08-01 Aqueous Res:Kk Plasma discharge tube for processing exhaust gas
JP2003528714A (en) * 2000-03-30 2003-09-30 チョウ,ムンキ Water purification system and method
WO2003074184A1 (en) * 2002-03-01 2003-09-12 Per-Tec Limited Electrode mounting
JP2004293417A (en) * 2003-03-27 2004-10-21 Isuzu Motors Ltd Exhaust emission control method of internal combustion engine and its device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504039A (en) * 2008-09-30 2012-02-16 パーキンズ エンジンズ カンパニー リミテッド Method and apparatus for regenerating a filter
KR101190208B1 (en) * 2010-02-22 2012-10-16 서울대학교산학협력단 Atmospheric-pressure cold plasma generation apparatus with electrode cooling system for surface treatment
CN102852595A (en) * 2012-04-19 2013-01-02 绍兴文理学院 Oxygen plasma purification device of automobile exhaust PM2.5 particles and purification method thereof
CN107089704A (en) * 2016-02-17 2017-08-25 松下知识产权经营株式会社 Liquid handling device
CN107089704B (en) * 2016-02-17 2021-06-08 松下知识产权经营株式会社 Liquid treatment device

Similar Documents

Publication Publication Date Title
US7510600B2 (en) Gas purifying apparatus
JP4873564B2 (en) Exhaust gas purification device
JP2004360511A (en) Emission control device
JP2009110752A (en) Plasma generating body, plasma generating apparatus, ozone generating apparatus, and exhaust gas treatment apparatus
JP5474468B2 (en) Exhaust gas purification device using plasma discharge
JP2005083346A (en) Exhaust emission control device
WO2006046628A1 (en) Exhaust gas cleaner
JP2006144563A (en) Emission control device
JP4445374B2 (en) Exhaust purification device
JP4540449B2 (en) Exhaust purification device
JP2006138241A (en) Exhaust emission control device
JP2004340049A (en) Exhaust emission control device
JP4163997B2 (en) Exhaust purification device
JP2006161595A (en) Exhaust emission purifier
JP2006144632A (en) Exhaust emission control device
JP4476098B2 (en) Exhaust purification device
JP4415816B2 (en) Exhaust purification device
JP7055669B2 (en) Plasma reactor
JP4147156B2 (en) Exhaust purification device
JP4269768B2 (en) PM purification reactor
JP2006342699A (en) Exhaust emission control device
JP2005256799A (en) Exhaust emission control device
JP2008031884A (en) Exhaust emission control device and exhaust emission control method
JP2004190528A (en) Exhaust emission control device
JP2002038919A (en) Exhaust emission purifier for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104