JP4269768B2 - PM purification reactor - Google Patents

PM purification reactor Download PDF

Info

Publication number
JP4269768B2
JP4269768B2 JP2003128985A JP2003128985A JP4269768B2 JP 4269768 B2 JP4269768 B2 JP 4269768B2 JP 2003128985 A JP2003128985 A JP 2003128985A JP 2003128985 A JP2003128985 A JP 2003128985A JP 4269768 B2 JP4269768 B2 JP 4269768B2
Authority
JP
Japan
Prior art keywords
exhaust gas
honeycomb structure
electrode
outer peripheral
introduction surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128985A
Other languages
Japanese (ja)
Other versions
JP2004332608A (en
Inventor
大 垣花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003128985A priority Critical patent/JP4269768B2/en
Publication of JP2004332608A publication Critical patent/JP2004332608A/en
Application granted granted Critical
Publication of JP4269768B2 publication Critical patent/JP4269768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、PM浄化リアクターに関し、特に、ディーゼルエンジンやリーンバーンガソリンエンジンから排出される排気ガス中に含まれる微粒子物質(以下、PMと称す)を捕捉し、燃焼除去して浄化するPM浄化リアクターに関する。
【0002】
【従来の技術】
ディーゼルエンジンやリーンバーンガソリンエンジンの排気ガスには、炭素を主成分とするPMが多量に含まれ、大気汚染の原因となることが知られている。排気ガスから、これらの微粒子を捕捉して、除去するための装置または方法が種々提案されており、その一例として、特許文献1に記載の放電再生式捕集フィルタが知られている。
【0003】
この特許文献1に記載の放電再生式捕集フィルタは、排気ガス導入面が開口されると共に排気ガス導出面が閉塞された第1排気ガス通路と、該第1排気ガス通路と隔壁を隔てて隣接し、排気ガス導入面が閉塞されると共に排気ガス導出面が開口された第2排気ガス通路とを複数組備えた、いわゆるウォールフロー型のハニカム構造体であり、第1排気ガス通路にはその内壁面と点接触するように放電電極が設けられ、排気ガス導入面には極性の異なる帯電電極が設けられている。さらに、該帯電電極は第1排気ガス通路の内壁面の堆積煤層と電気的に接触可能に構成されている。かくて、第1排気ガス通路の内壁面の堆積煤層を帯電電極と同極の電極として機能させ、放電電極の点接触箇所において放電させることにより、堆積煤層の煤を燃焼除去するとしている。
【0004】
【特許文献1】
特開2001−173427号公報
【0005】
【発明が解決しようとする課題】
ところで、特許文献1に記載の放電再生式捕集フィルタは、いわゆるウォールフロー型のハニカム構造体において、第1排気ガス通路の内壁面の堆積煤層と第1排気ガス通路にその内壁面と点接触するように設けられた放電電極との間での放電により、堆積煤層の煤を燃焼除去するようにしているので、煤層が堆積されるまでは燃焼除去が行われず、その間においては、煤が第1排気ガス通路から第2排気ガス通路へ流出してしまう惧れがある。一旦、第2排気ガス通路へ流出してしまうと、これを捕捉する手段はなく、結果としての、このいわゆるすり抜けによる煤(PM)の捕捉率または捕集率の低下により、PMの浄化効率が十分とは云えない。
【0006】
本発明の目的は、かかる従来技術の問題を解消し、PMの捕集効率を向上させ、併せて、PMの焼却を効率よく安定して行い、圧力損失を伴うことなくPMを確実に浄化できるPM浄化リアクターを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明のPM浄化リアクターは、排気ガス導入面が開口されると共に排気ガス導出面が栓詰にて閉塞された第1排気ガス通路と、該第1排気ガス通路と隔壁を隔てて隣接し、排気ガス導入面が栓詰にて閉塞されると共に排気ガス導出面が開口された第2排気ガス通路とを複数組備えたハニカム構造体の前記栓詰の中、少なくとも排気ガス導入面側栓詰を、金属または金属を含むセラミックにて形成して放電電極とし、且つ、前記ハニカム構造体の外周に外周電極を設けたことを特徴とする。
【0008】
この構成になるPM浄化リアクターによれば、放電電極とされた栓詰と外周電極との間での高電圧の印加によるコロナ放電でPMが帯電され、主に第1排気ガス通路の内壁面および気孔内に捕捉または捕集される。そして、ここで捕集されずに第2排気ガス通路に流出したPMも帯電されているので、第2排気ガス通路の内壁面に捕捉または捕集される。また、捕集されたPMは、コロナ放電による非熱平衡プラズマが得られる結果の排気ガスの活性化によって燃焼され焼却される。
【0009】
ここで、前記栓詰は、前記外周電極が設けられた側に向けて、断面積が漸減する形状とされていることが好ましい。
【0010】
このようにすると、栓詰と外周電極との間の電界の形成が容易となり、電界強度を上げることができるので、PMの捕集効率をさらに向上させることができる。
【0011】
また、前記ハニカム構造体には、少なくとも前記第1および第2の排気ガス通路内壁面に酸化触媒がコーティングされているのが好ましい。
【0012】
このようにすると、排気ガスの活性化によるPMの燃焼に加えて、酸化触媒の作用によるPMの燃焼が起こり、PMの焼却が確実となる。
【0013】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施の形態を説明する。図1は、本発明に係るPM浄化リアクター10の一実施の形態を概略的に示す断面図である。
【0014】
図1において、PM浄化リアクター10は、両側に截頭円錐状の連結部12を有するほぼ円筒形の金属製外筒部14を備え、この外筒部14に対し、絶縁性、耐熱性、緩衝性等を備える支持部材16、例えば、アルミナマットにより支持されたハニカム構造体20を有している。このPM浄化リアクター10は、図面左方の排気ガス導入面より排気ガスが導入され,図面右方の排気ガス導出面より浄化された排気ガスが導出されるよう、例えば、ディーゼルエンジンの排気系に設置されている。
【0015】
ハニカム構造体20は、円柱状のコージェライトセラミック製であり、排気ガス導入面が開口されると共に排気ガス導出面が導出面側栓詰にて閉塞された第1排気ガス通路221、および該第1排気ガス通路221と隔壁を隔てて隣接し、排気ガス導入面が導入面側栓詰にて閉塞されると共に排気ガス導出面が開口された第2排気ガス通路222の複数組を有している。これらの第1および第2排気ガス通路221、222は断面略四角形であり、隔壁はガス透過性の多孔質よりなる。なお、ガス透過性およびPM捕集性を考慮すると、その第1および第2の排気ガス通路を除く基材部、すなわち、隔壁の気孔率が約55〜70%である高気孔率基材により形成されるのが好ましい。また,ハニカム構造体20は断面円形で,排気ガス流れ方向の長さが約200mmである。なお、ハニカム構造体20はコージェライトに限らず、シリカ、アルミナ等のセラミックスで形成されてもよいが、加工性やコストの観点からコージェライト製であることが望ましい。
【0016】
上記導出面側栓詰および導入面側栓詰は、本実施の形態では、それぞれ、直方体状の金属製部材からなる。導入面側栓詰同士は、第1のワイヤ241により結線されて第1の放電電極31を構成し、同様に、導出面側栓詰同士は、第2ワイヤ242により結線されて第2の放電電極32を構成している。また、ハニカム構造体20の外周部には外周電極33が配置されている。なお、導出面側栓詰および導入面側栓詰は、耐腐食性に優れたクロム鋼(例えば、10Cr5Al)で形成できるが、それにのみ限定されるものではなく、他の耐腐食性を有する金属を用いることができる。さらに金属製に限らず、金属を含有するセラミックスでもよい。
【0017】
なお、他の実施の形態として、上述の導出面側栓詰および導入面側栓詰の中、導入面側栓詰のみが金属製または、金属を含有するセラミックスで形成され、第1の放電電極31のみを構成するようにしてもよい。この場合には、当然に、導入面側栓詰は非導電性のセラミックス等で形成され、第2の放電電極は構成されない。
【0018】
第1の放電電極31、第2の放電電極32および外周電極33は、直流電源34に接続されている。本実施の形態では、第1の放電電極31および第2の放電電極32は、第1のワイヤ241および第2ワイヤ242が金属製の外筒部14を貫通して設置されている絶縁碍子29、29を通して直流電源34の負側に接続され、外周電極33は、同じく接地ワイヤ243が絶縁碍子29を通して接地されている。なお、この直流電源34の電圧は5kV以上である。
【0019】
また、ハニカム構造体20の外周部に配置された外周電極33は、メッシュ状電極としてもよいが、導電性の金属ペーストを外周部に塗布することにより形成してもよい。なお、外周電極33は、ハニカム構造体20の少なくとも一部の外周部に存在すれば足りる。但し、PMの捕集率を最大限に上げたい場合には、第1の放電電極31および第2の放電電極32との短絡を避け得る距離離して、ハニカム構造体20の外周部の広域を覆うように形成するのが好ましい。
【0020】
上述の実施形態に係るPM浄化リアクター10によれば、エンジンから排出された排気ガスは、図1に示すごとく,第1排気ガス通路221に導入され、隔壁を経て隣接する第2排気ガス通路222に進入し,その後外部に排出されることになる。ここでPM浄化リアクター10においては、エンジンの始動と同時に、電源34がオンされ、第1の放電電極31および第2の放電電極32と外周電極33との間に高電圧が印加される。そこで、PMを含む排気ガスは、第1の放電電極31および第2の放電電極32と外周電極33との間に形成されている高電圧電界中のコロナ放電により、その高電圧電界中を通過するときに、PMが帯電され、電気的吸引力により外周電極33に向けて吸引され、ハニカム構造体20の第1排気ガス通路221の内壁面および隔壁の気孔内に高効率で捕捉または捕集される。従って、PMが隔壁を通過して第2排気ガス通路222に進入することは、ほとんどない。仮に、通過したとしても、帯電されているPMは第2排気ガス通路222の内壁面に吸着捕捉される。
【0021】
また、上記第1の放電電極31および第2の放電電極32と外周電極33との間に形成されている高電圧電界中を通過する排気ガスは、非熱平衡プラズマが得られる結果、その排気ガス中の酸素、一酸化窒素等のガス分子が活性化(ラジカル化)され、酸化活性の高いオゾン(O3)、活性化酸素(O2 -)、二酸化窒素(NO2)等が生成される。上述のハニカム構造体20の内壁面および隔壁の気孔内に捕集されているPMは、かかる活性化されたガスにより燃焼、焼却されて、浄化された排気ガスとして排出される。
【0022】
このように、本実施の形態によれば、PMの捕集効率が向上され、併せて、酸化活性の高いO3、O2 -、NO2を利用することによりPMの燃焼が連続して行われるので、圧力損失を伴うことなくPMの焼却を効率よく安定して行い、PMを確実に浄化できるのである。
【0023】
本発明のさらに他の実施の形態を、図2に示す。この実施の形態が前実施の形態と異なる点は、上述の第1の放電電極31および第2の放電電極32を構成する導出面側栓詰および導入面側栓詰の形状を変更した点にある。すなわち、本実施の形態では、外周電極33が設けられた側に向けて、断面積が漸減する形状、例えば、四角錘台形状とされている。このようにすると、四角錘台形状の栓詰で構成される第1の放電電極31および第2の放電電極32と外周電極33との間の電界の形成が容易となり、電界強度を上げることができるので、PMの捕集効率をさらに向上させることができる。
【0024】
さらに、上記ハニカム構造体20には、少なくとも第1および第2の排気ガス通路221および222の内壁面に酸化触媒(例えば、Pt/CeO2、Mn/CeO2、Fe/CeO2、Ni/CeO2、Cu/CeO2等)がコーティングされているのが好ましい。このようにすると、排気ガスの活性化によるPMの燃焼に加えて、酸化触媒の作用によるPMの燃焼が起こり、PMの焼却が確実となる。
【0025】
なお、上述の実施形態においては、第1の放電電極31および第2の放電電極32を負極に、外周電極33を接地する例につき説明したが、これらは、両者間に所定の高電圧が印加される形態であれば足り、逆の極性であってもよく、必ずしも接地させる必要もない。また、その電源の形態は、直流のみならず、パルス電源や交流電源であってもよい。さらに、それらの電圧印加の形態も上述の常時印加に限られず、PMの捕集要求や燃焼処理要求の必要性に応じて、所望の時期に行うようにしてもよい。
【図面の簡単な説明】
【図1】本発明に係るPM浄化リアクターの実施の形態の概要を示す断面図であり、第1および第2の排気ガス通路は実際の寸法を表すものではない。
【図2】本発明の他の実施の形態の概要を示す断面図である。
【符号の説明】
10 PM浄化リアクター
20 ハニカム構造体
221 第1排気ガス通路
222 第2排気ガス通路
31 第1放電電極(導入面側栓詰)
32 第2放電電極(導出面側栓詰)
33 外周電極
34 電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a PM purification reactor, and in particular, a PM purification reactor that captures particulate matter (hereinafter referred to as PM) contained in exhaust gas discharged from a diesel engine or a lean burn gasoline engine, and removes and purifies it by combustion. About.
[0002]
[Prior art]
It is known that exhaust gas from a diesel engine or lean burn gasoline engine contains a large amount of PM mainly composed of carbon, which causes air pollution. Various apparatuses or methods for capturing and removing these fine particles from exhaust gas have been proposed. As an example, a discharge regeneration type collection filter described in Patent Document 1 is known.
[0003]
The discharge regeneration type collection filter described in Patent Document 1 includes a first exhaust gas passage having an exhaust gas introduction surface opened and an exhaust gas lead-out surface blocked, and the first exhaust gas passage separated from the partition wall. A so-called wall flow type honeycomb structure including a plurality of second exhaust gas passages adjacent to each other and having an exhaust gas introduction surface closed and an exhaust gas lead-out surface opened. In the first exhaust gas passage, A discharge electrode is provided so as to make point contact with the inner wall surface, and a charging electrode having a different polarity is provided on the exhaust gas introduction surface. Further, the charging electrode is configured to be in electrical contact with the deposited soot layer on the inner wall surface of the first exhaust gas passage. Thus, the deposited soot layer on the inner wall surface of the first exhaust gas passage functions as an electrode having the same polarity as the charging electrode, and the soot in the deposited soot layer is burned and removed by discharging at the point contact point of the discharge electrode.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-173427
[Problems to be solved by the invention]
By the way, the discharge regeneration type collection filter described in Patent Document 1 is a so-called wall flow type honeycomb structure in which the inner wall surface of the first exhaust gas passage and the first exhaust gas passage are in point contact with the inner wall surface. Since the soot in the deposited soot layer is burned and removed by the discharge between the discharge electrodes provided so that the soot layer is deposited, the soot is not removed until the soot layer is deposited. There is a possibility that the first exhaust gas passage may flow out to the second exhaust gas passage. Once it flows into the second exhaust gas passage, there is no means for capturing this, and as a result, the soot (PM) trapping rate or the trapping rate decreases due to this so-called slip-through, resulting in a PM purification efficiency. It's not enough.
[0006]
The object of the present invention is to solve such problems of the prior art, improve the PM collection efficiency, and also to efficiently and stably incinerate PM, and to reliably purify PM without pressure loss. It is to provide a PM purification reactor.
[0007]
[Means for Solving the Problems]
The PM purification reactor of the present invention that achieves the above object includes a first exhaust gas passage having an exhaust gas introduction surface opened and an exhaust gas outlet surface closed by plugging, and the first exhaust gas passage and the partition wall. At least the exhaust gas in the plugging of the honeycomb structure including a plurality of sets of second exhaust gas passages that are adjacent to each other, the exhaust gas introduction surface is blocked by plugging, and the exhaust gas outlet surface is opened. The introduction surface side plugging is made of metal or ceramic containing metal to form a discharge electrode, and an outer peripheral electrode is provided on the outer periphery of the honeycomb structure.
[0008]
According to the PM purification reactor configured as described above, PM is charged by corona discharge due to application of a high voltage between the plugging as the discharge electrode and the outer peripheral electrode, and mainly the inner wall surface of the first exhaust gas passage and Trapped or trapped in the pores. Since PM that has not been collected here and has flowed into the second exhaust gas passage is also charged, it is captured or collected on the inner wall surface of the second exhaust gas passage. The collected PM is burned and incinerated by the activation of exhaust gas as a result of obtaining non-thermal equilibrium plasma by corona discharge.
[0009]
Here, it is preferable that the plugging has a shape in which a cross-sectional area gradually decreases toward the side where the outer peripheral electrode is provided.
[0010]
If it does in this way, formation of the electric field between plugging and an outer peripheral electrode becomes easy, and since electric field strength can be raised, PM collection efficiency can further be improved.
[0011]
Further, it is preferable that the honeycomb structure is coated with an oxidation catalyst on at least the inner wall surfaces of the first and second exhaust gas passages.
[0012]
If it does in this way, in addition to combustion of PM by activation of exhaust gas, combustion of PM by the action of an oxidation catalyst occurs, and incineration of PM is ensured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view schematically showing one embodiment of a PM purification reactor 10 according to the present invention.
[0014]
In FIG. 1, a PM purification reactor 10 includes a substantially cylindrical metal outer cylinder portion 14 having frustoconical connection portions 12 on both sides, and the outer cylinder portion 14 is insulated, heat-resistant, buffered. It has the honeycomb structure 20 supported by the supporting member 16 provided with property etc., for example, an alumina mat. This PM purification reactor 10 is used, for example, in an exhaust system of a diesel engine so that exhaust gas is introduced from an exhaust gas introduction surface on the left side of the drawing and purified exhaust gas is led out from an exhaust gas extraction surface on the right side of the drawing. is set up.
[0015]
The honeycomb structure 20 is made of a cylindrical cordierite ceramic, and has a first exhaust gas passage 221 in which an exhaust gas introduction surface is opened and an exhaust gas discharge surface is closed by plugging on the discharge surface side, and the first A plurality of sets of second exhaust gas passages 222 that are adjacent to one exhaust gas passage 221 across a partition wall, the exhaust gas introduction surface is closed by plugging on the introduction surface side, and the exhaust gas lead-out surface is opened; Yes. The first and second exhaust gas passages 221 and 222 have a substantially square cross section, and the partition wall is made of a gas permeable porous material. In consideration of the gas permeability and PM trapping property, the base material portion excluding the first and second exhaust gas passages, that is, the high porosity base material having a partition wall porosity of about 55 to 70%. Preferably it is formed. The honeycomb structure 20 has a circular cross section and a length in the exhaust gas flow direction of about 200 mm. The honeycomb structure 20 is not limited to cordierite, but may be formed of ceramics such as silica and alumina, but is preferably made of cordierite from the viewpoint of workability and cost.
[0016]
In the present embodiment, the outlet surface side plugging and the introduction surface side plugging are each formed of a rectangular parallelepiped metal member. The inlet side pluggings are connected by the first wire 241 to form the first discharge electrode 31. Similarly, the outlet side pluggings are connected by the second wire 242 to form the second discharge. An electrode 32 is configured. An outer peripheral electrode 33 is disposed on the outer peripheral portion of the honeycomb structure 20. The lead-out side plugging and the lead-in side plugging can be made of chromium steel (for example, 10Cr5Al) having excellent corrosion resistance, but are not limited thereto, and other metals having corrosion resistance. Can be used. Furthermore, it is not limited to metal, and ceramics containing metal may be used.
[0017]
As another embodiment, only the introduction surface side plugging is made of metal or a ceramic containing metal among the above-described outlet surface side plugging and introduction surface side plugging, and the first discharge electrode Only 31 may be configured. In this case, as a matter of course, the introduction surface side plugging is formed of non-conductive ceramics or the like, and the second discharge electrode is not constituted.
[0018]
The first discharge electrode 31, the second discharge electrode 32 and the outer peripheral electrode 33 are connected to a DC power source 34. In the present embodiment, the first discharge electrode 31 and the second discharge electrode 32 are composed of the insulator 29 in which the first wire 241 and the second wire 242 are installed through the metal outer cylinder portion 14. , 29, and the negative electrode of the DC power supply 34, and the outer peripheral electrode 33 is also grounded through an insulator 29 with a ground wire 243. Note that the voltage of the DC power supply 34 is 5 kV or more.
[0019]
The outer peripheral electrode 33 disposed on the outer peripheral portion of the honeycomb structure 20 may be a mesh electrode, but may be formed by applying a conductive metal paste to the outer peripheral portion. It is sufficient that the outer peripheral electrode 33 exists on at least a part of the outer peripheral portion of the honeycomb structure 20. However, when it is desired to maximize the PM collection rate, the wide area of the outer peripheral portion of the honeycomb structure 20 is separated by a distance that can avoid a short circuit between the first discharge electrode 31 and the second discharge electrode 32. It is preferable to form the cover.
[0020]
According to the PM purification reactor 10 according to the above-described embodiment, the exhaust gas discharged from the engine is introduced into the first exhaust gas passage 221 and adjacent to the second exhaust gas passage 222 via the partition as shown in FIG. And then discharged to the outside. Here, in the PM purification reactor 10, the power supply 34 is turned on simultaneously with the start of the engine, and a high voltage is applied between the first discharge electrode 31 and the second discharge electrode 32 and the outer peripheral electrode 33. Therefore, the exhaust gas containing PM passes through the high-voltage electric field by corona discharge in the high-voltage electric field formed between the first discharge electrode 31 and the second discharge electrode 32 and the outer peripheral electrode 33. In this case, PM is charged and sucked toward the outer peripheral electrode 33 by the electric suction force, and is captured or collected with high efficiency in the inner wall surface of the first exhaust gas passage 221 and the pores of the partition walls of the honeycomb structure 20. Is done. Therefore, PM hardly passes through the partition wall and enters the second exhaust gas passage 222. Even if it passes, the charged PM is adsorbed and trapped on the inner wall surface of the second exhaust gas passage 222.
[0021]
The exhaust gas passing through the high-voltage electric field formed between the first discharge electrode 31 and the second discharge electrode 32 and the outer peripheral electrode 33 is obtained as a result of obtaining non-thermal equilibrium plasma. Gas molecules such as oxygen and nitrogen monoxide are activated (radicalized) to generate ozone (O 3 ), activated oxygen (O 2 ), nitrogen dioxide (NO 2 ), etc. having high oxidation activity. . The PM collected in the inner wall surface of the honeycomb structure 20 and the pores of the partition walls is burned and incinerated by the activated gas, and is discharged as purified exhaust gas.
[0022]
As described above, according to the present embodiment, the PM collection efficiency is improved, and at the same time, the combustion of PM is continuously performed by using O 3 , O 2 , and NO 2 having high oxidation activity. Therefore, PM can be incinerated efficiently and stably without pressure loss, and PM can be purified reliably.
[0023]
Still another embodiment of the present invention is shown in FIG. This embodiment is different from the previous embodiment in that the shapes of the outlet surface side plugging and the introduction surface side plugging constituting the first discharge electrode 31 and the second discharge electrode 32 described above are changed. is there. That is, in the present embodiment, the cross-sectional area gradually decreases toward the side where the outer peripheral electrode 33 is provided, for example, a square frustum shape. In this way, it becomes easy to form an electric field between the first discharge electrode 31 and the second discharge electrode 32 and the outer peripheral electrode 33 constituted by plugs of a square frustum shape, and the electric field strength can be increased. Therefore, PM collection efficiency can be further improved.
[0024]
Further, the honeycomb structure 20 has an oxidation catalyst (for example, Pt / CeO 2 , Mn / CeO 2 , Fe / CeO 2 , Ni / CeO) on at least the inner wall surfaces of the first and second exhaust gas passages 221 and 222. 2 , Cu / CeO 2 etc.) are preferably coated. If it does in this way, in addition to combustion of PM by activation of exhaust gas, combustion of PM by the action of an oxidation catalyst occurs, and incineration of PM is ensured.
[0025]
In the above-described embodiment, the example in which the first discharge electrode 31 and the second discharge electrode 32 are used as negative electrodes and the outer peripheral electrode 33 is grounded has been described, but a predetermined high voltage is applied between them. As long as it is a suitable form, it may have the opposite polarity, and is not necessarily grounded. Further, the form of the power supply is not limited to DC, but may be a pulse power supply or an AC power supply. Further, the mode of voltage application is not limited to the above-described constant application, but may be performed at a desired time according to the necessity of PM collection request or combustion processing request.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an outline of an embodiment of a PM purification reactor according to the present invention, and the first and second exhaust gas passages do not represent actual dimensions.
FIG. 2 is a cross-sectional view showing an outline of another embodiment of the present invention.
[Explanation of symbols]
10 PM purification reactor 20 Honeycomb structure 221 First exhaust gas passage 222 Second exhaust gas passage 31 First discharge electrode (clogging on the introduction surface side)
32 Second discharge electrode (plugging on the outlet side)
33 Peripheral electrode 34 Power supply

Claims (2)

排気ガス導入面が開口されると共に排気ガス導出面が栓詰にて閉塞された第1排気ガス通路と、該第1排気ガス通路と隔壁を隔てて隣接し、排気ガス導入面が栓詰にて閉塞されると共に排気ガス導出面が開口された第2排気ガス通路とを複数組備えた円柱状ハニカム構造体の前記栓詰の中、少なくとも排気ガス導入面側栓詰を、金属または金属を含むセラミックにて形成して放電電極とし、且つ、前記円柱状ハニカム構造体の長手方向における前記排気ガス導入面側栓詰と前記排気ガス導出面側栓詰との間の外周に外周電極を設けたPM浄化リアクターであって、前記少なくとも排気ガス導入面側栓詰は、前記円柱状ハニカム構造体の長手方向における前記外周電極が設けられた側に向けて、断面積が漸減する形状とされていることを特徴とするPM浄化リアクター。A first exhaust gas passage having an exhaust gas introduction surface opened and an exhaust gas outlet surface closed by plugging, and the first exhaust gas passage adjacent to the first exhaust gas passage with a partition wall therebetween, the exhaust gas introduction surface being plugged. Among the plugs of the cylindrical honeycomb structure provided with a plurality of sets of second exhaust gas passages that are closed and have exhaust gas outlet surfaces opened, at least the plug on the exhaust gas introduction surface side is plugged with metal or metal. A discharge electrode is formed by including ceramic, and an outer peripheral electrode is provided on the outer periphery between the plug on the exhaust gas introduction surface side and the plug on the exhaust gas outlet surface side in the longitudinal direction of the cylindrical honeycomb structure. In the PM purification reactor , at least the plug on the exhaust gas introduction surface is shaped so that the cross-sectional area gradually decreases toward the side where the outer peripheral electrode is provided in the longitudinal direction of the cylindrical honeycomb structure. It is characterized by being PM purifying reactor that. 前記ハニカム構造体には、少なくとも前記第1および第2の排気ガス通路内壁面に酸化触媒がコーティングされていることを特徴とする請求項1に記載のPM浄化リアクター。  The PM purification reactor according to claim 1, wherein the honeycomb structure is coated with an oxidation catalyst on at least inner walls of the first and second exhaust gas passages.
JP2003128985A 2003-05-07 2003-05-07 PM purification reactor Expired - Fee Related JP4269768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128985A JP4269768B2 (en) 2003-05-07 2003-05-07 PM purification reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128985A JP4269768B2 (en) 2003-05-07 2003-05-07 PM purification reactor

Publications (2)

Publication Number Publication Date
JP2004332608A JP2004332608A (en) 2004-11-25
JP4269768B2 true JP4269768B2 (en) 2009-05-27

Family

ID=33504962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128985A Expired - Fee Related JP4269768B2 (en) 2003-05-07 2003-05-07 PM purification reactor

Country Status (1)

Country Link
JP (1) JP4269768B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429417B (en) 2005-08-25 2010-08-11 Perkins Engines Co Ltd Autoselective regenerating particulate filter
US8679209B2 (en) 2011-12-20 2014-03-25 Caterpillar Inc. Pulsed plasma regeneration of a particulate filter

Also Published As

Publication number Publication date
JP2004332608A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US7510600B2 (en) Gas purifying apparatus
KR100760242B1 (en) Device for treating a particle-land gaseous medium and a vehicle equipped with the same
RU2078952C1 (en) Method of and device for cleaning exhaust gases
JP4873564B2 (en) Exhaust gas purification device
WO2006028322A1 (en) Apparatus for purifying diesel exhaust gas with coated photocatalyst layer and electrode, and manufacturing method thereof
KR20060016797A (en) Exhaust gas purifier
WO2005026506A1 (en) Exhaust gas-purifying device
JP4292511B2 (en) Exhaust gas purification device
KR20010024884A (en) Plasma assisted processing of gas
RU2516720C2 (en) Device and method of cleaning offgas containing ash particles
JP4332847B2 (en) Exhaust gas purification device
JP2004027949A (en) Efficient exhaust gas treatment system
JP4269768B2 (en) PM purification reactor
KR101166688B1 (en) Apparatus for purifying exhaust gas
JP4292868B2 (en) Exhaust gas purification device
JP4304238B2 (en) Method and apparatus for exhaust gas purification of internal combustion engine
JP2002213228A (en) Exhaust emission control device for internal combustion engine
KR100848072B1 (en) Exhaust gas treatment device for regenerating a diesel particulate filter
JPS63268911A (en) Exhaust purifier for engine
JP2005106022A (en) Exhaust emission control device
JP2004011592A (en) Exhaust emission control device
KR100942430B1 (en) Two stage electrostatic precipitator for exhaust gas reduction
JP2006026483A (en) Exhaust emission control device
JP2004092589A (en) Exhaust emission control device for internal combustion engine
JP3876843B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees