JP2006140034A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2006140034A
JP2006140034A JP2004328750A JP2004328750A JP2006140034A JP 2006140034 A JP2006140034 A JP 2006140034A JP 2004328750 A JP2004328750 A JP 2004328750A JP 2004328750 A JP2004328750 A JP 2004328750A JP 2006140034 A JP2006140034 A JP 2006140034A
Authority
JP
Japan
Prior art keywords
expanded
lead
positive electrode
electrode plate
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004328750A
Other languages
Japanese (ja)
Other versions
JP4691962B2 (en
Inventor
Yoshibumi Hisama
義文 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004328750A priority Critical patent/JP4691962B2/en
Publication of JP2006140034A publication Critical patent/JP2006140034A/en
Application granted granted Critical
Publication of JP4691962B2 publication Critical patent/JP4691962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery having superior high-rate discharge characteristics and high lifetime characteristics in the lead-acid battery that uses expanded grids for the positive electrode. <P>SOLUTION: In the lead-acid battery using the expanded grid formed by expanding a rolled lead alloy sheet into a mesh shape in a positive electrode, the volume of the expanded mesh part of the expanded grid is made 20% or higher of the apparent volume of the expanded mesh part, the height of a plurality of ribs, installed in parallel with the vertical directions on the surface facing the positive plate of a separator, arranged in between the positive plate and a negative plate and made of microporous polyethylene is made 0.6 mm or smaller, and the distance (a) between the ribs adjoining each other is made equal to or smaller than the mesh width dimension (b) of the expanded grid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

始動用鉛蓄電池は、−25℃〜80℃といった極低温から高温の幅広い温度でのエンジン始動のための急放電特性が要求される。近年では、自動車の小型化、室内空間の拡大により、エンジンルームの縮小が進んでいる。これに合わせ、エンジンルーム内に搭載されるに電池も小形化のニーズが強まっている。   Lead-acid batteries for start-up are required to have rapid discharge characteristics for starting the engine at a wide range of temperatures from extremely low temperatures to -25 ° C to 80 ° C. In recent years, engine rooms have been shrinking due to miniaturization of automobiles and expansion of indoor spaces. In line with this trend, there is an increasing need for downsizing batteries as they are installed in the engine room.

始動用鉛蓄電池の中でも、極板が電解液に浸漬され、電池内が液口栓を介して電池外部と連通している、液式・開放型の鉛蓄電池は、正極活物質としての二酸化鉛と格子体で構成された正極板と負極活物質としての海綿状鉛と格子体とから構成された負極板とを、微孔を有したポリエチレンシートの袋状セパレータに一方の極性の極板を袋詰め隔離し、同極性の極板を集合溶接して極板群とし、この極板群を用いて組み立てられる。   Among lead-acid batteries for start-up, a liquid type / open-type lead-acid battery in which the electrode plate is immersed in the electrolyte and the inside of the battery communicates with the outside of the battery via a liquid plug is lead dioxide as a positive electrode active material. A positive electrode plate composed of a grid and a negative electrode plate composed of spongy lead as a negative electrode active material and a grid, and a polar plate of one polarity on a polyethylene sheet bag separator Bags are isolated and assembled, and electrode plates of the same polarity are collectively welded to form an electrode plate group, and assembled using this electrode plate group.

近年、鉛蓄電池の自己放電特性や減液性能を改善するために、正極および負極の格子にSbを含まない、Pb−Ca合金を用いることが行われている。また、正極格子には、Pbを主体とし、CaとSnを含む鉛合金を溶融し、鋳造型に鋳込むことによって成型した鋳造格子や、この鉛合金から作成したスラブを圧延して圧延鉛合金シートとした後、エキスパンド加工を施した、図1に示したエキスパンド格子10が用いられる。特に、エキスパンド格子10は鋳造格子に比較して生産性に優れるため、広く採用されている。   In recent years, in order to improve the self-discharge characteristics and liquid reduction performance of a lead-acid battery, a Pb—Ca alloy that does not contain Sb is used in the lattice of the positive electrode and the negative electrode. In addition, the positive grid is made of Pb, a lead alloy containing Ca and Sn, melted and cast into a casting mold, and a slab made from this lead alloy is rolled to produce a rolled lead alloy. After forming into a sheet, the expanded lattice 10 shown in FIG. In particular, the expanded lattice 10 is widely adopted because it has higher productivity than a cast lattice.

また、酸化力の強い正極活物質とセパレータ面とが直接接触すると、セパレータ面が酸化し、セパレータ面に穴明きや亀裂が発生するため、セパレータ面の正極板に対向する側に正極板上下方向に複数本のリブを互いに平行に設けることが行われている(例えば特許文献1参照)。   In addition, if the positive electrode active material having strong oxidizing power and the separator surface are in direct contact, the separator surface is oxidized, and the separator surface is perforated and cracked. A plurality of ribs are provided in parallel in the direction (see, for example, Patent Document 1).

鉛蓄電池の急放電特性を改善し、放電電圧を高める手段として、正極活物質の集電性を高めるため、格子骨の体積を増加させることが有効である。   As a means for improving the rapid discharge characteristics of the lead-acid battery and increasing the discharge voltage, it is effective to increase the volume of the lattice bone in order to increase the current collecting property of the positive electrode active material.

また、急放電特性を高める他の手段として、正極−負極間の距離を短くすることが有効である。前記したようなポリエチレンの袋状セパレータを用いる場合、正極板面側に設けたリブの高さを低くすることにより、正極−負極間の距離を短くできる。   As another means for improving the rapid discharge characteristics, it is effective to shorten the distance between the positive electrode and the negative electrode. When using the polyethylene bag-shaped separator as described above, the distance between the positive electrode and the negative electrode can be shortened by reducing the height of the rib provided on the positive electrode plate surface side.

そして、特にエキスパンド格子を正極格子に用いた鉛蓄電池において、急放電特性を向上するために、エキスパンド網目部の見掛体積内のエキスパンド網目体積の占める割合を増加させ、袋状セパレータ表面のリブの高さを低くした場合、電池の使用中に正極板が波打つ様に変形して正極板面が袋状セパレータと接触し、この接触部で袋セパレータに穴あきが発生し、正極と負極が短絡して比較的早期に寿命低下するという課題があった。
特開平9−231995号公報
In order to improve the rapid discharge characteristics, particularly in a lead storage battery using an expanded lattice as a positive electrode lattice, the proportion of the expanded mesh volume in the apparent volume of the expanded mesh portion is increased, and the ribs on the surface of the bag-like separator are increased. When the height is lowered, the positive electrode plate is deformed so that it undulates during use of the battery, the positive electrode plate surface comes into contact with the bag-like separator, and the bag separator is perforated at this contact portion, and the positive and negative electrodes are short-circuited. As a result, there is a problem that the life is reduced relatively early.
Japanese Patent Laid-Open No. 9-231995

本発明は前記したような出力特性向上を目的として、正極においてエキスパンド網目部の見掛体積内のエキスパンド網目体積の占める割合を増加させ、袋状セパレータ面に形成したリブの高さを低く設定した鉛蓄電池において発生する正極板と袋状セパレータとの接触とこれによるセパレータの劣化を抑制し、寿命特性と急放電特性に優れた鉛蓄電池を提供するものである。   In the present invention, for the purpose of improving the output characteristics as described above, the proportion of the expanded mesh volume in the apparent volume of the expanded mesh portion in the positive electrode is increased, and the height of the rib formed on the bag-like separator surface is set low. The present invention provides a lead storage battery excellent in life characteristics and rapid discharge characteristics by suppressing contact between a positive electrode plate and a bag-like separator generated in the lead storage battery and deterioration of the separator due to the contact.

前記した課題を解決するために、本発明の請求項1に係る発明は、正極板に圧延鉛合金シートを網目状に展開したエキスパンド格子を用いた鉛蓄電池において、前記エキスパンド格子のエキスパンド網目部の体積をエキスパンド網目部の見掛体積の20%以上、かつ正負極板間に配置される微孔性ポリエチレンからなるセパレータの前記正極板に対向する面に上下方向に複数本平行に設けたリブ高さが0.6mm以下であって、隣接しあう前記リブの間隔(a)を前記エキスパンド格子のマス目幅寸法(b)以下としたことを特徴とする鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is a lead-acid battery using an expanded lattice in which a rolled lead alloy sheet is developed in a mesh shape on a positive electrode plate, and the expanded mesh portion of the expanded lattice A rib height provided in parallel with a plurality of vertical separators on the surface facing the positive electrode plate of a separator made of microporous polyethylene disposed between the positive and negative electrode plates and having a volume of 20% or more of the apparent volume of the expanded mesh portion. The lead-acid battery is characterized in that the distance (a) between the adjacent ribs is 0.6 mm or less and the grid width dimension (b) of the expanded lattice is less than or equal to.

前記したような本発明の構成によれば、電池の急放電特性向上を目的とし、正極のエキスパンド網目部の体積をエキスパンド網目部の見掛体積の20%以上、かつセパレータの正極板との対向面に形成したリブの高さが0.6mm以上とした鉛蓄電池において、正極板面に波打ち状の変形が生じた場合でも、リブの間隔(a)をエキスパンド格子のマス目幅寸法(b)以下とすることにより、リブ間で正極板とセパレータ面とが直接接触することが抑制できる。   According to the configuration of the present invention as described above, for the purpose of improving the rapid discharge characteristics of the battery, the volume of the expanded mesh portion of the positive electrode is 20% or more of the apparent volume of the expanded mesh portion, and facing the positive electrode plate of the separator. In a lead-acid battery in which the height of the ribs formed on the surface is 0.6 mm or more, even when wavy deformation occurs on the surface of the positive electrode plate, the rib spacing (a) is the grid width dimension (b) of the expanded lattice. By setting it as the following, it can suppress that a positive electrode plate and a separator surface contact between ribs directly.

これにより、セパレータ面の酸化劣化が抑制され、従来発生していた、セパレータ面の酸化劣化による穴あきと、これによる短絡、さらには短絡による電池の短寿命を抑制することができる。その結果、急放電特性と寿命と寿命特性に優れた鉛蓄電池を得ることができる。   Thereby, the oxidative deterioration of the separator surface is suppressed, and the perforation due to the oxidative deterioration of the separator surface, the short circuit caused by this, and the short life of the battery due to the short circuit can be suppressed. As a result, a lead storage battery excellent in rapid discharge characteristics, life and life characteristics can be obtained.

本発明の実施の形態による鉛蓄電池の構成を説明する。   A configuration of the lead storage battery according to the embodiment of the present invention will be described.

本発明の鉛蓄電池は正極格子として図1に示したエキスパンド格子1を備える。エキスパンド格子1はPb−Ca−Sn合金からなる圧延シートをエキスパンド加工したものであり、エキスパンド網目部11と枠骨12および枠骨12に一体に設けられた耳部13を有している。   The lead acid battery of the present invention includes the expanded grid 1 shown in FIG. 1 as a positive grid. The expanded lattice 1 is obtained by expanding a rolled sheet made of a Pb—Ca—Sn alloy, and has an expanded mesh portion 11, a frame bone 12, and an ear portion 13 provided integrally with the frame bone 12.

Pb−Ca−Sn合金の組成は、正極に用いた場合での耐食性や格子強度を考慮して、0.6〜2.0質量%程度のSn、0.01〜0.10質量%程度のCaを含む。また、0.001〜0.1質量%程度のBaやAgを添加することも好ましい。なお、Caを含む鉛合金は合金成分調整の際にCaが酸化により減少する。このCaの酸化を抑制するために鉛合金中に0.005〜0.02質量%程度のAlを添加することは本発明の効果を得る上でなんら問題ではない。   The composition of the Pb—Ca—Sn alloy is about 0.6 to 2.0% by mass of Sn and about 0.01 to 0.10% by mass in consideration of corrosion resistance and lattice strength when used for the positive electrode. Contains Ca. Moreover, it is also preferable to add about 0.001 to 0.1 mass% Ba and Ag. In addition, in the lead alloy containing Ca, Ca decreases due to oxidation when the alloy components are adjusted. In order to suppress this oxidation of Ca, adding about 0.005 to 0.02 mass% of Al in the lead alloy is not a problem in obtaining the effects of the present invention.

また、鉛合金中に不可避的に含まれる0.005〜0.02質量%程度のBiを含んでもよい。また、鉛蓄電池の深放電寿命特性や耐過放電特性を向上させるために、正極格子表面にPb−Sb合金、Pb−Sn合金、Pb−Ba合金やPb−Ag合金の層を形成してもよい。   Moreover, about 0.005-0.02 mass% Bi contained unavoidable in a lead alloy may be included. Moreover, even if a Pb—Sb alloy, Pb—Sn alloy, Pb—Ba alloy or Pb—Ag alloy layer is formed on the surface of the positive electrode lattice in order to improve the deep discharge life characteristics and overdischarge resistance characteristics of the lead storage battery. Good.

上記のエキスパンド格子体に正極活物質を充填し正極板とする。本発明では急放電特性を向上させるため、正極のエキスパンド格子10の格子骨、すなわちエキスパンド網目部11の体積をエキスパンド網目部11の見掛体積の20%以上とする。エキスパンド網目部の体積はエキスパンド網目部11の質量を鉛合金の密度で除することにより算出できる。なお、本発明において、エキスパンド網目部11の見掛体積とはエキスパンド網目部11の体積とこの網目部によって形成されたマス目の容積の和を意味する。したがって、本発明におけるエキスパンド網目部11の見掛体積はエキスパンド網目部11の高さ寸法(図1におけるH寸法)と幅寸法(図1におけるW寸法)およびエキスパンド網目部11の厚み寸法の積により求める。なお、エキスパンド網目部11の厚み寸法がエキスパンド格子10の高さ方向で異なる場合は、各点で計測した厚み寸法の平均値を用いて算出すればよい。   The above expanded grid is filled with a positive electrode active material to form a positive electrode plate. In the present invention, in order to improve rapid discharge characteristics, the lattice bone of the expanded lattice 10 of the positive electrode, that is, the volume of the expanded mesh portion 11 is set to 20% or more of the apparent volume of the expanded mesh portion 11. The volume of the expanded network part can be calculated by dividing the mass of the expanded network part 11 by the density of the lead alloy. In the present invention, the apparent volume of the expanded mesh portion 11 means the sum of the volume of the expanded mesh portion 11 and the volume of the grid formed by the mesh portion. Therefore, the apparent volume of the expanded mesh portion 11 in the present invention depends on the product of the height dimension (H dimension in FIG. 1) and the width dimension (W dimension in FIG. 1) and the thickness dimension of the expanded mesh portion 11. Ask. In addition, what is necessary is just to calculate using the average value of the thickness dimension measured in each point, when the thickness dimension of the expanded mesh part 11 differs in the height direction of the expanded grating | lattice 10. FIG.

上記の正極板と常法による負極板および図2に示した微孔性ポリエチレンのセパレータ20と負極板とを組み合わせて極板群とする。セパレータ20は電池用セパレータとしての機能を提供するため、電解液を透過し、かつ活物質を通過させない程度、例として10〜50μm径以下の孔を有したものを用いる。また、セパレータ20の正極板との対向面21には上下方向に複数本のリブ22を互いに平行に設ける。   The positive electrode plate, the negative electrode plate by a conventional method, and the microporous polyethylene separator 20 and the negative electrode plate shown in FIG. 2 are combined to form an electrode plate group. Since the separator 20 provides a function as a battery separator, a separator having a hole with a diameter of 10 to 50 μm or less, for example, is used to the extent that it allows the electrolytic solution to pass therethrough and does not allow the active material to pass therethrough. A plurality of ribs 22 are provided in parallel with each other on the surface 21 of the separator 20 facing the positive electrode plate in the vertical direction.

図3はセパレータ20の断面を示す図である。本発明では、リブ22の高さ(図3におけるc寸法)は0.6mm以下であって、隣接しあうリブ22の間隔(図3におけるa寸法)をエキスパンド格子10のマス目幅寸法(図1におけるb寸法)以下とする。そして、この極板群を用いて常法により鉛蓄電池を組み立てることにより、本発明の鉛蓄電池を得る。これにより、正極板面に波打ちが発生した場合においても、正極板面とセパレータとの接触と、これによるセパレータの酸化劣化を抑制することができる。   FIG. 3 is a view showing a cross section of the separator 20. In the present invention, the height of the ribs 22 (c dimension in FIG. 3) is 0.6 mm or less, and the interval between the adjacent ribs 22 (a dimension in FIG. 3) is set to the grid width dimension of the expanded lattice 10 (FIG. 3). B dimension in 1) or less. And the lead storage battery of this invention is obtained by assembling a lead storage battery by a conventional method using this electrode group. Thereby, even when the undulation occurs on the positive electrode plate surface, the contact between the positive electrode plate surface and the separator and the oxidative deterioration of the separator due to this can be suppressed.

リブ22の間隔(a)がエキスパンド格子10のマス目幅寸法(b)よりも大である場合、波打ち状に変形した正極板がリブ22間でセパレータ面と接触するため、セパレータの酸化劣化とこれによる内部短絡が発生する。なお、リブ間隔寸法(a)を減少させた場合、セパレータ面の内部短絡は抑制できるが、過度に減少させた場合、セパレータ面と正極板面間の電解液量が減少し、高率放電時の放電電圧や持続時間が低下するため、これらの特性が低下しない範囲でリブ間寸法(a)の下限値を設定すればよい。実用的にはb≧a≧0.2bの範囲内で設定すればよい。   When the interval (a) of the ribs 22 is larger than the grid width dimension (b) of the expanded lattice 10, the positive electrode plate deformed in a wavy shape comes into contact with the separator surface between the ribs 22. This causes an internal short circuit. When the rib interval dimension (a) is reduced, internal short-circuiting on the separator surface can be suppressed. However, when it is excessively reduced, the amount of electrolyte between the separator surface and the positive electrode plate surface is reduced, and during high-rate discharge. Since the discharge voltage and the duration time are reduced, the lower limit value of the inter-rib dimension (a) may be set within a range in which these characteristics do not deteriorate. Practically, it may be set within the range of b ≧ a ≧ 0.2b.

なお、エキスパンド網目部11の体積をエキスパンド網目部11の見掛体積の20%以上とすることにより、出力特性は向上する。この比率を大きくするほど、出力特性は向上する反面、エキスパンド網目部11への活物質充填容積は減少するため、蓄電池の放電容量が低下する。したがって、所望する放電容量に応じて上記の比率の上限値を決定すべきであり、例えば該比率の上限を35%に設定することができる。   The output characteristic is improved by setting the volume of the expanded mesh portion 11 to 20% or more of the apparent volume of the expanded mesh portion 11. As the ratio is increased, the output characteristics are improved, but the active material filling volume in the expanded mesh portion 11 is decreased, so that the discharge capacity of the storage battery is decreased. Therefore, the upper limit value of the ratio should be determined according to the desired discharge capacity. For example, the upper limit of the ratio can be set to 35%.

また、本発明においてはリブの高さ寸法(c)を0.6mm以下とすることにより、良好な出力特性を得るものであるが、高さ寸法(c)が低くなりすぎた場合、図4に示したように、脱落活物質41がセパレータ20の正極板との対向面21と正極板42間に挟まり、脱落活物質41が対向面21と正極板42に同時に接触した状態となる。脱落活物質41は正極板42と接触することにより、正極活物質と同様の二酸化鉛へと酸化されるため、対向面21の脱落活物質41との接触箇所で酸化劣化が進行し、穴あきが発生する。したがって、リブの高さ寸法(c)は脱落活物質の外径よりも大きく設定することが好ましく、実用上、0.2mm以上とすればよい。   Further, in the present invention, by setting the rib height dimension (c) to 0.6 mm or less, good output characteristics can be obtained, but when the height dimension (c) becomes too low, FIG. As shown in FIG. 5, the falling active material 41 is sandwiched between the facing surface 21 of the separator 20 facing the positive electrode plate and the positive electrode plate 42, and the falling active material 41 is in contact with the facing surface 21 and the positive electrode plate 42 simultaneously. Since the falling active material 41 comes into contact with the positive electrode plate 42 and is oxidized to lead dioxide similar to the positive electrode active material, oxidation deterioration proceeds at the contact point with the falling active material 41 on the facing surface 21, and there is a hole. Will occur. Therefore, the height dimension (c) of the rib is preferably set larger than the outer diameter of the falling active material, and may be 0.2 mm or more practically.

本発明は上記の構成を有することにより、出力特性に優れ、かつ正極板とセパレータとが直接接触することによる酸化劣化を抑制し、長寿命の鉛蓄電池を得ることができる。   By having the above-described configuration, the present invention is excellent in output characteristics and suppresses oxidative deterioration due to direct contact between the positive electrode plate and the separator, and a long-life lead-acid battery can be obtained.

なお、エキスパンド格子におけるエキスパンド網目11の見掛体積に対するエキスパンド網目の体積の比率が20%未満である場合、放電電圧が低下し、電池出力が低下するため、好ましくない。   In addition, when the ratio of the volume of the expanded mesh to the apparent volume of the expanded mesh 11 in the expanded lattice is less than 20%, the discharge voltage decreases and the battery output decreases, which is not preferable.

なお、セパレータ20は従来のように、袋状とし、袋内部に正極もしくは負極を収納した構成を用いればよい。   The separator 20 may have a bag shape as in the past, and a configuration in which a positive electrode or a negative electrode is accommodated inside the bag may be used.

図1に示したエキスパンド格子10を正極格子として、図2および図3に示したセパレータ20を用いて実施例による始動用の鉛蓄電池(以下、電池)を作成した。なお、本実施例において、エキスパンド網目部11の体積Vgとエキスパンド網目部11の見掛体積Vの比率(Vg/V)と、マス目幅寸法(b)およびセパレータ表面に形成したリブ22の高さ(図3におけるc寸法)およびリブ22間の寸法(図2および図3におけるa寸法)を種々変更して組み合わせ、表1および表2に示す始動用の鉛蓄電池を作成した。   Using the expanded grid 10 shown in FIG. 1 as a positive grid, a lead storage battery (hereinafter referred to as a battery) for start-up according to the example was prepared using the separator 20 shown in FIGS. In this example, the ratio (Vg / V) of the volume Vg of the expanded mesh portion 11 and the apparent volume V of the expanded mesh portion 11 (Vg / V), the grid width dimension (b), and the height of the rib 22 formed on the separator surface. The starting lead-acid batteries shown in Tables 1 and 2 were prepared by variously changing and combining the dimension (c dimension in FIG. 3) and the dimension between ribs 22 (a dimension in FIGS. 2 and 3).

なお、比率(Vg/V)は百分率(100Vg/V)として、35.0%、20.0%、18.0および15.0%に変化させた。また、マス目幅寸法bは15.0mm、9.0mmおよび15.0mmとした。また、リブ高さ寸法cは0.3mm、0.6mmおよび0.8mmとした。   The ratio (Vg / V) was changed to 35.0%, 20.0%, 18.0 and 15.0% as a percentage (100 Vg / V). The grid width dimension b was 15.0 mm, 9.0 mm, and 15.0 mm. The rib height dimension c was 0.3 mm, 0.6 mm, and 0.8 mm.

ここで、Vgはエキスパンド網目部11の質量を鉛合金の密度で除することにより算出することができる。また、エキスパンド格子の素材である圧延鉛合金シートにおいて、エキスパンド加工で上部の枠骨12に最も隣接したスリットから上部の枠骨12から最も離れたスリット間の長さとエキスパンド格子幅(図1における寸法W)と圧延鉛合金シート厚との積によってもエキスパンド網目部11の質量が算出でき、この質量を鉛合金の密度で除することによっても算出できる。   Here, Vg can be calculated by dividing the mass of the expanded mesh part 11 by the density of the lead alloy. Further, in the rolled lead alloy sheet, which is the material of the expanded lattice, the length between the slit most distant from the upper frame bone 12 and the expanded lattice width (the dimensions in FIG. The mass of the expanded mesh part 11 can also be calculated by the product of W) and the rolled lead alloy sheet thickness, and can also be calculated by dividing this mass by the density of the lead alloy.

また、エキスパンド網目部11の見掛体積は、図1におけるエキスパンド網目部11の高さ寸法Hと、エキスパンド網目部11の幅寸法Wとエキスパンド網目部11の厚み寸法との積により算出することができる。なお、エキスパンド網目部11の厚みがエキスパンド格子上部と下部で異なる場合は、各部の厚みから平均格子厚みを求め、これとエキスパンド網目部11の幅寸法Wと高さ寸法Hとの積として求めればよい。   Further, the apparent volume of the expanded mesh part 11 can be calculated by the product of the height dimension H of the expanded mesh part 11 in FIG. 1, the width dimension W of the expanded mesh part 11 and the thickness dimension of the expanded mesh part 11. it can. In addition, when the thickness of the expanded mesh part 11 is different between the upper part and the lower part of the expanded lattice, the average lattice thickness is obtained from the thickness of each part, and the product of the width dimension W and the height dimension H of the expanded mesh part 11 is obtained. Good.

例えば、エキスパンド網目部の高さ寸法の上部20%の部分の厚みがt1、残りの部分(下部から高さ寸法80%の部分)の厚みがt2である場合、平均厚みはこれらの荷重平均(0.2t1+0.8t2)によって与えられる。 For example, when the thickness of the upper 20% portion of the height dimension of the expanded mesh portion is t 1 and the thickness of the remaining portion (portion having a height dimension of 80% from the lower portion) is t 2 , the average thickness is the load of these. It is given by the average (0.2t 1 + 0.8t 2 ).

表1および表2の電池の構成をさらに説明する。実施例に用いた上述の正極用エキスパンド格子はPb−0.06質量%Ca−1.60質量%Snの圧延鉛合金シートをエキスパンド加工して得た。このエキスパンド格子に、酸化度75%の酸化鉛粉を硫酸と精製水とで混練して得た、密度4.20g/cm3の活物質ペーストを充填し、熟成乾燥して正極板とした。 The configuration of the batteries in Table 1 and Table 2 will be further described. The above-described expanded grid for positive electrode used in the examples was obtained by expanding a rolled lead alloy sheet of Pb-0.06 mass% Ca-1.60 mass% Sn. This expanded lattice was filled with an active material paste having a density of 4.20 g / cm 3 obtained by kneading lead oxide powder having an oxidation degree of 75% with sulfuric acid and purified water, and aged and dried to obtain a positive electrode plate.

また、負極板は、Pb−0.06質量%Ca−0.25質量%Snの圧延鉛合金シート)をエキスパンド加工して得た負極用エキスパンド格子に、酸化度70%の鉛粉に、所定量のリグニンスルフォン酸ナトリウム、カーボン(アセチレンブラック)及び硫酸バリウムを添加して、硫酸と精製水で混練して得た密度4.50g/cm3の活物質ペーストを充填し、熟成乾燥して負極板を作成した。 Further, the negative electrode plate was obtained by expanding a negative lead expanded lattice obtained by expanding Pb-0.06 mass% Ca-0.25 mass% Sn rolled lead alloy sheet), with 70% oxidation degree lead powder. A fixed amount of sodium lignin sulfonate, carbon (acetylene black) and barium sulfate were added, and an active material paste with a density of 4.50 g / cm 3 obtained by kneading with sulfuric acid and purified water was filled, aged and dried, and the negative electrode A board was created.

上記の正極板と負極板およびセパレータを組み合わせ、表1に示した構成の電池を作成したが、いずれの電池も1セル当たりの極板構成枚数を正極7枚、負極8枚として、上記の微孔性ポリエチレンからなる袋状セパレータ中に負極板を収納した。したがって、袋状パレータの袋外側の正極板との対向面に互いに平行な複数本のリブが上下方向に形成されている。この極板群を用い、極板がすべて電解液に浸漬された、JIS D5301(始動用鉛蓄電池)で規定する80D26形(12V55Ah)の電池を作成した。   A battery having the configuration shown in Table 1 was prepared by combining the positive electrode plate, the negative electrode plate, and the separator described above. However, in each battery, the number of electrode plates per cell was set to 7 positive electrodes and 8 negative electrodes. The negative electrode plate was accommodated in a bag-like separator made of porous polyethylene. Therefore, a plurality of ribs parallel to each other are formed in the vertical direction on the surface of the bag-like palator facing the positive electrode plate outside the bag. Using this electrode plate group, a battery of 80D26 type (12V55Ah) defined by JIS D5301 (lead storage battery for starting), in which all the electrode plates were immersed in an electrolytic solution, was prepared.

表1および表2の各電池について、低温急放電特性試験および寿命試験を行った。これら各試験の試験条件を以下に示す。
(1)低温急放電特性試験(試験温度−15℃)
1)放電:300A放電(放電終止電圧6.0V)
上記の放電での放電5秒目電圧V5と放電持続時間を計測。
(2)寿命試験(試験温度75℃)
1)放電:25A×2分
2)充電:14.8V定電圧(最大電流25A)×10分
3)判定放電:291A×5秒
上記1)放電と2)充電の放電−充電サイクルを480回行った後、同一環境下で3)の判定放電を行い、5秒目電圧が7.2V以下になった時点を寿命とする。
About each battery of Table 1 and Table 2, the low temperature rapid discharge characteristic test and the life test were done. Test conditions for each of these tests are shown below.
(1) Low temperature rapid discharge characteristics test (test temperature -15 ° C)
1) Discharge: 300 A discharge (end-of-discharge voltage 6.0 V)
Measure the discharge voltage V 5 and discharge duration in the above discharge.
(2) Life test (test temperature 75 ° C)
1) Discharge: 25A × 2 minutes 2) Charge: 14.8V constant voltage (maximum current 25A) × 10 minutes 3) Judgment discharge: 291A × 5 seconds Above 1) Discharge and 2) Discharge-charge cycle of 480 times After performing, the determination discharge of 3) is performed under the same environment, and the time when the voltage at the 5th second becomes 7.2 V or less is regarded as the life.

表1および表2に示した各電池の低温急放電特性試験および寿命試験の結果を表3および表4に示す。   Tables 3 and 4 show the results of the low temperature rapid discharge characteristic test and the life test of each battery shown in Tables 1 and 2.

表3および表4よりに示した結果より、比率(100×Vg/V)が18%以下の比較例(A19〜A36、B19〜B36)の電池では、5秒目電圧V5は9.2〜9.45V、放電持続時間は3.1〜3.3の範囲内であった。また、寿命サイクル数は3500〜3920サイクルであった。寿命試験終了後の電池を分解したところ、正極板が上下方向にのび、正極板から活物質が脱落するとともに、伸びた正極板の上端が負極板の上端と微接触し、微小短絡により寿命となっていた。 From the results shown in Table 3 and Table 4, in the batteries of Comparative Examples (A19 to A36, B19 to B36) in which the ratio (100 × Vg / V) is 18% or less, the voltage V 5 at the 5th second is 9.2. ˜9.45 V, discharge duration was within the range of 3.1 to 3.3. Moreover, the number of life cycles was 3500-3920 cycles. When the battery after the end of the life test was disassembled, the positive electrode plate extended vertically, the active material dropped off from the positive electrode plate, and the upper end of the extended positive electrode plate slightly contacted with the upper end of the negative electrode plate. It was.

比率(100×Vg/V)を20%以上とし、エキスパンド格子のマス目幅寸法b以下にセパレータのリブ間寸法aを設定し、かつセパレータのリブ高さ寸法cを0.6mm以下とした本発明の電池は、5秒目電圧V5が9.65〜9.75V、放電持続時間は3.6〜3.6分、寿命サイクル数は4180〜4360であり、前述の比較例の電池よりも極めて優れた低温放電特性と寿命特性を有していた。また、寿命試験終了後の電池を分解調査したところ、正極板は波打ち状に変形するものの、セパレータ面に設けたリブにより、正極板面とセパレータ面との接触が抑制されており、穴あきや亀裂といった内部短絡にいたるような、顕著なセパレータの劣化は認められなかった。 The ratio (100 × Vg / V) is set to 20% or more, the inter-rib dimension a of the separator is set to be less than or equal to the expanded grid grid width dimension b, and the separator rib height dimension c is 0.6 mm or less. The battery of the invention has a 5 second voltage V 5 of 9.65 to 9.75 V, a discharge duration of 3.6 to 3.6 minutes, and a life cycle number of 4180 to 4360. Also had very good low-temperature discharge characteristics and life characteristics. In addition, when the battery after the life test was disassembled and investigated, the positive electrode plate was deformed in a wavy shape, but the rib provided on the separator surface suppressed contact between the positive electrode plate surface and the separator surface, so There was no noticeable deterioration of the separator that led to an internal short circuit such as a crack.

一方、比率(100×Vg/V)を20%以上、かつセパレータのリブ高さ寸法cを0.6mm以下とした場合において、リブ間寸法aをマス目幅寸法bを越えて長くした比較例の電池(A2、A3、A11、A12、B2、B3、B11、B12)は、良好な低温急放電特性を有していたが、寿命サイクル数は2120〜3120と、本発明例の電池に対して短寿命であった。これらの電池を分解調査したところ、正極板が波打ち状に変形し、セパレータ面と正極板面とが接触することにより、セパレータに亀裂が発生し、正極板面と負極板面とが直接接触し、内部短絡していた。   On the other hand, in the case where the ratio (100 × Vg / V) is 20% or more and the rib height dimension c of the separator is 0.6 mm or less, the comparative example in which the inter-rib dimension a is longer than the grid width dimension b. The batteries (A2, A3, A11, A12, B2, B3, B11, B12) had good low-temperature rapid discharge characteristics, but the life cycle number was 2120-3120, compared to the battery of the present invention example Short life. When these batteries were disassembled and investigated, the positive electrode plate was deformed in a wavy shape, and when the separator surface and the positive electrode plate surface contacted, a crack occurred in the separator, and the positive electrode plate surface and the negative electrode plate surface were in direct contact. The internal short circuit.

また、比率(100×Vg/V)を20%以上とし、エキスパンド格子のマス目幅寸法b以下にセパレータのリブ間寸法aを設定し、かつセパレータのリブ高さ寸法cを0.6mmを越え、0.8mmとした比較例の電池(A4、A7、A13、A16、B4、B7、B13、B16)は、良好な寿命特性を有しているものの、低温急放電特性に極めて劣っていた。したがって、本発明においては、リブ高さを0.6mm以下とすることが必要である。   Further, the ratio (100 × Vg / V) is set to 20% or more, the inter-rib dimension a of the separator is set to be equal to or smaller than the grid width dimension b of the expanded lattice, and the rib height dimension c of the separator exceeds 0.6 mm. The batteries of comparative examples (A4, A7, A13, A16, B4, B7, B13, B16) with a thickness of 0.8 mm had excellent life characteristics but were extremely inferior in low-temperature rapid discharge characteristics. Therefore, in the present invention, the rib height needs to be 0.6 mm or less.

以上、説明してきたように本発明の構成によれば、鉛蓄電池の低温高率放電特性と寿命特性を顕著に改善することから、始動用鉛蓄電池として好適である。   As described above, according to the configuration of the present invention, the low-temperature high-rate discharge characteristics and the life characteristics of the lead-acid battery are remarkably improved, so that it is suitable as a start-up lead-acid battery.

エキスパンド格子を示す図Diagram showing the expanded grid セパレータを示す図Diagram showing separator セパレータの断面を示す図The figure which shows the section of the separator 正極板−セパレータ断面を示す図Figure showing positive electrode plate-separator cross section

符号の説明Explanation of symbols

10 エキスパンド格子
11 エキスパンド網目部
12 枠骨
13 耳部
20 セパレータ
21 (正極板との)対向面
22 リブ
41 脱落活物質
42 正極板
DESCRIPTION OF SYMBOLS 10 Expanded lattice 11 Expanded mesh part 12 Frame bone 13 Ear | edge part 20 Separator 21 Opposite surface (with positive electrode plate) 22 Rib 41 Drop-off active material 42 Positive electrode plate

Claims (1)

正極板に圧延鉛合金シートを網目状に展開したエキスパンド格子を用いた鉛蓄電池であって、前記エキスパンド格子において、エキスパンド網目部の体積をエキスパンド網目部の見掛体積の20%以上、かつ正負極板間に配置される微孔性ポリエチレンからなるセパレータの前記正極板に対向する面に上下方向に複数本平行に設けたリブ高さが0.6mm以下であって、隣接しあう前記リブの間隔(a)を前記エキスパンド格子のマス目幅寸法(b)以下としたことを特徴とする鉛蓄電池。 A lead-acid battery using an expanded lattice in which a rolled lead alloy sheet is developed in a mesh pattern on a positive electrode plate, wherein the expanded mesh portion has a volume of 20% or more of an apparent volume of the expanded mesh portion and a positive and negative electrode The height of the ribs provided in parallel in the vertical direction on the surface facing the positive electrode plate of the separator made of microporous polyethylene disposed between the plates is 0.6 mm or less, and the interval between the adjacent ribs A lead-acid battery characterized in that (a) is not larger than the grid width dimension (b) of the expanded lattice.
JP2004328750A 2004-11-12 2004-11-12 Lead acid battery Active JP4691962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328750A JP4691962B2 (en) 2004-11-12 2004-11-12 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328750A JP4691962B2 (en) 2004-11-12 2004-11-12 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006140034A true JP2006140034A (en) 2006-06-01
JP4691962B2 JP4691962B2 (en) 2011-06-01

Family

ID=36620726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328750A Active JP4691962B2 (en) 2004-11-12 2004-11-12 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4691962B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
CN102867941A (en) * 2012-09-19 2013-01-09 安徽新能电源科技有限公司 Maintenance-free electromobile pole plate with integrated flat plate pipe
WO2013008383A1 (en) * 2011-07-11 2013-01-17 パナソニック株式会社 Lead storage cell
CN104078638A (en) * 2013-03-29 2014-10-01 松下蓄电池(沈阳)有限公司 Lead storage battery
JP5866702B2 (en) * 2014-01-15 2016-02-17 パナソニックIpマネジメント株式会社 Lead acid battery
CN106981690A (en) * 2017-04-01 2017-07-25 深圳市佰特瑞储能系统有限公司 A kind of direct-connected winding battery of multi-cell
JP2020098761A (en) * 2018-12-18 2020-06-25 古河電池株式会社 Lead acid storage battery
WO2021084878A1 (en) * 2019-10-28 2021-05-06 株式会社Gsユアサ Lead storage battery
WO2021084879A1 (en) * 2019-10-28 2021-05-06 株式会社Gsユアサ Lead acid storage battery
JP2021111617A (en) * 2020-01-09 2021-08-02 古河電池株式会社 Liquid type lead storage battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149772A (en) * 1980-04-18 1981-11-19 Yuasa Battery Co Ltd Grid for lead battery
JP2000173575A (en) * 1998-09-18 2000-06-23 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2000348735A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JP2004259522A (en) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd Lead-acid storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149772A (en) * 1980-04-18 1981-11-19 Yuasa Battery Co Ltd Grid for lead battery
JP2000173575A (en) * 1998-09-18 2000-06-23 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2000348735A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JP2004259522A (en) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd Lead-acid storage battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
WO2013008383A1 (en) * 2011-07-11 2013-01-17 パナソニック株式会社 Lead storage cell
JP5150012B1 (en) * 2011-07-11 2013-02-20 パナソニック株式会社 Lead acid battery
CN102867941A (en) * 2012-09-19 2013-01-09 安徽新能电源科技有限公司 Maintenance-free electromobile pole plate with integrated flat plate pipe
CN104078638A (en) * 2013-03-29 2014-10-01 松下蓄电池(沈阳)有限公司 Lead storage battery
JPWO2015107587A1 (en) * 2014-01-15 2017-03-23 パナソニックIpマネジメント株式会社 Lead acid battery
JP5866702B2 (en) * 2014-01-15 2016-02-17 パナソニックIpマネジメント株式会社 Lead acid battery
CN106981690A (en) * 2017-04-01 2017-07-25 深圳市佰特瑞储能系统有限公司 A kind of direct-connected winding battery of multi-cell
CN106981690B (en) * 2017-04-01 2019-07-26 深圳市佰特瑞储能系统有限公司 A kind of direct-connected winding battery of multi-cell
JP2020098761A (en) * 2018-12-18 2020-06-25 古河電池株式会社 Lead acid storage battery
JP7015098B2 (en) 2018-12-18 2022-02-02 古河電池株式会社 Lead-acid battery
WO2021084878A1 (en) * 2019-10-28 2021-05-06 株式会社Gsユアサ Lead storage battery
WO2021084879A1 (en) * 2019-10-28 2021-05-06 株式会社Gsユアサ Lead acid storage battery
JP2021111617A (en) * 2020-01-09 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7079830B2 (en) 2020-01-09 2022-06-02 古河電池株式会社 Liquid lead-acid battery

Also Published As

Publication number Publication date
JP4691962B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5858048B2 (en) Lead acid battery
JP2017063001A (en) Lead storage battery
JP4691962B2 (en) Lead acid battery
JP5061451B2 (en) Anode current collector for lead acid battery
US20100055571A1 (en) Current collector for the anode of a primary lithium electrochemical generator
US20030059674A1 (en) Electrode having expanded surface area and inner chamber encapsulating a highly reactive material for use in a liquid electrolyte battery
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP2009104914A (en) Lead-acid battery
JP4422829B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2009104908A (en) Lead storage battery
JPH08264202A (en) Lead-acid battery
JP4892827B2 (en) Lead acid battery
JP4894211B2 (en) Lead acid battery
JP4356321B2 (en) Lead acid battery
JP5092230B2 (en) Control valve type lead acid battery
JP6921037B2 (en) Lead-acid battery
JP6197426B2 (en) Lead acid battery
JP4904658B2 (en) Method for producing lead-acid battery
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
KR100943751B1 (en) Nickel-metal hydride secondary battery
JP2007265714A (en) Lead-acid storage battery
JP2006140032A (en) Lead-acid battery
JP4802903B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4691962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350