JP4445374B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP4445374B2
JP4445374B2 JP2004327453A JP2004327453A JP4445374B2 JP 4445374 B2 JP4445374 B2 JP 4445374B2 JP 2004327453 A JP2004327453 A JP 2004327453A JP 2004327453 A JP2004327453 A JP 2004327453A JP 4445374 B2 JP4445374 B2 JP 4445374B2
Authority
JP
Japan
Prior art keywords
electrode
insulating structure
exhaust gas
electrode rod
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004327453A
Other languages
Japanese (ja)
Other versions
JP2006138240A (en
Inventor
卓俊 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004327453A priority Critical patent/JP4445374B2/en
Publication of JP2006138240A publication Critical patent/JP2006138240A/en
Application granted granted Critical
Publication of JP4445374B2 publication Critical patent/JP4445374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ディーゼルエンジン等の内燃機関の排気ガス中からパティキュレートを除去する排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device that removes particulates from exhaust gas of an internal combustion engine such as a diesel engine.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of soot made of carbonaceous matter and SOF content (Soluble Organic Fraction) made of high-boiling hydrocarbon components. The composition contains a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter is installed in the middle of the exhaust pipe through which the exhaust gas flows. It has been done conventionally.

この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   This type of particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the flow paths partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. About the flow path, the exit is sealed, and only the exhaust gas which permeate | transmitted the porous thin wall which divides each flow path is discharged | emitted downstream.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積し、排気温度が高い運転領域に移行した際に自然燃焼して除去されるようになっているが、例えば都内の路線バス等のように渋滞路ばかりを走行するような車両では、必要な所定温度以上での運転が長く継続しないため、パティキュレートの処理量よりも堆積量の方が上まわり、パティキュレートフィルタが目詰まりを起こす虞れがあった。   Particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, and are spontaneously combusted and removed when the exhaust gas moves to an operating region. For example, in a vehicle that travels only on a congested road such as a route bus in Tokyo, the accumulated amount is higher than the processing amount of particulates because the operation above the required predetermined temperature does not continue for a long time. There is a possibility that the particulate filter may be clogged.

このため、排気温度が低い運転領域でもパティキュレートを良好に燃焼除去し得るようプラズマアシスト型の排気浄化装置の開発が進められており、この種の排気浄化装置で排気ガス中に放電してプラズマを発生させれば、排気ガスが励起してOラディカルやOHラディカル等の活性のラディカルが発生し、これらの排気ガス励起成分が活性化状態となっていることから、排気温度が低い運転領域でもパティキュレートを良好に燃焼除去(酸化処理)することが可能となる。   For this reason, plasma-assisted exhaust purification devices are being developed so that particulates can be burned and removed well even in the operating region where the exhaust temperature is low, and this type of exhaust purification device discharges into the exhaust gas to generate plasma. The exhaust gas is excited and active radicals such as O radicals and OH radicals are generated, and these exhaust gas excitation components are in an activated state, so even in an operation region where the exhaust temperature is low. It is possible to burn and remove the particulates (oxidation treatment) satisfactorily.

例えば、下記の特許文献1や特許文献2には、穿孔処理された円筒状ステンレススチールから成る外側電極と内側電極との間に誘電体を成すセラミックスのペレットを充填し、該ペレットの充填層を通過するように排気ガスを流して該排気ガス中のパティキュレートを捕集する一方、外側電極と内側電極との間で放電してプラズマを発生させるようにしたプラズマアシスト型の排気浄化装置が提案されている。
特表2002−501813号公報 特表2002−511332号公報
For example, in Patent Document 1 and Patent Document 2 below, ceramic pellets forming a dielectric material are filled between an outer electrode and an inner electrode made of cylindrical stainless steel that has been perforated, and a packed layer of the pellet is formed. A plasma-assisted exhaust purification system is proposed in which exhaust gas is allowed to flow and particulates in the exhaust gas are collected, while plasma is generated by discharging between the outer electrode and the inner electrode. Has been.
Japanese translation of PCT publication No. 2002-501813 Japanese translation of PCT publication No. 2002-511332

しかしながら、このような従来提案されているプラズマアシスト型の排気浄化装置においては、相互間で放電させるべく対向配置された各電極の両端部を絶縁構造物により支持する必要があるが、この絶縁構造物により両電極間を直線的に繋ぐ平面が形成されてしまうと、その面に沿う沿面放電が起こり易くなってプラズマが集中してしまうため、両電極間に一様なプラズマを発生させることができなくなったり、放電させたい領域以外での無駄な放電が生じて余分な電気エネルギーを消費してしまったりする虞れがあった。   However, in such a plasma assisted type exhaust gas purification device that has been proposed in the past, it is necessary to support both ends of the electrodes arranged opposite to each other to be discharged between each other by an insulating structure. If a flat surface that connects the two electrodes linearly is formed by an object, creeping discharge along the surface tends to occur and the plasma concentrates, so that uniform plasma can be generated between the two electrodes. There is a risk that it will become impossible to perform, or wasteful discharge will occur outside the region to be discharged, resulting in consumption of excess electrical energy.

本発明は上述の実情に鑑みてなしたもので、放電させたい領域にのみ一様なプラズマを発生し得るようにしたプラズマアシスト型の排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma-assisted exhaust purification device that can generate uniform plasma only in a region to be discharged.

本発明は、通気構造の電極板と、該電極板の面に対し一様な間隔のプラズマ発生空間を挟んで配列され且つ表面を誘電体により絶縁被覆された複数本の電極棒と、電極板及びプラズマ発生空間の少なくとも何れか一方に構成されたフィルタ手段とを備え、排気ガスを電極棒の列群の隙間からプラズマ発生空間及び電極板を通過させるように流し且つ各電極板と各電極棒との間に放電に必要な電圧を印加し得るようにしたプラズマアシスト型の排気浄化装置であって、各電極棒の両端部を絶縁構造物により夫々支持するにあたり、各電極棒の一方の端部を一方の絶縁構造物を貫通させて該絶縁構造物の外側に給電部を形成せしめると共に、前記各電極棒の他方の端部に該端部より長く前記誘電体による絶縁被覆を延長形成し且つその延長端部を他方の絶縁構造物に対し貫通固定し、前記一方の絶縁構造物における反給電部側の面に前記他方の絶縁構造物側へ張り出す隆起部を形成し且つ該隆起部に対し前記電極板の端部を突き合わせた状態で支持せしめたことを特徴とするものである。   The present invention relates to an electrode plate having a ventilation structure, a plurality of electrode rods arranged with a plasma generation space at a uniform interval with respect to the surface of the electrode plate, and having a surface insulated by a dielectric, and an electrode plate And a filter means configured in at least one of the plasma generation spaces, the exhaust gas is allowed to flow through the plasma generation space and the electrode plates through the gaps between the electrode rod rows, and each electrode plate and each electrode rod A plasma assist type exhaust gas purification device that can apply a voltage required for discharge between the electrode rod and the both ends of each electrode rod by an insulating structure. A power feeding portion is formed outside the insulating structure by penetrating one insulating structure, and an insulating coating made of the dielectric is extended to the other end of each electrode rod longer than the end. And the extension end A protruding portion is formed on the surface on the side opposite to the power feeding portion of the one insulating structure, and a protruding portion that protrudes toward the other insulating structure is formed on the other insulating structure. It is characterized in that it is supported in a state where the end portions are butted.

而して、排気ガスを電極棒の列群の隙間からプラズマ発生空間及び電極板を通過させるように流すと、その排気ガスが電極板及びプラズマ発生空間の少なくとも何れか一方に構成されたフィルタ手段を通過する際にパティキュレートが捕集されていくので、必要時に電極板と各電極棒との間に必要な電圧を印加すると、表面を絶縁被覆された各電極棒と電極板との間でバリア放電が起こり、これによりプラズマ発生空間に低温プラズマ(非熱平衡プラズマ)が生じる結果、排気ガスが励起してOラディカルやOHラディカル等の活性のラディカルが発生し、これらの排気ガス励起成分による助勢を受けてパティキュレートが効果的に燃焼除去(酸化処理)されることになる。   Thus, when the exhaust gas is caused to flow through the plasma generation space and the electrode plate through the gap between the row of electrode rods, the exhaust gas is configured in at least one of the electrode plate and the plasma generation space. Particulates are collected when passing through the electrode, so that if necessary voltage is applied between the electrode plate and each electrode rod when necessary, the surface between each electrode rod and electrode plate whose surface is insulated is coated. As a result of barrier discharge, which generates low-temperature plasma (non-thermal equilibrium plasma) in the plasma generation space, the exhaust gas is excited and active radicals such as O radicals and OH radicals are generated. As a result, the particulates are effectively removed by combustion (oxidation treatment).

この際、一方の絶縁構造物の隆起部に対し電極板の端部が突き合わせた状態で支持されているので、該電極板の端部と各電極棒との間が前記一方の絶縁構造物の平面により直線状に繋がれなくなり、一方の絶縁構造物の平面に沿う沿面放電が起こらなくなる。   At this time, since the end portion of the electrode plate is supported in a state where the end portion of the electrode plate abuts against the raised portion of the one insulating structure, the space between the end portion of the electrode plate and each electrode rod is the one of the insulating structure. The plane is not connected in a straight line, and creeping discharge along the plane of one insulating structure does not occur.

また、他方の絶縁構造物側にあっては、該絶縁構造物に対し各電極棒の絶縁被覆の延長端部のみが貫通固定されていて各電極棒自体は絶縁構造物まで到達していないので、各電極棒の他方の端部が前記他方の絶縁構造物に対し離間配置されて各電極棒の他方の端部と電極板との間が前記他方の絶縁構造物の平面により直線的に繋がれなくなり、他方の絶縁構造物の平面に沿う沿面放電が起こらなくなる。   Further, on the other insulating structure side, only the extended end portion of the insulating coating of each electrode rod is penetrated and fixed to the insulating structure, and each electrode rod itself does not reach the insulating structure. The other end of each electrode rod is spaced from the other insulating structure, and the other end of each electrode rod and the electrode plate are linearly connected by the plane of the other insulating structure. The creeping discharge along the plane of the other insulating structure does not occur.

このようにして各電極棒と電極板との間で沿面放電が防止されると、プラズマ発生空間内における両絶縁構造物の近傍で低温プラズマが集中することが回避され、プラズマ発生空間にて一様な低温プラズマを発生させることが可能となる。   If creeping discharge is prevented between each electrode rod and electrode plate in this way, it is avoided that low-temperature plasma concentrates in the vicinity of both insulating structures in the plasma generation space, and the plasma generation space is uniform. It is possible to generate various low-temperature plasmas.

しかも、一方の絶縁構造物の隆起部に対し電極板の端部が突き合わせた状態で支持されていれば、該電極板の端部が前記各電極棒の給電部に対しても離間配置されて電極板の端部と給電部との間が前記一方の絶縁構造物の平面により直線的に繋がれなくなるので、プラズマ発生空間外での前記一方の絶縁構造物の平面に沿う沿面放電も起こらなくなる。   In addition, if the end of the electrode plate is supported against the raised portion of one of the insulating structures, the end of the electrode plate is also spaced apart from the feeding portion of each electrode rod. Since the end of the electrode plate and the power feeding portion are not linearly connected by the plane of the one insulating structure, creeping discharge along the plane of the one insulating structure outside the plasma generation space does not occur. .

更に、本発明においては、一方の絶縁構造物の給電部周りに該給電部を取り囲むように隆起する段差部を形成しておくことが好ましく、このようにすれば、前記給電部と周囲の各種構造物との間に前記段差部が介在することで放電が起こり難くなり、絶縁構造物の外側を回り込んで給電部と電極板との間で放電が起こったり、給電部と本装置以外の構造物との間で放電が起こったりする虞れが極めて少なくなる。   Furthermore, in the present invention, it is preferable to form a stepped portion that protrudes so as to surround the power supply portion around the power supply portion of one insulating structure. Since the stepped portion is interposed between the structure and the discharge, it is difficult for the discharge to occur, and a discharge occurs between the power supply unit and the electrode plate by going around the outside of the insulating structure. There is very little risk of electrical discharge occurring between the structure.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、各電極棒と電極板との間で両絶縁構造物の平面に沿う沿面放電を防止することができるので、放電させたい領域であるプラズマ発生空間にて一様な低温プラズマを発生させることができ、しかも、放電させたい領域以外での無駄な放電を起こり難くして余分な電気エネルギー消費を抑制することができる。   (I) According to the invention described in claim 1 of the present invention, it is possible to prevent creeping discharge along the planes of both insulating structures between each electrode rod and the electrode plate, so that in the region to be discharged. Uniform low-temperature plasma can be generated in a certain plasma generation space, and wasteful discharge in regions other than the region where discharge is desired is difficult to occur, and excess electric energy consumption can be suppressed.

(II)本発明の請求項2に記載の発明によれば、各電極棒の給電部と周囲の各種構造物との間に絶縁構造物の段差部が介在することになるので、前記給電部と周囲の各種構造物との間での放電を起こり難くすることができ、絶縁構造物の外側を回り込んで給電部と電極板との間で放電が起こったり、給電部と本装置以外の構造物との間で放電が起こったりする虞れを極力回避することができて更なる電気エネルギー消費の節約を図ることができる。   (II) According to the invention described in claim 2 of the present invention, since the step portion of the insulating structure is interposed between the power feeding portion of each electrode rod and the surrounding various structures, the power feeding portion And the surrounding various structures can be made difficult to occur, and the outside of the insulation structure can cause a discharge between the power supply unit and the electrode plate. It is possible to avoid as much as possible the possibility of electric discharge between the structure and further save electric energy consumption.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図7は本発明を実施する形態の一例を示すもので、図1中における符号の1はターボチャージャ2を搭載したディーゼルエンジン(内燃機関)を示しており、エアクリーナ3から導いた吸気4を吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへ導いて加圧し、その加圧された吸気4をインタークーラ6を介しディーゼルエンジン1の各気筒に分配して導入するようにしてある。   1 to 7 show an example of an embodiment of the present invention. Reference numeral 1 in FIG. 1 denotes a diesel engine (internal combustion engine) equipped with a turbocharger 2, and intake air introduced from an air cleaner 3. 4 is introduced into the compressor 2a of the turbocharger 2 through the intake pipe 5 and pressurized, and the pressurized intake air 4 is distributed and introduced to each cylinder of the diesel engine 1 via the intercooler 6.

また、このディーゼルエンジン1の各気筒から排気マニホールド7を介し排出された排気ガス8を前記ターボチャージャ2のタービン2bへ送り、該タービン2bを駆動した排気ガス8を、排気管9途中のプラズマアシスト型の排気浄化装置10を通してパティキュレートを捕集した上で排出するようにしてある。   Further, exhaust gas 8 discharged from each cylinder of the diesel engine 1 through the exhaust manifold 7 is sent to the turbine 2b of the turbocharger 2, and the exhaust gas 8 driving the turbine 2b is supplied to the plasma assist in the middle of the exhaust pipe 9. Particulates are collected through the exhaust gas purification device 10 and then discharged.

この排気浄化装置10は、以下に図2〜図7を参照して詳述する如き構造を有し、その必要数を筐体12(図2に一部のみを図示)によりまとめられて排気管9途中のケーシング11内に収容されており、これ以降の説明で参照すべき図面のうち、図2は排気浄化装置10の概略構造を示す平面図、図3は排気浄化装置10を前側から見た斜視図、図4は図3の前側の絶縁構造物13を取り外した状態を示す斜視図、図5は排気浄化装置10を後側から見た斜視図、図6は図5の後側の絶縁構造物14を取り外した状態を示す斜視図、図7は各排気浄化装置10を並列に並べた状態を後側から見た斜視図である。   This exhaust purification device 10 has a structure as will be described in detail with reference to FIGS. 2 to 7 below, and the required number is collected by a casing 12 (only part of which is shown in FIG. 2). Among the drawings to be referred to in the following description, FIG. 2 is a plan view showing a schematic structure of the exhaust purification device 10, and FIG. 3 is a view of the exhaust purification device 10 from the front side. 4 is a perspective view showing a state in which the front insulating structure 13 of FIG. 3 is removed, FIG. 5 is a perspective view of the exhaust purification device 10 viewed from the rear side, and FIG. 6 is a rear side view of FIG. FIG. 7 is a perspective view of a state in which the exhaust purification apparatuses 10 are arranged in parallel, as viewed from the rear side.

図2〜図6に示す如く、前記排気浄化装置10は、所要の隙間を隔てて対向配置された通気構造を成す一対の平板電極15と、該各平板電極15間に各平板電極15の夫々の面に対しプラズマ発生空間16を挟んで平行に数mmギャップで配列され且つ表面を誘電体17により絶縁被覆された複数の電極棒18とを備えており、これら各平板電極15と各電極棒18の両端部が絶縁構造物13,14により支持されている。   As shown in FIGS. 2 to 6, the exhaust emission control device 10 includes a pair of flat plate electrodes 15 forming a ventilation structure facing each other with a required gap therebetween, and each flat plate electrode 15 between the flat plate electrodes 15. A plurality of electrode rods 18 arranged in parallel with a gap of several millimeters across the plasma generation space 16 and having a surface insulated by a dielectric 17, and each plate electrode 15 and each electrode rod. Both ends of 18 are supported by insulating structures 13 and 14.

ここで、本形態例においては、前記平板電極15自体がフィルタ手段として構成されている場合を例示しており、より具体的には、パティキュレートを捕集可能な金属フィルタにより前記平板電極15が通気構造を成すようにしてある。   Here, in this embodiment, the case where the plate electrode 15 itself is configured as a filter means is illustrated, and more specifically, the plate electrode 15 is formed by a metal filter capable of collecting particulates. A ventilation structure is formed.

尚、この種の金属フィルタには、ミクロンオーダーの金属繊維を積層焼結したもの、金属粉末の焼結体、金属メッシュを積層焼結したもの、金属メッシュに金属粉末を焼結させたもの等を採用すれば良い。   This type of metal filter includes micron-order metal fibers laminated and sintered, metal powder sintered bodies, metal mesh laminated and sintered, metal mesh sintered metal powder, etc. Should be adopted.

ただし、プラズマ発生空間16に、コージェライトハニカムフィルタ、セラミックス繊維フィルタ、セラミックスフォーム、アルミナペレット等をフィルタ手段として介装することも可能であり、このようにした場合には、前記平板電極15を必ずしもフィルタ手段として構成しなくても良く、金属メッシュやパンチングメタル等により単純な通気構造を有する平板電極15として構成すれば良い。勿論、高捕集率を得る目的で平板電極15自体をフィルタ手段として構成した上にプラズマ発生空間16にフィルタ手段を併用しても良い。   However, a cordierite honeycomb filter, a ceramic fiber filter, a ceramic foam, an alumina pellet or the like can be interposed as a filter means in the plasma generation space 16, and in this case, the plate electrode 15 is not necessarily provided. It does not need to be configured as a filter means, and may be configured as a flat plate electrode 15 having a simple ventilation structure made of a metal mesh, punching metal, or the like. Of course, for the purpose of obtaining a high collection rate, the plate electrode 15 itself may be configured as a filter means, and a filter means may be used in the plasma generation space 16 together.

因みに、プラズマ発生空間16にセラミックペレット等の誘電体の粒状物を充填してフィルタ手段とした場合には、粒状物の夫々の接点に電荷が集中して強い局所電場が形成されることで低温プラズマが発生し易くなり(セラミックス繊維やセラミックスフォームを充填した場合も同様の効果が得られる)、また、プラズマ発生空間16に介装したフィルタ手段により平板電極15と電極棒18の対向方向に延びる多数の平面を形成させれば、この平面に沿う沿面放電が促されて低温プラズマが発生し易くなる。   Incidentally, when the plasma generating space 16 is filled with dielectric particles such as ceramic pellets to form a filter means, electric charges concentrate at the respective contact points of the particles to form a strong local electric field, thereby reducing the temperature. Plasma is likely to be generated (the same effect can be obtained when ceramic fiber or ceramic foam is filled), and the filter means interposed in the plasma generation space 16 extends in the opposing direction of the plate electrode 15 and the electrode rod 18. If a large number of planes are formed, creeping discharge along the planes is promoted and low-temperature plasma is easily generated.

他方、前記前側の絶縁構造物13に、前記電極棒18の二つの列群により挟まれた導入空間19に排気ガス8を導き入れるためのガス入口20が開口されていると共に、前記後側の絶縁構造物14は排気ガス8の流れを堰き止める閉塞構造となっており、上流側からガス入口20を介し導入空間19に導入した排気ガス8が、各電極棒18の各列群の隙間からプラズマ発生空間16及び平板電極15を通過して下流側に流れるようにしてある。   On the other hand, a gas inlet 20 for introducing the exhaust gas 8 into the introduction space 19 sandwiched between the two rows of the electrode rods 18 is opened in the front insulating structure 13, and the rear side The insulating structure 14 has a closed structure that blocks the flow of the exhaust gas 8, and the exhaust gas 8 introduced into the introduction space 19 from the upstream side through the gas inlet 20 passes through the gaps between the row groups of the electrode rods 18. It passes through the plasma generation space 16 and the plate electrode 15 and flows downstream.

尚、電極棒18の二つの列群の上部と下部には、誘電体のダミー管21が左右方向に配列されていて、各電極棒18の各列群を上下に迂回する排気ガス8の流れを抑制し得るようにしてあり、また、導入空間19の上部と下部とに開放された部分は、図2に一部のみを図示した筐体12により塞がれるようになっている。   It should be noted that dielectric dummy tubes 21 are arranged in the left-right direction above and below the two row groups of the electrode rods 18, and the flow of the exhaust gas 8 that bypasses each row group of the electrode rods 18 up and down. In addition, the part opened to the upper part and the lower part of the introduction space 19 is closed by the casing 12 whose part is shown in FIG.

更に、各電極棒18の後側の端部は、後側の絶縁構造物14を貫通して該絶縁構造物14の外側に導体板から成る給電部22を形成しており、この給電部22に対し筐体12を貫通してケーシング11外の電源23が接続され且つ各平板電極15が接地されていて、各平板電極15と各電極棒18との間に放電に必要な交流高電圧(直流パルス高電圧でも可)が印加されるようになっている。   Further, the rear end of each electrode rod 18 penetrates the rear insulating structure 14 to form a power feeding portion 22 made of a conductor plate outside the insulating structure 14. On the other hand, a power source 23 outside the casing 11 is connected through the housing 12 and each plate electrode 15 is grounded, and an AC high voltage necessary for discharge between each plate electrode 15 and each electrode rod 18 ( DC pulse high voltage is also possible).

ここで、本形態例においては、表面を絶縁被覆された電極棒18を構成するにあたり、管状を成すように形成した誘電体17の中に電極棒18を挿入して該電極棒18の絶縁被覆を行うようにしてあるが、各電極棒18の前側の端部が誘電体17の管の途中までしか挿入されておらず、各電極棒18の前側の端部に、該端部より長く前記誘電体17による絶縁被覆が延長形成されるようになっており、この延長端部17aを前側の絶縁構造物13に対し貫通固定してある。   Here, in this embodiment, when the electrode rod 18 whose surface is insulated is formed, the electrode rod 18 is inserted into the dielectric 17 formed so as to form a tubular shape, and the electrode rod 18 is covered with the insulation coating. However, the front end of each electrode rod 18 is inserted only halfway through the tube of the dielectric 17, and the front end of each electrode rod 18 is longer than the end. An insulating coating with a dielectric 17 is formed to extend, and this extended end portion 17 a is fixed to the insulating structure 13 on the front side.

ただし、表面を絶縁被覆された電極棒18を構成するにあたっては、管状を成すように形成した誘電体17の内周面に銀等の電極材料をペースト状にしたものをコーティングして電極棒18とすることも可能であるので、このようにした場合には、そのコーティングを誘電体17の管の途中までに留めて、前記延長端部17aを各電極棒18の前側の端部に形成するようにすれば良い。   However, when the electrode rod 18 whose surface is insulated is formed, the electrode rod 18 is formed by coating the inner peripheral surface of the dielectric 17 formed in a tubular shape with a paste of an electrode material such as silver. Therefore, in such a case, the coating is kept halfway in the tube of the dielectric 17, and the extended end portion 17 a is formed at the front end portion of each electrode rod 18. You can do that.

また、後側の絶縁構造物14の反給電部22側となる前面の左右の幅端部には、前側へ張り出す隆起部24が上下方向に亘り形成されており、該隆起部24に対し平板電極15の後側の端部が突き合わせた状態で連結されて支持されるようになっていると共に、後側の絶縁構造物14の給電部22周りには、該給電部22を取り囲むように隆起する段差部25が形成されている。   Further, at the left and right width ends of the front surface on the side opposite to the power feeding portion 22 of the insulating structure 14 on the rear side, a protruding portion 24 that protrudes to the front side is formed in the vertical direction. The rear end portion of the flat plate electrode 15 is connected and supported in a face-to-face state, and the power supply portion 22 is surrounded around the power supply portion 22 of the rear insulating structure 14. A raised stepped portion 25 is formed.

そして、図7に示す如く、以上に述べた如き排気浄化装置10を排気ガス8の導入方向を一致させて並列に並べ且つ隣り合う相互間に平板電極15を通過した排気ガス8を下流側に導く排気空間26を確保してプラズマアシスト型の排気浄化装置10を構成するようにしている。   Then, as shown in FIG. 7, the exhaust gas purification devices 10 as described above are arranged in parallel with the introduction direction of the exhaust gas 8 being aligned, and the exhaust gas 8 that has passed through the plate electrode 15 between adjacent ones is disposed downstream. A plasma assist type exhaust purification apparatus 10 is configured by securing the exhaust space 26 to be guided.

ここで、各排気浄化装置10間に排気空間26を確保するにあたっては、各平板電極15の後側の一辺を除く三辺に幅方向外側へ張り出す陵部を形成しておくと共に、後側の絶縁構造物14における両側に幅方向外側へ部分的に張り出す突起部(図示では上中下の三段配置)を形成しておけば良い(図3〜図7参照)。   Here, when securing the exhaust space 26 between the exhaust purification devices 10, a ridge projecting outward in the width direction is formed on three sides excluding the one side on the rear side of each flat plate electrode 15. Protrusions (upper, middle, and lower three-stage arrangement in the drawing) may be formed on both sides of the insulating structure 14 (see FIGS. 3 to 7).

而して、このように排気浄化装置10を構成すれば、上流側からの排気ガス8が各排気浄化装置10の導入空間19に導入されて電極棒18の各列群の隙間からプラズマ発生空間16及び平板電極15を通過して下流側へと流れることになり、この排気ガス8が金属フィルタを成す平板電極15を通過する際にパティキュレートが捕集されていくので、必要時に各平板電極15と各電極棒18との間に交流高電圧を印加すると、表面を誘電体17により絶縁被覆された各電極棒18と平板電極15との間でバリア放電が起こり、これによりプラズマ発生空間16に低温プラズマ(非熱平衡プラズマ)が生じる結果、排気ガス8が励起してOラディカルやOHラディカル等の活性のラディカルが発生し、これらの排気ガス励起成分による助勢を受けてパティキュレートが効果的に燃焼除去(酸化処理)されることになる。   Thus, if the exhaust gas purification device 10 is configured in this way, the exhaust gas 8 from the upstream side is introduced into the introduction space 19 of each exhaust gas purification device 10, and the plasma generation space is formed from the gap between each row group of the electrode rods 18. 16 and the plate electrode 15 and flows downstream, and particulates are collected when the exhaust gas 8 passes through the plate electrode 15 forming the metal filter. When an AC high voltage is applied between the electrode rods 18 and the electrode rods 18, a barrier discharge occurs between the electrode rods 18 whose surfaces are insulated and coated with the dielectric 17 and the flat plate electrodes 15. As a result, low temperature plasma (non-thermal equilibrium plasma) is generated, and the exhaust gas 8 is excited to generate active radicals such as O radicals and OH radicals. Only in so that the particulates are efficiently burned and removed (oxidized).

この際、後側の絶縁構造物14の隆起部24に対し平板電極15の端部が突き合わせた状態で支持されているので、該平板電極15の端部と各電極棒18との間が絶縁構造物14の平面により直線状に繋がれなくなり、該絶縁構造物14の平面に沿う沿面放電が起こらなくなる。   At this time, since the end of the plate electrode 15 is supported with the raised portion 24 of the insulating structure 14 on the rear side, the end of the plate electrode 15 and each electrode rod 18 are insulated from each other. The plane of the structure 14 is not connected in a straight line, and creeping discharge along the plane of the insulating structure 14 does not occur.

また、前側の絶縁構造物13にあっては、該絶縁構造物13に対し各電極棒18の絶縁被覆の延長端部17aのみが貫通固定されていて各電極棒18自体は絶縁構造物13まで到達していないので、各電極棒18の前側の端部が絶縁構造物13に対し離間配置されて各電極棒18の前側の端部と平板電極15との間が絶縁構造物13の平面により直線的に繋がれなくなり、該絶縁構造物13の平面に沿う沿面放電が起こらなくなる。   Further, in the insulating structure 13 on the front side, only the extended end portion 17a of the insulating coating of each electrode rod 18 is fixed to the insulating structure 13 so that each electrode rod 18 itself reaches the insulating structure 13. Since it does not reach, the front end of each electrode rod 18 is spaced apart from the insulating structure 13, and the space between the front end of each electrode rod 18 and the plate electrode 15 is due to the plane of the insulating structure 13. It becomes impossible to connect linearly, and creeping discharge along the plane of the insulating structure 13 does not occur.

このようにして各電極棒18と平板電極15との間で両絶縁構造物13,14の平面に沿う沿面放電が防止されると、プラズマ発生空間16内における両絶縁構造物13,14の近傍で低温プラズマが集中することが回避され、プラズマ発生空間16にて一様な低温プラズマを発生させることが可能となる。   When creeping discharge along the planes of the two insulating structures 13 and 14 is prevented between the electrode rods 18 and the plate electrodes 15 in this way, the vicinity of the two insulating structures 13 and 14 in the plasma generation space 16 is prevented. Thus, the concentration of the low temperature plasma is avoided, and the uniform low temperature plasma can be generated in the plasma generation space 16.

しかも、後側の絶縁構造物14の隆起部24に対し平板電極15の端部が突き合わせた状態で支持されていれば、該平板電極15の端部が前記各電極棒18の給電部22に対しても離間配置されて平板電極15の端部と給電部22との間が絶縁構造物14の平面により直線的に繋がれなくなるので、プラズマ発生空間16外での絶縁構造物14の平面に沿う沿面放電も起こらなくなる。   In addition, if the end of the flat plate electrode 15 is supported against the raised portion 24 of the insulating structure 14 on the rear side, the end of the flat plate electrode 15 is connected to the feeding portion 22 of each electrode rod 18. In contrast, the end portion of the plate electrode 15 and the power feeding portion 22 are not spaced from each other and are not linearly connected by the plane of the insulating structure 14, so that the plane of the insulating structure 14 outside the plasma generation space 16 is not connected. There is no creeping discharge along.

従って、上記形態例によれば、各電極棒18と平板電極15との間で両絶縁構造物13,14の平面に沿う沿面放電を防止することができるので、放電させたい領域であるプラズマ発生空間16にて一様な低温プラズマを発生させることができ、しかも、放電させたい領域以外での無駄な放電を起こり難くして余分な電気エネルギー消費を抑制することができる。   Therefore, according to the above embodiment, it is possible to prevent creeping discharge along the planes of both insulating structures 13 and 14 between each electrode rod 18 and the plate electrode 15, so that plasma generation that is a region to be discharged is generated. Uniform low-temperature plasma can be generated in the space 16, and wasteful discharge in areas other than the region where discharge is desired is difficult to occur, and excess electric energy consumption can be suppressed.

また、特に本形態例においては、各電極棒18の給電部22と周囲の各種構造物との間に絶縁構造物14の段差部25が介在することになるので、前記給電部22と周囲の各種構造物との間での放電を起こり難くすることもでき、絶縁構造物14の外側を回り込んで給電部22と平板電極15との間で放電が起こったり、給電部22と本装置以外の構造物との間で放電が起こったりする虞れを極力回避することができて更なる電気エネルギー消費の節約を図ることができる。   Further, particularly in this embodiment, the stepped portion 25 of the insulating structure 14 is interposed between the power feeding portion 22 of each electrode rod 18 and the surrounding various structures. It is also possible to make it difficult for electric discharge to occur between various structures, and electric discharge occurs around the outside of the insulating structure 14 between the power supply unit 22 and the plate electrode 15, or other than the power supply unit 22 and this device. Therefore, it is possible to avoid as much as possible the possibility of electric discharge with the structure, and to further save electric energy consumption.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、以上に述べた形態例の説明では、通気構造の電極板を平面型の平板電極とした場合を例示しているが、通気構造の電極板として円筒型の円筒電極を採用しても良く、このようにした場合には、該円筒電極の内周面に対し一様な間隔のプラズマ発生空間を挟んで複数本の電極棒を環状に配列させるようにすれば良いこと、また、通気構造の電極板に対し円筒型以外の曲面形状を付すことも可能であること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment. In the description of the embodiment described above, the case where the electrode plate of the ventilation structure is a flat plate electrode is illustrated. However, a cylindrical cylindrical electrode may be employed as the electrode plate of the ventilation structure, and in this case, a plasma generation space having a uniform interval is sandwiched between the inner peripheral surface of the cylindrical electrode. It is only necessary to arrange a plurality of electrode rods in an annular shape, and it is also possible to attach a curved surface shape other than a cylindrical shape to the electrode plate of the ventilation structure, and does not depart from the gist of the present invention. Of course, various changes can be made within the range.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 排気浄化装置の概略構造を示す平面図である。It is a top view which shows schematic structure of an exhaust gas purification apparatus. 排気浄化装置を前側から見た斜視図である。It is the perspective view which looked at the exhaust gas purification device from the front side. 図3の前側の絶縁構造物を取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the insulation structure of the front side of FIG. 排気浄化装置を後側から見た斜視図である。It is the perspective view which looked at the exhaust gas purification device from the rear side. 図5の後側の絶縁構造物を取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the insulating structure of the rear side of FIG. 各排気浄化装置を並列に並べた状態を後側から見た斜視図である。It is the perspective view which looked at the state which arranged each exhaust gas purification device in parallel from the back side.

符号の説明Explanation of symbols

8 排気ガス
10 排気浄化装置
13 絶縁構造物
14 絶縁構造物
15 平板電極(電極板:フィルタ手段)
16 プラズマ発生空間
17 誘電体
17a 延長端部
18 電極棒
22 給電部
24 隆起部
25 段差部
8 Exhaust gas 10 Exhaust purification device 13 Insulating structure 14 Insulating structure 15 Flat plate electrode (electrode plate: filter means)
16 Plasma generation space 17 Dielectric 17a Extended end 18 Electrode rod 22 Feeding portion 24 Raised portion 25 Stepped portion

Claims (2)

通気構造の電極板と、該電極板の面に対し一様な間隔のプラズマ発生空間を挟んで配列され且つ表面を誘電体により絶縁被覆された複数本の電極棒と、電極板及びプラズマ発生空間の少なくとも何れか一方に構成されたフィルタ手段とを備え、排気ガスを電極棒の列群の隙間からプラズマ発生空間及び電極板を通過させるように流し且つ各電極板と各電極棒との間に放電に必要な電圧を印加し得るようにしたプラズマアシスト型の排気浄化装置であって、各電極棒の両端部を絶縁構造物により夫々支持するにあたり、各電極棒の一方の端部を一方の絶縁構造物を貫通させて該絶縁構造物の外側に給電部を形成せしめると共に、前記各電極棒の他方の端部に該端部より長く前記誘電体による絶縁被覆を延長形成し且つその延長端部を他方の絶縁構造物に対し貫通固定し、前記一方の絶縁構造物における反給電部側の面に前記他方の絶縁構造物側へ張り出す隆起部を形成し且つ該隆起部に対し前記電極板の端部を突き合わせた状態で支持せしめたことを特徴とする排気浄化装置。   An electrode plate having a ventilation structure, a plurality of electrode rods arranged with a plasma generation space at a uniform interval with respect to the surface of the electrode plate, and having a surface insulated by a dielectric, and the electrode plate and the plasma generation space And at least one of the filter means, the exhaust gas is allowed to flow through the plasma generation space and the electrode plate through the gap between the electrode rod rows, and between each electrode plate and each electrode rod. A plasma-assist type exhaust gas purifying apparatus capable of applying a voltage necessary for discharge, wherein each end of each electrode rod is supported by one end when each end of each electrode rod is supported by an insulating structure. A feed portion is formed outside the insulating structure through the insulating structure, and an insulating coating made of the dielectric is extended to the other end of each electrode rod longer than the end, and the extended end Insulation of the other part A ridge is formed on the surface of the one insulating structure on the side opposite to the feeding portion, and a protruding portion is projected to the other insulating structure, and the end of the electrode plate is abutted against the protruding portion. An exhaust purification device characterized by being supported in a heated state. 一方の絶縁構造物の給電部周りに該給電部を取り囲むように隆起する段差部を形成したことを特徴とする請求項1に記載の排気浄化装置。   The exhaust emission control device according to claim 1, wherein a stepped portion is formed around the power supply portion of one insulating structure so as to surround the power supply portion.
JP2004327453A 2004-11-11 2004-11-11 Exhaust purification device Expired - Fee Related JP4445374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327453A JP4445374B2 (en) 2004-11-11 2004-11-11 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327453A JP4445374B2 (en) 2004-11-11 2004-11-11 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2006138240A JP2006138240A (en) 2006-06-01
JP4445374B2 true JP4445374B2 (en) 2010-04-07

Family

ID=36619226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327453A Expired - Fee Related JP4445374B2 (en) 2004-11-11 2004-11-11 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP4445374B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100551542C (en) * 2006-06-04 2009-10-21 张寅啸 Plasmasphere frequency-conversion dirt catcher
KR102024678B1 (en) * 2019-01-10 2019-09-25 고두수 Plasma generator for agriculture and livestock industry

Also Published As

Publication number Publication date
JP2006138240A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US7510600B2 (en) Gas purifying apparatus
JP6028348B2 (en) Electric dust collector
JP2012509427A (en) Apparatus and method for purifying an exhaust gas stream of an internal combustion engine by separating particles
EP1669563B1 (en) Exhaust gas purifying device
JP2004360511A (en) Emission control device
JP2004176703A (en) Gas purification apparatus, gas purification method, and discharge reactant used for the gas purification apparatus
WO2006046628A1 (en) Exhaust gas cleaner
US20050079112A1 (en) Surface discharge non-thermal plasma reactor and method
JP4445374B2 (en) Exhaust purification device
JP4540449B2 (en) Exhaust purification device
JP2007278194A (en) Exhaust gas treatment device
JP2006144563A (en) Emission control device
JP2004261717A (en) Gas cleaning apparatus and discharge reaction body used for the same
JP2017014977A (en) Plasma reactor
JP2006138241A (en) Exhaust emission control device
JP4163997B2 (en) Exhaust purification device
JP2004340049A (en) Exhaust emission control device
JP7018283B2 (en) Plasma reactor
JP2006161595A (en) Exhaust emission purifier
JP7055669B2 (en) Plasma reactor
JP2005106022A (en) Exhaust emission control device
US8544257B2 (en) Electrically stimulated catalytic converter apparatus, and method of using same
JP2006144632A (en) Exhaust emission control device
JP4476098B2 (en) Exhaust purification device
JP2003279060A (en) Heat-exchange purifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Ref document number: 4445374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees