WO2005125005A1 - Saw device and apparatus employing it - Google Patents

Saw device and apparatus employing it Download PDF

Info

Publication number
WO2005125005A1
WO2005125005A1 PCT/JP2005/011300 JP2005011300W WO2005125005A1 WO 2005125005 A1 WO2005125005 A1 WO 2005125005A1 JP 2005011300 W JP2005011300 W JP 2005011300W WO 2005125005 A1 WO2005125005 A1 WO 2005125005A1
Authority
WO
WIPO (PCT)
Prior art keywords
saw
electrode
filter
saw device
substrate
Prior art date
Application number
PCT/JP2005/011300
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhide Onozawa
Original Assignee
Toyo Communication Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co., Ltd. filed Critical Toyo Communication Equipment Co., Ltd.
Publication of WO2005125005A1 publication Critical patent/WO2005125005A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14547Fan shaped; Tilted; Shifted; Slanted; Tapered; Arched; Stepped finger transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14564Shifted fingers transducers
    • H03H9/14567Stepped-fan shaped transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/1457Transducers having different finger widths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays

Definitions

  • the present invention relates to a SAW device and an apparatus using the same, and more particularly to a SAW device improved so as to satisfy both required passband width and attenuation characteristics, and an apparatus using the same. .
  • SAW filters surface acoustic wave filters
  • PCS 1.9 GHz band mobile phone system
  • RF filter with a 60 MHz bandwidth (approximately 3% in specific bandwidth) for both transmission and reception
  • Korea-PCS uses a 30MHz (approximately 1.6% relative bandwidth) RF filter for both transmission and reception!
  • the SAW filter for mobile phone system RF uses a rotating Y-power X-propagation lithium tantalate (LiTaO) substrate with relatively good temperature characteristics, and a cut angle of 36 ° or 4 °.
  • LiTaO lithium tantalate
  • LiTaO substrates with these cut angles are used for SAW filters.
  • a GPS receiver that receives signal radio waves from multiple navigation satellites and calculates the position information on the ground with high accuracy based on this signal has a center frequency of 1575.42MHz and a bandwidth of
  • a narrow band RF filter of 2.046MHz (about 0.13% in specific bandwidth) is required.
  • this RF band 15575.42 ⁇ 1.023MHz, hereafter referred to as GPS band
  • the band used for the INMARSAT satellite communication system (1525 to 1559MHz for downlink, 1626.5-1660 for uplink) 5MHz
  • the band used for iridium mobile phone systems (16 16-1626.5 MHz) and the band used for Japanese MCA business radio systems (1501-1525MHz).
  • the RF SAW filter of the GPS receiver has a narrow band and the attenuation characteristics near the passband are sharp. Things are required.
  • RF filters for GPS receivers are also required to have low-loss transmission characteristics. ing.
  • SAW filter used is often used Force 36 ° or 42 ° Rotation Y-cut X-propagation Using a LiTaO substrate, ladder type SAW filter, DMS filter (dual mode SAW filter)
  • the filter When the filter is configured, for example, the pass bandwidth becomes too large with respect to the required pass bandwidth. Therefore, the attenuation in the band of the Inmarsat satellite communication system or the like becomes insufficient.
  • the DMS filter is inferior to that of the power ladder type SAW filter in the high frequency side near the passband, so that sufficient attenuation cannot be obtained in the Inmarsat uplink band or the iridium band.
  • Fig. 7 (a) is a schematic diagram showing the configuration of a basic section of a ladder-type SAW filter, which is composed of a parallel arm SAW resonator Xp and a series arm SAW resonator Xs.
  • the reactance curve is set as shown in FIG. That is, when the anti-resonance frequency of the parallel arm SAW resonator Xp (broken line) and the resonance frequency of the series arm SAW resonator Xs (solid line) are set to be substantially the same, the frequency is set as the center frequency, as shown in FIG. ), A band 'pass' filter is formed as shown by F (thick solid line).
  • Attenuation poles are formed at the resonance frequency of the parallel arm SAW resonator Xp and the anti-resonance frequency of the series arm SAW resonator Xs, respectively, and a filter having low loss and a steep attenuation gradient is obtained. Furthermore, if a filter with a steep attenuation gradient or a filter with a large guaranteed attenuation is required, a ladder-type basic section filter can be cascaded to match the impedance to form a higher-order filter! ,.
  • the bandwidth of the ladder-type SAW filter is determined by the capacitance ratio ⁇ of the SAW resonator. That is, to obtain a narrow band ladder type SAW filter, It is necessary to increase the capacity ratio ⁇ .
  • Japanese Patent Application Laid-Open No. 9-167936 discloses that rotation with a cut angle of 38 ° to 46 ° ⁇ cut X-propagation LiTaO
  • An electrode pattern mainly composed of aluminum (A1) is formed on the substrate, and the thickness H of the electrode pattern is normalized by the wavelength of the surface wave.
  • Fifteen SAW devices have been disclosed. Then, using these parameters, a plurality of SAW resonators are formed on the same piezoelectric substrate, and the SAW resonators are connected to each other in a ladder type. .
  • an aluminum (A1) electrode pattern is formed on a Euler angle (0, ⁇ , 0) rotation ⁇ cut X propagation
  • Type S AW filters are disclosed!
  • Fig. 8 shows the circuit configuration of a ladder type 1 SAW filter used in the simulation.
  • the SAW resonator Xs with four series arms and the SAW resonator Xp with three parallel arms are connected in a ladder-like fashion.
  • This is a circuit configured by:
  • This circuit configuration is slightly different from the circuit configuration in which ladder-type basic section filters are connected in cascade so that the impedance is matched.
  • All SAW resonators Xs in the series arm are the same, and all SAW resonators Xp in the parallel arm are all identical.
  • the configuration is the same. With such a circuit configuration, only the center portion of the pass band of the filter characteristic becomes flat, and the ripple increases near the end of the pass band.
  • FIGS. 9 and 10 are diagrams showing the electrode pattern configuration of the serial arm and parallel arm SAW resonators Xs and Xp used in the ladder-type SAW filter shown in FIG. 8, respectively.
  • the series arm SAW resonator Xs is a so-called regular IDT electrode in which the cross width W of the IDT electrode is uniform for all electrode fingers, and the line occupancy (electrode By providing a dummy electrode with a large finger line width Z (electrode finger line width + space width), a SAW waveguide structure is created. ing.
  • an insulating film such as a SiO film
  • the electrode configuration of the parallel arm SAW resonator Xp is also a SAW waveguide structure with dummy electrodes provided as shown in FIG. 10, but the IDT electrode is configured to have an elliptical apodized weight.
  • the dummy electrode length DO is 0.75 ⁇ , the dummy electrode line occupancy is 60.0%, LtZLr (Lr is twice the distance between the electrode fingers of the reflector) is 0.98, Ltr (IDT electrode and reflector The distance between the nearest electrode fingers of the above) was 0.45 mm.
  • No insulating film (such as a SiO film) is provided on the IDT electrode.
  • the electrode thickness H was 0.24 m for both the serial arm and the parallel arm SAW resonator.
  • the line occupancy of the IDT electrode is made slightly different depending on the cut angle of the piezoelectric substrate.When the cut angular force is 2 °, the SAW resonators of the series arm and the parallel arm are 48.7% and the cut angular force is 6.5 °. Was set to 50.0% for both SAW resonators.
  • FIG. 11 is a schematic diagram showing a cross-sectional view of a ladder-type SAW filter, which employs a so-called chip-size 'package (CSP) structure.
  • a ladder-type SAW filter element (SAW chip) having an IDT electrode 32 and a connection pad electrode 33 formed on the main surface of a piezoelectric substrate 31 is composed of a connection electrode 35 formed on an alumina ceramic substrate 34 and a gold bump.
  • the flip chip is mounted via 36.
  • a sealing resin 37 is applied thereon and cured, whereby the SAW chip T is sealed, and a chip size 'package (CSP) having a space 38 therein is formed.
  • the alumina ceramic substrate 34 has a multilayer structure, and the inner electrode 35 and the outer electrode 39 of the package are connected by the internal wiring 40 of the alumina ceramic substrate 34.
  • the ladder-type SAW filter includes three parallel arm SAW resonators Xp, but the ground bonding pads of each parallel arm SAW resonator Xp are independent on the SAW chip T. ing.
  • 3 One parallel arm SAW resonator Xp has a structure in which the ground of the center SAW resonator is connected to the ground of another parallel arm SAW resonator. With such a structure, as shown in FIG. 8, a ladder-type SAW filter in which GND1 and GND2 are separated at high frequencies is configured, and the attenuation outside the band is improved.
  • the electrical characteristics of the SAW resonator were measured using force.
  • the electrical characteristics of the wiring of the SAW chip T and the alumina ceramic substrate 34 were analyzed by electromagnetic field analysis simulation. The one obtained by the following was used. Then, by combining the measured data of the SAW resonator and the electromagnetic field analysis of the wiring, the filter characteristics of the ladder-type SAW filter were obtained.
  • FIGS. 12 (a) and 12 (b) show the filter characteristics obtained from the simulation
  • FIG. 12 (a) shows the filter attenuation characteristics
  • FIG. 12 (b) is an enlarged view of the passband.
  • the solid line in the figure shows the transmission characteristics using a 42 ° rotation Y-cut X-propagation LiTaO substrate, and the broken line shows the 46.5 ° rotation Y-cut X-propagation LiT.
  • Figures 12 (a) and (b) show the requirements for RF filter for GPS receiver
  • Symbols A, B, C, D, and E in FIG. 12 are an MCA band, an iridium band, an Inmarsat uplink band, an Inmarsat downlink band, and a GPS band, respectively, and these are called guaranteed bands.
  • Symbols A, BC ', D', and E ' indicate the room temperature set by the ladder-type SAW filter so that the guaranteed bands A, B, C, D, and E meet the following conditions of the standard. It is a standard and is set considerably wider than each guaranteed bandwidth.
  • the inspection band ( ⁇ ') of the GPS band is 1569.637 MHz to 158.1.473 MHz
  • the inspection band ( ⁇ ,) of the MCA band is 1496.24 to 1530.03 MHz.
  • the standard of the maximum insertion loss in the area ( ⁇ ') is 2.2dB or less, and the minimum attenuation of each test band in the MCA band ( ⁇ '), iridium band and Inmarsat uplink band (BC,) is 45dB or more, and Inmarsat The specification of the minimum attenuation of the downlink band test band (D ') is 2.4 dB or more.
  • Figs. 12 (a) and 12 (b) show that the maximum insertion loss in the test band (E,) in the GPS band meets the test standards at both the cut angles of 42 ° and 46.5 °, but the attenuation characteristics With regard to V, both the cut angle of deviation and the inspection standard are satisfied.
  • the ladder-type SAW filter was able to obtain a large amount of attenuation due to the attenuation poles formed in the lower and higher passbands of the parallel arm SAW resonator due to the ground wiring of the parallel arm SAW resonator.
  • the attenuation characteristics near the passband are inadequate because the bandwidth is too wide.
  • means for narrowing the ladder type SAW filter is required.
  • means for increasing the capacitance ratio ⁇ of the SAW resonators arranged in the parallel arm and the serial arm is required.
  • Other methods include reducing the impedance of the parallel arm to increase the impedance of the series arm, and increasing the number of connection stages of the ladder-type basic section filter consisting of the parallel arm and the series arm.
  • the ladder-type SAW filter is disadvantageously enlarged in addition to the insertion loss.
  • the best way to satisfy both the low loss in the pass band and the high attenuation characteristics near the pass band is to increase the capacitance ⁇ of the SAW resonator constituting the ladder-type SAW filter.
  • JP-A-8-65089 discloses an invention of a ladder-type SAW filter in which a capacitor is provided with a capacity in series or in parallel with a SAW resonator. It is described that by connecting the additional capacitors in series or in parallel, the capacitance ratio ⁇ of the SAW resonator can be increased to realize a narrow band ladder-type SAW filter.
  • Japanese Patent Application Laid-Open No. 9-167937 discloses that a capacitor is connected to a SAW resonator in series or in parallel.
  • An invention of a ladder-type SAW filter of the following type is disclosed.
  • a ladder-type SAW filter in which an inductor is connected in parallel to a series arm SAW resonator is also described. According to this, a ladder-type SAW filter in which an inductor is connected in parallel to a series-arm SAW resonator can steeply reduce the attenuation gradient on the high-passband side while maintaining the passband bandwidth.
  • the ladder type SAW filter described in JP-A-8-65089 and JP-A-9-167937 describes a reactance pattern (comb type capacitor, parallel plate, parallel plate) for connecting a reactance to a SAW resonator in series or parallel.
  • Capacitors, microstrip inductors, etc.) and connection wiring patterns for connecting them to the SAW resonator must be provided on the piezoelectric substrate, which complicates wiring on the piezoelectric substrate and reduces the degree of freedom in wiring. Further, it has the disadvantage that the number of possible SAW resonators on the piezoelectric substrate is reduced.
  • the thinning weighting in Japanese Patent Application Laid-Open No. 2002-353769 is excitation thinning (reflection is not thinned out), and the thinning weight in the IDT electrode is made different for the left and right with respect to the SAW propagation direction.
  • Japanese Patent Application Laid-Open No. 2001-77662 discloses that the cutting angle of a LiTaO substrate, that is, the Euler angle is limited.
  • the electrode material is gold (Au)
  • the Euler angles are (0 °, 125 ° to 146 °, 0 ° ⁇ 5 °)
  • the reference film thickness ⁇ / ⁇ is 0.001 to 0.05.
  • the electrode material is chromium (Cr)
  • the Euler angles are (0 °, 125 ° to 147 °, 0 ° ⁇ 5 °)
  • H / ⁇ is in the range of 0.003 to 0.05! / .
  • a common material for the IDT electrode is aluminum (A1) as a main component.
  • Au gold
  • Cr chromium
  • an electrode material switching operation newly occurs, which is not desirable in terms of simplification and simplification of the manufacturing equipment and manufacturing process.
  • the production cost of SAW devices may decrease and the production costs may increase due to the increase in equipment costs.
  • Japanese Patent Application Laid-Open No. 2003-188679 discloses a 25 ° to 55 ° rotation Y-cut X-propagation LiTaO substrate.
  • An IDT electrode made of aluminum (A1) with a higher density than that of aluminum (A1) is formed on the top, and a SAW device in which a SiO film is formed on the IDT electrode to improve frequency temperature characteristics is formed to improve frequency temperature characteristics.
  • a chair is disclosed.
  • the same publication discloses that an adhesion layer having an A1 equivalent force is provided on the upper surface of the IDT electrode in order to increase the adhesion strength of the SiO film to the metal IDT electrode having a high density of AU.
  • the thickness of the adhesive layer made of A1 or the like is preferably 1% or less of the wavelength of the surface wave.
  • the IDT electrode can be made thinner by using a metal with a higher density than A1 for the IDT electrode, and can be made thinner than when using A1. Classification of SiO film
  • the IDT electrode disclosed in JP-A-2003-188679 uses the same electrode material as that described in JP-A-2001-77662 described above as an electrode material, and is the same as that in JP-A-2001-77662.
  • the problem is that using a metal with a high specific gravity for the IDT electrode results in a larger electromechanical coupling coefficient than using a metal with a low specific gravity, such as A1, and goes against the need to increase the capacitance ratio ⁇ of the SAW resonator. I do.
  • simplification of manufacturing equipment and manufacturing processes goes against the simplification, and that a decrease in productivity of SAW devices and an increase in equipment costs lead to an increase in manufacturing costs! You.
  • JP-A-2003-188679 assumes that an SiO film is deposited on the IDT electrode.
  • JP-A-2003-188679 discloses that the standardized electrode thickness HZ ⁇ of the IDT electrode composed of A1 is reduced to 0.04 to obtain an electromechanical coupling coefficient. Is described as becoming smaller. Based on this, a SAW resonator with a waveguide structure as shown in Fig. 9 was prototyped.
  • the piezoelectric substrate uses a rotating Y-cut X-propagating LiTaO at 38 .
  • the electrode material is A1 alloy containing 1.0 wt% Cu.
  • FIG. 13 is a diagram showing the frequency characteristic of the absolute value of the impedance of a SAW resonator prototyped using the above parameters. From this figure, it can be seen that a large spur occurs near the high frequency side of the anti-resonance frequency.
  • a SAW resonator is used in a parallel arm of a ladder-type SAW filter, a large spur is generated in the pass band or near the high side of the pass band.
  • an insulating film such as SiO is formed on the IDT electrode. It is necessary to form an SiO film, which is accompanied by the above-mentioned disadvantages associated with the formation of the SiO film.
  • JP-A-2003-188679 discloses a SiO film ZAu electrode / rotated Y cut.
  • Au as an electrode material has the above-mentioned disadvantages, and has poor quality and reliability such as Au being an expensive electrode material and weak adhesion to metal oxides such as LiTaO.
  • Japanese Patent Application Laid-Open No. 2003-218664 discloses that an IDT electrode made of silver (Ag) is formed on a LiTaO substrate having an Euler angle (0 ° ⁇ 3 °, 110 ° to 150 °, 0 ° ⁇ 3 °), and a frequency-temperature characteristic is obtained. Improvement
  • Patent Document 1 JP-A-9167936
  • Patent Document 2 U.S. Pat.No. 6,556,104
  • Patent Document 3 JP-A-8-65089
  • Patent Document 4 JP 9 167937 A
  • Patent Document 5 Japanese Patent Laid-Open No. 11-163163
  • Patent Document 7 JP 2001-77662 Gazette
  • Patent Document 9 JP 2003-218664 Gazette
  • Patent Document 10 JP-A-11 92147
  • Patent Document 11 Japanese Patent Application Laid-Open No. 2004-35396
  • the present invention solves the disadvantages of the prior art in which a filter satisfying the standard required for an RF SAW filter of a GPS receiver cannot be realized.
  • the present invention solves the drawback of the prior art in that the use of a SAW filter that does not satisfy the required standards in an RF circuit or a communication device deteriorates the performance of the circuit or device.
  • the invention according to claim 1 is a tantalum having Euler angles (0 ° ⁇ 4, 144.1 ° to 160.0 °, 0 ° ⁇ 4) in order to satisfy the RF filter standard of the GPS receiver.
  • Lithium oxide (LiTaO) Lithium oxide
  • a SAW device including at least one IDT electrode formed on a main surface of a substrate along a propagation direction of a surface wave, and grating reflectors disposed on both sides of the IDT electrode, wherein
  • the electrodes and grating reflector are made of aluminum or aluminum alloy, and the standardized electrode film thickness ⁇ ⁇ (H is the electrode film thickness, ⁇ is the wavelength) is set in the range of 0.10 to 0.14. It is characterized by comprising.
  • the invention of claim 2 provides a lithium tantalate substrate having an Euler angle (0 ° ⁇ 4 °, 144.1 ° to 160.0 °, 0 ° ⁇ 4 °), and a surface on the main surface of the lithium tantalate substrate.
  • a SAW device comprising at least one IDT electrode formed along the wave propagation direction, wherein the IDT electrode is formed of aluminum or an aluminum alloy, and a standardized electrode film thickness ⁇ (H is The feature is that the electrode film thickness and ⁇ are set in the range of 0.10 to 0.14.
  • a third aspect of the present invention is characterized in that, in the first or second aspect, the SAW device is a negative terminal-pair SAW resonator.
  • the invention of claim 4 is the ladder type according to claim 1 or 2, wherein the SAW device is connected to a serial arm and a parallel arm sequentially in a ladder shape with a lead electrode formed on the lithium tantalate substrate.
  • a SAW filter is configured.
  • a duplexer is configured using the SAW device according to the fourth aspect.
  • a sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the lithium tantalate substrate has a higher Balta conductivity.
  • the invention according to claim 7 is the method according to any one of claims 1 to 6, wherein the lithium tantalate substrate is left in a combination of heat and an atmosphere in which the substrate is chemically reduced to enhance the conductivity of the substrate. Characterized in that:
  • the invention according to claim 8 is the method according to any one of claims 1 to 6, wherein the lithium tantalate substrate is heated in an atmosphere containing metal vapor at a temperature lower than the Curie temperature in order to increase the conductivity of the substrate. It is characterized by the following.
  • the invention of claim 9 is characterized in that the SAW device according to any one of claims 1 to 8 is mounted on a circuit of a GPS receiver.
  • a SAW device is configured using the lithium tantalate substrate having a cut angle according to the present invention and the standardized electrode film thickness, all the standards required for the RF filter of the GPS receiver can be satisfied. This has the effect. Further, when the SAW device of the present invention is used for an RF circuit or device, there is an effect that the performance of the circuit or device is improved.
  • FIG. 1A is a circuit diagram showing an embodiment of a ladder-type SAW filter according to the present invention, in which a plurality of SAW resonances are provided on a main surface of a piezoelectric substrate 11 along a propagation direction of a surface acoustic wave. And a parallel arm SAW resonator Xs, a parallel arm SAW resonator Xp, a serial arm SAW resonator Xs, and a parallel arm SAW resonator Xp are formed by a lead electrode on which the SAW resonator is formed on the same piezoelectric substrate 11. And a ladder-type SAW filter element 12 are sequentially connected. Then, as shown in the cross-sectional view of FIG.
  • the pad electrode 13 formed on the ladder-type SAW filter element 12 (SAW chip) and the connection electrode 15 formed on the alumina ceramic substrate 14 are connected to the gold bumps 16. Through flip chip mounting. Then, if a sealing resin 17 is applied on this and cured, the SAW chip is sealed and a chip size package (CSP) having a space 18 therein is formed.
  • the alumina ceramic substrate 14 has a multilayer structure, and the electrodes 15 on the inner side of the package and the external electrodes 19 are connected by the internal wiring 20 of the alumina ceramic substrate 14 to form a ladder type SAW filter.
  • the RF filter of the GPS receiver has an insertion loss of 2.2 dB or less in the GPS band, an attenuation of 45 dB or more in the MCA band, iridium band, and Inmarsat uplink band, and an attenuation of 2.4 dB in the Inmarsat downlink band. It is necessary to meet the above standards.
  • the electrode finger tip gap GO is 0.15
  • the dummy electrode length DO is 0.75
  • the dummy electrode line occupancy is 60%
  • Lt / Lr 1.0
  • Ltr 0.5
  • the SiO film is Does not adhere on IDT electrodes.
  • Figure 2 shows the capacitance ratio ⁇ of the SAW resonator obtained for the cut angle and the standardized electrode thickness HZ ⁇ .
  • the cut angle is 54.1 ° to 70.
  • the capacitance ratio ⁇ is found to be in the range of 14.6 to 23.6.
  • the cut angular force was ⁇ 42 ° and 46.5 °
  • the capacitance ratio ⁇ was smaller than 14.6 even when ⁇ / ⁇ was changed from 0.10 to 0.14. . That is, when the cut angles are 42 ° and 46.5 °, the attenuation characteristics in the vicinity of the GPS band cannot be satisfied, and this is consistent with the simulation result of the filter characteristics in FIG.
  • the cut angle When the cut angle is 75 °, if ⁇ is set to a value smaller than 0.12, the capacity ratio ⁇ becomes larger than 23.6, and the GPS band insertion loss standard of 2.2 dB or less cannot be satisfied.
  • the cut angle When the cut angle is 75 ° and ⁇ ⁇ is set to a value in the range of 0.12 to 0.14, the force ratio ⁇ becomes a value in the range of 14.6 to 23.6.
  • the cut angle increases, the frequency temperature coefficient (TCF) deteriorates, so setting the cut angle larger than 70 ° is not desirable. Also, the leaky wave propagation loss becomes large and impractical when the cut angle is 70 ° or more, so the cut angle range is preferably 54.1 ° to 70 °.
  • the frequency temperature coefficient generally deteriorates.However, the frequency temperature coefficient can be reduced by setting the standardized electrode film thickness HZ ⁇ to be large. ⁇ ⁇ ⁇ ⁇ should be set to 0.10 or more when the cut angle is in the range of 54.1 ° to 70 °.
  • Fig. 4 shows a prototype SAW resonator made using 55 ° rotation ⁇ cut X-propagation LiTaO.
  • the thin solid line is the frequency characteristic of the impedance absolute value when ⁇ ⁇ is 0.064
  • the thin broken line is the frequency characteristic of the absolute value when ⁇ ⁇ is 0.16. If the standardized electrode film thickness ⁇ is out of the range of 0.10 to 0.14, the loss of the resonator increases, so ⁇ is preferably set in the range of 0.10 to 0.14.
  • a ladder-type SAW filter is formed using a SAW resonator with a standardized electrode thickness ⁇ of 0.10 to 0.14, the RF filter of the GPS receiver is required. It is assumed that the required standards can be satisfied.
  • Figs. 5 (a) and 5 (b) show the simulation results of the filter characteristics of the RF ladder-type SAW filter of the GPS receiver.
  • Fig. 5 (a) shows the filter characteristics in the attenuation region.
  • b) is a characteristic with an expanded passband.
  • the simulation used actual measurement data only for the SAW resonator, and the others used the results of electromagnetic field analysis. 55 ° rotation on piezoelectric substrate Y-cut X-propagation LiTaO
  • the IDT electrode was an A1 alloy containing 1.0% Cu, the electrode thickness H was 0.31 ⁇ m,
  • the thick and solid lines in the filter characteristics shown in FIG. 5 indicate a ladder-type SAW filter according to the present invention.
  • a ladder-type SAW filter using 42 ° and 46.5 ° rotation Y-cut X-propagation LiTaO was used.
  • the filter characteristics of the filter are also overwritten.
  • the former filter characteristic is a thin solid line, and the latter is a thin broken line.
  • the ladder type SAW filter of the present invention has an IDT electrode finger caused by the pyroelectric effect of LiTaO.
  • the cut angle is 55 °.
  • the means for increasing the bulk conductivity of LiTaO is disclosed in
  • the ladder-type SAW filter according to the present invention can satisfy all the required standards that cannot be satisfied by the conventional ladder-type SAW filter. Even in the pass band, the filter characteristics do not deteriorate, but rather occur in the conventional ladder-type SAW filter, and the ripple power is suppressed in the ladder-type SAW filter of the present invention. The insertion loss and the maximum deviation were improved over the conventional ladder type 1 SAW filter.
  • ripples occur in the passband in the conventional ladder-type filter using a cut angle because the sidelobe characteristics of the reflection characteristics of the reflector, which weaken the energy confinement inside the IDT electrode, are superimposed near the resonance frequency.
  • Rotational Y-cut X-propagation LiTaO substrate Since the substrate was used and the standardized electrode film thickness HZ ⁇ was also increased (increased), the larger the value of / ⁇ , the greater the reflection of each electrode finger force, and the larger the reflection coefficient as a whole. As a result, the SAW resonator according to the present invention has a high energy confinement inside the IDT electrode, so that the reflector can be omitted.
  • the reflectors provided on both sides of the IDT electrode can be omitted, and the size of the ladder-type SAW filter can be reduced.
  • the main object of the present invention is to obtain a means for realizing a ladder-type SAW filter narrower than the conventional one.
  • By using a method to increase the passband it is possible to guarantee a pass band width of about 3.5% (such as RF filter for PCS in the United States).
  • the present invention can be applied to a DMS filter that is not limited to a ladder-type SAW filter, and can also be applied to a filter in which one of input and output is balanced.
  • the SAW resonator according to the present invention reduces the logarithm of each IDT electrode in a DMS filter that utilizes acoustic coupling between a plurality of adjacent IDT electrodes that have strong energy confinement inside the IDT electrode. Therefore, means for strengthening the acoustic coupling between the IDT electrodes is required.
  • a SAW duplexer can be configured using the SAW filter according to the present invention.
  • the SAW filter according to the present invention is used in an RF circuit, a GPS receiver, or the like, not only the performance of the SAW filter alone, miniaturization, and price reduction, but also the performance improvement, miniaturization, and price reduction of the GPS receiver can be achieved. Also, the effects of reducing the number of parts and reducing power consumption can be exhibited.
  • the RF stage of the GPS receiver circuit includes the 1st antenna between the GPS antenna and the Pre-LNA.
  • One band 'pass' filter (hereinafter referred to as an interstage filter) between the LNA and LNA.
  • a 'pass' filter is used.
  • a TOP filter uses a SAW filter, a multilayer ceramic LC filter, a coaxial resonator type dielectric filter, etc.
  • a SAW filter or the like is used as a filter.
  • TOP filters require low-loss characteristics
  • interstage filters require high attenuation characteristics.
  • the attenuation characteristics of SAW filters used in interstage filters are accompanied by deterioration of insertion loss in the passband. If the improvement is achieved without any problem, the attenuation required for the TOP filter can be reduced accordingly.
  • the TOP filter when a dielectric filter is used as the TOP filter, it is possible to reduce the number of coaxial resonators, which can contribute to downsizing and low cost. Furthermore, it is possible to omit the TOP filter itself, and it is possible to reduce power consumption by reducing the number of components used in the circuit and the number of active elements such as amplifiers.
  • FIG. 1 (a) is a diagram showing a circuit configuration of a ladder type SAW filter according to the present invention
  • FIG. 1 (b) is a schematic configuration diagram showing a cross section of a ladder type SAW filter.
  • FIG. 2 is a diagram showing a capacitance ratio ⁇ when a cut angle and a standardized electrode film thickness are used as parameters.
  • FIG. 3 is a diagram showing a frequency temperature coefficient when a cut angle and a standardized electrode film thickness are used as parameters.
  • FIG. 4 is a diagram showing a frequency characteristic of an impedance absolute value of a SAW resonator.
  • FIG. 5 (a) shows attenuation characteristics and (b) shows passband characteristics of a ladder-type SAW filter according to the present invention.
  • FIG. 6 is a diagram showing a relationship between a cut angle, a maximum insertion loss, and a maximum deviation.
  • FIGS. 7A and 7B are diagrams showing a ladder-type basic interval filter and its filter characteristics.
  • FIG. 8 is a diagram showing a circuit configuration of a conventional ladder-type SAW filter.
  • FIG. 9 is a view showing an electrode pattern of a serial arm SAW resonator.
  • FIG. 10 is a view showing an electrode pattern of a parallel arm SAW resonator.
  • FIG. 11 is a cross-sectional view illustrating a structure of a ladder-type SAW filter.
  • FIG. 12 (a) shows attenuation characteristics and (b) shows passband characteristics of a conventional ladder-type SAW filter.
  • FIG. 13 is a diagram showing a frequency characteristic of an impedance absolute value of a conventional SAW resonator. Explanation of reference numerals
  • Piezoelectric substrate 14 Alumina ceramic substrate, Xs series arm SAW resonator, Xp parallel arm SAW resonator, GND1, GND2 ground, 12 SAW chip, 13 pad electrode, 15 connection electrode, 16 gold bump, 17 resin, 18 space, 19 external electrode, 20 internal wiring

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

A SAW device removing the defects of prior art that a filter satisfying the standards required for the RF SAW filter of a GPS receiver could not be realized and that the performance of a circuit or an apparatus degrades when a SAW filter not satisfying the required standards is used in an RF circuit or a communication unit. The SAW device comprises at least one IDT electrode formed along the propagating direction of a surface wave on the major surface of a lithium tantalite (LiTaO3) substrate of Eulerian angles (0°±4°, 144.1°-160.0°, 0°±4°), and grating reflectors arranged on the opposite sides of the IDT electrode, wherein the IDT electrode and the grating reflectors are formed of alminium or aluminium alloy and its standardized electrode film thickness H/λ (H is the electrode film thickness,λ is wavelength) is set in the range of 0.10-0.14.

Description

明 細 書  Specification
SAWデバイスとこれを用いた装置  SAW device and equipment using it
技術分野  Technical field
[0001] 本発明は、 SAWデバイスとこれを用いた装置に関し、特に要求される通過帯域幅 と減衰特性とを共に満たすように改善した SAWデバイスと、これを用いた装置に関す るものである。  The present invention relates to a SAW device and an apparatus using the same, and more particularly to a SAW device improved so as to satisfy both required passband width and attenuation characteristics, and an apparatus using the same. .
背景技術  Background art
[0002] 近年、 SAWフィルタ(弾性表面波フィルタ)は通信分野で広く利用され、高性能、 小型、量産性等の優れた特徴を有することから特に携帯電話機等に多く用いられて いる。例えば、米国の 1. 9GHz帯携帯電話システム(PCS)には、送受信ともに 60M Hzの帯域幅(比帯域幅で約 3%)を有する RFフィルタが用いられ、韓国の 1. 8GHz 帯携帯電話システム (Korea— PCS)では、送受信ともに 30MHz (比帯域幅で約 1. 6%)の RFフィルタが用いられて!/、る。  [0002] In recent years, SAW filters (surface acoustic wave filters) have been widely used in the field of communications, and are widely used in mobile phones and the like in particular because of their excellent characteristics such as high performance, small size, and mass productivity. For example, the 1.9 GHz band mobile phone system (PCS) in the United States uses an RF filter with a 60 MHz bandwidth (approximately 3% in specific bandwidth) for both transmission and reception, and the 1.8 GHz band mobile phone system in Korea (Korea-PCS) uses a 30MHz (approximately 1.6% relative bandwidth) RF filter for both transmission and reception!
携帯電話システムの RF用 SAWフィルタには、温度特性の比較的良好な回転 Y力 ット X伝搬のタンタル酸リチウム (LiTaO )基板が用いられ、カット角としては 36° や 4  The SAW filter for mobile phone system RF uses a rotating Y-power X-propagation lithium tantalate (LiTaO) substrate with relatively good temperature characteristics, and a cut angle of 36 ° or 4 °.
3  Three
2。 等が多く使用されている。これらのカット角の LiTaO基板を SAWフィルタに用い  2. Etc. are often used. LiTaO substrates with these cut angles are used for SAW filters.
3  Three
ると、大きな電気機械結合係数が得られ、携帯電話の RFフィルタに要求される保証 帯域幅 (比帯域で約 1. 6%〜約 3%)を満たすことができる。  As a result, a large electromechanical coupling coefficient is obtained, which can satisfy the guaranteed bandwidth (about 1.6% to about 3% in fractional bandwidth) required for mobile phone RF filters.
[0003] 一方、複数の航行衛星からの信号電波を受信し、これに基づ!/、て地上の位置情報 を高精度に算出する GPS受信機には、中心周波数が 1575. 42MHz,帯域幅が 2. 046MHz (比帯域幅で約 0. 13%)の狭帯域 RFフィルタが要求される。この RF帯域 (1575. 42± 1. 023MHz,以下 GPS帯と称す)の近傍には、インマルサット衛星通 信システムに使用されている帯域 (ダウンリンクは 1525〜1559MHz、アップリンクは 1626. 5-1660. 5MHz)やイリジウム携帯電話システムに使用されている帯域(16 16-1626. 5MHz)、さらには日本の MCA業務用無線システムに使用されている 帯域(1501〜1525MHz)があり、これらのシステムとの相互干渉を避けるために、 G PS受信機の RF用 SAWフィルタは狭帯域で、且つ通過域近傍の減衰特性が急峻の ものが要求される。また、 GPS衛星力 到来する信号電波は微弱であり、最近では G PS受信機を搭載した携帯電話機も普及しつつあることから、 GPS受信機の RFフィル タには低損失な伝送特性も要求されている。 [0003] On the other hand, a GPS receiver that receives signal radio waves from multiple navigation satellites and calculates the position information on the ground with high accuracy based on this signal has a center frequency of 1575.42MHz and a bandwidth of However, a narrow band RF filter of 2.046MHz (about 0.13% in specific bandwidth) is required. In the vicinity of this RF band (15575.42 ± 1.023MHz, hereafter referred to as GPS band), the band used for the INMARSAT satellite communication system (1525 to 1559MHz for downlink, 1626.5-1660 for uplink) 5MHz) and the band used for iridium mobile phone systems (16 16-1626.5 MHz), and the band used for Japanese MCA business radio systems (1501-1525MHz). In order to avoid mutual interference, the RF SAW filter of the GPS receiver has a narrow band and the attenuation characteristics near the passband are sharp. Things are required. In addition, since the signal waves arriving from the GPS satellite are weak and mobile phones equipped with GPS receivers have recently become widespread, RF filters for GPS receivers are also required to have low-loss transmission characteristics. ing.
[0004] GPS受信機の RF用 SAWフィルタには、 42° 回転 Yカット X伝搬 LiTaO基板を使 [0004] For the SAW filter for RF of the GPS receiver, a 42 ° rotation Y-cut X-propagation LiTaO substrate is used.
3 用した SAWフィルタが多く用いられている力 36° あるいは 42° 回転 Yカット X伝搬 LiTaO基板を用いてラダー型 SAWフィルタ、 DMSフィルタ(二重モード SAWフィ 3 SAW filter used is often used Force 36 ° or 42 ° Rotation Y-cut X-propagation Using a LiTaO substrate, ladder type SAW filter, DMS filter (dual mode SAW filter)
3 Three
ルタ)等を構成すると、要求される通過帯域幅に対して通過帯域幅が広くなり過ぎる。 そのため、前記インマルサット衛星通信システム等の帯域における減衰量が不十分 となる。特に、 DMSフィルタは通過域近傍の高域側における減衰特性力ラダー型 S AWフィルタのそれより劣るため、インマルサットアップリンク帯やイリジウム帯で十分 な減衰量が得られない。  When the filter is configured, for example, the pass bandwidth becomes too large with respect to the required pass bandwidth. Therefore, the attenuation in the band of the Inmarsat satellite communication system or the like becomes insufficient. In particular, the DMS filter is inferior to that of the power ladder type SAW filter in the high frequency side near the passband, so that sufficient attenuation cannot be obtained in the Inmarsat uplink band or the iridium band.
[0005] 図 7 (a)はラダー型 SAWフィルタの基本区間の構成を示す概略図であって、並列 腕の SAW共振子 Xpと直列腕の SAW共振子 Xsとから構成され、それぞれの腕のリ ァクタンス曲線は同図(b)に示すように設定される。即ち、並列腕 SAW共振子 Xp ( 破線)の反共振周波数と、直列腕 SAW共振子 Xs (実線)の共振周波数とをほぼ一致 するように設定すると、その周波数を中心周波数として、図 7 (b)の F (太い実線)に示 すようにバンド'パス'フィルタが形成される。そして、並列腕 SAW共振子 Xpの共振 周波数と直列腕 SAW共振子 Xsの反共振周波数とにそれぞれ減衰極が形成され、 低損失で減衰傾度の急峻なフィルタが得られる。さらに、減衰傾度の急峻なフィルタ や、保証減衰量の大きなフィルタが必要な場合には、ラダー型基本区間フィルタをィ ンピーダンスが整合するように縦続接続して高次のフィルタを構成すればよ!、。  [0005] Fig. 7 (a) is a schematic diagram showing the configuration of a basic section of a ladder-type SAW filter, which is composed of a parallel arm SAW resonator Xp and a series arm SAW resonator Xs. The reactance curve is set as shown in FIG. That is, when the anti-resonance frequency of the parallel arm SAW resonator Xp (broken line) and the resonance frequency of the series arm SAW resonator Xs (solid line) are set to be substantially the same, the frequency is set as the center frequency, as shown in FIG. ), A band 'pass' filter is formed as shown by F (thick solid line). Then, attenuation poles are formed at the resonance frequency of the parallel arm SAW resonator Xp and the anti-resonance frequency of the series arm SAW resonator Xs, respectively, and a filter having low loss and a steep attenuation gradient is obtained. Furthermore, if a filter with a steep attenuation gradient or a filter with a large guaranteed attenuation is required, a ladder-type basic section filter can be cascaded to match the impedance to form a higher-order filter! ,.
[0006] 図 7 (b)から明らかなように、ラダー型 SAWフィルタの帯域幅は SAW共振子の共振 周波数 fsと反共振周波数 faとの差 df=fa— fsに依存する。そして、共振周波数差 df は SAW共振子の容量比 γ (モーショナルキャパシタンス C1に対する静電容量 COの 比 γ =C0ZC1)により次式のように表される。  [0006] As is clear from Fig. 7 (b), the bandwidth of the ladder-type SAW filter depends on the difference df = fa-fs between the resonance frequency fs of the SAW resonator and the anti-resonance frequency fa. Then, the resonance frequency difference df is expressed by the following equation by the capacitance ratio γ of the SAW resonator (the ratio of the capacitance CO to the motional capacitance C1 γ = C0ZC1).
df=fs ( (l + l/ y ) 1/2- l) df = fs ((l + l / y ) 1/ 2 -l)
従って、ラダー型 SAWフィルタの帯域幅は SAW共振子の容量比 γによって決定 されることになる。即ち、狭帯域のラダー型 SAWフィルタを得るには SAW共振子の 容量比 γを大きくすることが必要となる。 Therefore, the bandwidth of the ladder-type SAW filter is determined by the capacitance ratio γ of the SAW resonator. That is, to obtain a narrow band ladder type SAW filter, It is necessary to increase the capacity ratio γ.
[0007] 特開平 9— 167936号公報にはカット角 38° 〜46° の回転 Υカット X伝搬 LiTaO [0007] Japanese Patent Application Laid-Open No. 9-167936 discloses that rotation with a cut angle of 38 ° to 46 ° Υcut X-propagation LiTaO
3 基板上にアルミニウム (A1)を主成分とした電極パターンを形成し、該電極パターンの 膜厚 Hを表面波の波長えで基準化した基準化電極膜厚 ΗΖ λが 0. 03〜0. 15の 範囲の SAWデバイスが開示されている。そして、これらのパラメータを用いて複数の SAW共振子を同一圧電基板上に形成し、該 SAW共振子を梯子状に接続したラダ 一型 SAWフィルタにつ!/、ても記述されて!、る。  (3) An electrode pattern mainly composed of aluminum (A1) is formed on the substrate, and the thickness H of the electrode pattern is normalized by the wavelength of the surface wave. Fifteen SAW devices have been disclosed. Then, using these parameters, a plurality of SAW resonators are formed on the same piezoelectric substrate, and the SAW resonators are connected to each other in a ladder type. .
また、米国特許 6556104号公報にはオイラー角(0、 μ、 0)の回転 Υカット X伝搬 L iTaO基板上にアルミニウム (A1)の電極パターンを形成し、基準化電極膜厚  Also, in US Pat. No. 6,556,104, an aluminum (A1) electrode pattern is formed on a Euler angle (0, μ, 0) rotation Υ cut X propagation
3 ΗΖλ を約 0. 05〜約 0. 15の範囲に設定した SAWデバイスであって、オイラー角の 力 S 44° < ≤ 36° の範囲の SAW共振子と、該 SAW共振子を用いたラダー型 S AWフィルタが開示されて!、る。  3 A SAW device in which ΗΖλ is set in the range of about 0.05 to about 0.15, wherein the SAW resonator has a Euler angle force S 44 ° <≤36 ° and a ladder using the SAW resonator. Type S AW filters are disclosed!
これらの先行技術に基づき、 GPS受信機の RF用ラダー型 SAWフィルタのフィルタ 特性をシミュレーションにより求めることにした。回転 Yカット X伝搬 LiTaO基板のカツ  Based on these prior arts, we decided to simulate the filter characteristics of a ladder-type SAW filter for RF in a GPS receiver. Rotation Y cut X propagation Cut of LiTaO substrate
3 ト角は 42° と 46. 5° とに設定し、該圧電基板上に形成する電極パターンとして銅( Cu)を 1. Owt%含むアルミニウム合金を用いた。図 8はシミュレーションに用いたラダ 一型 SAWフィルタの回路構成を示す図で、 4個の直列腕の SAW共振子 Xsと、 3個 の並列腕の SAW共振子 Xpとを梯子状に順次接続して構成した回路である。この回 路構成は、ラダー型基本区間フィルタをインピーダンスが整合するように縦続接続し て構成した回路構成と若干異なり、直列腕の SAW共振子 Xsを全て同一、並列腕の SAW共振子 Xpを全て同一とする構成である。このような回路構成とすることによりフ ィルタ特性の通過域の中央部のみが平坦となり、通過域の端寄りでリップルが大きく なる特徴がある。  The three angles were set to 42 ° and 46.5 °, and an aluminum alloy containing 1. Owt% of copper (Cu) was used as an electrode pattern formed on the piezoelectric substrate. Fig. 8 shows the circuit configuration of a ladder type 1 SAW filter used in the simulation.The SAW resonator Xs with four series arms and the SAW resonator Xp with three parallel arms are connected in a ladder-like fashion. This is a circuit configured by: This circuit configuration is slightly different from the circuit configuration in which ladder-type basic section filters are connected in cascade so that the impedance is matched.All SAW resonators Xs in the series arm are the same, and all SAW resonators Xp in the parallel arm are all identical. The configuration is the same. With such a circuit configuration, only the center portion of the pass band of the filter characteristic becomes flat, and the ripple increases near the end of the pass band.
[0008] 図 9、 10はそれぞれ、図 8に示したラダー型 SAWフィルタに用いた直列腕及び並 列腕 SAW共振子 Xs、 Xpの電極パターン構成を示す図である。直列腕 SAW共振子 Xsは図 9に示すように、 IDT電極の交差幅 Wが全電極指で一様な、所謂正規型 IDT 電極とし、電極指とバスバーとの接続部にライン占有率 (電極指ライン幅 Z (電極指ラ イン幅 +スペース幅))の大きなダミー電極を設けることにより、 SAW導波路構造とし ている。直列腕 SAW共振子 Xsのパラメータは波長 Lt= λを 2. 44 μ m、 IDT電極 対数 Nを 50対、反射器本数 Mをそれぞれ 100本、交差幅 Wを 14. Ί λ 電極指先端 ギャップ GOを 0. 20 、ダ ー電極長 DOを 2. 00 、ダ ー電極ライン占有率を 60. 0%、 LtZLr (Lrは反射器の電極指間間隔の 2倍)を 0. 98、 Ltr (IDT電極とグレー ティング反射器 (以下、反射器と称す)との最隣接電極指間の間隔)を 0. 45 Xとした 。なお、 IDT電極上には絶縁膜 (SiO膜等)は付着しない。 FIGS. 9 and 10 are diagrams showing the electrode pattern configuration of the serial arm and parallel arm SAW resonators Xs and Xp used in the ladder-type SAW filter shown in FIG. 8, respectively. As shown in Fig. 9, the series arm SAW resonator Xs is a so-called regular IDT electrode in which the cross width W of the IDT electrode is uniform for all electrode fingers, and the line occupancy (electrode By providing a dummy electrode with a large finger line width Z (electrode finger line width + space width), a SAW waveguide structure is created. ing. The parameters of the series arm SAW resonator Xs are: wavelength Lt = λ = 2.44 μm, IDT electrode logarithm N = 50, reflector number M = 100, cross width W = 14. Ί λ electrode finger gap GO 0.20, dark electrode length DO is 2.00, dark electrode line occupancy is 60.0%, LtZLr (Lr is twice the distance between electrode fingers of the reflector) is 0.98, Ltr (IDT The distance between the electrode and the nearest electrode finger between the grating reflector (hereinafter, referred to as a reflector) was 0.45X. Note that an insulating film (such as a SiO film) does not adhere to the IDT electrode.
2  2
並列腕 SAW共振子 Xpの電極構成も図 10に示すように、ダミー電極を設けて SA W導波路構造として ヽるが、 IDT電極は楕円状のアポダイズ重み付けを施した構成 とした。他のパラメータは、波長 Lt= λを 2. m、 IDT電極対数 Nを 100対、反射 器本数 Mをそれぞれ 150本、交差幅 Wを 39. 3 λ、電極指先端ギャップ GOを 0. 20 λ、ダミー電極長 DOを 0. 75 λ、ダミー電極ライン占有率を 60. 0%、 LtZLr (Lrは 反射器の電極指間間隔の 2倍)を 0. 98、 Ltr(IDT電極と反射器との最隣接電極指 間の間隔)を 0. 45えとした。 IDT電極上には絶縁膜 (SiO膜等)は設けていない。  The electrode configuration of the parallel arm SAW resonator Xp is also a SAW waveguide structure with dummy electrodes provided as shown in FIG. 10, but the IDT electrode is configured to have an elliptical apodized weight. Other parameters are wavelength Lt = λ 2.m, IDT electrode pairs N 100 pairs, number of reflectors M 150 each, cross width W 39.3λ, electrode finger tip gap GO 0.20λ. The dummy electrode length DO is 0.75 λ, the dummy electrode line occupancy is 60.0%, LtZLr (Lr is twice the distance between the electrode fingers of the reflector) is 0.98, Ltr (IDT electrode and reflector The distance between the nearest electrode fingers of the above) was 0.45 mm. No insulating film (such as a SiO film) is provided on the IDT electrode.
2  2
電極膜厚 Hは直列腕及び並列腕 SAW共振子とも 0. 24 mとした。また、 IDT電極 のライン占有率は圧電基板のカット角により僅かに異ならせ、カット角力 2° の場合 は直列腕及び並列腕の SAW共振子とも 48. 7%、カット角力 6. 5° の場合は両 S AW共振子とも共に 50. 0%に設定した。 The electrode thickness H was 0.24 m for both the serial arm and the parallel arm SAW resonator. In addition, the line occupancy of the IDT electrode is made slightly different depending on the cut angle of the piezoelectric substrate.When the cut angular force is 2 °, the SAW resonators of the series arm and the parallel arm are 48.7% and the cut angular force is 6.5 °. Was set to 50.0% for both SAW resonators.
図 11はラダー型 SAWフィルタの断面図を示す概略図であり、所謂チップ ·サイズ' パッケージ (CSP)の構造を採用した。圧電基板 31の主表面上に IDT電極 32と接続 用のパッド電極 33とを形成したラダー型 SAWフィルタ素子(SAWチップ) Tは、アル ミナセラミック基板 34に形成した接続用の電極 35と金バンプ 36を介してフリップチッ プ実装される。そして、この上に封止用榭脂 37を塗布し、硬化させれば SAWチップ Tは密封され、内部に空間 38の有るチップ ·サイズ'パッケージ (CSP)が構成される 。アルミナセラミック基板 34は多層構造でパッケージの内側の電極 35と外側の電極 3 9とはアルミナセラミック基板 34の内部配線 40により接続される。  FIG. 11 is a schematic diagram showing a cross-sectional view of a ladder-type SAW filter, which employs a so-called chip-size 'package (CSP) structure. A ladder-type SAW filter element (SAW chip) having an IDT electrode 32 and a connection pad electrode 33 formed on the main surface of a piezoelectric substrate 31 is composed of a connection electrode 35 formed on an alumina ceramic substrate 34 and a gold bump. The flip chip is mounted via 36. Then, a sealing resin 37 is applied thereon and cured, whereby the SAW chip T is sealed, and a chip size 'package (CSP) having a space 38 therein is formed. The alumina ceramic substrate 34 has a multilayer structure, and the inner electrode 35 and the outer electrode 39 of the package are connected by the internal wiring 40 of the alumina ceramic substrate 34.
図 8の回路図に示すようにラダー型 SAWフィルタは 3つの並列腕 SAW共振子 Xp を含んで 、るが、それぞれの並列腕 SAW共振子 Xpのアースボンディングパッドは S AWチップ T上では独立している。アルミナセラミック基板 34の内部配線によって、 3 つの並列腕 SAW共振子 Xpうち中央の SAW共振子のグランドと他の 1つの並列腕 S AW共振子のグランドとが接続される構造とする。このような構造とすることにより、図 8 に示すように、 GND1と GND2とが高周波的に分離されたラダー型 SAWフィルタが 構成され、帯域外の減衰量が改善される。 As shown in the circuit diagram of FIG. 8, the ladder-type SAW filter includes three parallel arm SAW resonators Xp, but the ground bonding pads of each parallel arm SAW resonator Xp are independent on the SAW chip T. ing. By the internal wiring of the alumina ceramic substrate 34, 3 One parallel arm SAW resonator Xp has a structure in which the ground of the center SAW resonator is connected to the ground of another parallel arm SAW resonator. With such a structure, as shown in FIG. 8, a ladder-type SAW filter in which GND1 and GND2 are separated at high frequencies is configured, and the attenuation outside the band is improved.
ラダー型 SAWフィルタのフィルタ特性をシミュレーションにより求めるに当たり、 SA W共振子の電気的特性は実測したものを用いた力 SAWチップ Tやアルミナセラミツ ク基板 34の配線に関する電気的特性は電磁界解析シミュレーションにより求めたも のを用いた。そして、 SAW共振子実測データと配線の電磁界解析とを合成して、ラ ダー型 SAWフィルタのフィルタ特性を求めた。  In determining the filter characteristics of the ladder-type SAW filter by simulation, the electrical characteristics of the SAW resonator were measured using force. The electrical characteristics of the wiring of the SAW chip T and the alumina ceramic substrate 34 were analyzed by electromagnetic field analysis simulation. The one obtained by the following was used. Then, by combining the measured data of the SAW resonator and the electromagnetic field analysis of the wiring, the filter characteristics of the ladder-type SAW filter were obtained.
図 12 (a)、 (b)はシミュレーションより求めたフィルタ特性で、同図(a)はフィルタの 減衰特性であり、同図(b)は通過域を拡大した図である。図中の実線は 42° 回転 Y カット X伝搬 LiTaO基板を用いた伝送特性、破線は 46. 5° 回転 Yカット X伝搬 LiT  FIGS. 12 (a) and 12 (b) show the filter characteristics obtained from the simulation, FIG. 12 (a) shows the filter attenuation characteristics, and FIG. 12 (b) is an enlarged view of the passband. The solid line in the figure shows the transmission characteristics using a 42 ° rotation Y-cut X-propagation LiTaO substrate, and the broken line shows the 46.5 ° rotation Y-cut X-propagation LiT.
3  Three
aO基板での伝送特性である。図 12 (a)、(b)には GPS受信機用 RFフィルタに要求This is the transmission characteristics of the aO substrate. Figures 12 (a) and (b) show the requirements for RF filter for GPS receiver
3 Three
される規格の一例を記入してある。図 12の符号 A、 B、 C、 D、 Eはそれぞれ、 MCA 帯、イリジウム帯、インマルサットアップリンク帯、インマルサットダウンリンク帯、 GPS 帯であり、これらを保証帯域と言う。符号 A,、 BC'、 D'、 E'は、ラダー型 SAWフィル タが保証帯域 A、 B、 C、 D、 Eを規格の下記の諸条件で満たすために設定された室 温での検査規格であり、各保証帯域幅よりかなり広く設定した。 An example of the standard to be used is entered. Symbols A, B, C, D, and E in FIG. 12 are an MCA band, an iridium band, an Inmarsat uplink band, an Inmarsat downlink band, and a GPS band, respectively, and these are called guaranteed bands. Symbols A, BC ', D', and E 'indicate the room temperature set by the ladder-type SAW filter so that the guaranteed bands A, B, C, D, and E meet the following conditions of the standard. It is a standard and is set considerably wider than each guaranteed bandwidth.
つまり、温度変化による周波数変動、 SAWフィルタ素子を回路基板に半田実装す る際のリフローによる周波数変動、 SAWフィルタが高温や低温を経た後の周波数変 動、 SAWフィルタに熱衝撃や機械的衝撃が加わった後の周波数変動等、種々の周 波数変動を考慮し、それらによる周波数変動分にマージンを加えた周波数範囲を保 証帯域幅に加えて検査規格として 、る。この検査規格を満たせば室温の検査のみで SAWフィルタの動作温度範囲内の諸性能や上記の環境条件下での信頼性を保証 することが可能となる。図 12に示した各検査帯域 A'、 BC'、 D'、 E'は、各保証帯域 A、 B、 C、 D、 Eの低域側に 4. 76MHz,高域側に 5. 03MHzの周波数範囲を付カロ している。例えば、 GPS帯の検査帯域(Ε' )は 1569. 637MHz~1581. 473MHz 、 MCA帯の検査帯域 (Α,)は 1496. 24〜1530. 03MHzとなる。 GPS帯の検査帯 域 (Ε' )における最大挿入損失の規格は 2. 2dB以下、 MCA帯 (Α' )、イリジウム帯 及びインマルサットアップリンク帯 (BC,)の各検査帯域の最小減衰量の規格は 45dB 以上、インマルサットダウンリンク帯検査帯域 (D' )の最小減衰量の規格は 2. 4dB以 上である。 In other words, frequency fluctuations due to temperature changes, frequency fluctuations due to reflow when the SAW filter element is soldered to the circuit board, frequency fluctuations after the SAW filter has passed high or low temperatures, and thermal and mechanical shocks to the SAW filter In consideration of various frequency fluctuations such as frequency fluctuations after the addition, the frequency range obtained by adding a margin to the frequency fluctuations due to these fluctuations is added to the guaranteed bandwidth as an inspection standard. If this inspection standard is satisfied, it is possible to guarantee various performances within the operating temperature range of the SAW filter and reliability under the above environmental conditions only by inspection at room temperature. The test bands A ', BC', D ', and E' shown in Fig. 12 are 4.76 MHz for the lower band and 5.03 MHz for the higher band for each of the guaranteed bands A, B, C, D, and E. The frequency range is included. For example, the inspection band (Ε ') of the GPS band is 1569.637 MHz to 158.1.473 MHz, and the inspection band (Α,) of the MCA band is 1496.24 to 1530.03 MHz. Inspection zone of GPS band The standard of the maximum insertion loss in the area (Ε ') is 2.2dB or less, and the minimum attenuation of each test band in the MCA band (Α'), iridium band and Inmarsat uplink band (BC,) is 45dB or more, and Inmarsat The specification of the minimum attenuation of the downlink band test band (D ') is 2.4 dB or more.
[0011] 図 12 (a)、 (b)のフィルタ特性力も GPS帯の検査帯域 (E, )における最大挿入損失 はカット角 42° 、46. 5° とも検査規格を満たしているものの、減衰特性に関しては V、ずれのカット角とも検査規格を満たして 、な 、。図 8に示したように並列腕 SAW共 振子のアース配線の工夫により、通過域低域側や通過域高域側に形成される減衰 極により、大きな減衰量は得られたもののラダー型 SAWフィルタの帯域幅が広すぎ るために通過域近傍の減衰特性が不十分である。  [0011] The filter characteristics of Figs. 12 (a) and 12 (b) also show that the maximum insertion loss in the test band (E,) in the GPS band meets the test standards at both the cut angles of 42 ° and 46.5 °, but the attenuation characteristics With regard to V, both the cut angle of deviation and the inspection standard are satisfied. As shown in Fig. 8, the ladder-type SAW filter was able to obtain a large amount of attenuation due to the attenuation poles formed in the lower and higher passbands of the parallel arm SAW resonator due to the ground wiring of the parallel arm SAW resonator. The attenuation characteristics near the passband are inadequate because the bandwidth is too wide.
このように特開平 9— 167936号公報、米国特許 6556104号公報に開示されてい る回転 Yカット X伝搬 LiTaO基板を用いたラダー型 SAWフィルタでは、 GPS受信機  As described above, the ladder-type SAW filter using the rotating Y-cut X-propagation LiTaO substrate disclosed in Japanese Patent Application Laid-Open No. 9-167936 and US Pat.
3  Three
の RFフィルタとしては帯域幅が広すぎ、 GPS受信機の要求規格を満たせな ヽことが 分かった。  It turned out that the bandwidth was too wide for the RF filter, and it could not meet the required standard for GPS receivers.
これを改善するにはラダー型 SAWフィルタを狭帯域ィ匕する手段が必要となる。ラダ 一型 SAWフィルタを狭帯域ィ匕するには、並列腕及び直列腕に配置される SAW共振 子の容量比 γを大きくする手段が必要である。この他にも並列腕のインピーダンスを 小さくして直列腕のインピーダンスを大きくする方法や、並列腕と直列腕とからなるラ ダー型基本区間フィルタの接続段数を増やす方法等があるが、前者の場合は挿入 損失の劣化が生じ、後者の場合は挿入損失の劣化に加えラダー型 SAWフィルタが 大型化するという欠点がある。これらの理由力 通過帯域内の低損失と通過域近傍 の高減衰特性と共に満たすには、ラダー型 SAWフィルタを構成する SAW共振子の 容量 γを大きくする手段が最良と考えられる。  To improve this, means for narrowing the ladder type SAW filter is required. To narrow the ladder type SAW filter in a narrow band, means for increasing the capacitance ratio γ of the SAW resonators arranged in the parallel arm and the serial arm is required. Other methods include reducing the impedance of the parallel arm to increase the impedance of the series arm, and increasing the number of connection stages of the ladder-type basic section filter consisting of the parallel arm and the series arm. In the latter case, the insertion loss is deteriorated, and in the latter case, the ladder-type SAW filter is disadvantageously enlarged in addition to the insertion loss. For these reasons, the best way to satisfy both the low loss in the pass band and the high attenuation characteristics near the pass band is to increase the capacitance γ of the SAW resonator constituting the ladder-type SAW filter.
[0012] 特開平 8— 65089号公報には SAW共振子に直列、あるいは並列に容量を付カロし たラダー型 SAWフィルタの発明が開示されて 、る。付加容量を直列または並列接続 することにより SAW共振子の容量比 γを大きくし、狭帯域のラダー型 SAWフィルタ を実現できると記述されて ヽる。 JP-A-8-65089 discloses an invention of a ladder-type SAW filter in which a capacitor is provided with a capacity in series or in parallel with a SAW resonator. It is described that by connecting the additional capacitors in series or in parallel, the capacitance ratio γ of the SAW resonator can be increased to realize a narrow band ladder-type SAW filter.
また、特開平 9— 167937号公報には SAW共振子に容量を直列、または並列に接 続したタイプのラダー型 SAWフィルタの発明が開示されている。同公報の他の実施 例にお 、て、直列腕 SAW共振子にインダクタを並列接続したラダー型 SAWフィルタ も記述されて 、る。これによると直列腕 SAW共振子にインダクタを並列接続したタイ プのラダー型 SAWフィルタは、通過帯域幅を保ちつつ通過域高域側の減衰傾度を 急峻にできると記述されて 、る。 Japanese Patent Application Laid-Open No. 9-167937 discloses that a capacitor is connected to a SAW resonator in series or in parallel. An invention of a ladder-type SAW filter of the following type is disclosed. In another embodiment of the publication, a ladder-type SAW filter in which an inductor is connected in parallel to a series arm SAW resonator is also described. According to this, a ladder-type SAW filter in which an inductor is connected in parallel to a series-arm SAW resonator can steeply reduce the attenuation gradient on the high-passband side while maintaining the passband bandwidth.
前記特開平 8— 65089号公報、特開平 9— 167937号公報に記述されているラダ 一型 SAWフィルタは、 SAW共振子にリアクタンスを直列または並列接続するため、 リアクタンスパターン(くし型キャパシタ、平行平板キャパシタ、マイクロストリップインダ クタ等)と、これを SAW共振子に接続するための接続配線パターンを圧電基板上に 設ける必要があるため、圧電基板上の配線が複雑、且つ配線の自由度が減少し、さ らに圧電基板上の SAW共振子配置可能数が減少する等の欠点を有している。  The ladder type SAW filter described in JP-A-8-65089 and JP-A-9-167937 describes a reactance pattern (comb type capacitor, parallel plate, parallel plate) for connecting a reactance to a SAW resonator in series or parallel. Capacitors, microstrip inductors, etc.) and connection wiring patterns for connecting them to the SAW resonator must be provided on the piezoelectric substrate, which complicates wiring on the piezoelectric substrate and reduces the degree of freedom in wiring. Further, it has the disadvantage that the number of possible SAW resonators on the piezoelectric substrate is reduced.
SAW共振子にリアクタンスを接続することなしに、 SAW共振子の容量比 γを大きく する手段として、 SAW共振子の IDT電極に間引き重み付けを施す手法がある。この 手法は、特開平 11— 163664号公報ゃ特開 2002— 353769公報に詳細に開示さ れている。特開平 11— 163664号公報の間引き重み付けは、 IDT電極内に電極指 が配置されない箇所を周期的に設けるもので、間引きの種類としては励振及び反射 間引きに属する。  As a means of increasing the capacitance ratio γ of the SAW resonator without connecting the reactance to the SAW resonator, there is a method of weighting the IDT electrode of the SAW resonator by thinning. This method is disclosed in detail in JP-A-11-163664 and JP-A-2002-353769. Japanese Patent Application Laid-Open No. 11-163664 discloses thinning-out weighting in which a portion where an electrode finger is not arranged is periodically provided in an IDT electrode. The thinning-out weighting belongs to excitation and reflection thinning-out.
また、特開 2002— 353769公報の間引き重み付けは、励振間引き (反射は間引か ない)で、 IDT電極内の間引き重み付けを SAW伝搬方向に対して左右で異なるよう にしたものである。  The thinning weighting in Japanese Patent Application Laid-Open No. 2002-353769 is excitation thinning (reflection is not thinned out), and the thinning weight in the IDT electrode is made different for the left and right with respect to the SAW propagation direction.
しかし、 IDT電極に間引き重み付けを施した SAW共振子の容量比 γは大きくなる ものの、 SAW共振子の損失が大きくなるという欠点があるため、ラダー型 SAWフィル タの通過帯域内の挿入損失が増大し、通過帯域内の伝送特性が単峰になり、カット オフの減衰傾度が低下する等の欠点がある。また間引きに起因してスプリアスも発生 し、ラダー型 SAWフィルタの伝送特性が劣化する問題もある。  However, although the capacitance ratio γ of the SAW resonator with the IDT electrode thinned out is large, the loss of the SAW resonator is large, so the insertion loss in the pass band of the ladder-type SAW filter increases. However, there are drawbacks in that the transmission characteristics in the passband become single-peak, and the cutoff attenuation gradient decreases. There is also a problem that spurious noise occurs due to the thinning, and the transmission characteristics of the ladder-type SAW filter deteriorate.
一方、特開 2001— 77662公報には LiTaO基板の切断角、つまりオイラー角を限  On the other hand, Japanese Patent Application Laid-Open No. 2001-77662 discloses that the cutting angle of a LiTaO substrate, that is, the Euler angle is limited.
3  Three
定し、該基板上に形成する IDT電極に金 (Au)やクロム (Cr)等の比重の大き 、電極 材料を用い、その膜厚を適切に選ぶことにより、伝搬損失の少ない SAWデバイスが 得られたと記述されている。 LiTaOのオイラー角は IDT電極の電極材料により異な By using gold (Au), chromium (Cr), and other materials with high specific gravity and electrode materials for the IDT electrodes formed on the substrate, and appropriately selecting the film thickness, SAW devices with low propagation loss can be manufactured. It is described as having been obtained. The Euler angle of LiTaO depends on the electrode material of the IDT electrode.
3  Three
らせている。例えば、電極材料が金 (Au)の場合、オイラー角は(0° 、 125° 〜146 ° 、0° ± 5° )となり、基準ィ匕電極膜厚 Η/ λは 0. 001〜0. 05の範囲としている。 電極材料がクロム(Cr)の場合は、オイラー角は(0° 、 125° 〜147° 、0° ± 5° ) とし、 H/ λは 0. 003〜0. 05の範囲として!/、る。 I have. For example, when the electrode material is gold (Au), the Euler angles are (0 °, 125 ° to 146 °, 0 ° ± 5 °), and the reference film thickness Η / λ is 0.001 to 0.05. Of the range. When the electrode material is chromium (Cr), the Euler angles are (0 °, 125 ° to 147 °, 0 ° ± 5 °), and H / λ is in the range of 0.003 to 0.05! / .
特開 2001— 77662公報の記述の通り、 IDT電極を形成する電極材料に比重の大 き ヽ金属を用いた場合、アルミニウム (A1)のように比重の小さ 、金属を用いるよりも 電気機械結合係数が大きくなる。従って、前記公報の手段は、 SAW共振子の容量 比 γを大きくしたいという要求に対しては逆行することになる。同公報の手段に基づ いて SAW共振子の容量比 γを大きくする場合は、前記したように SAW共振子にリア クタンスを接続し、ある 、は SAW共振子の IDT電極に間弓 Iき重み付けを施す等の手 段を併用せざるを得ず、従来技術が有していた欠点が解決されず残ることになる。 また、 IDT電極の電極材料として一般的な材料はアルミニウム (A1)を主成分とした ものである。金 (Au)やクロム (Cr)等を主成分とした金属を電極材料として用いると、 A1合金電極を形成する製造工程や製造設備とは別な設備を用意する必要が生じる 。製造設備を共用する場合には電極材料の切換え作業等が新たに生じ、製造設備 や製造工程の簡略化、簡素化という面からも望ましくない。ひいては、 SAWデバイス の生産性低下や設備費用の増大による製造コストの上昇を招くおそれもある。  As described in Japanese Patent Application Laid-Open No. 2001-77662, when a metal having a large specific gravity is used as an electrode material for forming an IDT electrode, the electromechanical coupling coefficient is smaller than that when using a metal, such as aluminum (A1). Becomes larger. Therefore, the means disclosed in the above publication goes against the demand for increasing the capacitance ratio γ of the SAW resonator. When the capacitance ratio γ of the SAW resonator is increased based on the means disclosed in the publication, a reactance is connected to the SAW resonator as described above, and a certain weight is applied to the IDT electrode of the SAW resonator. In this case, the method of applying the method must be used in combination, and the disadvantages of the prior art remain unresolved. A common material for the IDT electrode is aluminum (A1) as a main component. When a metal containing gold (Au) or chromium (Cr) as a main component is used as an electrode material, it is necessary to prepare equipment different from a manufacturing process and manufacturing equipment for forming an A1 alloy electrode. When the manufacturing equipment is used in common, an electrode material switching operation newly occurs, which is not desirable in terms of simplification and simplification of the manufacturing equipment and manufacturing process. As a result, the production cost of SAW devices may decrease and the production costs may increase due to the increase in equipment costs.
特開 2003— 188679公報には、 25° 〜55° 回転 Yカット X伝搬の LiTaO基板  Japanese Patent Application Laid-Open No. 2003-188679 discloses a 25 ° to 55 ° rotation Y-cut X-propagation LiTaO substrate.
3 上にアルミニウム (A1)よりも密度の大き!/、金属 (もしくは合金)カゝらなる IDT電極を形 成し、周波数温度特性を改善するため、 IDT電極上に SiO膜を形成した SAWデバ  3 An IDT electrode made of aluminum (A1) with a higher density than that of aluminum (A1) is formed on the top, and a SAW device in which a SiO film is formed on the IDT electrode to improve frequency temperature characteristics is formed to improve frequency temperature characteristics.
2  2
イスが開示されている。また同公報には、 AUりも密度の大きな金属の IDT電極に対 する SiO膜の密着強度を高めるため、 IDT電極の上面に A1等力もなる密着層を設 A chair is disclosed. In addition, the same publication discloses that an adhesion layer having an A1 equivalent force is provided on the upper surface of the IDT electrode in order to increase the adhesion strength of the SiO film to the metal IDT electrode having a high density of AU.
2  2
けた SAWデバイスについても記述されている。この A1等カゝらなる密着層の膜厚は表 面波の波長えの 1%以下が望ましいとの記述されている。同公報には IDT電極に A1 よりも密度の高い金属を用いることで IDT電極膜厚を、 A1を用いた場合より薄くするこ とができ、周波数温度特性改善のために IDT電極上に設けた SiO膜に発生するクラ A digitized SAW device is also described. It is described that the thickness of the adhesive layer made of A1 or the like is preferably 1% or less of the wavelength of the surface wave. According to the same publication, the IDT electrode can be made thinner by using a metal with a higher density than A1 for the IDT electrode, and can be made thinner than when using A1. Classification of SiO film
2  2
ックを抑制することができると記されている。 [0015] 特開 2003— 188679公報に示された IDT電極は、電極材料として前に説明した 特開 2001— 77662公報と同じ電極材料が挙げられているので、特開 2001— 7766 2公報と同じ問題、即ち IDT電極に比重の大きい金属を用いることで、 A1のように比 重の小さい金属を用いるよりも電気機械結合係数が大きくなり、 SAW共振子の容量 比 γを大きくしたいという要求に逆行する。また、製造設備や製造工程の簡略化、簡 素化に逆行するという欠点、 SAWデバイスの生産性低下や設備費用の増大により 製造コスト上昇を招くと!、う欠点等を有して!/、る。 It is described that the lock can be suppressed. [0015] The IDT electrode disclosed in JP-A-2003-188679 uses the same electrode material as that described in JP-A-2001-77662 described above as an electrode material, and is the same as that in JP-A-2001-77662. The problem is that using a metal with a high specific gravity for the IDT electrode results in a larger electromechanical coupling coefficient than using a metal with a low specific gravity, such as A1, and goes against the need to increase the capacitance ratio γ of the SAW resonator. I do. In addition, there is a drawback that simplification of manufacturing equipment and manufacturing processes goes against the simplification, and that a decrease in productivity of SAW devices and an increase in equipment costs lead to an increase in manufacturing costs! You.
また特開 2003— 188679公報では、 IDT電極上に SiO膜を付着することを前提と  Also, JP-A-2003-188679 assumes that an SiO film is deposited on the IDT electrode.
2  2
しているが、この手段では SiO膜を付着するための製造工程を追加する必要があり  However, this method requires an additional manufacturing process to deposit the SiO film.
2  2
、生産性の低下が懸念される。また、周波数温度特性を改善するには、 IDT電極上 にかなり厚い膜厚の SiOを形成する必要があり、 SiOの膜応力等により LiTaOゥェ  However, there is a concern that productivity may decrease. In order to improve the frequency temperature characteristics, it is necessary to form a considerably thick SiO on the IDT electrode, and the LiTaO
2 2 3 ハが破損するおそれがあり、 LiTaO  2 2 3 C may be damaged, and LiTaO
3ウェハの薄型化が困難になる等の問題を有する 特開 2003— 188679公報には、 A1からなる IDT電極の規格化電極膜厚 HZ λを 0. 04まで薄くすることにより、電気機械結合係数が小さくなると記述されている。これ に基づき、図 9に示したような導波路構造の SAW共振子を試作した。圧電基板は 38 .で 回転 Yカット X伝搬 LiTaOを用い、電極の材料は Cuを 1. 0wt%含有した A1合  (3) There is a problem that it is difficult to make the wafer thinner. JP-A-2003-188679 discloses that the standardized electrode thickness HZ λ of the IDT electrode composed of A1 is reduced to 0.04 to obtain an electromechanical coupling coefficient. Is described as becoming smaller. Based on this, a SAW resonator with a waveguide structure as shown in Fig. 9 was prototyped. The piezoelectric substrate uses a rotating Y-cut X-propagating LiTaO at 38 .The electrode material is A1 alloy containing 1.0 wt% Cu.
3  Three
金、波長 Lt= λを 4 /z m、電極対数 Nを 50対、反射器本数 Mをそれぞれ 100本、交 差幅 Wを 20 、IDT電極ライン占有率を 46. 1%、電極指先端ギャップ G0を 0. 15 λ、ダミー電極長 DOを 0. 75 λ、ダミー電極ライン占有率を 600/0、 Lt/Lrを 1. 0、 L trを 0. 5 λ、基準化電極膜厚 ΗΖ λを 0. 04に設定し、 IDT電極上の SiO膜は設け Gold, wavelength Lt = λ 4 / zm, number of electrode pairs N 50, number of reflectors M 100 each, intersection width W 20, IDT electrode line occupancy 46.1%, electrode finger tip gap G0 the 0. 15 lambda, the dummy electrode lengths DO 0. 75 lambda, the dummy electrode line occupancy 60 0/0, Lt / Lr to 1. 0, L tr a 0. 5 lambda, the normalized electrode thickness Itazeta lambda Is set to 0.04, and the SiO film on the IDT electrode is
2 ていない。  2 No.
[0016] 図 13は上記のパラメータを用いて試作した SAW共振子のインピーダンス絶対値の 周波数特性を示す図である。この図から反共振周波数の高域側近傍に大きなスプリ ァスが発生して 、ることが分かる。このような SAW共振子をラダー型 SAWフィルタの 並列腕に用いた場合には、通過帯域内もしくは通過域高域側近傍におおきなスプリ ァスが発生することになる。このスプリアスを反共振周波数力 遠ざける手法として、 I DT電極上に SiO等の絶縁膜を形成することが知られている力 これにはかなり厚い SiO膜を形成する必要があり、 SiO膜の形成に伴う前述の欠点が伴う。 FIG. 13 is a diagram showing the frequency characteristic of the absolute value of the impedance of a SAW resonator prototyped using the above parameters. From this figure, it can be seen that a large spur occurs near the high frequency side of the anti-resonance frequency. When such a SAW resonator is used in a parallel arm of a ladder-type SAW filter, a large spur is generated in the pass band or near the high side of the pass band. As a technique to keep this spurious away from the anti-resonant frequency force, it is known that an insulating film such as SiO is formed on the IDT electrode. It is necessary to form an SiO film, which is accompanied by the above-mentioned disadvantages associated with the formation of the SiO film.
2 2  twenty two
また、 IDT電極の電極膜厚を薄くすることは、耐電力性や静電気耐圧性の劣化が 生じ、また電極の電気的抵抗の増大によるフィルタ特性の劣化が伴う場合があるので 好ましくない。また、特開 2003— 188679公報には SiO膜 ZAu電極/回転 Yカット  In addition, it is not preferable to reduce the thickness of the IDT electrode because power resistance and electrostatic withstand voltage are deteriorated and filter characteristics may be deteriorated due to an increase in electric resistance of the electrode. Also, JP-A-2003-188679 discloses a SiO film ZAu electrode / rotated Y cut.
2  2
X伝搬 LiTaO構造における LiTaO基板のカット角 Θと、電気機械結合係数との関  The relationship between the cut angle Li of the LiTaO substrate in the X-propagation LiTaO structure and the electromechanical coupling coefficient
3 3  3 3
係が示されており、カット角 0を大きくするほど電気機械結合係数が小さくなる傾向が 示されている。この傾向は SiOの膜厚が 0、即ち SiO膜なしの場合でも同じである。 This indicates that the larger the cut angle 0, the smaller the electromechanical coupling coefficient tends to be. This tendency is the same even when the SiO film thickness is 0, that is, when there is no SiO film.
2 2  twenty two
ただし、電極材料としての Auは、先に述べた欠点を有すると共に、 Auが高価な電極 材料であることや、 LiTaO等の金属酸ィ匕物との密着性が弱い等の品質、信頼性が However, Au as an electrode material has the above-mentioned disadvantages, and has poor quality and reliability such as Au being an expensive electrode material and weak adhesion to metal oxides such as LiTaO.
3  Three
低下する等の欠点もある。 There are also disadvantages such as a decrease.
特開 2003— 218664公報にはオイラー角(0° ± 3° 、 110° 〜150° 、0° ± 3 ° )の LiTaO基板上に銀 (Ag)からなる IDT電極を形成し、周波数温度特性を改善  Japanese Patent Application Laid-Open No. 2003-218664 discloses that an IDT electrode made of silver (Ag) is formed on a LiTaO substrate having an Euler angle (0 ° ± 3 °, 110 ° to 150 °, 0 ° ± 3 °), and a frequency-temperature characteristic is obtained. Improvement
3  Three
するため IDT電極上に SiO膜を形成した SAWデバイスが開示されている。この手段 For this purpose, a SAW device in which a SiO film is formed on an IDT electrode is disclosed. This means
2  2
も前に挙げた特開 2003— 188679号公報と同様の欠点を有している。つまり、 Agが 高価な電極材料であることや、 Ag力LiTaO等の金属酸ィ匕物との密着性が弱いとい Also has the same drawbacks as JP-A-2003-188679 mentioned above. In other words, it is said that Ag is an expensive electrode material and its adhesion to metal oxides such as LiTaO is weak.
3  Three
う欠点を有している。 It has disadvantages.
特許文献 1 特開平 9 167936号公報 Patent Document 1 JP-A-9167936
特許文献 2米国特許 6556104号公報 Patent Document 2 U.S. Pat.No. 6,556,104
特許文献 3特開平 8— 65089号公報 Patent Document 3 JP-A-8-65089
特許文献 4特開平 9 167937号公報 Patent Document 4 JP 9 167937 A
特許文献 5特開平 11 - - 163664号公報 Patent Document 5 Japanese Patent Laid-Open No. 11-163163
特許文献 6特開 2002 — 353769公報 Patent Document 6 JP 2002-353769A
特許文献 7特開 2001 — 77662公報 Patent Document 7 JP 2001-77662 Gazette
特許文献 8特開 2003 — 188679公報 Patent Document 8 JP 2003-188679
特許文献 9特開 2003 — 218664公報 Patent Document 9 JP 2003-218664 Gazette
特許文献 10:特開平 11 92147号公報 Patent Document 10: JP-A-11 92147
特許文献 11:特開 2004— 35396公報 Patent Document 11: Japanese Patent Application Laid-Open No. 2004-35396
特 §午文献 1: http://www.cdmatech.com/solutions/pdf/msm6275_chipset.pdf 発明の開示 Special Reference 1: http://www.cdmatech.com/solutions/pdf/msm6275_chipset.pdf Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] 本発明は、 GPS受信機の RF用 SAWフィルタに要求される規格を満たすフィルタ が実現できな力つた従来技術の欠点を解決するものである。  [0017] The present invention solves the disadvantages of the prior art in which a filter satisfying the standard required for an RF SAW filter of a GPS receiver cannot be realized.
また、本発明は、要求規格を満たさない SAWフィルタを RF回路や通信装置に使 用すれば、回路や装置の性能を劣化させるという従来技術の欠点を解決するもので ある。  Further, the present invention solves the drawback of the prior art in that the use of a SAW filter that does not satisfy the required standards in an RF circuit or a communication device deteriorates the performance of the circuit or device.
課題を解決するための手段  Means for solving the problem
[0018] 請求項 1の発明は、 GPS受信機の RF用フィルタの規格を満たすため、オイラー角( 0° ±4。 、 144. 1° 〜160. 0° 、0° ±4。 )のタンタル酸リチウム(LiTaO The invention according to claim 1 is a tantalum having Euler angles (0 ° ± 4, 144.1 ° to 160.0 °, 0 ° ± 4) in order to satisfy the RF filter standard of the GPS receiver. Lithium oxide (LiTaO
3 )基板 の主表面上に表面波の伝搬方向に沿って形成された少なくとも 1つの IDT電極と、 該 IDT電極の両側に配置したグレーティング反射器と、を備えた SAWデバイスであ つて、前記 IDT電極及びグレーティング反射器をアルミニウムあるいはアルミニウム合 金で形成し、その基準化電極膜厚 ΗΖ λ (Hは電極膜厚、 λは波長)を 0. 10から 0. 14の範囲に設定して SAWデバイスを構成することを特徴とする。  3) A SAW device including at least one IDT electrode formed on a main surface of a substrate along a propagation direction of a surface wave, and grating reflectors disposed on both sides of the IDT electrode, wherein The electrodes and grating reflector are made of aluminum or aluminum alloy, and the standardized electrode film thickness λ λ (H is the electrode film thickness, λ is the wavelength) is set in the range of 0.10 to 0.14. It is characterized by comprising.
請求項 2の発明は、オイラー角(0° ±4° , 144. 1° 〜160. 0° , 0° ±4° )の タンタル酸リチウム基板と、該タンタル酸リチウム基板の主表面上に表面波の伝搬方 向に沿って形成された少なくとも 1つの IDT電極と、を備えた SAWデバイスであって 、前記 IDT電極をアルミニウムあるいはアルミニウム合金で形成し、その基準化電極 膜厚 ΗΖ λ (Hは電極膜厚、 λは波長)を 0. 10から 0. 14の範囲に設定したことを特 徴とする。  The invention of claim 2 provides a lithium tantalate substrate having an Euler angle (0 ° ± 4 °, 144.1 ° to 160.0 °, 0 ° ± 4 °), and a surface on the main surface of the lithium tantalate substrate. A SAW device comprising at least one IDT electrode formed along the wave propagation direction, wherein the IDT electrode is formed of aluminum or an aluminum alloy, and a standardized electrode film thickness ΗΖλ (H is The feature is that the electrode film thickness and λ are set in the range of 0.10 to 0.14.
請求項 3の発明は、請求項 1又は 2において、前記 SAWデバイスがー端子対 SA W共振子であることを特徴とする。  A third aspect of the present invention is characterized in that, in the first or second aspect, the SAW device is a negative terminal-pair SAW resonator.
[0019] 請求項 4の発明は、請求項 1又は 2において、前記タンタル酸リチウム基板上に形 成したリード電極にて前記 SAWデバイスを直列腕、並列腕と順次梯子状に接続して ラダー型 SAWフィルタを構成したことを特徴とする。 [0019] The invention of claim 4 is the ladder type according to claim 1 or 2, wherein the SAW device is connected to a serial arm and a parallel arm sequentially in a ladder shape with a lead electrode formed on the lithium tantalate substrate. A SAW filter is configured.
請求項 5の発明は、請求項 4に記載の SAWデバイスを用いて分波器を構成したこ とを特徴とする。 請求項 6の発明は、請求項 1乃至 5の何れか一項において、前記タンタル酸リチウ ム基板がバルタ導電率を高めたものであることを特徴とする。 According to a fifth aspect of the present invention, a duplexer is configured using the SAW device according to the fourth aspect. A sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the lithium tantalate substrate has a higher Balta conductivity.
請求項 7の発明は、請求項 1乃至 6の何れか一項において、前記タンタル酸リチウ ム基板が該基板の導電性を高めるため熱と化学的に還元する雰囲気との組み合わ せ中に放置したものであることを特徴とする。  The invention according to claim 7 is the method according to any one of claims 1 to 6, wherein the lithium tantalate substrate is left in a combination of heat and an atmosphere in which the substrate is chemically reduced to enhance the conductivity of the substrate. Characterized in that:
請求項 8の発明は、請求項 1乃至 6の何れか一項において、前記タンタル酸リチウ ム基板を該基板の導電性を高めるためキュリー温度未満の温度にて金属蒸気を含 む雰囲気で加熱したことを特徴とする。  The invention according to claim 8 is the method according to any one of claims 1 to 6, wherein the lithium tantalate substrate is heated in an atmosphere containing metal vapor at a temperature lower than the Curie temperature in order to increase the conductivity of the substrate. It is characterized by the following.
請求項 9の発明は、請求項 1乃至 8の何れか一項に記載の SAWデバイスを GPS受 信機の回路に搭載したことを特徴とする。  The invention of claim 9 is characterized in that the SAW device according to any one of claims 1 to 8 is mounted on a circuit of a GPS receiver.
発明の効果  The invention's effect
[0020] 本発明に係るカット角のタンタル酸リチウム基板と基準化電極膜厚とを用いて SAW デバイスを構成すれば、 GPS受信機の RF用フィルタに要求される規格を全て満た すことができるという効果がある。また、本発明の SAWデバイスを RF回路や装置に 用いれば、回路や装置の性能を向上させるという効果もある。  [0020] If a SAW device is configured using the lithium tantalate substrate having a cut angle according to the present invention and the standardized electrode film thickness, all the standards required for the RF filter of the GPS receiver can be satisfied. This has the effect. Further, when the SAW device of the present invention is used for an RF circuit or device, there is an effect that the performance of the circuit or device is improved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 図 1 (a)は本発明に係るラダー型 SAWフィルタの実施の形態を示す回路図であつ て、圧電基板 11の主表面上に弾性表面波の伝搬方向に沿って複数の SAW共振子 を形成し、該 SAW共振子を同一圧電基板 11上に形成したリード電極にて、直列腕 SAW共振子 Xs、並列腕 SAW共振子 Xp、直列腕 SAW共振子 Xs、並列腕 SAW共 振子 Xpと順次梯子状に接続して、ラダー型 SAWフィルタ素子 12を構成する。そして 、図 1 (b)の断面図に示すように、ラダー型 SAWフィルタ素子 12 (SAWチップ)上に 形成したパッド電極 13とアルミナセラミック基板 14に形成した接続用の電極 15とを金 バンプ 16を介してフリップチップ実装する。そして、この上に封止用榭脂 17を塗布し 、硬化させれば SAWチップは密封され、内部に空間 18を有るチップ ·サイズ 'パッケ ージ (CSP)が構成される。アルミナセラミック基板 14は多層構造でパッケージの内 側の電極 15と外部電極 19とはアルミナセラミック基板 14の内部配線 20により接続し 、ラダー型 SAWフィルタを構成する。 GPS受信機の RF用フィルタは、 GPS帯における挿入損失が 2. 2dB以下、 MCA 帯、イリジウム帯、インマルサットアップリンク帯における減衰量が 45dB以上、インマ ルサットダウンリンク帯の減衰量が 2. 4dB以上という規格を満たす必要がある。回転 Yカット X伝搬 LiTaOを用いたラダー型 SAWフィルタがこの条件を満たすためには FIG. 1A is a circuit diagram showing an embodiment of a ladder-type SAW filter according to the present invention, in which a plurality of SAW resonances are provided on a main surface of a piezoelectric substrate 11 along a propagation direction of a surface acoustic wave. And a parallel arm SAW resonator Xs, a parallel arm SAW resonator Xp, a serial arm SAW resonator Xs, and a parallel arm SAW resonator Xp are formed by a lead electrode on which the SAW resonator is formed on the same piezoelectric substrate 11. And a ladder-type SAW filter element 12 are sequentially connected. Then, as shown in the cross-sectional view of FIG. 1B, the pad electrode 13 formed on the ladder-type SAW filter element 12 (SAW chip) and the connection electrode 15 formed on the alumina ceramic substrate 14 are connected to the gold bumps 16. Through flip chip mounting. Then, if a sealing resin 17 is applied on this and cured, the SAW chip is sealed and a chip size package (CSP) having a space 18 therein is formed. The alumina ceramic substrate 14 has a multilayer structure, and the electrodes 15 on the inner side of the package and the external electrodes 19 are connected by the internal wiring 20 of the alumina ceramic substrate 14 to form a ladder type SAW filter. The RF filter of the GPS receiver has an insertion loss of 2.2 dB or less in the GPS band, an attenuation of 45 dB or more in the MCA band, iridium band, and Inmarsat uplink band, and an attenuation of 2.4 dB in the Inmarsat downlink band. It is necessary to meet the above standards. Rotation Y cut X propagation Ladder type SAW filter using LiTaO
3  Three
、各々の SAW共振子の容量比 γがどのような値をとるすべきかを検討した。その結 果、直列腕及び並列腕 SAW共振子の容量比 γが共に 14. 6-23. 6の範囲内の値 をとることが必要であることが分力つた。容量比 γが 14. 6よりも小さい場合は GPS帯 近傍の減衰帯域の規格を満たすことができず、容量比 γが 23. 6よりも大きい場合は GPS帯における挿入損失の規格を満たすことができない。  We examined what value the capacitance ratio γ of each SAW resonator should take. As a result, it was necessary to make it necessary that the capacitance ratio γ of the series arm and the parallel arm SAW resonator both take a value within the range of 14.6-23.6. When the capacity ratio γ is smaller than 14.6, the standard of the attenuation band near the GPS band cannot be satisfied, and when the capacity ratio γ is larger than 23.6, the standard of the insertion loss in the GPS band cannot be satisfied. Can not.
そこで、電極材料に A1を用いた場合の、回転 Υカット X伝搬 LiTaOのカット角と基  Therefore, when A1 is used as the electrode material, the rotation angle Υ cut X propagation
3  Three
準化電極膜厚 ΗΖ λとをパラメータとして、図 9のような導波路構造の SAW共振子の 容量比 γについてシミュレーションを行った。 SAW共振子の設計パラメータは、波長 Lt= λを 2. 5 m、 IDT電極対数 Nを 50対、反射器の本数 Mをそれぞれ 100本、 交差幅 Wを 20 λ、 IDT電極ライン占有率 50%、電極指先端ギャップ GOを 0. 15え、 ダミー電極長 DOを 0. 75え、ダミー電極ライン占有率を 60%、 Lt/Lr= l. 0、 Ltr= 0. 5えとし、 SiO膜は IDT電極上に付着しない。 Using the standardized electrode film thickness ΗΖλ as a parameter, a simulation was performed on the capacitance ratio γ of a SAW resonator having a waveguide structure as shown in Fig. 9. The design parameters of the SAW resonator are: wavelength Lt = λ = 2.5 m, IDT electrode pairs N = 50, number of reflectors M = 100, cross width W = 20 λ, IDT electrode line occupancy 50% The electrode finger tip gap GO is 0.15, the dummy electrode length DO is 0.75, the dummy electrode line occupancy is 60%, Lt / Lr = 1.0, Ltr = 0.5, and the SiO film is Does not adhere on IDT electrodes.
2  2
図 2にカット角と基準化電極膜厚 HZ λとに対して求めた SAW共振子の容量比 γ を示す。図 2より、カット角が 54. 1° 〜70。 の範囲で、且つ Η/ λが 0. 10〜0. 14 の範囲の値をとる場合、容量比 γは 14. 6-23. 6の範囲内の値となることが判明し た。これに対して、カット角力 ^42° 、46. 5° では Η/ λを 0. 10力ら 0. 14まで変ィ匕 させても容量比 γは 14. 6より小さくなることが分力つた。即ち、カット角が 42° 、 46. 5° の場合、 GPS帯近傍の減衰特性の規格を満たせず、図 12のフィルタ特性のシミ ユレーシヨン結果と一致して 、る。  Figure 2 shows the capacitance ratio γ of the SAW resonator obtained for the cut angle and the standardized electrode thickness HZλ. According to Fig. 2, the cut angle is 54.1 ° to 70. When the value of Η / λ is in the range of 0.10 to 0.14, the capacitance ratio γ is found to be in the range of 14.6 to 23.6. On the other hand, when the cut angular force was ^ 42 ° and 46.5 °, the capacitance ratio γ was smaller than 14.6 even when Η / λ was changed from 0.10 to 0.14. . That is, when the cut angles are 42 ° and 46.5 °, the attenuation characteristics in the vicinity of the GPS band cannot be satisfied, and this is consistent with the simulation result of the filter characteristics in FIG.
また、カット角が 75° では、 ΗΖ λを 0. 12より小さい値にすると容量比 γは 23. 6 よりも大きくなり、 GPS帯の挿入損失の規格 2. 2dB以下を満たせなくなる。カット角が 75° で、且つ ΗΖ λを 0. 12-0. 14の範囲内の値に設定すると、容量比 γは 14. 6〜23. 6の範囲内の値となる力 図 3に示すようにカット角が大きくなると周波数温度 係数 (TCF)が劣化するため、カット角を 70° よりも大きく設定するのは望ましくない。 また、リーキー波の伝搬損失もカット角が 70° 以上になると大きくなり実用的ではなく なるので、カット角の範囲は 54. 1° 〜70° の範囲が望ましい。 When the cut angle is 75 °, if λλ is set to a value smaller than 0.12, the capacity ratio γ becomes larger than 23.6, and the GPS band insertion loss standard of 2.2 dB or less cannot be satisfied. When the cut angle is 75 ° and ΗΖ λ is set to a value in the range of 0.12 to 0.14, the force ratio γ becomes a value in the range of 14.6 to 23.6. When the cut angle increases, the frequency temperature coefficient (TCF) deteriorates, so setting the cut angle larger than 70 ° is not desirable. Also, the leaky wave propagation loss becomes large and impractical when the cut angle is 70 ° or more, so the cut angle range is preferably 54.1 ° to 70 °.
従来用いられたカット角の 42° や 46. 5° よりもカット角を大きくすると、一般的に 周波数温度係数が劣化するが、基準化電極膜厚 HZ λを大きく設定することにより 周波数温度係数が改善されるので、カット角が 54. 1° 〜70° の範囲では、 ΗΖ λ は 0. 10以上に設定すると良い。  If the cut angle is larger than the conventionally used cut angles of 42 ° and 46.5 °, the frequency temperature coefficient generally deteriorates.However, the frequency temperature coefficient can be reduced by setting the standardized electrode film thickness HZλ to be large.さ れ る λ should be set to 0.10 or more when the cut angle is in the range of 54.1 ° to 70 °.
[0023] 図 4は 55° 回転 Υカット X伝搬 LiTaOを用いて試作した SAW共振子のインピーダ [0023] Fig. 4 shows a prototype SAW resonator made using 55 ° rotation Υ cut X-propagation LiTaO.
3  Three
ンス絶対値の周波数特性である。電極の材料は Cuを 1. Owt%含有した A1合金、波 長 Lt= λを 2. 5 m、 IDT電極対数 Nを 50対、反射器本数 Mをそれぞれ 100本、 交差幅 Wを 14え、 IDT電極ライン占有率 50%、電極指先端ギャップ GOを 0. 20え、 ダミー電極長 DOを 1. 00 、ダミー電極ライン占有率を 60%、 LtZLrを 0. 98、 Ltr を 0. 45えとし、 IDT電極上に SiO膜は設けていない。太い実線は基準化電極膜厚  This is the frequency characteristic of the absolute value of the impedance. The electrode material is A1 alloy containing 1.Owt% Cu, wavelength Lt = λ 2.5 m, IDT electrode pairs N 50 pairs, reflector number M 100 each, cross width W 14 IDT electrode line occupancy 50%, electrode finger tip gap GO 0.20, dummy electrode length DO 1.00, dummy electrode line occupancy 60%, LtZLr 0.98, Ltr 0.45 No SiO film is provided on the IDT electrode. Thick solid line is standardized electrode film thickness
2  2
ΗΖ λが 0. 128の場合、細い実線は ΗΖ λが 0. 064の場合、細い破線は ΗΖ λが 0. 16の場合のインピーダンス絶対値の周波数特性である。基準化電極膜厚 ΗΖ λ が 0. 10〜0. 14の範囲力 外れると、共振子の損失が大きくなるため、 ΗΖ λは 0. 10〜0. 14の範囲に設定するのが良い。  When λ λ is 0.128, the thin solid line is the frequency characteristic of the impedance absolute value when ΗΖ λ is 0.064, and the thin broken line is the frequency characteristic of the absolute value when λ λ is 0.16. If the standardized electrode film thickness λλ is out of the range of 0.10 to 0.14, the loss of the resonator increases, so ΗΖλ is preferably set in the range of 0.10 to 0.14.
回転 Υカット X伝搬 LiTaOでカット角が 54. 1° 〜70° に相当するオイラー角は(0  Rotation Υcut X propagation Euler angle corresponding to a cut angle of 54.1 ° to 70 ° in LiTaO is (0
3  Three
° 、 144. 1° 〜160. 0° 、0° )となり、カット角以外については、実験の結果による と ±4° の範囲内であれば良い。つまり、オイラー角表示で(0° ±4° 、 144. 1° 〜 160. 0° 、0° ±4° )である LiTaO基板上に、 Aほたは A1を主成分とする合金に  °, 144.1 ° to 160.0 °, 0 °), and other than the cut angle, according to the results of the experiment, it may be within the range of ± 4 °. In other words, on a LiTaO substrate with Euler angle notation (0 ° ± 4 °, 144.1 ° to 160.0 °, 0 ° ± 4 °), A
3  Three
て電極を形成し、該電極の基準化電極膜厚 ΗΖ λを 0. 10〜0. 14とした SAW共振 子を用いてラダー型 SAWフィルタを構成すれば、 GPS受信機の RF用フィルタの要 求規格を満足できるものと想定される。  If a ladder-type SAW filter is formed using a SAW resonator with a standardized electrode thickness λλ of 0.10 to 0.14, the RF filter of the GPS receiver is required. It is assumed that the required standards can be satisfied.
[0024] 図 5 (a)、(b)は GPS受信機の RF用ラダー型 SAWフィルタのフィルタ特性をシミュ レーシヨンにより求めた図で、同図(a)は減衰域のフィルタ特性、同図(b)は通過域を 拡大した特性である。シミュレーションは SAW共振子のみ実測データを用い、その 他は電磁界解析の結果を用いている。圧電基板に 55° 回転 Yカット X伝搬 LiTaO [0024] Figs. 5 (a) and 5 (b) show the simulation results of the filter characteristics of the RF ladder-type SAW filter of the GPS receiver. Fig. 5 (a) shows the filter characteristics in the attenuation region. b) is a characteristic with an expanded passband. The simulation used actual measurement data only for the SAW resonator, and the others used the results of electromagnetic field analysis. 55 ° rotation on piezoelectric substrate Y-cut X-propagation LiTaO
3 を用い、 IDT電極を Cuを 1. 0 %含有した A1合金、電極膜厚 Hを 0. 31 μ mとし、 直列腕 SAW共振子 Xsは、波長 Lt= λ = 2. 36 m、ダミー電極長 DOを 1. 00 λ、 I DT電極ライン占有率を 49. 6%とし、並列腕 SAW共振子 Χρは、波長 Lt= λ = 2. 4 3 m、ダミー電極長 DOを 0. 75 λ、 IDT電極ライン占有率 49. 6%とし、その他のパ ラメータは図 12に示したものと同一とした。また、直列腕及び並列腕 SAW共振子の ΗΖ λはそれぞれ 0. 131及び 0. 127である。 Using ID3, the IDT electrode was an A1 alloy containing 1.0% Cu, the electrode thickness H was 0.31 μm, The series arm SAW resonator Xs has a wavelength Lt = λ = 2.36 m, the dummy electrode length DO is 1.00 λ, the IDT electrode line occupancy is 49.6%, and the parallel arm SAW resonator Χρ is the wavelength Lt = λ = 2.43 m, dummy electrode length DO was 0.75 λ, IDT electrode line occupancy was 49.6%, and the other parameters were the same as those shown in Fig. 12. Further, 直列 λ of the serial arm and the parallel arm SAW resonator is 0.131 and 0.127, respectively.
図 5に示すフィルタ特性の太 、実線は本発明によるラダー型 SAWフィルタであり、 比較のため 42° 及び 46. 5° 回転 Yカット X伝搬 LiTaOを用いたラダー型 SAWフ  The thick and solid lines in the filter characteristics shown in FIG. 5 indicate a ladder-type SAW filter according to the present invention. For comparison, a ladder-type SAW filter using 42 ° and 46.5 ° rotation Y-cut X-propagation LiTaO was used.
3  Three
ィルタのフィルタ特性も重ね書きした。前者のフィルタ特性は細い実線、後者は細い 破線である。 The filter characteristics of the filter are also overwritten. The former filter characteristic is a thin solid line, and the latter is a thin broken line.
図 5から明らかなように、 GPS受信機の RF用フィルタに要求される規格をすベて満 足することが判明した。  As is clear from Fig. 5, it was found that all the standards required for GPS receiver RF filters were satisfied.
本発明のラダー型 SAWフィルタには、 LiTaOの焦電効果に起因する IDT電極指  The ladder type SAW filter of the present invention has an IDT electrode finger caused by the pyroelectric effect of LiTaO.
3  Three
の破壊防止と、図 1 (b)に示すような CSP構造のフィルタにおける封止榭脂の帯電防 止とで、圧電基板のバルタ導電率を高めた回転 Yカット X伝搬 LiTaOを用い、その The use of a rotating Y-cut X-propagation LiTaO, which has increased the balta conductivity of the piezoelectric substrate, to prevent the destruction of the piezoelectric substrate and to prevent charging of the sealing resin in the filter with the CSP structure as shown in Fig. 1 (b).
3  Three
カット角は 55° としている。 LiTaOのバルク導電率を高める手段は、特開平 11— 9 The cut angle is 55 °. The means for increasing the bulk conductivity of LiTaO is disclosed in
3  Three
2147号公報ゃ特開 2004— 35396号公報に開示されている。実験の結果、 LiTaO のバルタ導電率を高めたものと、通常のものをとで SAW共振子の特性に差は認め No. 2147—disclosed in JP-A-2004-35396. As a result of the experiment, there is a difference in the SAW resonator characteristics between the LiTaO with increased Balta conductivity and the normal one.
3 Three
られなかった。 I couldn't.
図 5から明らかなように、本発明によるラダー型 SAWフィルタは、従来のラダー型 S AWフィルタでは満たすことのできなかった要求規格を全て満たすことが可能となつ た。通過帯域においてもフィルタ特性の劣化はなぐむしろ従来のラダー型 SAWフィ ルタで生じて 、たリップル力 本発明のラダー型 SAWフィルタでは抑圧されたため、 図 6に示すように、 GPS帯検査帯域における最大挿入損失と最大偏差は従来のラダ 一型 SAWフィルタよりも改善される結果となった。  As is apparent from FIG. 5, the ladder-type SAW filter according to the present invention can satisfy all the required standards that cannot be satisfied by the conventional ladder-type SAW filter. Even in the pass band, the filter characteristics do not deteriorate, but rather occur in the conventional ladder-type SAW filter, and the ripple power is suppressed in the ladder-type SAW filter of the present invention. The insertion loss and the maximum deviation were improved over the conventional ladder type 1 SAW filter.
従来のカット角を用いたラダー型フィルタにおいて通過域内でリップルが生じるのは 、 IDT電極内部のエネルギー閉じ込めが弱ぐ反射器の反射特性のサイドローブ特 性が共振周波数付近で重畳するためと推定される。  It is presumed that ripples occur in the passband in the conventional ladder-type filter using a cut angle because the sidelobe characteristics of the reflection characteristics of the reflector, which weaken the energy confinement inside the IDT electrode, are superimposed near the resonance frequency. You.
本発明に係る回転 Yカット X伝搬 LiTaO基板は従来のカット角よりも高角度の圧電 基板を用い、且つ基準化電極膜厚 HZ λも大きく (厚く)したため、 Η/ λが大きくな つた分、各電極指力もの反射も大きくなり、全体として反射係数が大きくなつた。その ため、本発明に係る SAW共振子は IDT電極内部のエネルギー閉じ込めが強くなる ので、反射器を省略することが可能となった。 Rotational Y-cut X-propagation LiTaO substrate according to the present invention Since the substrate was used and the standardized electrode film thickness HZλ was also increased (increased), the larger the value of / λ, the greater the reflection of each electrode finger force, and the larger the reflection coefficient as a whole. As a result, the SAW resonator according to the present invention has a high energy confinement inside the IDT electrode, so that the reflector can be omitted.
従って、本発明に係るラダー型 SAWフィルタは、 IDT電極の両側に設けていた反 射器を省略することができ、ラダー型 SAWフィルタの小型化が可能となった。  Therefore, in the ladder-type SAW filter according to the present invention, the reflectors provided on both sides of the IDT electrode can be omitted, and the size of the ladder-type SAW filter can be reduced.
[0026] 本発明の主たる目的は従来のものよりも狭いラダー型 SAWフィルタを実現する手 段を得ることであるが、広帯域ィ匕を図る場合には周知の技術、例えば並列腕のインピ 一ダンスを大きくして直列腕のインピーダンスを小さくする方法や、並列腕と直列腕と カゝらなる基本区間フィルタの縦続段数を減らす方法、並列腕 SAW共振子と直列腕 S AW共振子の周波数差を大きくする方法などを併用することにより、比帯域約 3. 5% (米国 PCS用 RFフィルタ等)の通過帯域幅を保証できる。 [0026] The main object of the present invention is to obtain a means for realizing a ladder-type SAW filter narrower than the conventional one. To reduce the impedance of the series arm by increasing the number of cascade stages of the basic section filter consisting of the parallel arm and the series arm, and to reduce the frequency difference between the parallel arm SAW resonator and the series arm S AW resonator. By using a method to increase the passband, it is possible to guarantee a pass band width of about 3.5% (such as RF filter for PCS in the United States).
また、本発明はラダー型 SAWフィルタのみでなぐ DMSフィルタにも適用可能であ り、入出力いずれか一方が平衡終端のフィルタにも適用可能である。ただ、本発明に 係る SAW共振子は IDT電極内部のエネルギー閉じ込めが強ぐ近接した複数の ID T電極間の音響的な結合を利用する DMSフィルタにお ヽては、各 IDT電極の対数 を減らして IDT電極間の音響結合を強める等の手段が必要となる。  Further, the present invention can be applied to a DMS filter that is not limited to a ladder-type SAW filter, and can also be applied to a filter in which one of input and output is balanced. However, the SAW resonator according to the present invention reduces the logarithm of each IDT electrode in a DMS filter that utilizes acoustic coupling between a plurality of adjacent IDT electrodes that have strong energy confinement inside the IDT electrode. Therefore, means for strengthening the acoustic coupling between the IDT electrodes is required.
さらに、本発明に係る SAWフィルタを用いて、 SAW分波器を構成することも可能で ある。  Furthermore, a SAW duplexer can be configured using the SAW filter according to the present invention.
また、本発明による SAWフィルタを RF回路や GPS受信機等に使用すれば、 SAW フィルタ単体の性能向上、小型化、低価格化のみならず、 GPS受信機の性能向上、 小型化、低価格化、部品点数減、低消費電力化という効果も発揮することができる。  In addition, if the SAW filter according to the present invention is used in an RF circuit, a GPS receiver, or the like, not only the performance of the SAW filter alone, miniaturization, and price reduction, but also the performance improvement, miniaturization, and price reduction of the GPS receiver can be achieved. Also, the effects of reducing the number of parts and reducing power consumption can be exhibited.
[0027] 以上では SAWデバイスを説明してきた力 Qualcomm社のチップセット MSM62 75™の Chipset Solution Data Sheetによれば、 GPS受信回路の RF段には、 GPSァ ンテナと Pre - LNAとの間に 1個のバンド ·パス ·フイノレタ(以下、 TOPフイノレタと称す ;)、 Pre— LNAと LNAとの間に 1個のバンド 'パス'フィルタ(以下、段間フィルタと称 す)の 2個のバンド 'パス'フィルタが使用される。例えば、 TOPフィルタには SAWフィ ルタゃ積層セラミック LCフィルタ、同軸共振器型誘電体フィルタ等が用いられ、段間 フィルタには SAWフィルタ等が用 、られる。一般に TOPフィルタには低損失な特性 が要求され、段間フィルタには高減衰特性が要求されるが、例えば段間フィルタに用 いる SAWフィルタの減衰特性が通過帯域内の挿入損失の劣化を伴わずに改善され れば、その分 TOPフィルタに必要とされる減衰量は小さくできる。これにより様々な利 点があり、例えば TOPフィルタに積層 LCフィルタを用いる場合は、多層セラミックの 積層数を減らすことができ、多層セラミックに内蔵するインダクタやキャパシタ等のェ レメント数を減らすことができる等、小型化や低価格ィ匕に寄与することができる。また T OPフィルタに誘電体フィルタを用いる場合にぉ 、ては、同軸共振器の個数を減らす ことも可能であり、小型化や低価格ィ匕に寄与することができる。さらに、 TOPフィルタ 自体を省略することも可能となり、回路に使う部品点数を減らし、増幅器等の能動素 子の使用個数を減らすことによる低消費電力ィ匕も可能であろう。 [0027] In the above, the power of the SAW device has been described. According to the Chipset Solution Data Sheet of Qualcomm's chipset MSM62 75 ™, the RF stage of the GPS receiver circuit includes the 1st antenna between the GPS antenna and the Pre-LNA. One band 'pass' filter (hereinafter referred to as an interstage filter) between the LNA and LNA. A 'pass' filter is used. For example, a TOP filter uses a SAW filter, a multilayer ceramic LC filter, a coaxial resonator type dielectric filter, etc. A SAW filter or the like is used as a filter. In general, TOP filters require low-loss characteristics, and interstage filters require high attenuation characteristics.For example, the attenuation characteristics of SAW filters used in interstage filters are accompanied by deterioration of insertion loss in the passband. If the improvement is achieved without any problem, the attenuation required for the TOP filter can be reduced accordingly. This has various advantages.For example, when a multilayer LC filter is used for the TOP filter, the number of multilayer ceramic layers can be reduced, and the number of elements such as inductors and capacitors built into the multilayer ceramic can be reduced. For example, it can contribute to downsizing and low price. In addition, when a dielectric filter is used as the TOP filter, it is possible to reduce the number of coaxial resonators, which can contribute to downsizing and low cost. Furthermore, it is possible to omit the TOP filter itself, and it is possible to reduce power consumption by reducing the number of components used in the circuit and the number of active elements such as amplifiers.
図面の簡単な説明 Brief Description of Drawings
[図 1] (a)は本発明に係るラダー型 SAWフィルタの回路構成を示した図、(b)はラダ 一型 SAWフィルタの断面を示す概略構成図である。 FIG. 1 (a) is a diagram showing a circuit configuration of a ladder type SAW filter according to the present invention, and FIG. 1 (b) is a schematic configuration diagram showing a cross section of a ladder type SAW filter.
[図 2]カット角と基準化電極膜厚とをパラメータとしたときの容量比 γを示す図である。  FIG. 2 is a diagram showing a capacitance ratio γ when a cut angle and a standardized electrode film thickness are used as parameters.
[図 3]カット角と基準化電極膜厚とをパラメータとしたときの周波数温度係数を示す図 である。 FIG. 3 is a diagram showing a frequency temperature coefficient when a cut angle and a standardized electrode film thickness are used as parameters.
[図 4]SAW共振子のインピーダンス絶対値の周波数特性を示す図である。  FIG. 4 is a diagram showing a frequency characteristic of an impedance absolute value of a SAW resonator.
[図 5]本発明に係るラダー型 SAWフィルタの、 (a)は減衰特性、(b)は通過域特性を 示す図である。  FIG. 5 (a) shows attenuation characteristics and (b) shows passband characteristics of a ladder-type SAW filter according to the present invention.
[図 6]カット角と最大挿入損失、最大偏差との関係を示す図である。  FIG. 6 is a diagram showing a relationship between a cut angle, a maximum insertion loss, and a maximum deviation.
[図 7] (a)、 (b)はラダー型基本区間フィルタとそのフィルタ特性を示す図である。  FIGS. 7A and 7B are diagrams showing a ladder-type basic interval filter and its filter characteristics.
[図 8]従来のラダー型 SAWフィルタの回路構成を示した図である。  FIG. 8 is a diagram showing a circuit configuration of a conventional ladder-type SAW filter.
[図 9]直列腕 SAW共振子の電極パターンを示す図である。  FIG. 9 is a view showing an electrode pattern of a serial arm SAW resonator.
[図 10]並列腕 SAW共振子の電極パターンを示す図である。  FIG. 10 is a view showing an electrode pattern of a parallel arm SAW resonator.
[図 11]ラダー型 SAWフィルタの構造を示す断面図である。  FIG. 11 is a cross-sectional view illustrating a structure of a ladder-type SAW filter.
[図 12]従来のラダー型 SAWフィルタの、(a)は減衰特性、(b)は通過域特性を示す 図である。 [図 13]従来の SAW共振子のインピーダンス絶対値の周波数特性を示す図である。 符号の説明 [FIG. 12] (a) shows attenuation characteristics and (b) shows passband characteristics of a conventional ladder-type SAW filter. FIG. 13 is a diagram showing a frequency characteristic of an impedance absolute value of a conventional SAW resonator. Explanation of reference numerals
11 圧電基板、 14 アルミナセラミック基板、 Xs 直列腕 SAW共振子、 Xp 並列腕 SAW共振子、 GND1、 GND2 接地、 12 SAWチップ、 13 パッド電極、 15 接続 用の電極、 16 金バンプ、 17 榭脂、 18 空間、 19 外部電極、 20 内部配線  11 Piezoelectric substrate, 14 Alumina ceramic substrate, Xs series arm SAW resonator, Xp parallel arm SAW resonator, GND1, GND2 ground, 12 SAW chip, 13 pad electrode, 15 connection electrode, 16 gold bump, 17 resin, 18 space, 19 external electrode, 20 internal wiring

Claims

請求の範囲 The scope of the claims
[1] オイラー角(0。 ±4。 , 144. 1° 〜160. 0° , 0° ±4。 )のタンタル酸リチウム(Li TaO )基板の主表面上に表面波の伝搬方向に沿って形成された少なくとも 1つの ID [1] Euler angles (0. ± 4., 144.1 ° to 160.0 °, 0 ° ± 4.) Along the propagation direction of surface waves on the main surface of a lithium tantalate (Li TaO) substrate At least one ID formed
3 Three
T電極と、該 IDT電極の両側に配置したグレーティング反射器と、を備えた SAWデ バイスであって、前記 IDT電極及びグレーティング反射器をアルミニウムあるいはァ ルミ-ゥム合金で形成し、その基準化電極膜厚 ΗΖ λ (Ηは電極膜厚、 λは波長)を 0. 10力ら 0. 14の範囲に設定したことを特徴とする SAWデバイス。  A SAW device including a T electrode and grating reflectors arranged on both sides of the IDT electrode, wherein the IDT electrode and the grating reflector are formed of aluminum or an aluminum alloy, and standardized. A SAW device characterized in that the electrode thickness λλ (Η is the electrode thickness, λ is the wavelength) is set in the range of 0.10 to 0.14.
[2] オイラー角(0。 ±4。 , 144. 1° 〜160. 0° , 0° ±4。 )のタンタル酸リチウム基 板と、該タンタル酸リチウム基板の主表面上に表面波の伝搬方向に沿って形成され た少なくとも 1つの IDT電極と、を備えた SAWデバイスであって、前記 IDT電極をァ ルミ-ゥムあるいはアルミニウム合金で形成し、その基準化電極膜厚 Η/ λ (Ηは電 極膜厚、 λは波長)を 0. 10から 0. 14の範囲に設定したことを特徴とする SAWデバ イス。 [2] Lithium tantalate substrate with Euler angles (0. ± 4, 144.1 ° to 160.0 °, 0 ° ± 4.) And propagation of surface waves on the main surface of the lithium tantalate substrate A SAW device comprising at least one IDT electrode formed along a direction, wherein the IDT electrode is formed of aluminum or an aluminum alloy, and a standardized electrode film thickness Η / λ (Η Is an electrode film thickness, and λ is a wavelength) in the range of 0.10 to 0.14.
[3] 前記 SAWデバイスがー端子対 SAW共振子であることを特徴とする請求項 1又は 2 に記載の SAWデバイス。  3. The SAW device according to claim 1, wherein the SAW device is a terminal-pair SAW resonator.
[4] 前記タンタル酸リチウム基板上に形成したリード電極にて前記 SAWデバイスを直列 腕、並列腕と順次梯子状に接続してラダー型 SAWフィルタを構成したことを特徴と する請求項 1又は 2に記載の SAWデバイス。 [4] The ladder-type SAW filter is configured by connecting the SAW device in series with a serial arm and a parallel arm in a ladder shape with a lead electrode formed on the lithium tantalate substrate. SAW device as described in.
[5] 請求項 4に記載の SAWデバイスを用いて分波器を構成したことを特徴とする SAW デバイス。 [5] A SAW device comprising a duplexer using the SAW device according to claim 4.
[6] 前記タンタル酸リチウム基板力バルタ導電率を高めたものであることを特徴とする請 求項 1乃至 5の何れか一項に記載の SAWデバイス。  [6] The SAW device according to any one of claims 1 to 5, wherein the lithium tantalate substrate has an increased balta conductivity.
[7] 前記タンタル酸リチウム基板が該基板の導電性を高めるため熱と化学的に還元する 雰囲気との組み合わせ中に放置したものであることを特徴とする請求項 1乃至 6の何 れか一項に記載の SAWデバイス。 7. The lithium tantalate substrate according to any one of claims 1 to 6, wherein the substrate is left in a combination of heat and an atmosphere in which the substrate is chemically reduced to enhance the conductivity of the substrate. SAW device as described in section.
[8] 前記タンタル酸リチウム基板を該基板の導電性を高めるためキュリー温度未満の温 度にて金属蒸気を含む雰囲気で加熱したことを特徴とする請求項 1乃至 6の何れか 一項に記載の SAWデバイス。 請求項 1乃至 8の何れか一項に記載の SAWデバイスを GPS受信機の回路に搭載し たことを特徴とする装置。 8. The method according to claim 1, wherein the lithium tantalate substrate is heated in an atmosphere containing metal vapor at a temperature lower than the Curie temperature in order to increase the conductivity of the substrate. SAW device. An apparatus comprising the SAW device according to any one of claims 1 to 8 mounted on a circuit of a GPS receiver.
PCT/JP2005/011300 2004-06-22 2005-06-20 Saw device and apparatus employing it WO2005125005A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-183293 2004-06-22
JP2004183293A JP2006013576A (en) 2004-06-22 2004-06-22 Saw device and apparatus employing the same

Publications (1)

Publication Number Publication Date
WO2005125005A1 true WO2005125005A1 (en) 2005-12-29

Family

ID=35510058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011300 WO2005125005A1 (en) 2004-06-22 2005-06-20 Saw device and apparatus employing it

Country Status (2)

Country Link
JP (1) JP2006013576A (en)
WO (1) WO2005125005A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929004A (en) * 2019-12-06 2021-06-08 太阳诱电株式会社 Acoustic wave resonator, filter, multiplexer and wafer

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090715A1 (en) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. Surface acoustic wave device
WO2009090713A1 (en) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US8129256B2 (en) 2008-08-19 2012-03-06 International Business Machines Corporation 3D integrated circuit device fabrication with precisely controllable substrate removal
CN102334289B (en) 2009-02-27 2015-10-07 精工爱普生株式会社 SAW (Surface Acoustic Wave) resonator, surface acoustic wave oscillator and electronic equipment
JP5678486B2 (en) 2010-06-17 2015-03-04 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator and electronic device
JP5934464B2 (en) 2010-08-26 2016-06-15 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JP2012060418A (en) 2010-09-09 2012-03-22 Seiko Epson Corp Surface acoustic wave device, electronic apparatus and sensor device
JP2012060421A (en) 2010-09-09 2012-03-22 Seiko Epson Corp Surface acoustic wave device, electronic apparatus and sensor device
JP2012060422A (en) 2010-09-09 2012-03-22 Seiko Epson Corp Surface acoustic wave device, electronic apparatus and sensor device
JP2012060419A (en) 2010-09-09 2012-03-22 Seiko Epson Corp Surface acoustic wave device, electronic apparatus and sensor device
JP2012060420A (en) 2010-09-09 2012-03-22 Seiko Epson Corp Surface acoustic wave device, electronic apparatus and sensor device
CN106209007B (en) * 2010-12-24 2019-07-05 株式会社村田制作所 Acoustic wave device
WO2014103953A1 (en) * 2012-12-26 2014-07-03 株式会社村田製作所 Ladder filter
JP5844939B2 (en) * 2013-02-27 2016-01-20 京セラ株式会社 Elastic wave device, duplexer and communication module
JP6634973B2 (en) * 2016-06-24 2020-01-22 株式会社村田製作所 Surface acoustic wave filters, duplexers and multiplexers
WO2018043610A1 (en) * 2016-09-02 2018-03-08 株式会社村田製作所 Acoustic wave filter device, high-frequency front-end circuit, and communication apparatus
JP7078000B2 (en) * 2019-03-22 2022-05-31 株式会社村田製作所 Elastic wave device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715274A (en) * 1991-06-02 1995-01-17 Kazuhiko Yamanouchi High frequency saw filter and surface acoustic wave function element using high-stability high coupling saw substrate
JPH1192147A (en) * 1997-07-25 1999-04-06 Crystal Technol Inc Lithium niobate crystal or lithium tantalate crystal having enhanced performance to decrease charge on crystal surface and method to preliminarily control that kind of crystal
JP2000315936A (en) * 2000-01-01 2000-11-14 Fujitsu Ltd Branching filter
JP2003087096A (en) * 2001-09-17 2003-03-20 Toyo Commun Equip Co Ltd Ladder-type surface accoustic wave filter
JP2004035396A (en) * 2002-06-28 2004-02-05 Silicon Light Machines Inc Method and apparatus for increasing bulk conductivity of ferroelectric material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715274A (en) * 1991-06-02 1995-01-17 Kazuhiko Yamanouchi High frequency saw filter and surface acoustic wave function element using high-stability high coupling saw substrate
JPH1192147A (en) * 1997-07-25 1999-04-06 Crystal Technol Inc Lithium niobate crystal or lithium tantalate crystal having enhanced performance to decrease charge on crystal surface and method to preliminarily control that kind of crystal
JP2000315936A (en) * 2000-01-01 2000-11-14 Fujitsu Ltd Branching filter
JP2003087096A (en) * 2001-09-17 2003-03-20 Toyo Commun Equip Co Ltd Ladder-type surface accoustic wave filter
JP2004035396A (en) * 2002-06-28 2004-02-05 Silicon Light Machines Inc Method and apparatus for increasing bulk conductivity of ferroelectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929004A (en) * 2019-12-06 2021-06-08 太阳诱电株式会社 Acoustic wave resonator, filter, multiplexer and wafer

Also Published As

Publication number Publication date
JP2006013576A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
WO2005125005A1 (en) Saw device and apparatus employing it
US11444598B2 (en) Acoustic wave filter
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
US7688161B2 (en) Acoustic wave device and filter using the same
JP4552931B2 (en) Elastic wave device, mobile communication device and sensor using the same
WO2018003268A1 (en) Elastic wave filter device, multiplexer, high-frequency front end circuit, and communication device
US11469736B2 (en) Acoustic wave device, filter, multiplexer, radio-frequency front-end circuit, and communication device
US9294071B2 (en) Antenna duplexer
US9484883B2 (en) Acoustic wave device and fabrication method of the same
JP6494462B2 (en) Acoustic wave devices and modules
US7692515B2 (en) Low-loss electro-acoustic component
JP5033876B2 (en) Surface acoustic wave device and communication device
US10122344B2 (en) Surface acoustic wave filter
WO2007094368A1 (en) Surface acoustic wave device, surface acoustic wave filter employing same and antenna duplexer, and electronic apparatus employing same
US7301421B2 (en) Surface acoustic wave device, manufacturing method therefor, and communications equipment
WO2007049754A1 (en) Surface acoustic wave apparatus and communication apparatus
WO2019017422A1 (en) Multiplexer, high-frequency front end circuit, and communication device
US10958241B2 (en) Extractor
JP2000261344A (en) Acoustic wave filter and communication device using the same
JP5025963B2 (en) Electronic component, method for manufacturing the same, and electronic device using the electronic component
JP4817917B2 (en) Surface acoustic wave resonator, surface acoustic wave filter, surface acoustic wave duplexer, and communication apparatus
US20220345112A1 (en) Acoustic wave filter and communication apparatus
JP2006135921A (en) Ladder type filter and device using same
Matsuda et al. High-frequency SAW duplexer with low-loss and steep cut-off characteristics
US20160226464A1 (en) Acoustic wave elements, and duplexers and electronic devices using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase