JP2003087096A - Ladder-type surface accoustic wave filter - Google Patents

Ladder-type surface accoustic wave filter

Info

Publication number
JP2003087096A
JP2003087096A JP2001281091A JP2001281091A JP2003087096A JP 2003087096 A JP2003087096 A JP 2003087096A JP 2001281091 A JP2001281091 A JP 2001281091A JP 2001281091 A JP2001281091 A JP 2001281091A JP 2003087096 A JP2003087096 A JP 2003087096A
Authority
JP
Japan
Prior art keywords
ladder
filter
saw
resonator
accoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001281091A
Other languages
Japanese (ja)
Inventor
Takuya Owaki
卓弥 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2001281091A priority Critical patent/JP2003087096A/en
Publication of JP2003087096A publication Critical patent/JP2003087096A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ladder-type SAW filter, which has superior filter characteristic which oppresses a ripple within a passing band and is small in an insertion loss and an in-band deviation, in the ladder-type SAW filter. SOLUTION: A ladder-type surface accoustic wave filter employs a surface accoustic wave resonator. In the surface accoustic wave resonator, an interdigital transducer of an electrode cycle λand grating reflectors on both sides of the interdigital transducer are disposed along the propagation direction of a surface accoustic wave on a main surface of a piezoelectric substrate. With the arrangement of the ladder-type surface accoustic wave filter, ratio Lt/Lr of a pitch Lt of the interdigital transducer to a pitch Lr of the grating reflector is set to be smaller than 1, additionally a center-to-center distance Ltr between neighboring electrode fingers of the interdigital transducer and the grating reflector is set to be smaller than 0.5 λ, and further, Lts of the surface accoustic wave resonator of at least two or more from among a plurality of surface accoustic wave resonators which are disposed in a serial arm are made to differ from each other.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ラダー型弾性表面
波フィルタに関し、特に直列腕に用いる弾性表面波共振
子の共振周波数近傍に現出するスプリアスを抑圧するこ
とによって帯域内偏差を低減したラダー型弾性表面波フ
ィルタに関する。 【0002】 【従来の技術】近年、弾性表面波(Surface Acoustic W
ave:以下、SAW)デバイスは、高性能、小型、量産
性等の優れた特徴を有していることから例えば携帯電話
機等に多く用いられている。図5はSAW共振子の一例
を示す図であって、圧電基板1の主面上にSAWの伝搬
方向に沿ってすだれ状のくし形電極(Interdigital Tra
nsducer:以下、IDT)2を配置すると共に、 SAW
エネルギーを該IDT2上に閉じ込めるために前記ID
T2の両側であってSAWの伝搬方向となる位置にグレ
ーティング反射器(Reflector:以下、反射器)3を配
置して構成する。そして、IDT電極2は互いに間挿し
合う複数の電極指を有する一対のくし形電極から形成さ
れ、夫々のくし形電極から延出した一対の入力リード端
子(IN)と出力リード端子(OUT)を備えた一端子
対SAW共振子を構成している。 【0003】最近、SAWデバイスがGPS(Global P
ositioning System)受信機に用いられるケースが多く
なってきている。これは、SAWデバイスが上記特徴に
加えて高周波化に適していることや低挿入損失であるこ
と等の利点を有しているからである。GPSシステム
は、地上のGPS受信機がGPS衛星から送信された電
波を受信してスペクトラム拡散変調(SS信号)された
信号を同期させ、そこから時刻データを抽出し基準とな
る時間と比較すると同時に、複数のGPS衛星からの電
波も受信して夫々の相対時間差を導出し、これらの時間
差を距離に換算して受信機の位置を高精度に算出するシ
ステムである。 【0004】GPS衛星から送信される搬送波は157
5.42MHz、信号の変調にはスペクトラム拡散変調
方式が用いられているため、その通過帯域幅は±1.0
23MHzである。ところが、通過帯域幅±1.023
MHzを保証するには、温度変化による帯域幅の変化、
製造時における夫々のSAW共振子の共振周波数のバラ
ツキ等を考慮すると、±10MHz程度の通過帯域幅が
必要となり、しかも帯域内の最大挿入損失は1.5dB
が要求されている。従って、本願出願人は比較的広帯域
化に好適なラダー型SAWフィルタにてGPS受信機の
RF段フィルタを設計することとした。 【0005】図6は、GPS受信機のRF段に用いるべ
く設計したラダー型SAWフィルタの電気的等価回路図
であって、圧電共振子(SAW共振子も圧電共振子の1
種である)を表す記号Xs,Xpで表したものであり、
Xsが直列腕のSAW共振子,Xpが並列腕のSAW共
振子である。図7は、図6に示した等価回路図に基づい
て実際に圧電基板1上に構成した電極パターンであっ
て、SAW共振子4,5,6,7が直列腕共振子Xs、
SAW共振子8,9が並列腕共振子Xpである。ここ
で、図8に示す如くSAW共振子のIDT電極2の電極
周期をλ、電極ピッチをLt(Lt=λ/2)、交叉幅
をWとし、反射器3の電極ピッチをLr、IDT電極2
と反射器3との相隣接する電極指同士の中心間距離をL
trとする。 【0006】図9は、圧電基板に42°YカットX伝搬
LiTaOを用い、図6及び7に示したラダー型SA
Wフィルタを構成するSAW共振子Xs,XpのIDT
電極膜厚を2300Å、諸定数(IDT電極対数:N,反射
器本数:M,IDT電極周期:λ,交叉幅:W,Lt/
Lr,Ltr)を下記の表1の通り設定した従来の通過
帯域特性を示している 【表1】 【0007】図9に示す如くラダー型SAWフィルタ通
過帯域特性において、中心周波数の近傍にリップルR1
が生じ、挿入損失及び帯域内偏差が劣化している。この
原因について解析調査するためSAW共振子を試作しリ
ターンロス特性及びインピーダンス特性を測定した。図
10に示す如くリターンロス特性及びインピーダンス特
性において、共振周波数の低域側直近Sp1にスプリア
スが現出していることが分かった。即ち、直列腕SAW
共振子の共振周波数付近で通過帯域を形成するラダー型
SAWフィルタでは、通過帯域内に上記の如きスプリア
スによってリップルR1が生じ、挿入損失及び帯域内偏
差が劣化する原因となることが、本願出願人のこれまで
の試作、実験及び解析結果から判明した。 【0008】そこで、上記スプリアスSp1を抑圧する
ことによって、前記ラダー型SAWフィルタの通過帯域
内に生じるリップルR1を抑圧することを試みた。前記
スプリアスSp1を抑圧する解決手段を見出すために、
SAW共振子の諸定数を設定してフィルタ理論に基づ
くシミュレーションにより得られるフィルタ特性と、実
際に試作したSAW共振子のフィルタ特性とからSAW
共振子の共振周波数近傍の低周波側に現出するスプリア
スの挙動を分析することとした。尚、Lt/Lrを1よ
り小さく設定するとIDT電極が呈する放射コンダクタ
ンス最大の周波数ftが反射器の呈するストップバンド
の中心周波数frより低域側に生じるため、反射器のピ
ッチLrをLtより大きくすることにより、ストップバ
ンドの中心周波数frをftへ近づけることができSA
WデバイスのQ値を改善することが可能となるのは周知
の通りである。 【0009】種々の検討を重ねた結果、同一出願人によ
る特願2001−217616に記載したようにSAW
共振子のLt/Lrを0.98とすると共にLtrを
0.45λとしたところ、図11に示す如くリターンロ
ス特性及びインピーダンス特性において、その共振周波
数の低域側直近のスプリアスは大幅に改善された。尚、
図11の曲線において、実線が改善後のSAW共振子、
破線が従来のSAW共振子の特性データである。 【0010】この実験結果に基づいて、ラダー型SAW
フィルタを構成するSAW共振子Xs,XpのIDT電
極膜厚を2300Å、諸定数(IDT電極対数:N,反射器
本数:M,IDT電極周期:λ,交叉幅:W,Lt/L
r,Ltr)を下記の表2の通り設定し試作を行ったと
ころ、図12に示す如くリップルが低減し挿入損失と帯
域内偏差が改善された通過帯域特性が得られた。尚、図
12の曲線において、実線が改善後のラダー型SAWフ
ィルタ、破線が従来のラダー型SAWフィルタの通過帯
域特性である。 【表2】 【0011】 【発明が解決しようとする課題】しかしながら、図12
の通過帯域特性において中心周波数の近傍にまだ若干の
リップルR2が観察され、市場の要求仕様、例えばリッ
プル:0.2dB以下という仕様を満足することができ
ないという問題があった。このリップルが現出する原因
は、ラダー型SAWフィルタを構成するSAW共振子、
特に直列腕に配置したSAW共振子の共振周波数の低域
側直近に生じるスプリアスであることは前述の通りであ
る。 【0012】図11の前述の改善後のSAW共振子リタ
ーンロス特性を見る限り、共振周波数の低域側直近にス
プリアスSp2がまだ若干観察される。ラダー型SAW
フィルタを構成する直列腕のSAW共振子のLt/Lr
を0.98(1より小さい)、且つLtrを0.45λ
(0.50λより小さい)とすることにより、通過帯域
内に生じるリップルを低減したわけであるが、更にリッ
プルを改善するためには、前述のパラメータ2条件の最
適化、或は前記パラメータ2条件に加えて更なる解決手
段を見出す必要があった。 【0013】更に、ラダー型SAWフィルタの量産を考
慮すれば、製造ロットによって前記リップルの大きさも
バラツキが生じる可能性があるという問題も考えられ
た。 【0014】本発明は上記の如き問題を解決するために
なされたものであって、ラダー型SAWフィルタの通過
帯域内リップルの低減を極限し、挿入損失及び帯域内偏
差の小さい良好なフィルタ特性を有するラダー型SAW
フィルタを提供することを目的とする。 【0015】 【課題を解決するための手段】上記課題を解決するため
に本発明に係るラダー型SAWフィルタの請求項1記載
の発明は、圧電基板の主表面上にSAWの伝搬方向に沿
って電極周期λのIDTと該IDTの両側に反射器を配
置したSAW共振子を用いたラダー型SAWフィルタに
おいて、前記反射器のピッチLrに対する前記IDTの
ピッチLtの比Lt/Lrを1より小さくすると共に、
IDTと反射器との相隣接する電極指同士の中心間距離
Ltrを0.5λより小さくし、更に、直列腕に複数配
置したSAW共振子のうち少なくとも2つ以上のSAW
共振子のLtを互いに異にしたことを特徴とするラダー
型SAWフィルタである。 【0016】 【発明の実施の形態】以下、本発明を図面に図示した実
施の形態例に基づいて詳細に説明する。図1は、本発明
に係るラダー型SAWフィルタの通過帯域特性を示すデ
ータあって、図2に示す如くラダー型SAWフィルタを
構成する直列腕のSAW共振子Xs1乃至Xs4と並列
腕のSAW共振子XpのIDT電極膜厚を2300Å、諸定
数(IDT電極対数:N,反射器本数:M,IDT電極
周期:λ,交叉幅:W,Lt/Lr,Ltr)を下記の
表3の通りに設定し、試作したラダー型SAWフィルタ
の通過帯域特性を測定したデータを示したものである。 【表3】【0017】ラダー型共振子フィルタは、図3(a)に
示す如くその基本区間は並列腕の共振子Xpと直列腕の
共振子Xsとから構成され、夫々の腕のリアクタンス曲
線は図3(b)のように設定される。つまり、並列腕共
振子Xpの反共振周波数と直列腕共振子Xsの共振周波
数とをほぼ一致するように設定することによって、その
周波数を中心周波数とする図3(b)に示すごとき帯域
通過フィルタを形成することは周知の通りである。即
ち、本発明で論じている問題点となっている直列腕SA
W共振子の共振周波数の低域側直近にスプリアスが存在
すると、フィルタの中心周波数近傍にリップルが現出す
ることになる。 【0018】従来、当業者間では、直列腕に用いる複数
のSAW共振子は、同一のSAW共振子を接続してラダ
ー型SAWフィルタを構成するのが常套手段であった。
しかし、GPS受信機のRF段用フィルタを設計するに
あたり、その要求仕様を満足するには、従来のラダー型
SAWフィルタでの実現は困難に等しく、これまで問題
認識のなかったリップルを抑圧することは極めて厳し
く、従来の設計思想では要求仕様を満足することができ
なかった。 【0019】そこで、本願出願人は、種々の試作、実験
及び検討を重ねた結果、通過帯域内リップルの原因とな
る直列腕共振子の共振周波数の低域側直近のスプリアス
をこれ以上低減することは厳しいと判断し、全く新しい
発想に基づいて前記リップルの抑圧を実現可能とした。
即ち、これまで常識的に同一のSAW共振子を複数個直
列腕に配置していたが、共振特性がほぼ同一であって、
共振周波数の近傍の低域側に現出するスプリアスの周波
数位置を相異なるSAW共振子を直列腕に多段接続する
と、直列腕に配置した複数のSAW共振子の互いのスプ
リアスを打ち消し合うことになりラダー型SAWフィル
タの通過帯域内リップルを抑圧できることを見出したの
である。 【0020】以下、詳細に説明すると、図4に示した通
過帯域に生じたリップルの幅をxMHzとすると、直列
腕に配置する複数のSAW共振子の共振周波数の低域側
直近に現出するスプリアスの周波数位置を相異ならせる
ために、中心周波数foのSAW共振子のIDT電極周
期λを補正し、補正後のIDT電極周期λ'を次式から
導出することができることが本願発明に係る解析結果か
ら確認された。 λ'=λ×(fo+kX)/fo …(1) X≧x …(2) 【0021】図2に示したラダー型SAWフィルタを構
成する4個の直列腕SAW共振子において、IDT電極
周期λ'1(Xs1)〜λ'4(Xs4)を夫々、kを
1.0間隔でk1=−1.5,k2=−0.5,k3=
+0.5,k4=+1.5と設定して、各SAW共振子
のIDT電極周期を算出する。中心周波数fo=157
5.42MHz,X=1.6MHz,基準(従来)電極
周期λ=2.46360μmから各SAW共振子の電極
周期λ'1〜λ'4を以下の通り導出した。 λ'1=λ×(fo−1.5X)/fo=2.4598
4μm λ'2=λ×(fo−0.5X)/fo=2.4623
6μm λ'3=λ×(fo+0.5X)/fo=2.4648
4μm λ'4=λ×(fo+1.5X)/fo=2.4673
6μm 【0022】このようにIDT電極周期を設定した4個
の直列腕SAW共振子Xs1〜Xs4と、従来の設計に
よる並列腕SAW共振子Xpとを用いてラダー型SAW
フィルタを図2に示す如く構成すると、図1に示す通過
帯域特性が得られた。通過帯域内リップルはほとんど確
認できないほどに抑圧されており、挿入損失及び帯域内
偏差の小さい良好なフィルタ特性が得られた、と同時に
要求仕様のリップル:0.2dB以下も充分満足してい
ることが確認できた。 【0023】以上のように、本発明の特徴は、ラダー型
SAWフィルタを構成するSAW共振子のうち、少なく
とも直列腕のSAW共振子について、反射器のピッチL
rに対するIDT電極のピッチLtの比、Lt/Lrを
1より小さくすると共に、IDT電極と反射器との相隣
接する電極指同士の中心間距離Ltrを0.5λより小
さくし、更には、複数の直列腕に配置した少なくとも2
個以上のSAW共振子のIDTのピッチLtを異ならし
めてラダー型SAWフィルタを構成したことである。 【0024】以上、本発明に係るラダー型SAWフィル
タを圧電基板に42°YカットX伝搬LiTaOを用
いて説明したが、この切断角度に限定する必要はなく、
他の切断角度でもよい。また、圧電基板としてLiNb
、ランガサイト(LaGaSiO14)、四硼
酸リチウム(Li)等を適用できることは言
うまでもない。 【0025】更に、本発明に係るラダー型SAWフィル
タをGPS受信機のRF段用を例にして説明したが、こ
れに限定されるものではなくセルラー方式携帯電話機等
のRFフィルタに適用できることは言うまでもない。 【0026】 【発明の効果】本発明に係るラダー型SAWフィルタ
は、以上説明した如く構成したので下記の優れた効果を
奏する。請求項1の発明は、共振周波数の低域側近傍に
現出するスプリアスの周波数位置が相異なる共振特性が
ほぼ同一な複数個のSAW共振子を直列腕に多段に接続
してラダー型SAWフィルタを構成したので、通過帯域
内リップルを抑圧せしめた挿入損失及び帯域内偏差の小
さい良好なフィルタ特性が得られるという優れた効果を
奏する。 【0027】更に、SAW共振子の共振周波数の低域側
近傍に現出するスプリアスの周波数位置が相異なるよう
設計してあるので、量産において製造ロットによるラダ
ー型SAWフィルタのフィルタ特性、特にリップルのバ
ラツキをほぼ皆無とすることができるので大量生産に好
適であるという優れた効果を奏する。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a ladder type surface acoustic wave filter, and more particularly, to suppressing a spurious appearing near a resonance frequency of a surface acoustic wave resonator used in a series arm. The present invention relates to a ladder type surface acoustic wave filter in which the in-band deviation is reduced by doing so. [0002] In recent years, Surface Acoustic W
Ave (hereinafter, SAW) devices are often used in, for example, mobile phones because of their excellent features such as high performance, small size, and mass productivity. FIG. 5 is a view showing an example of a SAW resonator, in which interdigital transducers (Interdigital Tras) are formed on the main surface of the piezoelectric substrate 1 along the SAW propagation direction.
nsducer: Hereinafter, IDT) 2 is arranged, and SAW
The ID to confine energy on the IDT 2
A grating reflector (hereinafter referred to as “reflector”) 3 is arranged at a position on both sides of T2 in the SAW propagation direction. The IDT electrode 2 is formed of a pair of comb-shaped electrodes having a plurality of electrode fingers interposed therebetween, and a pair of input lead terminals (IN) and output lead terminals (OUT) extending from each of the comb-shaped electrodes. Thus, a one-port SAW resonator is provided. [0003] Recently, SAW devices have been replaced by GPS (Global P
Ositioning System) Receivers are increasingly used. This is because the SAW device has advantages in addition to the above features, such as being suitable for high frequency operation and low insertion loss. In the GPS system, a terrestrial GPS receiver receives a radio wave transmitted from a GPS satellite, synchronizes a signal subjected to spread spectrum modulation (SS signal), extracts time data therefrom, and compares it with a reference time. This system also receives radio waves from a plurality of GPS satellites, derives relative time differences, converts these time differences into distances, and calculates the position of the receiver with high accuracy. A carrier transmitted from a GPS satellite has 157 carriers.
Since the spread spectrum modulation method is used for modulating the signal at 5.42 MHz, the pass bandwidth is ± 1.0.
23 MHz. However, the pass band width ± 1.023
To guarantee MHz, change in bandwidth due to temperature change,
Taking into account the variation in the resonance frequency of each SAW resonator at the time of manufacture, a pass band width of about ± 10 MHz is required, and the maximum insertion loss in the band is 1.5 dB.
Is required. Therefore, the applicant of the present application has designed the RF stage filter of the GPS receiver using a ladder type SAW filter which is suitable for relatively wide band. FIG. 6 is an electrical equivalent circuit diagram of a ladder-type SAW filter designed for use in the RF stage of a GPS receiver, and shows a piezoelectric resonator (the SAW resonator is one of the piezoelectric resonators).
Are represented by the symbols Xs, Xp
Xs is a SAW resonator having a serial arm, and Xp is a SAW resonator having a parallel arm. FIG. 7 shows an electrode pattern actually formed on the piezoelectric substrate 1 based on the equivalent circuit diagram shown in FIG. 6, in which the SAW resonators 4, 5, 6, and 7 are the series arm resonators Xs,
The SAW resonators 8 and 9 are the parallel arm resonators Xp. Here, as shown in FIG. 8, the electrode period of the IDT electrode 2 of the SAW resonator is λ, the electrode pitch is Lt (Lt = λ / 2), the cross width is W, the electrode pitch of the reflector 3 is Lr, and the IDT electrode is 2
The distance between the centers of electrode fingers adjacent to each other and the reflector 3 is L
Let it be tr. FIG. 9 shows a ladder type SA shown in FIGS. 6 and 7 using 42 ° Y-cut X-propagation LiTaO 3 for the piezoelectric substrate.
IDT of SAW resonators Xs and Xp constituting W filter
The electrode film thickness is 2300 °, various constants (number of IDT electrode pairs: N, number of reflectors: M, IDT electrode period: λ, cross width: W, Lt /
Lr, Ltr) are shown in Table 1 below. As shown in FIG. 9, in the pass band characteristics of a ladder type SAW filter, a ripple R1 near the center frequency is obtained.
And the insertion loss and the in-band deviation are degraded. In order to analyze and investigate the cause, a SAW resonator was prototyped and return loss characteristics and impedance characteristics were measured. As shown in FIG. 10, in the return loss characteristic and the impedance characteristic, it was found that spurious appeared at Sp1 immediately near the low frequency side of the resonance frequency. That is, the serial arm SAW
In a ladder-type SAW filter that forms a pass band near the resonance frequency of a resonator, the above-described spurious component causes a ripple R1 in the pass band, which causes insertion loss and in-band deviation to deteriorate. The results of the trial production, experiment and analysis have been revealed. Therefore, an attempt was made to suppress the ripple R1 generated in the pass band of the ladder type SAW filter by suppressing the spurious signal Sp1. In order to find a solution for suppressing the spurious Sp1,
From the filter characteristics obtained by a simulation based on the filter theory by setting various constants of the SAW resonator and the filter characteristics of the actually manufactured SAW resonator,
The behavior of spurious components appearing on the low frequency side near the resonance frequency of the resonator was analyzed. If Lt / Lr is set to be smaller than 1, the frequency ft of the maximum radiation conductance exhibited by the IDT electrode is lower than the center frequency fr of the stop band presented by the reflector, so that the pitch Lr of the reflector is made larger than Lt. As a result, the center frequency fr of the stop band can be approximated to ft, and SA
It is well known that the Q value of a W device can be improved. As a result of various studies, as described in Japanese Patent Application No. 2001-217616 filed by the same applicant, SAW
When Lt / Lr of the resonator is set to 0.98 and Ltr is set to 0.45λ, spurious near the low frequency side of the resonance frequency is greatly improved in the return loss characteristic and the impedance characteristic as shown in FIG. Was. still,
In the curve of FIG. 11, the solid line represents the SAW resonator after the improvement,
The broken line is the characteristic data of the conventional SAW resonator. Based on the experimental results, a ladder type SAW
The IDT electrode film thickness of the SAW resonators Xs and Xp constituting the filter is 2300 °, and various constants (number of IDT electrode pairs: N, number of reflectors: M, IDT electrode period: λ, cross width: W, Lt / L)
(r, Ltr) was set as shown in Table 2 below, and a trial production was performed. As shown in FIG. 12, a pass band characteristic in which the ripple was reduced and the insertion loss and the in-band deviation were improved was obtained. In the curve of FIG. 12, the solid line shows the pass band characteristics of the improved ladder type SAW filter, and the broken line shows the pass band characteristics of the conventional ladder type SAW filter. [Table 2] [0011] However, FIG.
In the pass band characteristics of the above, a slight ripple R2 is still observed in the vicinity of the center frequency, and there has been a problem that a market requirement specification, for example, a specification of ripple: 0.2 dB or less cannot be satisfied. The reason that this ripple appears is that the SAW resonator constituting the ladder type SAW filter,
In particular, as described above, the spurs are generated near the lower frequency side of the resonance frequency of the SAW resonator arranged in the series arm. As can be seen from the SAW resonator return loss characteristics after the improvement shown in FIG. 11, the spurious Sp2 is still slightly observed near the low frequency side of the resonance frequency. Ladder type SAW
Lt / Lr of SAW resonator of series arm constituting filter
Is 0.98 (less than 1) and Ltr is 0.45λ.
(Smaller than 0.50λ), the ripple generated in the pass band is reduced. However, in order to further improve the ripple, optimization of the above-described parameter 2 condition or the parameter 2 condition In addition to this, there was a need to find further solutions. In addition, considering the mass production of the ladder type SAW filter, there has been a problem that the size of the ripple may vary depending on the production lot. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to limit the reduction of ripples in the pass band of a ladder type SAW filter and to provide a good filter characteristic with small insertion loss and in-band deviation. Ladder type SAW
The purpose is to provide a filter. According to a first aspect of the present invention, there is provided a ladder-type SAW filter according to the present invention. The ladder-type SAW filter is provided on a main surface of a piezoelectric substrate along a SAW propagation direction. In a ladder type SAW filter using an IDT having an electrode period λ and a SAW resonator having reflectors arranged on both sides of the IDT, the ratio Lt / Lr of the pitch Lt of the IDT to the pitch Lr of the reflector is made smaller than 1. Along with
The distance Ltr between the centers of adjacent electrode fingers of the IDT and the reflector is made smaller than 0.5λ, and at least two or more SAW resonators among a plurality of SAW resonators arranged in a series arm are used.
A ladder-type SAW filter characterized in that the resonators have different Lt values. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is data showing pass band characteristics of a ladder-type SAW filter according to the present invention. As shown in FIG. 2, the series-arm SAW resonators Xs1 to Xs4 and the parallel-arm SAW resonator constituting the ladder-type SAW filter are shown in FIG. The XT IDT electrode film thickness is set to 2300 °, and various constants (number of IDT electrode pairs: N, number of reflectors: M, IDT electrode period: λ, cross width: W, Lt / Lr, Ltr) are set as shown in Table 3 below. 7 shows data obtained by measuring the pass band characteristics of a prototype ladder-type SAW filter. [Table 3] As shown in FIG. 3A, the basic section of the ladder type resonator filter is composed of a parallel arm resonator Xp and a series arm resonator Xs, and the reactance curve of each arm is shown in FIG. It is set as in b). That is, by setting the anti-resonance frequency of the parallel arm resonator Xp and the resonance frequency of the series arm resonator Xs to be substantially the same, the band-pass filter as shown in FIG. Is well known. That is, the serial arm SA which is a problem discussed in the present invention.
If spurious components exist near the low frequency side of the resonance frequency of the W resonator, ripples appear near the center frequency of the filter. Heretofore, it has been common practice among those skilled in the art that a plurality of SAW resonators used in a series arm are connected to the same SAW resonator to form a ladder-type SAW filter.
However, when designing a filter for the RF stage of a GPS receiver, to satisfy the required specifications, realization with a conventional ladder-type SAW filter is equally difficult, and it is necessary to suppress ripples that have not been recognized as a problem. Is extremely severe, and the conventional design concept has failed to satisfy the required specifications. The applicant of the present invention has made various trial productions, experiments, and studies, and as a result, has found that the spurious near the low frequency side of the resonance frequency of the series arm resonator, which causes ripple in the pass band, can be further reduced. Determined that it was severe, and made it possible to suppress the ripple based on a completely new idea.
In other words, a plurality of SAW resonators having the same common sense have been arranged in series arms until now, but the resonance characteristics are almost the same.
If the frequency position of the spurious appearing on the low frequency side near the resonance frequency is connected in multiple stages to different series SAW resonators, the spurs of a plurality of SAW resonators arranged in the series arm will cancel each other out. They have found that ripples in the pass band of a ladder-type SAW filter can be suppressed. To explain in more detail, assuming that the width of the ripple generated in the pass band shown in FIG. 4 is x MHz, the ripple appears immediately below the low frequency side of the resonance frequency of the plurality of SAW resonators arranged in the series arm. According to the analysis of the present invention, it is possible to correct the IDT electrode period λ of the SAW resonator having the center frequency fo and to derive the corrected IDT electrode period λ ′ from the following equation in order to make the frequency position of the spurious different. It was confirmed from the results. λ ′ = λ × (fo + kX) / fo (1) X ≧ x (2) In the four series arm SAW resonators constituting the ladder type SAW filter shown in FIG. '1 (Xs1) to λ'4 (Xs4) are respectively k at 1.0 intervals, k1 = −1.5, k2 = −0.5, k3 =
By setting +0.5, k4 = + 1.5, the IDT electrode cycle of each SAW resonator is calculated. Center frequency fo = 157
The electrode periods λ′1 to λ′4 of each SAW resonator were derived as follows from 5.42 MHz, X = 1.6 MHz, and the reference (conventional) electrode period λ = 2.46360 μm. λ′1 = λ × (fo−1.5X) /fo=2.4598
4 μm λ′2 = λ × (fo−0.5X) /fo=2.4623
6 μm λ′3 = λ × (fo + 0.5X) /fo=2.4648
4 μm λ′4 = λ × (fo + 1.5X) /fo=2.4673
A ladder-type SAW using four serial arm SAW resonators Xs1 to Xs4 in which the IDT electrode period is set as described above and a parallel arm SAW resonator Xp of a conventional design.
When the filter was configured as shown in FIG. 2, the pass band characteristics shown in FIG. 1 were obtained. Ripple in the passband is suppressed to the extent that it can hardly be confirmed, good filter characteristics with small insertion loss and in-band deviation are obtained, and the required specification ripple: 0.2 dB or less is also fully satisfied. Was confirmed. As described above, the feature of the present invention is that, among the SAW resonators forming the ladder type SAW filter, at least the SAW resonators of the serial arm have a pitch L of the reflector.
r, the ratio Lt / Lr of the pitch Lt of the IDT electrode to Lt is smaller than 1, and the distance Ltr between centers of adjacent electrode fingers of the IDT electrode and the reflector is smaller than 0.5λ. At least two placed in series arm of
That is, a ladder-type SAW filter is configured by changing the pitch Lt of the IDTs of the SAW resonators or more. Although the ladder-type SAW filter according to the present invention has been described using a 42 ° Y-cut X-propagation LiTaO 3 for the piezoelectric substrate, it is not necessary to limit the cutting angle to this.
Other cutting angles may be used. LiNb is used as a piezoelectric substrate.
It goes without saying that O 3 , langasite (La 3 Ga 5 SiO 14 ), lithium tetraborate (Li 2 B 4 O 7 ) and the like can be applied. Furthermore, the ladder-type SAW filter according to the present invention has been described by taking the RF stage of a GPS receiver as an example, but it is not limited to this, and it goes without saying that the present invention can be applied to an RF filter of a cellular type cellular phone or the like. No. The ladder type SAW filter according to the present invention has the following excellent effects because it is configured as described above. According to a first aspect of the present invention, there is provided a ladder-type SAW filter in which a plurality of SAW resonators having different spurious frequencies appearing in the vicinity of the low frequency side of the resonance frequency and having substantially the same resonance characteristics are connected in multiple stages to a series arm. Thus, an excellent effect is obtained that a good filter characteristic with a small insertion loss and a small in-band deviation that suppresses the ripple in the pass band can be obtained. Furthermore, since the frequency position of the spurious component appearing near the lower frequency side of the resonance frequency of the SAW resonator is designed to be different, the filter characteristics of the ladder type SAW filter depending on the production lot in mass production, especially, the ripple characteristics are reduced. Since there is almost no variation, there is an excellent effect that it is suitable for mass production.

【図面の簡単な説明】 【図1】本発明に係るラダー型SAWフィルタの通過帯
域特性である。 【図2】本発明に係るラダー型SAWフィルタの等価回
路構成である。 【図3】(a)はラダー型基本区間の回路構成を示す
図、(b)は夫々のリアクタンス曲線と構成されるフィ
ルタのフィルタ特性を示す図である。 【図4】フィルタの通過帯域特性を示す図である。 【図5】SAW共振子の構成を示す平面図である。 【図6】ラダー型SAWフィルタの等価回路構成を示す
図である。 【図7】圧電基板上に形成したラダー型SAWフィルタ
を示す平面図である。 【図8】SAW共振子の諸定数を説明するための平面図
である。 【図9】ラダー型SAWフィルタの通過帯域特性であ
る。 【図10】SAW共振子のインピーダンス特性及びリタ
ーンロス特性である。 【図11】SAW共振子のインピーダンス特性及びリタ
ーンロス特性である。 【図12】ラダー型SAWフィルタの通過帯域特性であ
る。 【符号の説明】 1 圧電基板 2 IDT 3 反射器 4、5,6,7,8,9 SAW共振子 10 フィルタ特性
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing pass band characteristics of a ladder type SAW filter according to the present invention. FIG. 2 is an equivalent circuit configuration of a ladder-type SAW filter according to the present invention. FIG. 3A is a diagram illustrating a circuit configuration of a ladder-type basic section, and FIG. 3B is a diagram illustrating filter characteristics of filters configured with respective reactance curves. FIG. 4 is a diagram illustrating pass band characteristics of a filter. FIG. 5 is a plan view showing a configuration of a SAW resonator. FIG. 6 is a diagram illustrating an equivalent circuit configuration of a ladder-type SAW filter. FIG. 7 is a plan view showing a ladder-type SAW filter formed on a piezoelectric substrate. FIG. 8 is a plan view for explaining various constants of the SAW resonator. FIG. 9 shows pass band characteristics of a ladder type SAW filter. FIG. 10 shows impedance characteristics and return loss characteristics of a SAW resonator. FIG. 11 shows impedance characteristics and return loss characteristics of a SAW resonator. FIG. 12 shows a pass band characteristic of a ladder-type SAW filter. [Description of Signs] 1 Piezoelectric substrate 2 IDT 3 Reflector 4, 5, 6, 7, 8, 9 SAW resonator 10 Filter characteristics

Claims (1)

【特許請求の範囲】 【請求項1】 圧電基板の主表面上に弾性表面波の伝搬
方向に沿って電極周期λのインターデジタルトランスデ
ューサと該インターデジタルトランスデューサの両側に
グレーティング反射器を配置した弾性表面波共振子を用
いたラダー型弾性表面波フィルタにおいて、前記グレー
ティング反射器のピッチLrに対する前記インターデジ
タルトランスデューサのピッチLtの比Lt/Lrを1
より小さくすると共に、インターデジタルトランスデュ
ーサとグレーティング反射器との相隣接する電極指同士
の中心間距離Ltrを0.5λより小さくし、更に、直
列腕に複数配置した弾性表面波共振子のうち少なくとも
2つ以上の弾性表面波共振子のLtを互いに異にしたこ
とを特徴とするラダー型弾性表面波フィルタ。
Claims: 1. An elastic surface having an interdigital transducer having an electrode period λ on a main surface of a piezoelectric substrate along a propagation direction of a surface acoustic wave and grating reflectors on both sides of the interdigital transducer. In a ladder type surface acoustic wave filter using a wave resonator, the ratio Lt / Lr of the pitch Lt of the interdigital transducer to the pitch Lr of the grating reflector is set to 1
In addition to making the distance smaller, the center-to-center distance Ltr between adjacent electrode fingers of the interdigital transducer and the grating reflector is made smaller than 0.5λ, and at least two of the plurality of surface acoustic wave resonators arranged in the series arm are arranged. A ladder type surface acoustic wave filter, wherein Lt of two or more surface acoustic wave resonators are different from each other.
JP2001281091A 2001-09-17 2001-09-17 Ladder-type surface accoustic wave filter Withdrawn JP2003087096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281091A JP2003087096A (en) 2001-09-17 2001-09-17 Ladder-type surface accoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281091A JP2003087096A (en) 2001-09-17 2001-09-17 Ladder-type surface accoustic wave filter

Publications (1)

Publication Number Publication Date
JP2003087096A true JP2003087096A (en) 2003-03-20

Family

ID=19104983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281091A Withdrawn JP2003087096A (en) 2001-09-17 2001-09-17 Ladder-type surface accoustic wave filter

Country Status (1)

Country Link
JP (1) JP2003087096A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088833A1 (en) * 2004-03-16 2005-09-22 Hitachi Metals, Ltd. High-frequency circuit and high-frequency component
WO2005125005A1 (en) * 2004-06-22 2005-12-29 Toyo Communication Equipment Co., Ltd. Saw device and apparatus employing it
US7049908B2 (en) 2003-07-28 2006-05-23 Murata Manufacturing Co., Ltd. Surface acoustic wave device and communication apparatus
JP2009212572A (en) * 2008-02-29 2009-09-17 Nippon Dempa Kogyo Co Ltd Elastic wave resonator, and ladder filter
WO2011065199A1 (en) * 2009-11-30 2011-06-03 太陽誘電株式会社 Filter, branching filter, and communication module
JP2013077880A (en) * 2011-09-29 2013-04-25 Murata Mfg Co Ltd Ladder type filter
US8988170B2 (en) 2010-12-29 2015-03-24 Murata Manufacturing Co., Ltd. Elastic wave filter device and communication apparatus equipped with the same
JP2016517190A (en) * 2012-12-13 2016-06-09 エプコス アクチエンゲゼルシャフトEpcos Ag Electroacoustic bandpass filter with flattened insertion loss.
WO2018079284A1 (en) * 2016-10-28 2018-05-03 株式会社村田製作所 Ladder type filter, duplexer, and elastic wave filter apparatus
JP2018074562A (en) * 2016-07-13 2018-05-10 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, communication device, and method for designing multiplexer
WO2018168836A1 (en) * 2017-03-15 2018-09-20 株式会社村田製作所 Acoustic wave element, acoustic wave filter device, and multiplexer
KR20220018020A (en) * 2019-07-17 2022-02-14 가부시키가이샤 무라타 세이사쿠쇼 Acoustic wave filters and multiplexers

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049908B2 (en) 2003-07-28 2006-05-23 Murata Manufacturing Co., Ltd. Surface acoustic wave device and communication apparatus
KR101127022B1 (en) * 2004-03-16 2012-03-26 히타치 긴조쿠 가부시키가이샤 High-frequency circuit and high-frequency component
JPWO2005088833A1 (en) * 2004-03-16 2008-01-31 日立金属株式会社 High frequency circuit and high frequency components
US7546091B2 (en) 2004-03-16 2009-06-09 Hitachi Metals, Ltd. High-frequency circuit and high-frequency device
WO2005088833A1 (en) * 2004-03-16 2005-09-22 Hitachi Metals, Ltd. High-frequency circuit and high-frequency component
WO2005125005A1 (en) * 2004-06-22 2005-12-29 Toyo Communication Equipment Co., Ltd. Saw device and apparatus employing it
JP2009212572A (en) * 2008-02-29 2009-09-17 Nippon Dempa Kogyo Co Ltd Elastic wave resonator, and ladder filter
US8552820B2 (en) 2009-11-30 2013-10-08 Taiyo Yuden Co., Ltd. Filter, duplexer and communication module
JP2011114826A (en) * 2009-11-30 2011-06-09 Taiyo Yuden Co Ltd Filter, branching filter, and communication module
WO2011065199A1 (en) * 2009-11-30 2011-06-03 太陽誘電株式会社 Filter, branching filter, and communication module
US8988170B2 (en) 2010-12-29 2015-03-24 Murata Manufacturing Co., Ltd. Elastic wave filter device and communication apparatus equipped with the same
JP2013077880A (en) * 2011-09-29 2013-04-25 Murata Mfg Co Ltd Ladder type filter
JP2016517190A (en) * 2012-12-13 2016-06-09 エプコス アクチエンゲゼルシャフトEpcos Ag Electroacoustic bandpass filter with flattened insertion loss.
JP2018074562A (en) * 2016-07-13 2018-05-10 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, communication device, and method for designing multiplexer
WO2018079284A1 (en) * 2016-10-28 2018-05-03 株式会社村田製作所 Ladder type filter, duplexer, and elastic wave filter apparatus
CN109863695A (en) * 2016-10-28 2019-06-07 株式会社村田制作所 Ladder type filter, duplexer and acoustic wave filter device
JPWO2018079284A1 (en) * 2016-10-28 2019-06-24 株式会社村田製作所 Ladder type filter, duplexer and elastic wave filter device
US20190245514A1 (en) * 2016-10-28 2019-08-08 Murata Manufacturing Co., Ltd. Ladder filter, duplexer, and elastic wave filter device
US11171630B2 (en) 2016-10-28 2021-11-09 Murata Manufacturing Co., Ltd. Ladder filter, duplexer, and elastic wave filter device
CN109863695B (en) * 2016-10-28 2024-03-12 株式会社村田制作所 Ladder filter, duplexer, and acoustic wave filter device
WO2018168836A1 (en) * 2017-03-15 2018-09-20 株式会社村田製作所 Acoustic wave element, acoustic wave filter device, and multiplexer
KR20220018020A (en) * 2019-07-17 2022-02-14 가부시키가이샤 무라타 세이사쿠쇼 Acoustic wave filters and multiplexers
KR102656794B1 (en) 2019-07-17 2024-04-12 가부시키가이샤 무라타 세이사쿠쇼 Seismic filters and multiplexers

Similar Documents

Publication Publication Date Title
KR0177907B1 (en) Surface acoustic wave filter
US5592135A (en) Surface acoustic wave filter with different filter portions satisfying complex conjugate relationship of impedances
JP3301399B2 (en) Surface acoustic wave device
US7532090B2 (en) Acoustic wave filter device and duplexer
US6326864B1 (en) Surface acoustic wave filter, duplexer and communications device with specific series resonator multiple anti-resonant point placement
US20190379353A1 (en) Extractor
JPH07283682A (en) Surface acoustic wave resonator filter
JP2003087096A (en) Ladder-type surface accoustic wave filter
JP2003069385A (en) Surface acoustic wave filter
JP2003188675A (en) Surface acoustic wave element and duplexer provided therewith
EP1005154B1 (en) Surface acoustic wave filter for improving flatness of a pass band and a method of manufacturing thereof
WO2000070758A1 (en) Surface acoustic wave device
JP2002232264A (en) Surface acoustic wave filter
US6720847B2 (en) Longitudinally-coupled resonator surface acoustic wave filter and communication apparatus using the same
JP2003032080A (en) Saw resonator and ladder type saw filter
WO1996028886A1 (en) Surface acoustic wave filter
JP2002217680A (en) Ladder-type surface acoustic wave filter
JPH1117494A (en) Multiplex mode saw filter
JP3290165B2 (en) Ladder type surface acoustic wave filter
JP2003092527A (en) Surface acoustic wave filter and communication equipment using the same
JPH10322161A (en) Vertically-coupled triple mode saw filter
JPH09294049A (en) Surface acoustic wave filter
JPH08250969A (en) Longitudinal coupling dual mode saw filter
US6310524B1 (en) Edge reflection type longitudinally coupled saw resonator filter
JP2000091881A (en) Cascade connecting double mode saw filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A761 Written withdrawal of application

Effective date: 20061027

Free format text: JAPANESE INTERMEDIATE CODE: A761