JP2006135921A - Ladder type filter and device using same - Google Patents

Ladder type filter and device using same Download PDF

Info

Publication number
JP2006135921A
JP2006135921A JP2004348699A JP2004348699A JP2006135921A JP 2006135921 A JP2006135921 A JP 2006135921A JP 2004348699 A JP2004348699 A JP 2004348699A JP 2004348699 A JP2004348699 A JP 2004348699A JP 2006135921 A JP2006135921 A JP 2006135921A
Authority
JP
Japan
Prior art keywords
ladder
resonator
electrode
filter
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004348699A
Other languages
Japanese (ja)
Inventor
Yasuhide Onozawa
康秀 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2004348699A priority Critical patent/JP2006135921A/en
Publication of JP2006135921A publication Critical patent/JP2006135921A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a means for reducing an insertion loss and sharpening an attenuation inclination when narrow-banding a ladder type filter. <P>SOLUTION: In a ladder type filter in which a first resonator having a resonant frequency (frp) and an anti-resonant frequency (fap) is disposed on a parallel arm and a second resonator having a resonant frequency (frs) and an anti-resonant frequency (fas) is disposed on a serial arm and which comprises input wiring connecting an input and one outer resonator and output wiring connecting an output and another outer resonator, when Δf=(frs-fap) and fo=((frs+fap)/2) are defined, Δf/fo satisfies the relation of -0.00635≤Δf/fo<0 and ground capacitance that occurs in each of input wiring and output wiring is within the range of 0.2 to 1.8 pF. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ラダー型フィルタに関し、特に中心周波数における挿入損失と、通過域近傍の保証減衰量を改善した狭帯域ラダー型フィルタに関するものである。   The present invention relates to a ladder type filter, and more particularly to a narrow band ladder type filter with improved insertion loss at a center frequency and guaranteed attenuation in the vicinity of a pass band.

近年、SAWフィルタ(弾性表面波フィルタ)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話機等に多く用いられている。例えば、米国の1.9GHz帯携帯電話システム(PCS)には、送受とも60MHzの帯域幅(比帯域幅で約3%)を有するRFフィルタが用いられている。携帯電話システムのRF用SAWフィルタには、温度特性の比較的良好な回転YカットX伝搬のタンタル酸リチウム(LiTaO)基板が用いられ、カット角としては36°や42°等が多く使用されている。これらのカット角のLiTaO基板を用いると、大きな電気機械結合係数が得られ、携帯電話のRFフィルタに要求される保証帯域幅(比帯域で約1.6%〜約3%)を満たすことができる。 In recent years, SAW filters (surface acoustic wave filters) have been widely used in the communication field, and are widely used particularly for cellular phones and the like because they have excellent characteristics such as high performance, small size, and mass productivity. For example, in the US 1.9 GHz band cellular phone system (PCS), an RF filter having a bandwidth of 60 MHz (approximately 3% in specific bandwidth) is used for both transmission and reception. The RF SAW filter for mobile phone systems uses a rotating Y-cut X-propagation lithium tantalate (LiTaO 3 ) substrate with relatively good temperature characteristics, and a cut angle of 36 ° or 42 ° is often used. ing. When using LiTaO 3 substrates with these cut angles, a large electromechanical coupling coefficient is obtained, and the guaranteed bandwidth required for the RF filter of a mobile phone (about 1.6% to about 3% in specific band) is satisfied. Can do.

一方、複数の航行衛星からの信号電波を受信し、これに基づいて地上の位置情報を高精度に算出するGPS受信機には、中心周波数が1575.42MHz、帯域幅が2.046MHz(比帯域幅で約0.13%)の狭帯域RFフィルタが要求される。このRF帯域の近傍には、インマルサット衛星通信システムに使用されている帯域(ダウンリンクは1525〜1559MHz,アップリンクは1626.5〜1660.5MHz)やイリジウム携帯電話システムに使用されている帯域(1616〜1626.5MHz)、さらには日本のMCA業務用無線システムに使用されている帯域(1501〜1525MHz)があり、これらのシステムとの相互干渉を避けるために、GPS受信機のRF用SAWフィルタは狭帯域で、且つ通過域近傍の減衰特性が急峻のものが要求される。また、GPS衛星から到来する信号電波は微弱であり、また最近ではGPS受信機を搭載した携帯電話機も普及しつつあることから、GPS受信機のRFフィルタには低損失な伝送特性も要求されている。   On the other hand, a GPS receiver that receives signal radio waves from a plurality of navigation satellites and calculates ground position information with high accuracy based on this signal has a center frequency of 1575.42 MHz and a bandwidth of 2.046 MHz (specific bandwidth). Narrowband RF filters with a width of about 0.13% are required. In the vicinity of this RF band, there are bands used for Inmarsat satellite communication systems (downlink 1525 to 1559 MHz, uplink is 1626.5 to 1660.5 MHz) and bands used for Iridium mobile phone systems (1616). ~ 1626.5MHz), and there are bands (1501 ~ 1525MHz) used in Japanese MCA commercial radio systems. In order to avoid mutual interference with these systems, RF SAW filters for GPS receivers A narrow band and a steep attenuation characteristic in the vicinity of the pass band are required. In addition, signal radio waves coming from GPS satellites are weak, and recently, cellular phones equipped with GPS receivers are becoming widespread. Therefore, low-loss transmission characteristics are required for RF filters of GPS receivers. Yes.

低損失で急峻な減衰特性を有するSAWフィルタとして、例えば特開平10−126212号公報等に詳述されているラダー型SAWフィルタがよく知られている。
図16(a)はラダー型SAWフィルタの基本区間の構成を示す概略図であって、並列腕のSAW共振子Xpと直列腕のSAW共振子Xsとから構成され、それぞれの腕のリアクタンス曲線は同図(b)に示すように設定される。即ち、並列腕SAW共振子Xp(破線)の反共振周波数と、直列腕SAW共振子Xs(実線)の共振周波数とをほぼ一致するように設定すると、その周波数を中心周波数として、図16(b)のF(太い実線)に示すようにバンドパスフィルタが形成される。そして、並列腕SAW共振子Xpの共振周波数と直列腕SAW共振子Xsの反共振周波数とにそれぞれ減衰極が形成され、低損失で減衰傾度の急峻なフィルタが得られる。さらに、減衰傾度の急峻なフィルタや、保証減衰量の大きなフィルタが必要な場合には、複数個のラダー型基本区間フィルタをインピーダンスが整合するように縦続接続して高次のフィルタを構成すればよい。
As a SAW filter having a low loss and a steep attenuation characteristic, for example, a ladder-type SAW filter described in detail in JP-A-10-126212 is well known.
FIG. 16A is a schematic diagram showing the configuration of the basic section of a ladder-type SAW filter, which is composed of SAW resonators Xp of parallel arms and SAW resonators Xs of series arms, and the reactance curves of the respective arms are It is set as shown in FIG. That is, when the anti-resonance frequency of the parallel arm SAW resonator Xp (broken line) and the resonance frequency of the series arm SAW resonator Xs (solid line) are set to substantially coincide with each other, the frequency is set as the center frequency. ) Is formed as indicated by F (thick solid line). Then, attenuation poles are respectively formed at the resonance frequency of the parallel arm SAW resonator Xp and the anti-resonance frequency of the series arm SAW resonator Xs, and a filter having a low loss and a steep attenuation gradient is obtained. Furthermore, if a filter with a steep attenuation slope or a filter with a large guaranteed attenuation is required, a higher-order filter can be configured by cascading a plurality of ladder-type basic section filters so that their impedances are matched. Good.

図16(b)から明らかなように、ラダー型SAWフィルタの帯域幅はSAW共振子の共振周波数fsと反共振周波数faとの差df=fa−fsに依存する。そして、共振周波数差dfはSAW共振子の容量比γ(モーショナルキャパシタンスC1に対する静電容量C0の比γ=C0/C1)により次式のように表される。
df=fs((1+1/γ)1/2−1)
従って、ラダー型SAWフィルタの帯域幅はSAW共振子の容量比γによって決定されることになる。
As apparent from FIG. 16B, the bandwidth of the ladder-type SAW filter depends on the difference df = fa−fs between the resonance frequency fs of the SAW resonator and the antiresonance frequency fa. The resonance frequency difference df is expressed by the following equation by the capacitance ratio γ of the SAW resonator (ratio γ = C0 / C1 of the capacitance C0 to the motional capacitance C1).
df = fs ((1 + 1 / γ) 1/2 −1)
Therefore, the bandwidth of the ladder type SAW filter is determined by the capacitance ratio γ of the SAW resonator.

図17に示すように直列腕SAW共振子Xsを入出力双方の最外側共振子とし、これらの内側にそれぞれSAW共振子Xpを2つ直列接続した構造の並列腕を配置し、これら2つの並列腕の間にSAW共振子Xsを2つ直列接続した構造の直列腕共振子を配置して梯子状に構成したラダー型SAWフィルタの伝送特性をシュミレーションにより求めることにした。
図18はラダー型SAWフィルタの構造を示す概略断面図であり、所謂チップ・サイズ・パッケージ(CSP)の構造を解析モデルとして採用した。圧電基板1の主表面上にIDT電極2と接続用のパッド電極3とを形成したラダー型SAWフィルタ素子(SAWチップ)Tは、アルミナセラミック基板4の上面に形成した接続用の電極5と金バンプ6を介してフリップチップ実装される。そして、この上に封止用樹脂7を塗布し、硬化させればSAWチップTは密封され、内部に空間8の有るチップ・サイズ・パッケージ(CSP)が構成される。アルミナセラミック基板34は多層構造で上面の電極5と下面の電極9とはアルミナセラミック基板4の内部配線10により接続さる。
As shown in FIG. 17, the serial arm SAW resonator Xs is the outermost resonator for both input and output, and parallel arms having a structure in which two SAW resonators Xp are connected in series are arranged inside these, and these two parallel devices are arranged in parallel. The transmission characteristics of a ladder-type SAW filter having a ladder structure in which two arm arm resonators having a structure in which two SAW resonators Xs are connected in series are arranged between arms are determined by simulation.
FIG. 18 is a schematic cross-sectional view showing the structure of a ladder-type SAW filter. A so-called chip size package (CSP) structure is adopted as an analysis model. A ladder-type SAW filter element (SAW chip) T in which an IDT electrode 2 and a pad electrode 3 for connection are formed on the main surface of the piezoelectric substrate 1 includes a connection electrode 5 formed on the upper surface of an alumina ceramic substrate 4 and gold. Flip chip mounting is performed via the bumps 6. Then, if the sealing resin 7 is applied and cured on the SAW chip T, the SAW chip T is sealed to form a chip size package (CSP) having a space 8 inside. The alumina ceramic substrate 34 has a multilayer structure, and the upper electrode 5 and the lower electrode 9 are connected by the internal wiring 10 of the alumina ceramic substrate 4.

GPS用RFフィルタのシミュレーションでは、実装基板とSAWチップの配線との電気的特性を表す多ポートのSパラメータを電磁界解析にて求め、これとSAW共振子を実測して得られたSパラメータとを合成して、全体のSパラメータを算出し、図18のような構造のラダー型SAWフィルタの伝送特性を求めることとした(以下、この手法を電磁界解析によるシミュレーションと称す)。 In the simulation of the RF filter for GPS, a multi-port S parameter representing the electrical characteristics between the mounting substrate and the wiring of the SAW chip is obtained by electromagnetic field analysis, and this is obtained by actually measuring the SAW resonator. And the entire S parameter is calculated to determine the transmission characteristics of the ladder-type SAW filter having the structure as shown in FIG. 18 (hereinafter, this method is referred to as simulation by electromagnetic field analysis).

圧電基板として48°回転YカットX伝搬LiTaO基板を用い、直列腕SAW共振子Xsは図19に示すように、IDT電極の交差幅Wが全電極指で一様である、所謂正規型IDT電極を用い、IDT電極とバスバーとの接続部にライン占有率(=電極指ライン幅/(電極指ライン幅+電極指スペース幅)×100[%])の大きなダミー電極を設けることでSAW導波路構造としている。直列腕SAW共振子Xsのパラメータは、波長λ=Ltを2.4543μm、IDT電極対Nsを81対、反射器本数Msを60本,交差幅Wを49μm、電極指先端ギャップG0を0.4μm、ダミー電極長D0を2.5μm、ダミー電極ライン占有率を60%、Lt/Lrを0.99(Ltは波長、Lrは反射器の電極指間間隔の2倍)、隣接電極指中心間距離Ltrを0.46λとし、IDT電極上には絶縁膜(SiO膜等)は付着しなかった。 A so-called regular IDT in which a 48-degree rotated Y-cut X-propagating LiTaO 3 substrate is used as a piezoelectric substrate, and the cross width W of IDT electrodes is uniform for all electrode fingers as shown in FIG. By using electrodes and providing a dummy electrode with a large line occupancy (= electrode finger line width / (electrode finger line width + electrode finger space width) × 100 [%]) at the connection between the IDT electrode and the bus bar It has a waveguide structure. The parameters of the series arm SAW resonator Xs are as follows: wavelength λ = Lt is 2.4543 μm, IDT electrode pair Ns is 81 pairs, reflector number Ms is 60, crossing width W is 49 μm, and electrode finger tip gap G0 is 0.4 μm. , Dummy electrode length D0 is 2.5 μm, dummy electrode line occupancy is 60%, Lt / Lr is 0.99 (Lt is wavelength, Lr is twice the distance between reflector electrode fingers), and between adjacent electrode finger centers The distance Ltr was set to 0.46λ, and no insulating film (SiO 2 film or the like) was deposited on the IDT electrode.

並列腕SAW共振子XpもSAW導波路構造としているが、IDT電極には図20に示すように楕円状のアポダイズ重み付けを施した。並列腕SAW共振子Xpのパラメータとしては、波長λ=Ltを2.5396μm、IDT電極対数Npを266対、反射器本数Mpを40本、交差幅Wを95μm、電極指先端ギャップG0を0.4μm、ダミー電極長D0を2.5μm、ダミー電極ライン占有率60%、Lt/Lr(Ltは波長、Lrは反射器の電極指間間隔の2倍)を1.0、隣接電極指中心間距離Ltrを0.5λとし、IDT電極上に絶縁膜(SiO膜等)は付着しなかった。
直列腕、並列腕ともIDT電極のライン占有率は50.0%、電極膜厚Hは0.247μmとした。直列腕SAW共振子Xsの共振周波数frsは1576.419MHz、並列腕SAW共振子Xpの反共振周波数fapは1574.415MHzとした。ここで、Δf=frs−fap、fo=((frs+fap)/2)と定義すると、Δf/foは0.00127となる。
The parallel arm SAW resonator Xp also has a SAW waveguide structure, but the IDT electrode was subjected to elliptical apodization weighting as shown in FIG. The parameters of the parallel arm SAW resonator Xp are as follows: wavelength λ = Lt is 2.5396 μm, IDT electrode pair number Np is 266, reflector number Mp is 40, cross width W is 95 μm, and electrode finger tip gap G0 is 0. 4 μm, dummy electrode length D0 is 2.5 μm, dummy electrode line occupancy is 60%, Lt / Lr (Lt is wavelength, Lr is twice the distance between electrode fingers of reflectors) is 1.0, and between adjacent electrode finger centers The distance Ltr was set to 0.5λ, and an insulating film (SiO 2 film or the like) did not adhere on the IDT electrode.
For both the serial arm and the parallel arm, the line occupation ratio of the IDT electrode was 50.0%, and the electrode film thickness H was 0.247 μm. The resonance frequency frs of the series arm SAW resonator Xs was 1576.419 MHz, and the anti-resonance frequency fap of the parallel arm SAW resonator Xp was 1574.415 MHz. Here, if Δf = frs−fap and fo = ((frs + fap) / 2) are defined, Δf / fo is 0.00127.

以上のように設定したパラメータを用いて電磁界解析によるシミュレーションを行い、得られた伝送特性とインピーダンス特性をそれぞれ図21、22に示す。図21(a)はパスバンド特性、同図(b)は減衰域の特性であり、図22(a)は入力側からみたインピーダンス特性を表すスミスチャート、同図(b)は出力側からみたインピーダンス特性を表すスミスチャートである。
図21(a)、(b)にGPSで使用される帯域より若干広めの帯域G(1575.42±1.2MHz、以下GPS帯と称す)と、日本のMCA業務用無線システムで使われる帯域M(1501〜1525MHz、以下MCA帯と称す)と、インマルサット衛星通信システムで全世界的に使われる帯域S(1626.5〜1660.5MHz、以下インマルサット帯と称す)との規格を記入している。
なお、GPSの通過帯域であるGPS帯挿入損失は1.5dB以下、阻止域となるMCA帯及びインマルサット帯の減衰量は35dB以上としている。
A simulation by electromagnetic field analysis is performed using the parameters set as described above, and the obtained transmission characteristics and impedance characteristics are shown in FIGS. 21A shows the passband characteristics, FIG. 21B shows the characteristics of the attenuation region, FIG. 22A shows a Smith chart showing the impedance characteristics as viewed from the input side, and FIG. 21B shows the characteristics from the output side. It is a Smith chart showing an impedance characteristic.
FIGS. 21A and 21B show a band G (1575.42 ± 1.2 MHz, hereinafter referred to as GPS band) slightly wider than the band used in GPS, and a band used in the MCA commercial radio system in Japan. M (1501-1525 MHz, hereinafter referred to as MCA band) and band S (1626.5-1660.5 MHz, hereinafter referred to as Inmarsat band) used worldwide in the Inmarsat satellite communication system are entered. .
Note that the GPS band insertion loss, which is the GPS pass band, is 1.5 dB or less, and the attenuation amount of the MCA band and Inmarsat band that are the stop band is 35 dB or more.

特開平10−126212号公報Japanese Patent Laid-Open No. 10-126212 特開2004−242281号公報JP 2004-242281 A

しかしながら、特開平10−126212号公報、あるいは特開2004−242281号公報等に開示されている手段は、通過域の広帯域を目的としたものである。これらの手段を用いてラダー型SAWフィルタのシミュレーションを行うと、図21(a)、(b)に示すように、MCA帯及びインマルサット帯の減衰量(35dB以上)をかろうじて満たす特性が得られるものの、フィルタの中心周波数1575.42MHz近傍で挿入損失が規格ぎりぎりになるという問題があった。この原因はGPS帯における入出力インピーダンスが、終端条件である50Ωから大きく離れて容量性を呈しているからである。例えば特開平10−126212号公報段落番号0050に記載されているように、入出力インピーダンスが容量性となる要因はfrs>fapとしたことが挙げられる。それに、図18に示したSAWフィルタの構造では入力配線及び出力配線の各々に対地容量が発生することも関係している。 However, the means disclosed in Japanese Patent Application Laid-Open No. 10-126212, Japanese Patent Application Laid-Open No. 2004-242281, or the like is intended for a wide band in the passband. When a ladder-type SAW filter is simulated using these means, characteristics that barely satisfy the attenuation (35 dB or more) in the MCA band and Inmarsat band can be obtained as shown in FIGS. 21 (a) and 21 (b). There is a problem that the insertion loss is almost the limit in the vicinity of the filter center frequency of 1575.42 MHz. This is because the input / output impedance in the GPS band is far away from 50Ω, which is the termination condition, and exhibits capacitance. For example, as described in Japanese Patent Laid-Open No. 10-126212, paragraph number 0050, the factor that causes the input / output impedance to be capacitive is that frs> fap. In addition, the SAW filter structure shown in FIG. 18 is associated with the occurrence of ground capacitance in each of the input wiring and the output wiring.

これを改善するため、入力側と出力側にチップインダクタ等を接続すれば、インピーダンス不整合による損失は減るが、部品点数の増加とそれに伴う部品実装面積の増大、及びコストアップ等のデメリットが生ずる。また、インピーダンス整合用のインダクタをマイクロストリップラインやストリップラインにて、図18の実装基板に内蔵することも考えられるが、最近のSAWデバイスの小型化、薄型化要求により、十分な大きさのインダクタンスを実装基板に内蔵することが非常に困難となっている。
また、入力配線及び出力配線に生じる対地容量を低減することで、インピーダンス不整合による損失は小さくなるが、本願発明者の検討では、0.2pF程度の対地容量が入力配線及び出力配線に生ずることは避けられず、これ以上低減することは困難であった。特に圧電基板にLiTaOやLiNbOなどの比誘電率の大きな材料を用いた場合は、SAWチップ上の配線パターンの対地容量も無視できない大きさとなる。このように、従来のラダー型SAWフィルタの設計手法では、GPS用RFフィルタに要求される規格を十分に満たすフィルタが実現できないという問題があった。
In order to improve this, if chip inductors are connected on the input and output sides, the loss due to impedance mismatching will be reduced, but there will be disadvantages such as an increase in the number of components, an increase in the component mounting area, and an increase in cost. . Further, it is conceivable that an inductor for impedance matching is built in the mounting substrate of FIG. 18 by a microstrip line or a strip line. However, due to the recent demand for downsizing and thinning of the SAW device, a sufficiently large inductance is required. It has become very difficult to incorporate the in a mounting board.
Further, by reducing the ground capacitance generated in the input wiring and the output wiring, the loss due to the impedance mismatch is reduced. However, according to the study of the present inventor, ground capacitance of about 0.2 pF is generated in the input wiring and the output wiring. It was inevitable, and it was difficult to reduce it further. In particular, when a material having a large relative dielectric constant such as LiTaO 3 or LiNbO 3 is used for the piezoelectric substrate, the ground capacitance of the wiring pattern on the SAW chip is not negligible. As described above, the conventional ladder-type SAW filter design method has a problem that a filter that sufficiently satisfies the standard required for the GPS RF filter cannot be realized.

また、このようなラダー型フィルタをRF回路や通信装置に使用した場合、ラダー型フィルタ単体で有する対地容量に加えて、ラダー型フィルタが実装されるRF回路や通信装置の回路基板の対地容量も加わることになり、RF回路や装置にも様々な不具合が生じるという問題があった。 In addition, when such a ladder type filter is used in an RF circuit or a communication device, in addition to the ground capacitance possessed by the ladder type filter alone, the ground capacitance of the circuit board of the RF circuit or communication device in which the ladder type filter is mounted is also increased. As a result, the RF circuit and the device have various problems.

本発明に係る請求項1の発明は、並列腕に共振周波数がfrpであり反共振周波数がfapである第1の共振子が、直列腕に共振周波数frsであり反共振周波数がfasである第2の共振子が配置されたラダー型フィルタにおいて、
Δf=(frs−fap)、fo=((frs+fap)/2)と定義したとき、−0.00635≦Δf/fo<0の関係を満たし、且つ最外側共振子と入出力端子との間の入力配線と出力配線の各々に発生する対地容量が0.2〜1.8pFの範囲内でラダー型フィルタを構成する。
請求項2の発明は、底部に表面実装用の外部入力電極と外部出力電極と外部接地電極とを備えた絶縁基板と、該絶縁基板の上部に配した上部入力電極と上部出力電極と上部接地電極とを備えた実装基板と、圧電基板の一方の主表面に入力パッド電極と出力パッド電極と接地パッド電極と第1及び第2のSAW共振子を備えたとSAWチップと、前記外部入力電極と前記上部入力電極と前記入力パッド電極とを結ぶ入力配線と、前記外部出力電極と前記上部出力電極と前記出力パッド電極とを結ぶ出力配線と、を備え、共振周波数(frp)及び反共振周波数(fap)を有する前記第1のSAW共振子が並列腕に配され、共振周波数(frs)及び反共振周波数(fas)を有する前記第2のSAW共振子が直列腕に配されたラダー型SAWフィルタにおいて、
Δf=(frs−fap)、fo=((frs+fap)/2)と定義したとき、
Δf/foが−0.00635≦Δf/fo<0の関係を満たし、且つ前記入力配線と前記出力配線の各々に発生する対地容量が0.2〜1.8pFの範囲内でラダー型フィルタを構成する。
請求項3の発明は、請求項1あるいは2に記載のラダー型フィルタにおいて、共振子間を結ぶ接続パターンの対地容量の総和が1.5pF以下でラダー型フィルタを構成する。
請求項4の発明は、少なくとも3つの直列腕と、少なくとも2つの並列腕とを有した請求項1乃至3に記載のラダー型フィルタにおいて、最外側の直列腕に配置された共振子の共振周波数よりも、2つの並列腕の間に配置された直列腕の共振子の共振周波数の方を高く設定してラダー型フィルタを構成する。
請求項5の発明は、少なくとも2つの直列腕と、少なくとも3つの並列腕とを有した請求項1乃至3に記載のラダー型フィルタにおいて、最外側の並列腕に配置された共振子の反共振周波数よりも、2つの直列腕の間に配置された並列腕の共振子の反共振周波数の方を低く設定してラダー型フィルタを構成する。
請求項6の発明は、前記圧電基板が回転YカットX伝搬のLiTaOであり、通過域の挿入損失を1.5dB以下としたとき比帯域幅が1.27%以上2.36%未満である、請求項2乃至5の何れかに記載のラダー型フィルタである。
請求項7の発明は、請求項1乃至6の何れかのラダー型フィルタをGPS受信回路に搭載して装置を構成する。
According to the first aspect of the present invention, the first resonator in which the parallel arm has a resonance frequency of frp and the antiresonance frequency is fap, and the series arm has a resonance frequency frs and the antiresonance frequency is fas. In a ladder type filter in which two resonators are arranged,
When defined as Δf = (frs−fap), fo = ((frs + fap) / 2), the relationship of −0.00635 ≦ Δf / fo <0 is satisfied, and between the outermost resonator and the input / output terminal The ladder type filter is configured within the range where the ground capacitance generated in each of the input wiring and the output wiring is 0.2 to 1.8 pF.
According to a second aspect of the present invention, there is provided an insulating substrate provided with an external input electrode for surface mounting, an external output electrode, and an external ground electrode at the bottom, and an upper input electrode, an upper output electrode, and an upper ground disposed on the insulating substrate. A mounting substrate including electrodes, an input pad electrode, an output pad electrode, a ground pad electrode, a first and second SAW resonator on one main surface of the piezoelectric substrate, a SAW chip, and the external input electrode An input wiring connecting the upper input electrode and the input pad electrode; and an output wiring connecting the external output electrode, the upper output electrode and the output pad electrode, and having a resonance frequency (frp) and an anti-resonance frequency ( Ladder-type SAW in which the first SAW resonator having (fap) is arranged in a parallel arm and the second SAW resonator having a resonance frequency (frs) and an anti-resonance frequency (fas) is arranged in a series arm. In the filter,
When defined as Δf = (frs−fap), fo = ((frs + fap) / 2),
A ladder filter is used when Δf / fo satisfies the relationship of −0.00635 ≦ Δf / fo <0 and the ground capacitance generated in each of the input wiring and the output wiring is in the range of 0.2 to 1.8 pF. Constitute.
According to a third aspect of the present invention, in the ladder type filter according to the first or second aspect of the present invention, the ladder type filter is configured such that the total ground capacitance of the connection pattern connecting the resonators is 1.5 pF or less.
According to a fourth aspect of the present invention, in the ladder type filter according to any one of the first to third aspects, which has at least three series arms and at least two parallel arms, the resonance frequency of the resonator disposed in the outermost series arm. The ladder type filter is configured by setting the resonance frequency of the series arm resonator disposed between the two parallel arms higher than the resonance frequency.
The invention according to claim 5 is the ladder type filter according to any one of claims 1 to 3, having at least two series arms and at least three parallel arms, and anti-resonance of a resonator disposed on the outermost parallel arm. The ladder type filter is configured by setting the anti-resonance frequency of the resonator of the parallel arm disposed between the two series arms to be lower than the frequency.
According to a sixth aspect of the present invention, when the piezoelectric substrate is LiTaO 3 with rotational Y-cut X propagation and the insertion loss in the pass band is 1.5 dB or less, the specific bandwidth is 1.27% or more and less than 2.36%. A ladder filter according to any one of claims 2 to 5.
According to a seventh aspect of the invention, the ladder type filter according to any one of the first to sixth aspects is mounted on a GPS receiving circuit to constitute a device.

本発明のラダー型SAWフィルタは、インダクタを用いないで構成するため、フィルタの小型化が可能になり、且つ中心周波数における挿入損失を低減すると共に、通過域近傍の保証減衰量を改善した狭帯域ラダー型SAWフィルタを実現できるので、RF回路や通信装置の性能を向上するという利点がある。   Since the ladder-type SAW filter of the present invention is configured without using an inductor, the filter can be miniaturized, the insertion loss at the center frequency is reduced, and the guaranteed attenuation near the passband is improved. Since the ladder-type SAW filter can be realized, there is an advantage that the performance of the RF circuit and the communication device is improved.

図1は本発明に係るラダー型SAWフィルタの第一の実施の形態を示す図であって、同図(a)は回路構成、同図(b)は構造を示す概略断面図である。第一実施形態のラダー型SAWフィルタの回路構成は、図1(a)に示すように従来の図17に示したものと同様に、直列腕SAW共振子Xsを入出力双方の最外側共振子とし、これらの内側にそれぞれSAW共振子Xpを2つ直列接続した構造の並列腕を配置し、これら2つの並列腕の間にSAW共振子Xsを2つ直列接続した構造の直列腕共振子を配置して梯子状に構成したラダー型SAWフィルタである。
また、ラダー型SAWフィルタの構造は、図1(b)に示すように従来の図18に示したものと同様にチップ・サイズ・パッケージ(CSP)の構造をしており、図18に示すものと共通部分に同じ符号を付して説明は省略する。
FIG. 1 is a diagram showing a first embodiment of a ladder-type SAW filter according to the present invention, where FIG. 1 (a) is a circuit configuration and FIG. 1 (b) is a schematic sectional view showing the structure. As shown in FIG. 1A, the circuit configuration of the ladder-type SAW filter of the first embodiment is the same as that shown in FIG. A parallel arm having a structure in which two SAW resonators Xp are connected in series is arranged inside each of them, and a series arm resonator having a structure in which two SAW resonators Xs are connected in series between these two parallel arms. This is a ladder-type SAW filter that is arranged in a ladder shape.
The ladder type SAW filter has a chip size package (CSP) structure similar to that shown in FIG. 18 as shown in FIG. The common parts are denoted by the same reference numerals and description thereof is omitted.

図2(a)、(b)、(c)及び図3は、図1(a)に示すフィルタ回路の直列腕SAW共振子Xsの共振周波数をfrs、並列腕SAW共振子Xpの反共振周波数をfapとし、Δf=frs−fap、fo=((frs+fap)/2)としたときの、Δf/foとラダー型SAWフィルタのGPS帯域内最大挿入損失との関係を表した図である。図1(a)に示すCin、Coutは入力配線及び出力配線の対地容量を表している。図1(a)に示したラダー型フィルタに用いるSAW共振子のパラメータは、波長λ以外は図21に用いたものと同じとし、SAW共振子の波長λはΔf/foに応じて設定している。図2(a)、(b)、(c)及び図3では、対地容量値Cin、Coutをパラメータとし、Δf/foとGPS帯域内最大挿入損失との関係を求めるべく、SAW共振子の実測Sパラメータを用いて、回路解析を行った(以下、このようなシミュレーション方法を集中定数によるシミュレーションと称す)。図2(a)、(b)、(c)及び図3に示すように、入力配線及び出力配線に対地容量Cin、Coutを考慮すると、Δf/foが負となる領域にGPS帯域内最大挿入損失値が最小となるΔf/foが存在することが分かった。これはΔf/foを負に設定することで、並列腕共振子Xpと直列腕共振子Xsの各々の誘導領域が通過帯域中央近傍(GPS帯)で重なり合い、その重なり合った誘導領域が入力配線や出力配線に発生する対地容量を打ち消すように作用するためと考えられる。   2 (a), (b), (c) and FIG. 3 show frs as the resonance frequency of the series arm SAW resonator Xs of the filter circuit shown in FIG. 1 (a) and anti-resonance frequency of the parallel arm SAW resonator Xp. Is a diagram showing the relationship between Δf / fo and the maximum insertion loss in the GPS band of the ladder-type SAW filter, where Δf is fap, and Δf = frs−fap and fo = ((frs + fap) / 2). Cin and Cout shown in FIG. 1A represent the ground capacitance of the input wiring and the output wiring. The parameters of the SAW resonator used in the ladder filter shown in FIG. 1A are the same as those used in FIG. 21 except for the wavelength λ, and the wavelength λ of the SAW resonator is set according to Δf / fo. Yes. 2 (a), (b), (c) and FIG. 3, using the ground capacitance values Cin and Cout as parameters, the measurement of the SAW resonator is performed in order to obtain the relationship between Δf / fo and the maximum insertion loss in the GPS band. Circuit analysis was performed using S parameters (hereinafter, such a simulation method is referred to as lumped constant simulation). As shown in FIGS. 2 (a), (b), (c) and FIG. 3, in consideration of ground capacitances Cin and Cout in the input wiring and output wiring, the maximum insertion in the GPS band is made in the region where Δf / fo is negative. It has been found that there exists Δf / fo that minimizes the loss value. This is because by setting Δf / fo to be negative, the induction regions of the parallel arm resonator Xp and the series arm resonator Xs overlap each other in the vicinity of the center of the pass band (GPS band), and the overlapped induction regions are input wiring and This is considered to work to cancel the ground capacitance generated in the output wiring.

図4は、図1(a)のラダー型フィルタのΔf/foと、1575.42MHzにおける入力インピーダンスの虚数部との関係を表した図である。対地容量Cin、Coutが存在しない場合(Cin=Cout=0pF)は、Δf/foが0の時にインピーダンスの虚数部が0Ωとなるが、対地容量が存在する場合はΔf/foが負となる領域でインピーダンスの虚数部が0Ωとなり、インピーダンス不整合による損失が最小となる。さらに、Δf/foを負側にその絶対値を大きくしていくとインピーダンスは誘導性となり、インピーダンス不整合による損失が大きくなることが分かった。インピーダンスの虚数部が0ΩとなるΔf/foは対地容量Cin、Coutの値によって異なり、対地容量の値が大きくなるほど、インピーダンスの虚数部が0ΩとなるΔf/foは負側にその絶対値が大きくなることが判明した。   FIG. 4 is a diagram showing the relationship between Δf / fo of the ladder filter of FIG. 1A and the imaginary part of the input impedance at 1575.42 MHz. When ground capacitances Cin and Cout do not exist (Cin = Cout = 0 pF), the imaginary part of the impedance becomes 0Ω when Δf / fo is 0, but when Δf / fo exists, Δf / fo is negative Therefore, the imaginary part of the impedance becomes 0Ω, and the loss due to impedance mismatch is minimized. Furthermore, it was found that when Δf / fo is increased to the negative side and the absolute value is increased, the impedance becomes inductive and loss due to impedance mismatch increases. Δf / fo at which the imaginary part of the impedance becomes 0Ω differs depending on the values of the ground capacitances Cin and Cout. As the value of the ground capacitance increases, Δf / fo at which the imaginary part of the impedance becomes 0Ω increases on the negative side. Turned out to be.

以上のシミュレーションの結果、入力配線や出力配線に対地容量が存在する場合は、GPS帯域内最大挿入損失値が最小となるΔf/foは、Δf/foが負となる領域に存在すること、その値は対地容量の値が大きくなるに応じて負側にその絶対値が大きくなることが判明した。しかし、Δf/foを負側にその絶対値を大きくし過ぎると、フィルタの比帯域幅が要求規格より大幅に狭くなる虞がある。さらに、図2(a)、(b)、(c)及び図3を比較すると、対地容量Cin、Coutが大きくなるほど、帯域内最大挿入損失が最小となる帯域内最大挿入損失値が大きくなる傾向があることが分かった。 即ち、Δf/foと対地容量とにはそれぞれ上限と下限が存在することになる。 As a result of the above simulation, when there is a ground capacity in the input wiring and output wiring, Δf / fo at which the maximum insertion loss value in the GPS band is minimum exists in a region where Δf / fo is negative, It was found that the absolute value of the value increases on the negative side as the value of the ground capacity increases. However, if Δf / fo is set to the negative side and its absolute value is excessively increased, the specific bandwidth of the filter may be significantly narrower than the required standard. Further, comparing FIGS. 2A, 2B, 2C and FIG. 3, the in-band maximum insertion loss value at which the in-band maximum insertion loss is minimized tends to increase as the ground capacities Cin and Cout increase. I found out that That is, there is an upper limit and a lower limit for Δf / fo and ground capacity, respectively.

GPS帯の挿入損失規格を1.5dB以下とし、1.5dB帯域幅は、SAWフィルタに加わる温度変化による周波数変動、回路基板に実装する際のリフロー工程による周波数変動、熱衝撃や機械的衝撃による周波数変動等の種々の周波数変動を考慮に入れ、その上、製造時の周波数バラツキ分も見込んで、20MHz(比帯域1.27%)以上に設定する必要がある。
図5は、図1(a)に示すラダー型フィルタを集中定数によるシミュレーションを行って求めたフィルタ特性であり、実線は対地容量Cin、Coutを共に1.8pF、Δf/foを−0.00635としたときのフィルタ特性である。一方、破線は対地容量Cin、Coutを共に2.0pF 、 Δf/foを−0.00762 にとした場合のフィルタ特性である。他のパラメータは図21と同じである。実線の帯域幅は20.7MHz、破線の帯域幅は18.5MHzであった。つまり、対地容量が1.8pFよりも大きくなると、Δf/foとして−0.00635よりも負側にその絶対値を大きくしてGPS帯における挿入損失を1.5dB以下とする最適設計を選択しても、帯域幅20MHz以上を実現することができなかった。このことより、対地容量は1.8pF以下、Δf/foは−0.00635以上にする必要があることが明らかとなった。
The GPS band insertion loss standard is 1.5 dB or less, and the 1.5 dB bandwidth is due to frequency fluctuation due to temperature change applied to the SAW filter, frequency fluctuation due to reflow process when mounted on a circuit board, thermal shock, and mechanical shock. In consideration of various frequency fluctuations such as frequency fluctuations, in addition, it is necessary to set the frequency to 20 MHz (specific band 1.27%) or more in consideration of the frequency variation at the time of manufacture.
FIG. 5 shows filter characteristics obtained by simulating the ladder filter shown in FIG. 1A using a lumped constant. The solid lines indicate the ground capacitances Cin and Cout of 1.8 pF, and Δf / fo is −0.00635. Is the filter characteristic. On the other hand, the broken lines are filter characteristics when the ground capacitances Cin and Cout are both 2.0 pF and Δf / fo is −0.00762. Other parameters are the same as those in FIG. The bandwidth of the solid line was 20.7 MHz, and the bandwidth of the broken line was 18.5 MHz. In other words, when the ground capacity is larger than 1.8 pF, the optimum design is selected so that the absolute value of Δf / fo is increased to the negative side of −0.00635 and the insertion loss in the GPS band is 1.5 dB or less. However, the bandwidth of 20 MHz or more could not be realized. From this, it became clear that the ground capacity needs to be 1.8 pF or less and Δf / fo needs to be −0.00635 or more.

前に述べたように、入力配線及び出力配線はそれぞれ0.2pF程度の対地容量が発生するのは避けられず、図2(a)の図から明らかなようにCin、Coutが共に0.2pF の場合は、Δf/foを−0.0013〜−0.00025に設定することでGPS帯における挿入損失が最小となる。つまり、入力配線及び出力配線に発生する対地容量が0.2pF〜1.8pFの範囲であれば、Δf/foを適宜設定することで、GPS帯における挿入損失を1.5dB以下、帯域幅を20MHz以上(比帯域幅で1.27%以上)のラダー型SAWフィルタが実現できることが分かった。
また、Δf/foの下限値は前述したように、−0.00635であるが、Δf/foの上限値は図2(a)から0未満であればよいことになる。
以上の結果より、−0.00635 ≦ Δf/fo < 0を満たし、且つ入力配線及び出力配線に発生する対地容量を0.2〜1.8pF の範囲内であれば、チップインダクタ等を用いることなくGPS帯域内におけるインピーダンス不整合による損失を低減でき、帯域幅20MHz以上の低損失なラダー型SAWフィルタを実現できることが分かった。
As described above, it is inevitable that the input wiring and the output wiring each generate a ground capacitance of about 0.2 pF. As is apparent from the diagram of FIG. 2A, both Cin and Cout are 0.2 pF. In this case, the insertion loss in the GPS band is minimized by setting Δf / fo to −0.0013 to −0.00025. In other words, if the ground capacitance generated in the input wiring and output wiring is in the range of 0.2 pF to 1.8 pF, by appropriately setting Δf / fo, the insertion loss in the GPS band is 1.5 dB or less, and the bandwidth is reduced. It was found that a ladder-type SAW filter of 20 MHz or higher (specific bandwidth of 1.27% or higher) can be realized.
Further, as described above, the lower limit value of Δf / fo is −0.00635, but the upper limit value of Δf / fo may be less than 0 from FIG.
From the above results, a chip inductor or the like is used if −0.00635 ≦ Δf / fo <0 is satisfied and the ground capacitance generated in the input wiring and the output wiring is within the range of 0.2 to 1.8 pF. Thus, it was found that a loss due to impedance mismatch within the GPS band can be reduced, and a low-loss ladder type SAW filter having a bandwidth of 20 MHz or more can be realized.

図6は、直列腕SAW共振子Xsの共振周波数frsを1572.423MHz、並列腕SAW共振子Xpの反共振周波数fapを1578.416MHzとし、Δf/foを−0.00380に設定した場合の電磁界解析によるシミュレーションで求めた伝送特性で、同図(a)はパスバンド特性、同図(b)は減衰特性である。Δf/foを−0.00380にすべく各腕のSAW共振子の波長λを変更した以外は、図21に用いたパラメータと同じとした。入力配線及び出力配線に発生する対地容量はそれぞれ0.499pF、0.516pFとした。図6から明らかなように帯域幅は32.5MHz(比帯域幅で2.06%)となり、減衰特性も十分に規格を満たした良好な特性が得られた。
図7(a)、(b)はそれぞれ入出力側からみたインピーダンス特性のスミスチャートで、従来例である図22に比べてGPS帯における入力インピーダンス及び出力インピーダンスの虚数部が小さくなっていることが分かる。
FIG. 6 shows the electromagnetic wave when the resonance frequency frs of the series arm SAW resonator Xs is 1572.423 MHz, the antiresonance frequency fap of the parallel arm SAW resonator Xp is 1578.416 MHz, and Δf / fo is set to −0.00380. In the transmission characteristics obtained by the simulation by the field analysis, FIG. 9A shows the passband characteristics and FIG. 10B shows the attenuation characteristics. The parameters were the same as those used in FIG. 21 except that the wavelength λ of the SAW resonator of each arm was changed so that Δf / fo was −0.00380. The ground capacitances generated in the input wiring and the output wiring were 0.499 pF and 0.516 pF, respectively. As is clear from FIG. 6, the bandwidth was 32.5 MHz (2.06% in specific bandwidth), and the attenuation characteristics were satisfactory with sufficient standards.
FIGS. 7A and 7B are Smith charts of impedance characteristics as seen from the input and output sides, respectively, and the imaginary part of the input impedance and output impedance in the GPS band is smaller than in FIG. 22 which is a conventional example. I understand.

図8(a)、(b)は従来のラダー型SAWフィルタと本発明によるラダー型SAWフィルタとの伝送特性の比較であり、実線が第一の実施例によるラダー型SAWフィルタの伝送特性、破線が従来のラダー型SAWフィルタの伝送特性である。本発明によるラダー型SAWフィルタは、従来のラダー型SAWフィルタよりも挿入損失が小さく、しかも狭帯域になっているため、MCA帯減衰量を保証する際の製造マージンが従来のラダー型SAWフィルタより余裕を持って確保できるようになった。   8A and 8B are a comparison of transmission characteristics between a conventional ladder-type SAW filter and a ladder-type SAW filter according to the present invention. A solid line indicates a transmission characteristic of the ladder-type SAW filter according to the first embodiment, a broken line. These are the transmission characteristics of the conventional ladder-type SAW filter. Since the ladder-type SAW filter according to the present invention has a smaller insertion loss and a narrower band than the conventional ladder-type SAW filter, the manufacturing margin for guaranteeing the MCA band attenuation is higher than that of the conventional ladder-type SAW filter. It became possible to secure with a margin.

図9は本発明に係る第二の実施例のラダー型SAWフィルタの回路構成を示す図であって、図1(a)と異なるところは直列腕共振子Xs間の配線に発生する対地容量Ci(=C1、C2、C3)を考慮して回路設計を行うところである。図9において直列腕共振子Xs間の配線に発生する対地容量C1、C2、C3の総和を1.5pF以下とし、これに本発明の第一の実施例の手法を用いれば、第一の実施例のラダー型SAWフィルタよりも広帯域なラダー型フィルタが実現できることが分かった。
図10は第二の実施例によるラダー型フィルタを集中定数によるシミュレーションで求めた伝送特性で、同図(a)はパスバンド特性、同図(b)は減衰特性である。破線が第一の実施例による伝送特性、実線が第二の実施例による伝送特性である。ラダー型SAWフィルタの入力配線及び出力配線に発生する対地容量Cin、Coutを共に0.5pF、Δf/foを−0.00254、波長λ以外の諸パラメータは図21と同じものを用いた。図10の実線と破線とでは、直列腕SAW共振子Xs間の配線に発生する対地容量のみが異なっている。破線の第一の実施例では、直列腕SAW共振子Xs間の配線に発生する対地容量を0pFとしており、実線の第二の実施例では、直列腕SAW共振子Xs間の配線に発生する対地容量をC1=0.1pF,C2=0.5pF,C3=0.1pFとして、直列腕SAW共振子間の配線に発生する対地容量の総和(C1+C2+C3)を0.7pFとしている。破線の第一の実施例では帯域幅29.5MHz、実線の第二の実施例では帯域幅36.7MHzとなり、第二の実施例の方が第一の実施例よりも広帯域なラダー型フィルタが実現できることが分かった。
また、図10(b)から明らかなとおり、第二の実施例の方が第一の実施例よりもMCA帯及びインマルサット帯での減衰量が大きくなることも判明した。
FIG. 9 is a diagram showing a circuit configuration of the ladder-type SAW filter according to the second embodiment of the present invention. The difference from FIG. 1A is the ground capacitance Ci generated in the wiring between the series arm resonators Xs. The circuit design is performed in consideration of (= C1, C2, C3). In FIG. 9, if the sum of the ground capacitances C1, C2, and C3 generated in the wiring between the series arm resonators Xs is 1.5 pF or less, and the method of the first embodiment of the present invention is used for this, the first implementation is performed. It has been found that a ladder-type filter having a wider band than that of the example ladder-type SAW filter can be realized.
FIG. 10 shows transmission characteristics obtained by lumped constant simulation of the ladder filter according to the second embodiment. FIG. 10A shows the passband characteristics and FIG. 10B shows the attenuation characteristics. The broken line is the transmission characteristic according to the first embodiment, and the solid line is the transmission characteristic according to the second embodiment. The ground capacitances Cin and Cout generated in the input wiring and output wiring of the ladder-type SAW filter are both 0.5 pF, Δf / fo is −0.00254, and parameters other than the wavelength λ are the same as those in FIG. The only difference between the solid line and the broken line in FIG. 10 is the ground capacitance generated in the wiring between the series arm SAW resonators Xs. In the first embodiment indicated by a broken line, the ground capacitance generated in the wiring between the series arm SAW resonators Xs is set to 0 pF. In the second embodiment indicated by a solid line, the ground generated in the wiring between the series arm SAW resonators Xs is set. The capacitance is C1 = 0.1 pF, C2 = 0.5 pF, and C3 = 0.1 pF, and the total ground capacitance (C1 + C2 + C3) generated in the wiring between the series arm SAW resonators is 0.7 pF. In the first embodiment indicated by the broken line, the bandwidth is 29.5 MHz, and in the second embodiment indicated by the solid line, the bandwidth is 36.7 MHz. In the second embodiment, a ladder-type filter having a wider bandwidth than the first embodiment is obtained. It turns out that it can be realized.
Further, as is apparent from FIG. 10B, it has also been found that the second embodiment has a larger attenuation in the MCA band and the Inmarsat band than the first embodiment.

図11は、第二の実施例における直列腕共振子Xs間の配線に生ずる対地容量Ciの総和の上限値を説明するための図である。破線は対地容量C1、C2、C3を共に0.7pF(総和が2.1pF)として集中定数によるシミュレーションで求めた伝送特性である。実線はC1、C2、C3を共に0.5pF(総和が1.5pF)としたの場合の伝送特性である。その他のパラメータは図21のものと同じである。図11から明らかなように、直列腕共振子Xs間の配線に発生する対地容量Ciの総和が1.5pFを超えると、GPS帯における挿入損失が1.5dB以上となることがわかった。対地容量Ciを種々変えてシミュレーションを行ったが、対地容量Ciの総和が1.5pFを超えると挿入損失が1.5dB以上となった。対地容量Ciの総和は1.5pF以下とする必要がある。   FIG. 11 is a diagram for explaining the upper limit value of the total sum of the ground capacitance Ci generated in the wiring between the series arm resonators Xs in the second embodiment. The broken lines are transmission characteristics obtained by simulation using a lumped constant with ground capacitances C1, C2, and C3 all set to 0.7 pF (sum of 2.1 pF). The solid line represents the transmission characteristics when C1, C2, and C3 are all 0.5 pF (total is 1.5 pF). Other parameters are the same as those in FIG. As is clear from FIG. 11, it was found that when the total ground capacitance Ci generated in the wiring between the series arm resonators Xs exceeds 1.5 pF, the insertion loss in the GPS band becomes 1.5 dB or more. The simulation was performed by changing the ground capacitance Ci in various ways. When the sum of the ground capacitance Ci exceeded 1.5 pF, the insertion loss became 1.5 dB or more. The total of the ground capacitance Ci needs to be 1.5 pF or less.

図12は従来のラダー型フィルタと第二の実施例を用いたラダー型SAWフィルタとの伝送特性を比較した図である。破線は従来のラダー型SAWフィルタの伝送特性で、Δf/fo=0.00127とし、直列腕共振子Xs間の配線に発生する対地容量Ciを全て0pFとした。実線は第二の実施例によるラダー型SAWフィルタの伝送特性で、Δf/foを−0.00254とし、対地容量C1を0.1pF、C2を0.5pF、C3を0.1pFとした。その他のパラメータは図21と同じものを用いた。図12(a)より従来のラダー型SAWフィルタ(破線)では、GPS帯域内最大挿入損失が1.12dB、帯域幅が36.0MHzであるのに対し、本発明の第二の実施例ではGPS帯域内最大挿入損失が0.91dB、帯域幅が36.7MHz(比帯域2.33%)となり、第二の実施例のラダー型SAWフィルタは、従来のものより広帯域で、且つ低損失な特性であることが分かった。また、図12(b)は同図(a)と同一のものについて減衰特性を示すものであり、これから明らかなように、第二の実施例を用いたラダー型SAWフィルタの減衰特性の方が、従来のものより急峻な特性であり、MCA帯減衰量やインマルサット帯減衰量を保証する上で、周波数バラツキ等の製造マージンがより大きくなる。
なお、図9に記載の対地容量C1、C2、C3の少なくとも一つが直列腕共振子Xs間の配線のみで実現できない場合、その容量を圧電基板上に形成したくし型キャパシタにて構成しても良い。
FIG. 12 is a diagram comparing the transmission characteristics of a conventional ladder type filter and a ladder type SAW filter using the second embodiment. The broken line represents the transmission characteristics of the conventional ladder-type SAW filter. Δf / fo = 0.00127, and the ground capacitance Ci generated in the wiring between the series arm resonators Xs is all 0 pF. The solid line shows the transmission characteristics of the ladder-type SAW filter according to the second embodiment. Δf / fo is −0.00254, the ground capacitance C1 is 0.1 pF, C2 is 0.5 pF, and C3 is 0.1 pF. The other parameters were the same as in FIG. FIG. 12A shows that the conventional ladder-type SAW filter (broken line) has a maximum GPS band insertion loss of 1.12 dB and a bandwidth of 36.0 MHz, whereas the second embodiment of the present invention uses GPS. The maximum in-band insertion loss is 0.91 dB, the bandwidth is 36.7 MHz (ratio band 2.33%), and the ladder-type SAW filter of the second embodiment has a wider bandwidth and lower loss than the conventional one. It turns out that. FIG. 12B shows the attenuation characteristics of the same thing as FIG. 12A. As is clear from this, the attenuation characteristics of the ladder-type SAW filter using the second embodiment are better. The characteristics are steeper than those of the conventional one, and the manufacturing margin such as frequency variation becomes larger in guaranteeing the MCA band attenuation amount and the Inmarsat band attenuation amount.
If at least one of the ground capacitances C1, C2, and C3 shown in FIG. 9 cannot be realized only by the wiring between the series arm resonators Xs, the capacitance may be configured by a comb capacitor formed on the piezoelectric substrate. good.

図13は本発明に係る第三の実施例のラダー型SAWフィルタの回路構成であって、直列腕SAW共振子Xsと、2つのSAW共振子Xpを直列接続した並列腕と、2つのSAW共振子Xs2を直列接続した直列腕と、2つのSAW共振子Xpを直列接続した並列腕と、直列腕SAW共振子Xsと、を交互に接続して梯子状に構成する。そして、並列腕共振子Xpと最外側に配置する直列腕共振子Xsとは−0.00635 ≦ Δf/fo < 0を満たすようにし、2つの並列腕の間に配置する直列腕共振子Xs2の共振周波数はXsのそれより高く設定する。
図14は、第三の実施例のラダー型SAWフィルタを、電磁界解析によるシミュレーションを用いて求めた伝送特性であり、破線が第一の実施例によるラダー型SAWフィルタの伝送特性、実線が第三の実施例による伝送特性である。第一の実施例の破線では、直列腕SAW共振子Xsの共振周波数frsは1572.423MHz、並列腕SAW共振子Xpの反共振周波数fapは1578.416MHz、Δf/foは−0.00380とし、入力配線及び出力配線に発生する対地容量はそれぞれ0.499pF,0.516pFである。第三の実施例の実線では、Xs2の波長λのみを小さくし、Xs2の共振周波数frs2は1575.428MHzとしている。つまり、Xs2の共振周波数frs2はXsの共振周波数frsより3.005MHz高く設定している。他のパラメータは図21のそれと同じとした。第一の実施例によるラダー型SAWフィルタの帯域幅は32.5MHz、GPS帯域内最大挿入損失は0.89dBであるのに対し、第三の実施例によるラダー型SAWフィルタの帯域幅は35.1MHz、GPS帯域内最大挿入損失は0.86dBとなり、GPS帯の挿入損失を劣化させることなく、広帯域な特性が実現できることが判明した。第三の実施例によるラダー型SAWフィルタの場合も、第二の実施例の手法との併用が可能である。
FIG. 13 shows a circuit configuration of a ladder-type SAW filter according to a third embodiment of the present invention, in which a series arm SAW resonator Xs, a parallel arm in which two SAW resonators Xp are connected in series, and two SAW resonances. A series arm in which the child Xs2 is connected in series, a parallel arm in which the two SAW resonators Xp are connected in series, and the series arm SAW resonator Xs are alternately connected to form a ladder shape. The parallel arm resonator Xp and the series arm resonator Xs arranged on the outermost side satisfy −0.00635 ≦ Δf / fo <0 so that the series arm resonator Xs2 arranged between the two parallel arms The resonance frequency is set higher than that of Xs.
FIG. 14 shows the transmission characteristics of the ladder-type SAW filter according to the third embodiment obtained by using a simulation by electromagnetic field analysis. The broken line indicates the transmission characteristics of the ladder-type SAW filter according to the first embodiment, and the solid line indicates the first. It is the transmission characteristic by a 3rd Example. In the broken line of the first embodiment, the resonance frequency frs of the series arm SAW resonator Xs is 1572.423 MHz, the anti-resonance frequency fap of the parallel arm SAW resonator Xp is 1578.416 MHz, and Δf / fo is −0.00380, The ground capacitances generated in the input wiring and the output wiring are 0.499 pF and 0.516 pF, respectively. In the solid line of the third embodiment, only the wavelength λ of Xs2 is reduced, and the resonance frequency frs2 of Xs2 is set to 1575.428 MHz. That is, the resonance frequency frs2 of Xs2 is set higher by 3.005 MHz than the resonance frequency frs of Xs. Other parameters were the same as those in FIG. The bandwidth of the ladder-type SAW filter according to the first embodiment is 32.5 MHz and the maximum insertion loss within the GPS band is 0.89 dB, whereas the bandwidth of the ladder-type SAW filter according to the third embodiment is 35. The maximum insertion loss in the GPS band at 1 MHz is 0.86 dB, and it has been found that wideband characteristics can be realized without degrading the insertion loss in the GPS band. The ladder type SAW filter according to the third embodiment can also be used in combination with the method of the second embodiment.

図15は本発明に係る第四の実施例のラダー型SAWフィルタの回路構成を示す図であって、SAW共振子Xpの並列腕と、SAW共振子Xsの直列腕と、SAW共振子Xp2の並列腕と、SAW共振子Xsの直列腕と、SAW共振子Xpの並列腕と、を交互に接続して梯子状に構成する。さらに、入力配線及び出力配線に発生する対地容量Cin、Coutと、直列腕SAW共振子Xs間の配線に発生する対地容量C1を考慮している。
図15において、直列腕共振子Xsと最外側に配置される並列腕共振子Xpは −0.00635 ≦ Δf/fo < 0を満たすように設定するが、第四の実施例では、さらに2つの直列腕の間に配置される並列腕共振子Xp2の反共振周波数をXpのそれより低く設定する。このように設定することにより、第三の実施例と同様の効果、すなわちGPS帯の挿入損失を劣化させることなく広帯域な特性を実現できることがシミュレーションの結果分かった。
第四の実施例によるラダー型SAWフィルタの場合も、第二の実施例の手法との併用が可能である。図15の回路構成と第二の実施例との併用を行う場合、直列腕SAW共振子間の配線に発生する対地容量C1を1.5pF以下にすれば良い。
FIG. 15 is a diagram showing a circuit configuration of the ladder-type SAW filter according to the fourth embodiment of the present invention. The parallel arm of the SAW resonator Xp, the series arm of the SAW resonator Xs, and the SAW resonator Xp2 A parallel arm, a serial arm of the SAW resonator Xs, and a parallel arm of the SAW resonator Xp are alternately connected to form a ladder shape. Further, the ground capacitances Cin and Cout generated in the input wiring and the output wiring and the ground capacitance C1 generated in the wiring between the series arm SAW resonators Xs are taken into consideration.
In FIG. 15, the series arm resonator Xs and the parallel arm resonator Xp arranged on the outermost side are set so as to satisfy −0.00635 ≦ Δf / fo <0. In the fourth embodiment, two more The antiresonance frequency of the parallel arm resonator Xp2 arranged between the series arms is set lower than that of Xp. As a result of the simulation, it was found that by setting in this way, the same effect as the third embodiment, that is, a broadband characteristic can be realized without deteriorating the insertion loss of the GPS band.
The ladder type SAW filter according to the fourth embodiment can also be used in combination with the method of the second embodiment. When the circuit configuration of FIG. 15 is used in combination with the second embodiment, the ground capacitance C1 generated in the wiring between the series arm SAW resonators may be 1.5 pF or less.

図13、15よりもラダー回路の段数を増やした場合、本発明の第二、第三、第四の実施例を複数または全て併用することも可能である。
本発明に係るラダー型SAWフィルタが圧電基板に回転YカットX伝搬のLiTaOを用いると、比帯域幅1.27%以上2.36%未満で低損失且つ、急峻な伝送特性が実現できる。つまり、特開平10−126212号公報にも開示されているようにラダー型SAWフィルタでは比帯域幅2.36%未満の狭帯域フィルタでは、不十分な伝送特性しか得られないというのが常識となっていたが、本発明により狭帯域であっても良好な伝送特性が実現できるようになった。
When the number of ladder circuits is increased as compared with FIGS. 13 and 15, a plurality of or all of the second, third, and fourth embodiments of the present invention can be used together.
When the ladder-type SAW filter according to the present invention uses a rotating Y-cut X-propagating LiTaO 3 for the piezoelectric substrate, low loss and steep transmission characteristics can be realized with a specific bandwidth of 1.27% or more and less than 2.36%. That is, as disclosed in Japanese Patent Application Laid-Open No. 10-126212, it is common knowledge that a ladder-type SAW filter can obtain only insufficient transmission characteristics with a narrowband filter having a relative bandwidth of less than 2.36%. However, according to the present invention, good transmission characteristics can be realized even in a narrow band.

また、本発明によるラダー型SAWフィルタをRF回路や通信装置(例えばGPS受信回路やGPS受信機、あるいはそれらを搭載した携帯電話など)に用いる場合、ラダー型SAWフィルタ単体で有する入力配線や出力配線の対地容量に、実装される回路基板の対地容量がさらに加わることになる。その場合でも、ラダー型SAWフィルタを回路基板へ実装した後、入力配線及び出力配線の各々の対地容量が0.2〜1.8pFの範囲内となるようすれば、−0.00635≦Δf/fo<0の範囲内で、ラダー型SAWフィルタのΔf/foを適宜設定することにより、低損失なRF回路や干渉波に強い通信装置を実現することができる。   When the ladder-type SAW filter according to the present invention is used for an RF circuit or a communication device (for example, a GPS receiver circuit, a GPS receiver, or a mobile phone equipped with the same), input wiring and output wiring included in the ladder-type SAW filter alone. The ground capacitance of the circuit board to be mounted is further added to the ground capacitance. Even in that case, if the ground capacitance of each of the input wiring and the output wiring is within the range of 0.2 to 1.8 pF after the ladder-type SAW filter is mounted on the circuit board, −0.00635 ≦ Δf / By appropriately setting Δf / fo of the ladder-type SAW filter within the range of fo <0, a low-loss RF circuit and a communication device resistant to interference waves can be realized.

以上では、ラダー型SAWフィルタの構成要素である共振子にSAW共振子を用いる場合を説明したが、共振子が圧電薄膜共振子、セラミックを用いたバルク波共振子、同軸型誘電体共振器等の場合でも同様の効果を奏する。   In the above, the case where the SAW resonator is used as the resonator which is a constituent element of the ladder-type SAW filter has been described. However, the resonator is a piezoelectric thin film resonator, a bulk wave resonator using a ceramic, a coaxial dielectric resonator, or the like. Even in this case, the same effect can be obtained.

また、上記各実施形態例では3つの直列腕SAW共振子と、2つの並列腕SAW共振子とが梯子状に形成されたラダー型SAWフィルタと、2つの直列腕SAW共振子と、3つの並列腕SAW共振子とが梯子状に形成されたラダー型SAWフィルタについて述べたが、並列腕SAW共振子を第一のSAW共振子、直列腕SAW共振子を第二のSAW共振子とすれば、第一のSAW共振子を並列腕に、第二のSAW共振子を直列腕に配したラダー型SAWフィルタと記述することにより、ラダー型SAWフィルタを一般化することが出来る。   In each of the above embodiments, a ladder-type SAW filter in which three series arm SAW resonators and two parallel arm SAW resonators are formed in a ladder shape, two series arm SAW resonators, and three parallel arms are provided. The ladder type SAW filter in which the arm SAW resonator is formed in a ladder shape has been described. If the parallel arm SAW resonator is a first SAW resonator and the series arm SAW resonator is a second SAW resonator, A ladder-type SAW filter can be generalized by describing a ladder-type SAW filter in which the first SAW resonator is arranged in parallel arms and the second SAW resonator is arranged in series arms.

なお、特開2004−242281号公報にはΔf/foが負となるラダー型SAWフィルタについて記述されているが、本発明とは以下に述べるように根本的な相違点がある。
特開2004−242281号公報の発明の目的の一つは特開平10−126212号公報と同等または同等以上の通過帯域の広帯域化を目的としているが、本発明の目的は特開平10−126212号公報よりも狭帯域なラダー型SAWフィルタを良好な特性にて実現することであり、特開2004−242281号公報目的と本発明の目的とは異なる。
また、特開2004−242281号公報には、直列腕共振子にインダクタが並列に接続されている第1の直列腕共振子と、インダクタが接続されていない第2の直列腕共振子とからなることが必須となっているが、本発明にこれを適用した場合、上述の本発明の効果は全く得られなかった。
Japanese Patent Laid-Open No. 2004-242281 describes a ladder-type SAW filter in which Δf / fo is negative, but there are fundamental differences from the present invention as described below.
One of the objects of the invention of Japanese Patent Application Laid-Open No. 2004-242281 is aimed at widening the pass band equivalent to or higher than that of Japanese Patent Application Laid-Open No. 10-126212. This is to realize a ladder-type SAW filter having a narrower band than that of the publication with good characteristics.
Japanese Patent Application Laid-Open No. 2004-242281 includes a first series arm resonator in which an inductor is connected in parallel to the series arm resonator, and a second series arm resonator in which no inductor is connected. However, when this is applied to the present invention, the above-described effects of the present invention were not obtained at all.

本発明では、入力配線及び出力配線の対地容量が数値限定されており、その限定の根拠についても説明しているが、特開2004−242281号公報では対地容量に関する記述はない。仮に、入力配線及び出力配線に対地容量が本質的に発生するのは避けられないことは周知の事実であるとしても、その浮遊容量が、並列腕共振子と直列腕共振子との誘導領域同士をオーバーラップさせることで打ち消されるという発想を容易に想致することはできない。 In the present invention, the ground capacitance of the input wiring and the output wiring is numerically limited, and the grounds for the limitation are also described. However, JP 2004-242281A does not describe ground capacitance. Even if it is a well-known fact that ground capacitance is inevitably generated in the input wiring and output wiring, the stray capacitance is generated between the induction regions of the parallel arm resonator and the series arm resonator. The idea that it is countered by overlapping can not be easily imagined.

本発明に係るラダー型SAWフィルタの第1の実施例の形態を示す図で、(a)は回路図、(b)はその構造を示した概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the form of the 1st Example of the ladder type SAW filter based on this invention, (a) is a circuit diagram, (b) is the schematic sectional drawing which showed the structure. (a)〜(c)は入力配線及び出力配線の対地容量をパラメータとしたときのΔf/fと帯域内最大挿入損失との関係を示す図である。(A) ~ (c) is a diagram showing the relationship between Delta] f / f 0 and bandwidth within the maximum insertion loss in the case of the earth capacitance of the input lines and output lines as parameters. 入力配線及び出力配線の対地容量をパラメータとしたときのΔf/fと帯域内最大挿入損失との関係を示す図である。Is a diagram showing the relationship between Delta] f / f 0 and band maximum insertion loss when the earth capacitance of the input lines and output lines as a parameter. 入力配線及び出力配線の対地容量をパラメータとしたときのΔf/fとインピーダンス虚数部との関係を示す図である。The earth capacitance of the input lines and the output lines is a diagram showing the relationship between Delta] f / f 0 and the impedance imaginary part when the parameters. 実線は対地容量Cin=Cout=1.8pF 、 Δf/fo=−0.00635のときのフィルタ特性、破線は破線は対地容量Cin=Cout=2.0pF 、 Δf/fo=−0.00762 のときのフィルタ特性である。であるThe solid line indicates the filter characteristics when the ground capacitance Cin = Cout = 1.8 pF and Δf / fo = −0.00635, and the broken line indicates the ground capacitance Cin = Cout = 2.0 pF and Δf / fo = −0.00762 It is a filter characteristic. Is 直列腕SAW共振子Xsの共振周波数frs=1572.423MHz、並列腕SAW共振子Xpの反共振周波数fap=1578.416MHz、Δf/fo=−0.00380のときの電磁界解析によるシミュレーションの伝送特性で、同図(a)はパスバンド特性、同図(b)は減衰特性である。Transmission characteristics of simulation by electromagnetic field analysis when the resonance frequency frs of the series arm SAW resonator Xs is 1572.423 MHz, the anti-resonance frequency of the parallel arm SAW resonator Xp is fap = 1578.416 MHz, and Δf / fo = −0.00380. FIG. 9A shows the passband characteristics, and FIG. 10B shows the attenuation characteristics. (a)、(b)入出力側からみたインピーダンスのスミスチャートである。(A), (b) It is a Smith chart of the impedance seen from the input-output side. 実線は第一の実施例によるラダー型SAWフィルタの伝送特性、破線は従来の伝送特性で、同図(a)はパスバンド特性、同図(b)は減衰特性である。あるThe solid line shows the transmission characteristics of the ladder-type SAW filter according to the first embodiment, the broken line shows the conventional transmission characteristics, FIG. 9A shows the passband characteristics, and FIG. is there 第二の実施例のラダー型SAWフィルタの回路構成を示す図である。It is a figure which shows the circuit structure of the ladder type SAW filter of a 2nd Example. 破線は第一の実施例による伝送特性、実線は第二の実施例による伝送特性で、同図(a)はパスバンド特性、同図(b)は減衰特性である。The broken line is the transmission characteristic according to the first embodiment, the solid line is the transmission characteristic according to the second embodiment, the figure (a) is the passband characteristic, and the figure (b) is the attenuation characteristic. 破線は第二の実施例の対地容量C1、C2、C3を共に0.7pF、実線はC1、C2、C3を共に0.5pFとしたときの伝送特性である。The broken line is the transmission characteristic when the ground capacitances C1, C2, and C3 of the second embodiment are all 0.7 pF, and the solid line is the transmission characteristic when C1, C2, and C3 are both 0.5 pF. 実線は第二の実施例でΔf/fo=−0.00254、対地容量C1=0.1pF、C2=0.5pF、C3=0.1pFのときの伝送特性、破線は従来のラダー型SAWフィルタでΔf/fo=0.00127、対地容量Ci=0pFときの伝送特性で、同図(a)はパスバンド特性、同図(b)は減衰特性である。The solid line represents the transmission characteristic when Δf / fo = −0.00254, the ground capacitance C1 = 0.1 pF, C2 = 0.5 pF, and C3 = 0.1 pF in the second embodiment, and the broken line represents the conventional ladder-type SAW filter. The transmission characteristics when Δf / fo = 0.00127 and the ground capacitance Ci = 0 pF are shown, (a) shows the passband characteristics, and (b) shows the attenuation characteristics. 第三の実施例のラダー型SAWフィルタの回路構成でる。This is a circuit configuration of the ladder-type SAW filter of the third embodiment. 電磁界解析によるシミュレーションで、実線が第三の実施例による伝送特性、破線が第一の実施例による伝送特性である。In the simulation by electromagnetic field analysis, the solid line represents the transmission characteristic according to the third embodiment, and the broken line represents the transmission characteristic according to the first embodiment. 第四の実施例のラダー型SAWフィルタの回路構成である。It is a circuit structure of the ladder type SAW filter of a 4th Example. (a)は従来のラダー型SAWフィルタの基本区間を示す図、(b)はリアクタンス曲線とフィルタ特性を示す図である。(A) is a figure which shows the basic area of the conventional ladder type SAW filter, (b) is a figure which shows a reactance curve and a filter characteristic. 従来のラダー型SAWフィルタの回路構成を示す図である。It is a figure which shows the circuit structure of the conventional ladder type SAW filter. 従来のラダー型SAWフィルタの構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional ladder type SAW filter. 直列腕SAW共振子の電極パターンを示す図である。It is a figure which shows the electrode pattern of a serial arm SAW resonator. 並列腕SAW共振子の電極パターンを示す図である。It is a figure which shows the electrode pattern of a parallel arm SAW resonator. 従来のラダー型SAWフィルタの伝送特性を示す図で、同図(a)はパスバンド特性、同図(b)は減衰特性である。It is a figure which shows the transmission characteristic of the conventional ladder type SAW filter, The figure (a) is a passband characteristic, The figure (b) is an attenuation characteristic. 従来のラダー型SAWフィルタのインピーダンス特性で、(a)は入力側から、(b)は出力側からみたスミスチャートである。The impedance characteristics of a conventional ladder-type SAW filter, (a) is a Smith chart viewed from the input side, and (b) is a Smith chart viewed from the output side. 従来のラダー型SAWフィルタの回路構成を示す図である。It is a figure which shows the circuit structure of the conventional ladder type SAW filter.

符号の説明Explanation of symbols

Xs、Xs2 直列腕SAW共振子
Xp、Xp2 並列腕SAW共振子
Cin 入力配線の対地容量
Cout 出力配線の対地容量
C1、C2、C3 直列腕共振子間配線の対地容量
Δf Δf=frs−fap
=(frs+fap)/2
1 SAWチップ
2 IDT電極
3 パッド電極
4 アルミナセラミック基板
5 電極
6 金属バンプ
7 封止用樹脂
8 空間
9 外側電極
10 内部配線



Xs, Xs2 Series arm SAW resonator Xp, Xp2 Parallel arm SAW resonator Cin Ground capacitance Cout of input wiring Ground capacitance C1, C2, C3 of output wiring Ground capacitance of wiring between series arm resonators Δf Δf = frs−fap
f 0 f 0 = (frs + fap) / 2
1 SAW chip 2 IDT electrode 3 pad electrode 4 alumina ceramic substrate 5 electrode 6 metal bump 7 sealing resin 8 space 9 outer electrode 10 internal wiring



Claims (7)

並列腕に共振周波数がfrpであり反共振周波数がfapである第1の共振子が、直列腕に共振周波数frsであり反共振周波数がfasである第2の共振子が配置されたラダー型フィルタにおいて、
Δf=(frs−fap)、fo=((frs+fap)/2)と定義したとき、−0.00635≦Δf/fo<0の関係を満たし、且つ最外側共振子と入出力端子との間の入力配線と出力配線の各々に発生する対地容量が0.2〜1.8pFの範囲内であることを特徴とするラダー型フィルタ。
A ladder type filter in which a first resonator having a resonance frequency of frp and an antiresonance frequency of fap is arranged on a parallel arm, and a second resonator having a resonance frequency frs and an antiresonance frequency of fas is arranged on a series arm. In
When defined as Δf = (frs−fap), fo = ((frs + fap) / 2), the relationship of −0.00635 ≦ Δf / fo <0 is satisfied, and between the outermost resonator and the input / output terminal A ladder filter characterized in that a ground capacitance generated in each of an input wiring and an output wiring is in a range of 0.2 to 1.8 pF.
底部に表面実装用の外部入力電極と外部出力電極と外部接地電極とを備えた絶縁基板と、該絶縁基板の上部に配した上部入力電極と上部出力電極と上部接地電極とを備えた実装基板と、圧電基板の一方の主表面に入力パッド電極と出力パッド電極と接地パッド電極と第1及び第2のSAW共振子を備えたとSAWチップと、前記外部入力電極と前記上部入力電極と前記入力パッド電極とを結ぶ入力配線と、前記外部出力電極と前記上部出力電極と前記出力パッド電極とを結ぶ出力配線と、を備え、共振周波数(frp)及び反共振周波数(fap)を有する前記第1のSAW共振子が並列腕に配され、共振周波数(frs)及び反共振周波数(fas)を有する前記第2のSAW共振子が直列腕に配されたラダー型SAWフィルタにおいて、
Δf=(frs−fap)、fo=((frs+fap)/2)と定義したとき、
Δf/foが−0.00635≦Δf/fo<0の関係を満たし、且つ前記入力配線と前記出力配線の各々に発生する対地容量が0.2〜1.8pFの範囲内であることを特徴とするラダー型フィルタ。
Insulating substrate having external input electrode, external output electrode and external ground electrode for surface mounting on the bottom, and mounting substrate having upper input electrode, upper output electrode and upper ground electrode arranged on the insulating substrate An input pad electrode, an output pad electrode, a ground pad electrode, and first and second SAW resonators on one main surface of the piezoelectric substrate, a SAW chip, the external input electrode, the upper input electrode, and the input The first wiring having a resonance frequency (frp) and an anti-resonance frequency (fap), comprising: an input wiring connecting a pad electrode; and an output wiring connecting the external output electrode, the upper output electrode, and the output pad electrode. In the ladder-type SAW filter, the SAW resonators are arranged in parallel arms, and the second SAW resonator having a resonance frequency (frs) and an anti-resonance frequency (fas) is arranged in a series arm.
When defined as Δf = (frs−fap), fo = ((frs + fap) / 2),
Δf / fo satisfies a relationship of −0.00635 ≦ Δf / fo <0, and a ground capacitance generated in each of the input wiring and the output wiring is in a range of 0.2 to 1.8 pF. Ladder type filter.
請求項1あるいは2に記載のラダー型フィルタにおいて、共振子間を結ぶ接続パターンの対地容量の総和が1.5pF以下であることを特徴とするラダー型フィルタ。 The ladder filter according to claim 1 or 2, wherein the total ground capacitance of the connection pattern connecting the resonators is 1.5 pF or less. 少なくとも3つの直列腕と、少なくとも2つの並列腕とを有した請求項1乃至3に記載のラダー型フィルタにおいて、
最外側の直列腕に配置された共振子の共振周波数よりも、2つの並列腕の間に配置された直列腕の共振子の共振周波数の方を高く設定することを特徴とするラダー型フィルタ。
The ladder type filter according to claim 1, wherein the ladder type filter has at least three series arms and at least two parallel arms.
A ladder filter, wherein a resonance frequency of a resonator of a series arm disposed between two parallel arms is set higher than a resonance frequency of a resonator disposed on the outermost series arm.
少なくとも2つの直列腕と、少なくとも3つの並列腕とを有した請求項1乃至3に記載のラダー型フィルタにおいて、
最外側の並列腕に配置された共振子の反共振周波数よりも、2つの直列腕の間に配置された並列腕の共振子の反共振周波数の方を低く設定することを特徴とするラダー型フィルタ。
The ladder type filter according to any one of claims 1 to 3, wherein the ladder type filter has at least two series arms and at least three parallel arms.
A ladder type characterized in that the anti-resonance frequency of the resonator of the parallel arm disposed between the two series arms is set lower than the anti-resonance frequency of the resonator disposed on the outermost parallel arm. filter.
前記圧電基板が回転YカットX伝搬のLiTaOであり、通過域の挿入損失を1.5dB以下としたとき比帯域幅が1.27%以上2.36%未満であることを特徴とする、請求項2乃至5の何れかに記載のラダー型フィルタ。 The piezoelectric substrate is LiTaO 3 with rotational Y-cut X propagation, and the specific bandwidth is 1.27% or more and less than 2.36% when the insertion loss in the passband is 1.5 dB or less. The ladder type filter according to any one of claims 2 to 5. 請求項1乃至6の何れかのラダー型フィルタをGPS受信回路に搭載したことを特徴とする装置。




An apparatus comprising the ladder filter according to claim 1 mounted on a GPS receiving circuit.




JP2004348699A 2004-10-06 2004-12-01 Ladder type filter and device using same Withdrawn JP2006135921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348699A JP2006135921A (en) 2004-10-06 2004-12-01 Ladder type filter and device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004293427 2004-10-06
JP2004348699A JP2006135921A (en) 2004-10-06 2004-12-01 Ladder type filter and device using same

Publications (1)

Publication Number Publication Date
JP2006135921A true JP2006135921A (en) 2006-05-25

Family

ID=36729001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348699A Withdrawn JP2006135921A (en) 2004-10-06 2004-12-01 Ladder type filter and device using same

Country Status (1)

Country Link
JP (1) JP2006135921A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125298B2 (en) 2007-08-23 2012-02-28 Taiyo Yuden Co., Ltd. Acoustic wave filter, duplexer using the acoustic wave filter, and communication apparatus using the duplexer
US8138854B2 (en) 2008-07-31 2012-03-20 Taiyo Yuden Co., Ltd. Filter, branching filter and communication apparatus
US8174339B2 (en) 2008-12-26 2012-05-08 Taiyo Yuden Co., Ltd. Duplexer, substrate for duplexer, and electronic apparatus
US8228137B2 (en) 2007-08-23 2012-07-24 Taiyo Yuden Co., Ltd. Filter, demultiplexer, and module including demultiplexer, communication apparatus
US8274342B2 (en) 2008-12-26 2012-09-25 Taiyo Yuden Co., Ltd. Duplexer and electronic device
JP2013110595A (en) * 2011-11-21 2013-06-06 Taiyo Yuden Co Ltd Filter and duplexer
JP2013225945A (en) * 2010-01-28 2013-10-31 Murata Mfg Co Ltd Tunable filter
US8988170B2 (en) 2010-12-29 2015-03-24 Murata Manufacturing Co., Ltd. Elastic wave filter device and communication apparatus equipped with the same
JP2018074562A (en) * 2016-07-13 2018-05-10 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, communication device, and method for designing multiplexer
US11206010B2 (en) 2017-08-31 2021-12-21 Murata Manufacturing Co., Ltd. Radio frequency module, front end module, and communication device
US11437978B2 (en) 2018-03-08 2022-09-06 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front-end circuit, and communication device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125298B2 (en) 2007-08-23 2012-02-28 Taiyo Yuden Co., Ltd. Acoustic wave filter, duplexer using the acoustic wave filter, and communication apparatus using the duplexer
US8228137B2 (en) 2007-08-23 2012-07-24 Taiyo Yuden Co., Ltd. Filter, demultiplexer, and module including demultiplexer, communication apparatus
US8138854B2 (en) 2008-07-31 2012-03-20 Taiyo Yuden Co., Ltd. Filter, branching filter and communication apparatus
US8174339B2 (en) 2008-12-26 2012-05-08 Taiyo Yuden Co., Ltd. Duplexer, substrate for duplexer, and electronic apparatus
US8274342B2 (en) 2008-12-26 2012-09-25 Taiyo Yuden Co., Ltd. Duplexer and electronic device
JP2013225945A (en) * 2010-01-28 2013-10-31 Murata Mfg Co Ltd Tunable filter
US8988170B2 (en) 2010-12-29 2015-03-24 Murata Manufacturing Co., Ltd. Elastic wave filter device and communication apparatus equipped with the same
JP2013110595A (en) * 2011-11-21 2013-06-06 Taiyo Yuden Co Ltd Filter and duplexer
JP2018074562A (en) * 2016-07-13 2018-05-10 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, communication device, and method for designing multiplexer
US11206010B2 (en) 2017-08-31 2021-12-21 Murata Manufacturing Co., Ltd. Radio frequency module, front end module, and communication device
US11437978B2 (en) 2018-03-08 2022-09-06 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front-end circuit, and communication device

Similar Documents

Publication Publication Date Title
US10340887B2 (en) Band pass filter and filter module
US7688161B2 (en) Acoustic wave device and filter using the same
US10615775B2 (en) Multiplexer, transmission apparatus, and reception apparatus
US9148121B2 (en) Acoustic wave filter, duplexer, and module
JP4270206B2 (en) Surface acoustic wave duplexer
US8350643B2 (en) High frequency device, filter, duplexer, communication module, and communication apparatus
US6522219B2 (en) Surface acoustic wave ladder filter with two series resonators having different apodization weighting
WO2011093449A1 (en) Tunable filter
KR100688885B1 (en) Surface acoustic wave filter, branching filter, and communication apparatus
JP3498204B2 (en) Surface acoustic wave filter and communication device using the same
WO2005125005A1 (en) Saw device and apparatus employing it
JP2010011300A (en) Resonator device, filter including the same, and duplexer
JP6835041B2 (en) Multiplexer
EP1503498A1 (en) Surface acoustic wave device and communications apparatus
JP7132944B2 (en) Acoustic wave filters, demultiplexers and communication devices
US7868716B2 (en) Acoustic wave filter apparatus
US10715108B2 (en) Filter device and multiplexer
JP3528049B2 (en) Surface acoustic wave device, communication device
JP2011146768A (en) Ladder type elastic wave filter and antenna duplexer using the same
JP5018894B2 (en) Elastic wave filter device
JP2006135921A (en) Ladder type filter and device using same
WO2006040923A1 (en) Splitter
JP7386741B2 (en) Filters, duplexers and communication equipment
JP2007006274A (en) Impedance matching circuit and wave divider
JP4627198B2 (en) Low pass filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090928