JP2009212572A - Elastic wave resonator, and ladder filter - Google Patents

Elastic wave resonator, and ladder filter Download PDF

Info

Publication number
JP2009212572A
JP2009212572A JP2008050724A JP2008050724A JP2009212572A JP 2009212572 A JP2009212572 A JP 2009212572A JP 2008050724 A JP2008050724 A JP 2008050724A JP 2008050724 A JP2008050724 A JP 2008050724A JP 2009212572 A JP2009212572 A JP 2009212572A
Authority
JP
Japan
Prior art keywords
frequency
idt electrode
wave resonator
electrode
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008050724A
Other languages
Japanese (ja)
Other versions
JP5166073B2 (en
Inventor
Osamu Tokuda
治 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2008050724A priority Critical patent/JP5166073B2/en
Publication of JP2009212572A publication Critical patent/JP2009212572A/en
Application granted granted Critical
Publication of JP5166073B2 publication Critical patent/JP5166073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elastic wave resonator not generating spurious waves which apply excessive stress to an IDT electrode in a using band. <P>SOLUTION: The elastic wave resonator 1 is provided with the IDT electrode 2 on a piezoelectric substrate and grating reflectors 3a and 3b arranged on both sides of the propagation direction of elastic waves, and is used within the range of the stop band of the respective grating reflectors 3a and 3b, and the upper end frequency f<SB>H</SB>of the band wherein the elastic wave resonator 1 is used satisfies the condition of formula 1. The average speed of the elastic waves propagating through the piezoelectric substrate is denoted by v, the cycle length of the electrode fingers of the IDT electrode is denoted by λ<SB>0</SB>, the number of the electrode fingers of the IDT electrode is denoted by N, the distances between the IDT electrode and the respective reflectors are denoted by L<SB>1</SB>and L<SB>2</SB>, the upper end frequency of the band wherein the elastic wave resonator is used is denoted by f<SB>H</SB>, and a predetermined natural number ≥2 is denoted by n. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、弾性波共振子及び当該弾性波共振子を備えたラダー型フィルタに係わり、特に弾性波共振子の使用寿命を延ばす技術に関する。   The present invention relates to an acoustic wave resonator and a ladder filter including the acoustic wave resonator, and more particularly to a technique for extending the service life of the acoustic wave resonator.

携帯電話等の移動体端末に実装され、高周波信号の弁別を行う弾性波フィルタには、例えば図11に示すように複数の共振子を直列腕101及び並列腕102として定K形に接続した構成のラダー型フィルタ100を採用しているものがある。ラダー型フィルタ100の直列腕101や並列腕102には、小型化が容易でありフォトリソグラフィ技術により複数の共振子を同時に形成可能なSAW(Surface Acoustic Wave;弾性表面波)共振子等の弾性波共振子が用いられることが多い。   An elastic wave filter that is mounted on a mobile terminal such as a cellular phone and discriminates a high-frequency signal has a configuration in which a plurality of resonators are connected in a constant K shape as a series arm 101 and a parallel arm 102 as shown in FIG. Some of them employ a ladder type filter 100. The serial arm 101 and the parallel arm 102 of the ladder type filter 100 can be easily downsized and elastic waves such as SAW (Surface Acoustic Wave) resonators that can simultaneously form a plurality of resonators by photolithography. A resonator is often used.

SAW共振子10は、例えば図12に示すように、互いに対向するように設けられ、周波数信号が入出力されるバスバー21、22に多数の電極指231、232を交差指状に接続したIDT電極2と、このIDT電極2に対してSAWの伝播方向の両側に設けられたグレーティング反射器(以下、反射器という)3a、3bと、を備えている。これらIDT電極2や反射器3a、3bは例えばLiTaOやLiNbO、水晶等の図示しない圧電基板上に、例えばアルミニウム等の金属膜をパターニングすることにより形成される。なお図11においては、例えば図12に示すSAW共振子10からなる直列腕101、並列腕102を簡略化して表現してある。 For example, as shown in FIG. 12, the SAW resonator 10 is provided so as to be opposed to each other, and is an IDT electrode in which a large number of electrode fingers 231 and 232 are connected in a cross finger shape to bus bars 21 and 22 for inputting and outputting frequency signals. 2 and grating reflectors (hereinafter referred to as reflectors) 3a and 3b provided on both sides of the IDT electrode 2 in the SAW propagation direction. The IDT electrode 2 and the reflectors 3a and 3b are formed by patterning a metal film such as aluminum on a piezoelectric substrate (not shown) such as LiTaO 3 , LiNbO 3 or quartz. In FIG. 11, for example, the serial arm 101 and the parallel arm 102 including the SAW resonator 10 illustrated in FIG. 12 are simplified.

このSAW共振子10において、例えば一方側のバスバー21に周波数信号が入力されると、この周波数信号は電極指231にて電気-機械変換されSAWとなって圧電基板を図12の左右方向に伝播し、対向するバスバー22に接続された電極指232に到達すると、当該バスバー22にてSAWが機械-電気変換され、周波数信号として取り出される。   In this SAW resonator 10, for example, when a frequency signal is input to the bus bar 21 on one side, this frequency signal is electro-mechanically converted by the electrode finger 231 to become SAW and propagates through the piezoelectric substrate in the left-right direction in FIG. When the electrode finger 232 connected to the opposite bus bar 22 is reached, the SAW is mechanical-electrically converted by the bus bar 22 and extracted as a frequency signal.

SAW共振子10は、図13(a)に模式的に示すように、周波数信号に対してアドミタンスが極大となる共振周波数「f」と、アドミタンスが極小となる反共振周波数「f」とを有する周波数特性を示し、直列腕101の共振周波数「frs」と、並列腕102の反共振周波数「fap」とをほぼ一致させることにより、図13(b)に模式的に示すように並列腕102の共振周波数「frp」、直列腕101の反共振周波数「fas」の各々に対応する減衰極の間に通過域が形成された帯域フィルタを構成することができる。ここで各SAW共振子10共振周波数や反共振周波数は、例えばバスバー22に接続されている電極指232同士の間隔(電極指231同士の間隔でもある)「λ」(以下、周期長という)を変化させることにより調節できる。 As schematically shown in FIG. 13A, the SAW resonator 10 has a resonance frequency “f r ” at which the admittance is maximized with respect to the frequency signal, and an anti-resonance frequency “f a ” at which the admittance is minimized. As shown schematically in FIG. 13 (b), the resonance frequency “f rs ” of the series arm 101 and the anti-resonance frequency “f ap ” of the parallel arm 102 are substantially matched. A bandpass filter in which a pass band is formed between the attenuation poles corresponding to each of the resonance frequency “f rp ” of the parallel arm 102 and the anti-resonance frequency “f as ” of the series arm 101 can be configured. Here, the SAW resonator 10 resonance frequency and anti-resonance frequency are, for example, the interval between the electrode fingers 232 connected to the bus bar 22 (also the interval between the electrode fingers 231) “λ 0 ” (hereinafter referred to as the period length). Can be adjusted by changing.

ところがラダー型フィルタ100の中には、例えば図14の挿入損失の特性図に「▽1〜▽3」で示したように、通過域内にリップル(通過域において減衰量が極大となるところ)が発生し、SAW共振子10の周波数特性を悪化させる場合がある。こうしたリップルの発生は、例えば図15のアドミタンス特性図に示したように、共振周波数「frs」である主共振に加え、周波数「fspr1、fspr2、fspr3、…」といった無数の周波数にてスプリアス(副共振)が励振されていることに起因している。 However, in the ladder type filter 100, for example, as indicated by “▽ 1˜ ▽ 3” in the insertion loss characteristic diagram of FIG. 14, there is a ripple in the passband (where the attenuation becomes maximum in the passband). May occur and the frequency characteristics of the SAW resonator 10 may be deteriorated. For example, as shown in the admittance characteristic diagram of FIG. 15, in addition to the main resonance having the resonance frequency “f rs ”, such ripples are generated at innumerable frequencies such as frequencies “f spr1 , f spr2 , f spr3,. This is because spurious (sub-resonance) is excited.

これらのスプリアスは、上述のようにリップルを発生させてラダー型フィルタ100の挿入損失を悪化させるばかりではなく、ラダー型フィルタ100の耐電力性能を低下させる要因ともなっている。例えば移動体端末のフロントエンド部にて送信信号と受信信号とを分離するデュプレクサの送信側フィルタ等として設けられるラダー型フィルタ100には、例えば1Wもの大きな電力を有する信号が入力されることがある。このとき、SAW共振子10にスプリアスが励振されると、スプリアスはIDT電極2に加わる応力を増大させ、特にラダー型フィルタ100の直列腕101においてIDT電極2の破壊を招く一因となる。   These spurious not only cause ripples as described above to worsen the insertion loss of the ladder type filter 100 but also reduce the power durability performance of the ladder type filter 100. For example, a ladder-type filter 100 provided as a transmission-side filter of a duplexer that separates a transmission signal and a reception signal at a front end unit of a mobile terminal may receive a signal having a power as high as 1 W, for example. . At this time, when the spurious is excited in the SAW resonator 10, the spurious increases the stress applied to the IDT electrode 2, and in particular causes the destruction of the IDT electrode 2 in the serial arm 101 of the ladder type filter 100.

そこでラダー型フィルタ100の周波数特性にリップルが現れた場合には、例えば挿入損失のスペックを外れる大きなリップルの現れる周波数を避けてラダー型フィルタ100の通過帯域(既述の「通過域」と区別するため、以下、ラダー型フィルタ100の通過域の仕様値をこのように表現する)の上端周波数「f」を設定する等の対策が採られている。しかしながらこのような対応では十分に広い通過帯域幅を設定できないといった問題があるばかりでなく、例えばフォトリソグラフィの際にIDT電極2の電極指231、232の位置や線幅が少しずれただけでリップルが通過帯域内に入ってしまうおそれもある。 Therefore, when ripples appear in the frequency characteristics of the ladder type filter 100, for example, avoid the frequency at which large ripples that deviate from the specifications of the insertion loss, and distinguish them from the pass band of the ladder type filter 100 (the above-mentioned “pass band”). Therefore, measures such as setting the upper end frequency “f H ” of the passband specification value of the ladder filter 100 are expressed below. However, such a countermeasure not only has a problem that a sufficiently wide pass bandwidth cannot be set, but also, for example, when the positions and line widths of the electrode fingers 231 and 232 of the IDT electrode 2 are slightly shifted during photolithography, ripples are generated. May fall within the passband.

特許文献1には、IDT電極の電極指数や電極指の交差重み付けを調節して、IDT電極のコンダクタンス特性における減衰極の位置(周波数)と、スプリアスの発生する周波数とを一致させることによりスプリアスの大きさを抑制する技術が記載されている。しかしながら当該技術の目的はスプリアスを小さくすることに留まっており、依然として通過帯域内にはスプリアスが存在しているため、使用寿命の低下の問題を解決することはできない。   In Patent Document 1, the electrode index of the IDT electrode and the crossing weight of the electrode fingers are adjusted to match the position (frequency) of the attenuation pole in the conductance characteristic of the IDT electrode with the frequency at which the spurious is generated. Techniques for reducing the size are described. However, the purpose of this technique is limited to reducing spurious noise, and since spurious noise still exists in the passband, the problem of reduction in service life cannot be solved.

特開昭62−284509号公報:60頁下段右列第3行目〜第19行目Japanese Patent Application Laid-Open No. Sho 62-284509: page 60, lower right column, 3rd to 19th rows

本発明はこのような事情に基づいて行われたものであり、その目的は、使用帯域においてIDT電極に過大な応力をかけるスプリアスの発生しない弾性波共振子を提供することにある。   The present invention has been made based on such circumstances, and an object of the present invention is to provide an elastic wave resonator that does not generate spurious that applies excessive stress to the IDT electrode in the use band.

本発明に係わる弾性波共振子は、IDT電極と、このIDT電極に対して弾性波の伝播方向の両側に配置されたグレーティング反射器と、を圧電基板上に備えた弾性波共振子において、
前記各グレーティング反射器のストップバンドの範囲内で使用されることと、
当該弾性波共振子が使用される帯域の上端周波数が下記数式1の条件を満たすことと、を備えたことを特徴とする。
An elastic wave resonator according to the present invention includes an IDT electrode and a grating reflector disposed on both sides of the IDT electrode in the propagation direction of the elastic wave on a piezoelectric substrate.
Being used within the stopband of each grating reflector;
The upper end frequency of the band in which the elastic wave resonator is used satisfies the condition of the following formula 1.

Figure 2009212572
但し、vは圧電基板を伝播する弾性波の平均速度、λはIDT電極の電極指の周期長、NはIDT電極の電極指の本数、L、LはIDT電極と夫々の反射器との電極間距離、fは弾性波共振子が使用される帯域の上端周波数、nは予め決めた2以上の自然数であり、例えば当該nは3であることが好ましい。
Figure 2009212572
Where v is the average velocity of the elastic wave propagating through the piezoelectric substrate, λ 0 is the period length of the electrode fingers of the IDT electrode, N is the number of electrode fingers of the IDT electrode, and L 1 and L 2 are the IDT electrodes and their respective reflectors The inter-electrode distance, f H is the upper end frequency of the band in which the acoustic wave resonator is used, and n is a predetermined natural number of 2 or more. For example, n is preferably 3.

このとき、本発明に係わるラダー型フィルタは、前述の数式1を満たす弾性波共振子を直列腕として備えることと、
通過帯域が前記各グレーティング反射器のストップバンドの範囲内にあることと、
前記数式1のfが前記通過帯域の上端周波数であることと、を備えたことを特徴とする。
At this time, the ladder filter according to the present invention includes an acoustic wave resonator that satisfies the above-described Equation 1 as a series arm,
The passband is within the stopband of each grating reflector;
Wherein the equation 1 f H is provided with a be the upper end frequency of the pass band.

また、他の発明に係わる弾性波共振子は、IDT電極と、このIDT電極に対して弾性波の伝播方向の両側に配置されたグレーティング反射器と、を圧電基板上に備えた弾性波共振子において、
前記各グレーティング反射器のストップバンドの範囲外で使用されることと、
当該弾性波共振子が使用される帯域の上端周波数が下記数式2の条件を満たすことと、を備えたことを特徴とする。
An elastic wave resonator according to another invention includes an IDT electrode and a grating reflector disposed on both sides of the IDT electrode in the propagation direction of the elastic wave on a piezoelectric substrate. In
Being used outside the stopband of each grating reflector;
The upper end frequency of the band in which the acoustic wave resonator is used satisfies the condition of Equation 2 below.

Figure 2009212572
但し、vは圧電基板を伝播する弾性波の平均速度、λはIDT電極の電極指の周期長、λ’はグレーティング反射器の電極指の周期長、NはIDT電極の電極指の本数、M、Mは各グレーティング反射器の電極指の本数、L、LはIDT電極と夫々の反射器との電極間距離、fは弾性波共振子が使用される帯域の上端周波数、mは2以上の予め決めた自然数であり、例えば当該mは3であることが好ましい。
Figure 2009212572
Where v is the average velocity of the elastic wave propagating through the piezoelectric substrate, λ 0 is the period length of the electrode fingers of the IDT electrode, λ 0 ′ is the period length of the electrode fingers of the grating reflector, and N is the number of electrode fingers of the IDT electrode , M 1 and M 2 are the number of electrode fingers of each grating reflector, L 1 and L 2 are distances between the electrodes of the IDT electrode and each reflector, and f H is the upper end of the band where the acoustic wave resonator is used. The frequency m is a predetermined natural number of 2 or more. For example, the m is preferably 3.

このとき、本発明に係わるラダー型フィルタは、前述の数式2を満たす弾性波共振子を直列腕として備えることと、
通過帯域が前記各グレーティング反射器のストップバンドの範囲外にあることと、
前記数式2のfが前記通過帯域の上端周波数であることと、を備えたことを特徴とする。
At this time, the ladder filter according to the present invention includes an acoustic wave resonator that satisfies the above-described Expression 2 as a series arm,
The passband is outside the stopband range of each grating reflector;
Wherein the f H of Equation 2 is provided with, and it is the upper frequency of the pass band.

本発明によれば、数式1、数式2を満たす構成を備えた弾性波共振子には、当該弾性波共振子が使用される帯域において、前述の式中の予め決めた2以上の自然数「n」または「m」よりも1少ない次数以下のスプリアスが存在しない。この結果、これらのスプリアスが発生する場合と比較してIDT電極に加わる応力が小さくなるため、例えばラダー型フィルタ等、本発明に係わる弾性波共振子を備えたデバイスの使用寿命を延ばすことが可能となる。   According to the present invention, an elastic wave resonator having a configuration satisfying Equations 1 and 2 includes two or more natural numbers “n” determined in advance in the above-described equation in the band in which the elastic wave resonator is used. ”Or“ m ”and there is no spurious less than the order. As a result, since the stress applied to the IDT electrode is reduced compared with the case where these spurious are generated, it is possible to extend the service life of the device including the elastic wave resonator according to the present invention, such as a ladder filter. It becomes.

本実施の形態に係わるSAW共振子の具体的な構成を説明する前に、当該SAW共振子において所定の次数のスプリアスが発生しなくなる原理について説明する。図1は主共振の近傍にスプリアスが発生する従来型のSAW共振子10のアドミタンス特性をシミュレーションした結果を示しており、横軸は周波数、縦軸はアドミタンスをデシベル表示(1[S]を基準値とする)した結果を示している。当該シミュレーションにおいては、図12に示したものと同様の構成を備えたIDT電極2のモデルを作成し、当該モデルSAW共振子10の設計条件を以下のように設定した。
圧電基板:LiTaO(SAWの伝播速度v;4,120[m/s])
IDT電極2の周期長
:λ=4.63[μm]
電極指231、232の総本数
:N=160[本]
IDT電極2と反射器3a、3bとの電極間距離
:L=L=L=336.4[μm]
Before describing the specific configuration of the SAW resonator according to the present embodiment, the principle of preventing a predetermined order of spurious from occurring in the SAW resonator will be described. FIG. 1 shows a result of simulating admittance characteristics of a conventional SAW resonator 10 in which spurious is generated in the vicinity of the main resonance. The horizontal axis represents frequency, and the vertical axis represents admittance in decibels (based on 1 [S]). Value). In the simulation, a model of the IDT electrode 2 having the same configuration as that shown in FIG. 12 was created, and the design conditions of the model SAW resonator 10 were set as follows.
Piezoelectric substrate: LiTaO 3 (SAW propagation velocity v; 4,120 [m / s])
Period length of IDT electrode 2
: Λ 0 = 4.63 [μm]
Total number of electrode fingers 231 and 232
: N = 160 [books]
Interelectrode distance between IDT electrode 2 and reflectors 3a and 3b
: L 1 = L 2 = L = 336.4 [μm]

発明者は、上述のSAW共振子10モデルに基づいて得られた図1に記載のアドミタンス特性に対し詳細な検討を行ったところ、当該アドミタンス特性はSAW共振子10の構造に基づく各種の寄与成分の和として、以下に示す(1)式にて表せることが分かった。   The inventor conducted a detailed study on the admittance characteristics shown in FIG. 1 obtained based on the above-described SAW resonator 10 model. As a result, the admittance characteristics are various contributing components based on the structure of the SAW resonator 10. It was found that the sum can be expressed by the following equation (1).

Figure 2009212572
(1)式において、YはSAW共振子10のアドミタンスを示し、YはIDT電極2の強制励振に基づく寄与(以下、強制励振項という)、Yは反射器3a、3bの間に働くSAWの音響的な寄与(以下、定常項という)、Yは対向する電極指231、232間の静電容量に基づく電気的な寄与(以下、静電容量項という)を示している。図1には定常項「Y」のシミュレーション結果を破線で示し、強制励振項と静電容量との和「Y+Y」のシミュレーション結果を一点鎖線で示してある。
Figure 2009212572
(1) In the formula, Y represents the admittance of the SAW resonator 10, Y 0 is the contribution based on the forced excitation of the IDT electrodes 2 (hereinafter, referred to as forced excitation section), Y 1 is exerted between the reflector 3a, 3b SAW acoustic contribution (hereinafter referred to as a steady term), Y 2 represents an electrical contribution (hereinafter referred to as a capacitance term) based on the capacitance between the electrode fingers 231 and 232 facing each other. In FIG. 1, the simulation result of the steady term “Y 1 ” is indicated by a broken line, and the simulation result of the sum “Y 0 + Y 2 ” of the forced excitation term and the capacitance is indicated by a one-dot chain line.

図1に一点鎖線で示した「Y+Y」について見てみると、これら強制励振項、静電容量項は、主共振及び反共振を励振する寄与成分であることが分かるが、各スプリアスに相当する極大値は見られず、スプリアスを励振する寄与成分ではない。これに対して破線で示した定常項「Y」には各スプリアスに相当する位置に極大値が観察されるので、定常項、即ち反射器3a、3bの間に働くSAWの音響的な寄与がスプリアス発生の要因となっていることが分かる。 Looking at “Y 0 + Y 2 ” shown by the alternate long and short dash line in FIG. 1, it can be seen that these forced excitation terms and capacitance terms are contributing components that excite main resonance and anti-resonance. The local maximum corresponding to is not seen, and is not a contributing component for exciting spurious. On the other hand, in the steady term “Y 1 ” indicated by the broken line, a local maximum value is observed at a position corresponding to each spurious. Therefore, the acoustic contribution of the SAW acting between the steady terms, that is, the reflectors 3 a and 3 b. It can be seen that is the cause of spurious.

そこでスプリアスの発生する周波数領域におけるSAW共振子10モデルのアドミタンス「Y」及び定常項「Y」の周波数特性を図2に拡大図示し、これらの関係について詳細に検討を行う。図2によれば、主共振の発生する位置より周波数を下げていくと、定常項「Y」においては当該主共振と同じ位置に極大値が現れ、次いで極小値が現れて、以下極大値と極小値とが交互に現れている。既述のように、これら定常項「Y」の極大値の発生する周波数はアドミタンス「Y」のスプリアスの発生する周波数と一致しているので、これらの極大値が現れない条件を求めることができれば、対応するスプリアスを消滅させることができると考えられる。 Therefore, FIG. 2 shows an enlarged view of the frequency characteristics of the admittance “Y” and the steady term “Y 1 ” of the SAW resonator 10 model in the frequency region where spurious is generated, and the relationship between these will be examined in detail. According to FIG. 2, when the frequency is lowered from the position where the main resonance occurs, in the steady term “Y 1 ”, a maximum value appears at the same position as the main resonance, and then a minimum value appears. And local minimum appear alternately. As described above, since the frequency at which the local maximum value of the steady term “Y 1 ” is generated coincides with the frequency at which the spurious of the admittance “Y” is generated, a condition in which these local maximum values do not appear can be obtained. If possible, it is considered that the corresponding spurious can be eliminated.

定常項「Y」は反射器3a、3bの間におけるSAWの音響的な寄与成分であることは既に述べたが、今、SAW共振子10の組み込まれるラダー型フィルタ100の通過帯域が反射器3a、3bのストップバンドの範囲内にある場合、即ち、SAW共振子10にて励振されたSAWが反射器3a、3bの内端部にて全反射されるものとみなせる場合には、以下の(2)式を満たす条件にて反射器3a、3bの間にSAWの定在波が形成されることが分かっている。 Although the stationary term “Y 1 ” has already been described as an acoustic contribution component of the SAW between the reflectors 3 a and 3 b, the passband of the ladder filter 100 in which the SAW resonator 10 is incorporated is now a reflector. If the SAW excited by the SAW resonator 10 is considered to be totally reflected at the inner ends of the reflectors 3a and 3b, the following is true: It has been found that a SAW standing wave is formed between the reflectors 3a and 3b under the condition satisfying the expression (2).

Figure 2009212572
但し、nは定在波の周期数(自然数)、vは圧電基板におけるSAWの平均伝播速度[m/s]、λはIDT電極2の周期長[×10−6m]、Nは電極指231、232の総本数、LはIDT電極2と夫々の反射器3a、3bとの電極間距離[×10−6m]、fはSAW共振子10に入力される信号の周波数[×10Hz]である。
Figure 2009212572
Where n is the number of standing wave periods (natural number), v is the average propagation speed of SAW on the piezoelectric substrate [m / s], λ 0 is the period length of the IDT electrode 2 [× 10 −6 m], and N is the electrode The total number of fingers 231 and 232, L is the interelectrode distance between the IDT electrode 2 and each of the reflectors 3a and 3b [× 10 −6 m], and f is the frequency of the signal input to the SAW resonator 10 [× 10 6 Hz].

上記(2)式に基づいて、定在波の周期数が「n=1、2、3」となる周波数を計算し、その結果を図2の周波数特性図上にプロットした。図2に示した定在波の周期数のプロット(「■」で示してある)と、定常項「Y」の周波数特性とを比較すると、反射器3a、3bの間に周期数nの定在波が形成される周波数は、定常項「Y」に極小値が現れる周波数とほぼ一致している。そこで反射器3a、3b間に周期数nの定在波が発生する周波数を「fspn(nは自然数)」と定義すると、n番目のスプリアス(以下、n次のスプリアスという)の発生する周波数「fsprn(nは自然数)」、即ち定常項「Y」にn番目の極大値が現れる周波数は「fspn」と「fspn+1」との間に存在しているといえる。 Based on the above equation (2), the frequency at which the number of standing wave periods becomes “n = 1, 2, 3” was calculated, and the result was plotted on the frequency characteristic diagram of FIG. When the plot of the number of periods of the standing wave shown in FIG. 2 (indicated by “■”) is compared with the frequency characteristic of the stationary term “Y 1 ”, the number of periods n is between the reflectors 3a and 3b. The frequency at which the standing wave is formed substantially coincides with the frequency at which the minimum value appears in the stationary term “Y 1 ”. Thus, if the frequency at which a standing wave having a period number n is generated between the reflectors 3a and 3b is defined as “f spn (n is a natural number)”, the frequency at which the nth spurious (hereinafter referred to as the nth spurious) is generated. It can be said that “f sprn (n is a natural number)”, that is, the frequency at which the n-th local maximum appears in the stationary term “Y 1 ” exists between “f spn ” and “f spn + 1 ”.

そこで図2にプロットした関係に基づき、(2)式をfについて解いた以下の(3)式に、SAW共振子10の設計条件及び自然数「n=1、2、3、…」を代入すると、当該SAW共振子10の定常項「Y」に極小値が現れる周波数「fspn」を予め知ることができる。 Therefore, if the design condition of the SAW resonator 10 and the natural number “n = 1, 2, 3,...” Are substituted into the following equation (3) obtained by solving equation (2) for f based on the relationship plotted in FIG. Thus, the frequency “f spn ” at which the minimum value appears in the steady term “Y 1 ” of the SAW resonator 10 can be known in advance.

Figure 2009212572
また既述のようにスプリアスを発生する周波数「fsprn」は周波数「fspn」と「fspn+1」との間に存在するのであるから、当該SAW共振子10を組み込んだラダー型フィルタ100の通過帯域の上端周波数「f」よりも周波数「fspn」が低い場合に、周波数帯域内にn次のスプリアスが発生することもわかる。
Figure 2009212572
Further, as described above, the frequency “f sprn ” that generates the spurious signal exists between the frequencies “f spn ” and “f spn + 1 ”, and therefore , passes through the ladder filter 100 incorporating the SAW resonator 10. It can also be seen that when the frequency “f spn ” is lower than the upper end frequency “f H ” of the band, n-th order spurious is generated in the frequency band.

このようにSAW共振子10の周波数特性において、(ア)n次のスプリアスは定常項「Y」のn番目の極小値と(n+1)番目の極小値との間に発生し、(イ)極小値の発生する周波数「fspn」は(3)式により予測できるという特性を利用すると、既述の周期長λ、電極指231、232の本数N、IDT電極2と反射器3a、3bとの電極間距離Lを設計変数として下記(4)式を満足させることができれば、ラダー型フィルタ100の通過帯域内に(n−1)次以下のスプリアスが存在しないSAW共振子を設計することができる。 In this way, in the frequency characteristics of the SAW resonator 10, (a) the n-th order spurious occurs between the n-th minimum value and the (n + 1) -th minimum value of the steady term “Y 1 ”. Using the characteristic that the frequency “f spn ” at which the minimum value is generated can be predicted by the expression (3), the above-described period length λ 0 , the number N of electrode fingers 231 and 232, the IDT electrode 2 and the reflectors 3 a and 3 b If the following equation (4) can be satisfied with the inter-electrode distance L as a design variable, a SAW resonator having no (n-1) th order spurious in the passband of the ladder filter 100 should be designed. Can do.

Figure 2009212572
即ち(4)式の左辺は、定常項「Y」のn番目の極小値が現れる周波数「fspn」に等しく、当該周波数が通過帯域の上端周波数「f」よりも大きいということは、周波数「fspn」よりも高周波数側に存在する(n−1)次のスプリアスもラダー型フィルタ100の通過帯域内には存在しないことになる。本発明はこのような考えに基づいてなされている。以下、本実施の形態に係わるSAW共振子1の具体的な構成について説明する。
Figure 2009212572
That is, the left side of the equation (4) is equal to the frequency “f spn ” where the n-th local minimum value of the steady term “Y 1 ” appears, and the frequency is higher than the upper end frequency “f H ” of the passband. The (n−1) th order spurious that exists on the higher frequency side than the frequency “f spn ” does not exist in the passband of the ladder type filter 100. The present invention has been made based on this idea. Hereinafter, a specific configuration of the SAW resonator 1 according to the present embodiment will be described.

図3(a)は本実施の形態に係わるSAW共振子1の構成を示した平面図であり、図12に示した従来型のSAW共振子10と同様の構成には、図12にて用いたものと同じ符号を付してある。当該SAW共振子1は、既述のSAW共振子10と同様に不図示の圧電基板上にIDT電極2を設け、当該IDT電極2に対してSAWの伝播方向の両側に反射器3a、3bを配置した構成となっている。   FIG. 3A is a plan view showing the configuration of the SAW resonator 1 according to the present embodiment. The same configuration as that of the conventional SAW resonator 10 shown in FIG. 12 is used in FIG. The same reference numerals are given. The SAW resonator 1 is provided with an IDT electrode 2 on a piezoelectric substrate (not shown) in the same manner as the SAW resonator 10 described above, and reflectors 3a and 3b are provided on both sides of the SAW propagation direction with respect to the IDT electrode 2. The arrangement is arranged.

IDT電極2は合計N本の電極指231、232を備え、電極指231、232の周期長はλである。また、反射器3a、3bは夫々M本の電極指301を備えており、これらの電極指301は「1/2λ’」のピッチで配置されている。ここで「λ’」は反射器3a、3bの反射係数に関する周波数特性において、M本の電極指301によってほぼ100%の反射係数が得られる周波数領域(ストップバンドという)の中心周波数「f」に対応する波長であり、以下の(5)式で定義される。 IDT electrode 2 includes an electrode finger 231 and 232 of the total N present, periodic length of the electrode fingers 231 and 232 is lambda 0. Each of the reflectors 3a and 3b includes M electrode fingers 301, and these electrode fingers 301 are arranged at a pitch of “½λ 0 ′”. Here, “λ 0 ′” is a frequency characteristic related to the reflection coefficient of the reflectors 3 a and 3 b, and a center frequency “f 0 ” in a frequency region (referred to as a stop band) in which a reflection coefficient of almost 100% is obtained by the M electrode fingers 301. ”And is defined by the following equation (5).

Figure 2009212572
Figure 2009212572

ストップバンド内の周波数「f」は、中心周波数「f」との関係で(6)式によって表すことができる。図1、図2にて検討したように、当該SAW共振子1の組み込まれるラダー型フィルタ100の通過帯域がストップバンドの範囲内となるように反射器3a、3bを設計する場合には、この(6)式に基づき、以下の(7)式を満足するように「λ’」が決定される。 The frequency “f s ” in the stop band can be expressed by the equation (6) in relation to the center frequency “f 0 ”. As discussed in FIGS. 1 and 2, when the reflectors 3a and 3b are designed so that the pass band of the ladder filter 100 in which the SAW resonator 1 is incorporated is within the range of the stop band, Based on the equation (6), “λ 0 ′” is determined so as to satisfy the following equation (7).

Figure 2009212572
Figure 2009212572
但し、rは1本の電極指301の反射係数、fはラダー型フィルタ100の通過帯域の下端周波数である。
Figure 2009212572
Figure 2009212572
Here, r is the reflection coefficient of one electrode finger 301, and f L is the lower end frequency of the passband of the ladder filter 100.

以上の構成を備えたSAW共振子1は、既述の(4)式を満足するように各種設計変数が選択されている。既述のように、SAW共振子10の周波数特性には無数のスプリアスが発生するが、ラダー型フィルタ100の挿入損失やIDT電極2の破壊の観点からは例えば2次までのスプリアスが問題となる。そこで、本実施の形態においてはラダー型フィルタ100の通過帯域内に、これら1次、2次のスプリアスを発生させないようにするため、「n=3」の条件にて(4)式を満足するように各種設計変数「λ、N、L」が設定されている。 In the SAW resonator 1 having the above configuration, various design variables are selected so as to satisfy the above-described equation (4). As described above, innumerable spurious is generated in the frequency characteristics of the SAW resonator 10, but from the viewpoint of insertion loss of the ladder filter 100 and destruction of the IDT electrode 2, for example, spurious up to the second order becomes a problem. . Therefore, in the present embodiment, in order to prevent these primary and secondary spurs from being generated in the passband of the ladder filter 100, the expression (4) is satisfied under the condition of “n = 3”. As described above, various design variables “λ 0 , N, L” are set.

SAW共振子1を設計するにあたってのイメージを捉え易くするため具体例を挙げて説明する。今、以下の条件にて設計された、図1、図2に示す周波数特性を有する従来型のSAW共振子10があり、これをラダー型フィルタ100の直列腕101として用いるものとする。
圧電基板:LiTaO(SAWの伝播速度v;4,120[m/s])
IDT電極2の周期長
:λ=4.63[μm](4.63×10−6[m])
電極指231、232の総本数
:N=160[本]
IDT電極2と反射器3a、3bとの電極間距離
:L=L=L=336.4[μm](336.4×10−6[m])
ラダー型フィルタ100の通過帯域の上端の周波数
:f=884[MHz]
In order to make it easy to capture an image in designing the SAW resonator 1, a specific example will be described. Now, there is a conventional SAW resonator 10 having the frequency characteristics shown in FIGS. 1 and 2 designed under the following conditions, and this is used as the series arm 101 of the ladder type filter 100.
Piezoelectric substrate: LiTaO 3 (SAW propagation velocity v; 4,120 [m / s])
Period length of IDT electrode 2
: Λ 0 = 4.63 [μm] (4.63 × 10 −6 [m])
Total number of electrode fingers 231 and 232
: N = 160 [books]
Interelectrode distance between IDT electrode 2 and reflectors 3a and 3b
: L 1 = L 2 = L = 336.4 [μm] (336.4 × 10 −6 [m])
Frequency at the upper end of the passband of the ladder filter 100
: F H = 884 [MHz]

上記のSAW共振子10には、例えば図2に示すようにおよそ「fsp3=878MHz」の位置に定常項「Y」の極小値が存在し、当該周波数「fsp3」と主共振までの間に2つのスプリアスが発生している。この場合には、「n=3」の条件にて(4)式を満足するように各種設計変数「λ、N、L」の値を再設計する必要がある。ここで周期長λはSAW共振子の主共振の周波数を決定する設計変数であり、変更することができない場合もあるので例えば電極間距離をLからL’に変更する場合について検討する。 In the SAW resonator 10, for example, as shown in FIG. 2, there is a minimum value of the steady term “Y 1 ” at a position of “f sp3 = 878 MHz”, and the frequency “f sp3 ” and the main resonance are reached. There are two spurious in between. In this case, it is necessary to redesign the values of the various design variables “λ 0 , N, L” so that the expression (4) is satisfied under the condition “n = 3”. Here, the period length λ 0 is a design variable that determines the frequency of the main resonance of the SAW resonator and may not be changed. For example, the case where the interelectrode distance is changed from L to L ′ will be considered.

既述のように(4)式の左辺第1項は主共振の発生する周波数に相当し、第2項の各設計変数は正の値をとるので、左辺全体は主共振の発生している周波数よりも低い周波数となる。そこで設計変更後のSAW共振子1において、定常項「Y」の3番目の極小値が発生する新たな周波数を「fsp3’=885MHz」として、「f=884MHz」の場合において(4)式が成り立つ電極間距離L’を求めてみる。「n=3」の条件のもと(3)式をLについて整理すると、以下の(8)式が得られる。 As described above, the first term on the left side of the equation (4) corresponds to the frequency at which the main resonance occurs, and each design variable of the second term takes a positive value. Therefore, the main resonance occurs on the entire left side. The frequency is lower than the frequency. Therefore, in the SAW resonator 1 after the design change, a new frequency at which the third minimum value of the steady term “Y 1 ” is generated is “f sp3 ′ = 885 MHz”, and in the case of “f H = 884 MHz” (4 ) The distance L ′ between the electrodes for which the equation is satisfied is obtained. When formula (3) is arranged for L under the condition of “n = 3”, the following formula (8) is obtained.

Figure 2009212572
上記(8)式に設計変更前の「fsp3=878×10Hz」、変更後の「fsp3’=885×10Hz」を夫々代入して双方の計算結果の比を求めると、「(L’/L)=3.2」となった。即ち、電極間距離を「L’=1076mm」まで長くすることにより、ラダー型フィルタ100の通過帯域(上端周波数「f=884MHz」)に、設計変更前のSAW共振子10にて存在していた2次までのスプリアスが現れないSAW共振子1を得ることができる。
Figure 2009212572
Substituting “f sp3 = 878 × 10 6 Hz” before the design change and “f sp3 ′ = 885 × 10 6 Hz” before the design change into the above equation (8), respectively, “(L ′ / L) = 3.2”. That is, by increasing the distance between the electrodes to “L ′ = 1076 mm”, the SAW resonator 10 before the design change exists in the pass band of the ladder filter 100 (the upper end frequency “f H = 884 MHz”). In addition, the SAW resonator 1 in which spurious up to the second order does not appear can be obtained.

ここで以上の設計変更の内容は、SAW共振子1の設計作業をイメージし易くするために例示したものであり、実際には電極間距離Lのみを変数として(4)式を満たすSAW共振子1の設計を行うわけではない。例えば電極指231、232の本数Nを変化させてもよいし、LとNとの2変数を変化させてもよい。また、主共振の周波数を変更可能な場合には周期長λや通過帯域の上端周波数fの変更と組み合わせ、ラダー型フィルタ100のフィルタ特性等を確認したりしながら試行錯誤的に設計を行うとよい。また、実際のSAW共振子10の設計条件は本例に限定されるものではないことは勿論である。 Here, the contents of the above design change are illustrated to make it easier to imagine the design work of the SAW resonator 1, and actually the SAW resonator satisfying the expression (4) using only the interelectrode distance L as a variable. The design of 1 is not performed. For example, the number N of the electrode fingers 231 and 232 may be changed, or two variables of L and N may be changed. If the frequency of the main resonance can be changed, it is combined with the change of the period length λ 0 and the upper end frequency f H of the pass band, and the design is made on a trial and error basis while checking the filter characteristics of the ladder filter 100 and the like. It is good to do. Of course, the actual design conditions of the SAW resonator 10 are not limited to this example.

なお図3(a)の平面図には、周期長n=3の定在波を併せて表示してある。これは、SAW共振子1内において定在波の形成される領域を把握し易くするために表示したものであり、既述のように(4)式を満たすSAW共振子1には、ラダー型フィルタ100の通過帯域内においてかかる定在波は発生しないので注記しておく。また後述の図3(b)、図4(a)、図4(b)の各図に示した定在波についても同様である。   In the plan view of FIG. 3A, a standing wave having a periodic length n = 3 is also displayed. This is displayed in order to make it easy to grasp the region where the standing wave is formed in the SAW resonator 1, and as described above, the SAW resonator 1 satisfying the equation (4) has a ladder type. Note that such a standing wave does not occur in the pass band of the filter 100. The same applies to the standing waves shown in FIGS. 3B, 4A, and 4B described later.

本実施の形態に係わるSAW共振子1によれば以下の効果がある。SAW共振子1は(4)式を満たしているので、当該SAW共振子1を直列腕101として備えたラダー型フィルタ100の通過帯域において、(4)式中の予め決めた2以上の自然数n、例えば「n=3」よりも1少ない次数のスプリアスが発生しなくなる。この結果、スプリアスが発生する場合と比較してIDT電極に加わる応力が小さくなるため、ラダー型フィルタ100の使用寿命を延ばすことが可能となる。   The SAW resonator 1 according to the present embodiment has the following effects. Since the SAW resonator 1 satisfies the equation (4), in the pass band of the ladder-type filter 100 including the SAW resonator 1 as the series arm 101, a natural number n that is equal to or more than a predetermined number n in the equation (4). For example, the spurious of the order of 1 less than “n = 3” does not occur. As a result, since the stress applied to the IDT electrode becomes smaller than when spurious is generated, the service life of the ladder filter 100 can be extended.

また背景技術にて述べたように、従来型のSAW共振子10を用いたラダー型フィルタ100においては大きなスプリアスの発生する周波数を避けて通過帯域を設定していたところ、本発明に係わるSAW共振子1においては(4)式を満足するように左辺の設計変数、例えば電極間距離Lや電極指231、232の本数Nの値等を適宜選択して(4)式の左辺を「v/λ」に近付けることにより、通過帯域の上端周波数「f」の制約が緩和され、従来よりも広い通過帯域を設定できる場合もある。但し、例えば(8)式の分母に「v−λf」の項が含まれていることからも分かるように、(4)式の左辺を「v/λ」に近付けるほど、LやNの値は急激に増大してSAW共振子1は大型化してしまうので、上端周波数の制約緩和は、SAW共振子1の配置スペース上可能な範囲で行う必要がある。 Further, as described in the background art, in the ladder filter 100 using the conventional SAW resonator 10, the pass band is set avoiding the frequency at which a large spurious is generated, the SAW resonance according to the present invention. In the child 1, design variables on the left side, for example, the distance L between electrodes, the value of the number N of electrode fingers 231 and 232, and the like are appropriately selected so as to satisfy the expression (4), and the left side of the expression (4) is expressed as “v / By approaching λ 0 ”, the restriction on the upper end frequency“ f H ”of the pass band is relaxed, and there may be a case where a wider pass band than in the past can be set. However, as can be seen from the fact that the term “v−λ 0 f” is included in the denominator of equation (8), for example, the closer the left side of equation (4) is to “v / λ 0 ”, Since the value of N increases abruptly and the SAW resonator 1 increases in size, it is necessary to relax the restriction on the upper-end frequency in a possible range on the arrangement space of the SAW resonator 1.

ここで電極間距離は「L=L=L」の場合に限定されるものではなく、例えば図3(b)に示すように「L≠L」であってもよい。この場合には(4)式をより一般化した以下の(4)’式を満たすSAW共振子1を設計することにより通過帯域内に(n−1)次のスプリアスが現れないようにできる。 Here, the distance between the electrodes is not limited to “L 1 = L 2 = L”, and may be “L 1 ≠ L 2 ” as shown in FIG. 3B, for example. In this case, by designing the SAW resonator 1 that satisfies the following expression (4) ′, which is a more general expression of the expression (4), it is possible to prevent (n−1) -order spurious from appearing in the passband.

Figure 2009212572
Figure 2009212572

次に第2の実施の形態にかかるSAW共振子1aについて説明する。第2の実施の形態に係わるSAW共振子1aは、例えば下記の(9)式に示すように、ラダー型フィルタ100の通過帯域が各反射器3a、3bのストップバンド外にある点が第1の実施の形態と異なっている。   Next, the SAW resonator 1a according to the second embodiment will be described. The SAW resonator 1a according to the second embodiment has a point that the pass band of the ladder type filter 100 is outside the stop band of the reflectors 3a and 3b, for example, as shown in the following equation (9). This is different from the embodiment.

Figure 2009212572
ラダー型フィルタ100の通過帯域がこれらのストップバンドの範囲外にあるSAW共振子1aの一例としては、IDT電極2の周期長λと反射器3a、3bの周期長λ’とが等しいSAW共振子1aが挙げられる。即ち、SAWはIDT電極2を透過できるように設計されているので、この場合にはSAWは反射器3a、3bも透過することができるからである。また、式中のnには半整数も含まれる。
Figure 2009212572
An example of a SAW resonator 1a passband of the ladder type filter 100 is outside the range of the stop band, the cycle length lambda 0 and the reflector 3a of the IDT electrode 2, 3b cycle length lambda 0 'are equal SAW of The resonator 1a is mentioned. That is, the SAW is designed so as to be able to pass through the IDT electrode 2, and in this case, the SAW can also pass through the reflectors 3a and 3b. Further, n in the formula includes a half integer.

このようなSAW共振子1aにおいては、例えば図4(a)に示すように反射器3a、3bの内部にもSAWが侵入して定在波を形成するため、定在波の形成される領域を示す(4)式の左辺第2項の分母に反射器3a、3bの幅を含むように当該式を書き替える必要がある。そこで、例えば、反射器3a、3bの電極指301の周期長「λ’」、電極指301の本数「M=M=M」、電極間距離「L=L=L」とすると、下記の(10)式を満足する場合に(m−1)次以下のスプリアスが存在しないSAW共振子1aとなる。 In such a SAW resonator 1a, for example, as shown in FIG. 4A, the SAW penetrates into the reflectors 3a and 3b to form a standing wave. It is necessary to rewrite the expression so that the denominator of the second term on the left side of the expression (4) indicating the width of the reflectors 3a and 3b is included. Therefore, for example, the period length “λ 0 ′” of the electrode fingers 301 of the reflectors 3a and 3b, the number of electrode fingers 301 “M 1 = M 2 = M”, and the interelectrode distance “L 1 = L 2 = L”. Then, when the following expression (10) is satisfied, the SAW resonator 1a does not have (m−1) th order spurious.

Figure 2009212572
Figure 2009212572

更に、電極指301の本数「M=M=M」、電極間距離「L=L=L」といった条件に限定されず、図4(b)に示すように電極指301の本数「M≠M」、電極間距離「L≠L」である場合には、(10)式を修正した以下の(10)’式の条件を満たす場合に(m−1)次以下のスプリアスが存在しないSAW共振子1aとなる。 Furthermore, the number of electrode fingers 301 is not limited to the conditions such as the number of electrode fingers 301 “M 1 = M 2 = M” and the distance between electrodes “L 1 = L 2 = L”, as shown in FIG. When “M 1 ≠ M 2 ” and the inter-electrode distance “L 1 ≠ L 2 ”, when the condition of the following expression (10) ′ obtained by correcting the expression (10) is satisfied, the (m−1) th order The SAW resonator 1a does not have the following spurious.

Figure 2009212572
Figure 2009212572

なお、本発明を適用可能な弾性波共振子は、既述の第1、第2の実施の形態に係わるSAW共振子1、1aのように弾性表面波を利用した弾性波共振子に限定されるものではない。例えば弾性境界波を利用した共振子に適用可能なことは勿論である。またラダー型フィルタ100において、複数の直列腕101の少なくとも1つに本実施の形態に係わるSAW共振子1、1aを採用すれば、例えば当該ラダー型フィルタ100の挿入損失を低減する効果を発揮することができる。   The elastic wave resonator to which the present invention can be applied is limited to an elastic wave resonator using a surface acoustic wave such as the SAW resonators 1 and 1a according to the first and second embodiments described above. It is not something. For example, it is needless to say that the present invention can be applied to a resonator using a boundary acoustic wave. Further, in the ladder type filter 100, if the SAW resonators 1 and 1a according to the present embodiment are employed in at least one of the plurality of series arms 101, for example, the effect of reducing the insertion loss of the ladder type filter 100 is exhibited. be able to.

この他、本発明に係わる弾性波共振子の用途はラダー型フィルタ100の直列腕101に限定されるものではない。例えばラダー型フィルタ100の並列腕102として用いてもよいし、ラチス型フィルタに用いてもよい。また、発振器や遅延素子として用いてもよく、これらの場合には(4)式等の「f」を発振器や遅延素子の使用帯域の上端周波数と読み替えて適用するとよい。 In addition, the use of the acoustic wave resonator according to the present invention is not limited to the series arm 101 of the ladder type filter 100. For example, it may be used as the parallel arm 102 of the ladder type filter 100 or may be used for a lattice type filter. Further, it may be used as an oscillator or a delay element. In these cases, “f H ” in the equation (4) or the like may be read as the upper end frequency of the use band of the oscillator or the delay element.

(シミュレーション1)
図12に示す従来型のSAW共振子10において、SAW共振子10に入力する信号の周波数を変化させ、IDT電極2に加わる応力分布の変化をシミュレーションした。
SAW共振子10の構成は以下の通りである。また、当該SAW共振子10のアドミタンス特性図を図5に示した。
圧電基板:LiTaO(SAWの伝播速度v;4,210[m/s])
(図5に示したシミュレーション結果とは、LiTaOのカット方向が異なるため、SAWの伝播速度も異なっている。後述の(シミュレーション2)についても同様である。)
IDT電極2の周期長
:λ=4.30[μm]
電極指231、232の総本数
:N=160[本]
IDT電極2と反射器3a、3bとの電極間距離
:L=L=L=1.075[μm]
(Simulation 1)
In the conventional SAW resonator 10 shown in FIG. 12, the frequency of a signal input to the SAW resonator 10 was changed, and a change in the stress distribution applied to the IDT electrode 2 was simulated.
The configuration of the SAW resonator 10 is as follows. An admittance characteristic diagram of the SAW resonator 10 is shown in FIG.
Piezoelectric substrate: LiTaO 3 (SAW propagation velocity v; 4,210 [m / s])
(The simulation result shown in FIG. 5 is different in SAW propagation speed because the cutting direction of LiTaO 3 is different. The same applies to (simulation 2) described later.)
Period length of IDT electrode 2
: Λ 0 = 4.30 [μm]
Total number of electrode fingers 231 and 232
: N = 160 [books]
Interelectrode distance between IDT electrode 2 and reflectors 3a and 3b
: L 1 = L 2 = L = 1.075 [μm]

(実施例1−1)
図5のA点に対応したスプリアスの発生しない周波数信号を入力し、IDT電極2にかかる応力をシミュレーションした。
入力電力:30[dBm]
(実施例1−2)
図5のB点に対応したスプリアスの発生しない周波数信号を入力し、IDT電極2にかかる応力をシミュレーションした。入力電力は(実施例1−1)と同様とした。
(比較例1−1)
図5のC点に対応したスプリアスの発生する周波数信号を入力し、IDT電極2にかかる応力をシミュレーションした。入力電力は(実施例1−1)と同様とした。
(Example 1-1)
A frequency signal that does not generate spurious corresponding to the point A in FIG. 5 was input, and the stress applied to the IDT electrode 2 was simulated.
Input power: 30 [dBm]
(Example 1-2)
A frequency signal that does not generate spurious corresponding to point B in FIG. 5 was input, and the stress applied to the IDT electrode 2 was simulated. The input power was the same as (Example 1-1).
(Comparative Example 1-1)
A frequency signal generating spurious corresponding to the point C in FIG. 5 was input, and the stress applied to the IDT electrode 2 was simulated. The input power was the same as (Example 1-1).

(実施例1−1、1−2)の結果を図6(a)、図6(b)に示し、(比較例1−1)の結果を図6(c)に示す。図6(a)〜図6(c)の各図の横軸は、IDT電極2及び反射器3a、3b上の位置を周期長「λ」に対する相対長さ「x/λ」を示し、縦軸はその位置においてIDT電極2、反射器3a、3bに加わる応力[GPa]を示している。ここで相対長さ「x/λ」は、図12にてSAW共振子10の下方に示した横軸上の原点(「x/λ=0」)からの距離を示しており、IDT電極2の左端を原点と定めている。 The results of (Example 1-1, 1-2) are shown in FIGS. 6A and 6B, and the result of (Comparative Example 1-1) is shown in FIG. 6C. 6A to 6C, the horizontal axis indicates the relative length “x / λ 0 ” with respect to the period length “λ 0 ” on the IDT electrode 2 and the reflectors 3 a and 3 b. The vertical axis indicates the stress [GPa] applied to the IDT electrode 2 and the reflectors 3a and 3b at that position. Here, the relative length “x / λ 0 ” indicates the distance from the origin (“x / λ 0 = 0”) on the horizontal axis shown below the SAW resonator 10 in FIG. The left end of the electrode 2 is defined as the origin.

図6(a)に示した(実施例1−1)の結果によれば、スプリアスの発生しないA点に対応する周波数信号を入力すると、IDT電極2の中央をピークとする応力分布が現れ、その最大値はおよそ「0.1GPa」であった。また図6(b)に示した(実施例1−2)の結果によれば、スプリアスの発生しないB点に対応する周波数信号に対し、2つのピークを有する応力分布が表れ、夫々のピークの最大値はおよそ「0.15GPa」であった。   According to the result of (Example 1-1) shown in FIG. 6A, when a frequency signal corresponding to a point A where spurious is not generated is input, a stress distribution having a peak at the center of the IDT electrode 2 appears. The maximum value was approximately “0.1 GPa”. Further, according to the result of (Example 1-2) shown in FIG. 6B, a stress distribution having two peaks appears with respect to the frequency signal corresponding to the point B where spurious is not generated. The maximum value was approximately “0.15 GPa”.

これらの結果に対し、スプリアス上のC点に対応する周波数信号を入力すると、3つのピークを有する応力分布が表れ、その最大値は「0.3GPa」であり、スプリアスの発生しない周波数における最大値と比較しても、2倍〜3倍もの応力が加わることになる。以上のことから背景技術においても検討したように、ラダー型フィルタ100の通過帯域内にスプリアスが存在していると、当該スプリアスを生じる周波数信号が入力された際には、IDT電極2には通常の場合よりも過大な応力が加わることが確認された。   In response to these results, when a frequency signal corresponding to point C on the spurious is input, a stress distribution having three peaks appears, the maximum value of which is “0.3 GPa”, and the maximum value at a frequency at which no spurious is generated. Even if compared with 2 times, the stress of 2 times-3 times will be added. As discussed in the background art from the above, if a spurious signal is present in the passband of the ladder filter 100, the IDT electrode 2 is normally connected to a frequency signal that causes the spurious signal. It was confirmed that an excessive stress was applied than in the case of.

(実験1)
図7に示す周波数特性を備えたラダー型フィルタ100に周波数を変化させて信号を入力し、IDT電極2の破壊に至るまでの使用寿命を計測した。使用寿命は、通常の使用温度25℃に対して実験温度を85℃とすることにより、劣化速度が通常の約64倍となる環境のもとでの加速試験により計測した。
(実施例2−1)
スプリアスを発生しない周波数信号(図7のD点)を入力して使用寿命を計測した。
入力電力:32.0、32.5、33.0[dBm]
(比較例2−1)
スプリアスを発生する周波数信号(図7のE点)を入力して使用寿命を計測した。入力電力は(実施例2−1)と同様とした。
(Experiment 1)
A signal was input by changing the frequency to the ladder filter 100 having the frequency characteristics shown in FIG. 7, and the service life until the IDT electrode 2 was destroyed was measured. The service life was measured by an accelerated test under an environment where the deterioration rate was about 64 times the normal speed by setting the experimental temperature to 85 ° C. with respect to the normal use temperature of 25 ° C.
(Example 2-1)
The service life was measured by inputting a frequency signal (D point in FIG. 7) that does not generate spurious.
Input power: 32.0, 32.5, 33.0 [dBm]
(Comparative Example 2-1)
The service life was measured by inputting a frequency signal (point E in FIG. 7) that generates spurious. The input power was the same as in (Example 2-1).

(実施例2−1)、(比較例2−1)の結果を図8に示す。図8の横軸はラダー型フィルタ100への入力電力[dBm]を示し、縦軸はIDT電極2への周波数信号の入力を開始してから破壊に至るまでの破壊時間[H]を対数表示にて示している。(実施例2−1)の結果を三角形「△」でプロットし、(比較例2−1)の結果をひし形「◇」でプロットしてある。
(実施例2−1)の結果によれば、図8の片対数プロットにおいて、破壊時間は入力電力に対して負の傾きを持った比例直線を描き、ラダー型フィルタ100に入力される電力が小さいほどIDT電極2の破壊に至るまでの時間が長くなっている。
The results of (Example 2-1) and (Comparative example 2-1) are shown in FIG. The horizontal axis of FIG. 8 indicates the input power [dBm] to the ladder filter 100, and the vertical axis indicates the logarithm of the destruction time [H] from the start of frequency signal input to the IDT electrode 2 to the destruction. Is shown. The result of (Example 2-1) is plotted with a triangle “Δ”, and the result of (Comparative Example 2-1) is plotted with a diamond “◇”.
According to the result of (Example 2-1), in the semilogarithmic plot of FIG. 8, the breakdown time draws a proportional straight line having a negative slope with respect to the input power, and the power input to the ladder filter 100 is The smaller it is, the longer the time until the IDT electrode 2 is destroyed.

これに対して(比較例2−1)の実験結果では、いずれの入力電力においても破壊時間は0.02[H](約1.2[min])程度で一定であり、入力電力を変化させても破壊時間は変化しなかった。このことから、通常の値まで入力電力を低下させても破壊時間は変化せず、使用寿命が極端に短くなってしまうことが予想され、スプリアスの発生はラダー型フィルタ100の使用寿命を大幅に短縮してしまうことが確認できた。   On the other hand, in the experimental result of (Comparative Example 2-1), the breakdown time is constant at about 0.02 [H] (about 1.2 [min]) at any input power, and the input power is changed. However, the destruction time did not change. For this reason, even if the input power is reduced to a normal value, the destruction time does not change, and the service life is expected to be extremely shortened, and the occurrence of spurious greatly increases the service life of the ladder filter 100. It was confirmed that it shortened.

(シミュレーション2)
(4)式の条件を満たす構成を備えた実施の形態に係わるSAW共振子1を直列腕101として備えたラダー型フィルタ100及び、当該条件を満たさない構成のSAW共振子10を直列腕101としてラダー型フィルタ100のモデルを作成し、各ラダー型フィルタ100の減衰量の周波数特性をシミュレーションした。なお、各ラダー型フィルタ100の通過帯域は反射器3a、3bのストップバンドの範囲内となるように設定した。
(実施例3−1)
圧電基板:LiTaO(SAWの伝播速度v;4,213[m/s])
IDT電極2の周期長
:λ=4.74[μm]
電極指231、232の総本数
:N=94[本]
IDT電極2と反射器3a、3bとの電極間距離
:L=L=L=1.327[μm]
通過帯域
上端周波数:f=831[MHz]
下端周波数:f=823[MHz]
上記条件にてfsp3=832.8[MHz]>fとなり(4)式を満たす。

(比較例3−1)
圧電基板:LiTaO(SAWの伝播速度v;4,213[m/s])
IDT電極2の周期長
:λ=4.745[μm]
電極指231、232の総本数
:N=84[本]
IDT電極2と反射器3a、3bとの電極間距離
:L=L=L=1.186μm
通過帯域
上端周波数:f=831MHz
下端周波数:f=823MHz
上記条件にてfsp3=825.2[MHz]<fとなり(4)式を満たさない。
(Simulation 2)
The ladder filter 100 including the SAW resonator 1 according to the embodiment having the configuration satisfying the expression (4) as the series arm 101, and the SAW resonator 10 having a configuration not satisfying the condition as the series arm 101. A model of the ladder filter 100 was created, and the frequency characteristics of the attenuation amount of each ladder filter 100 were simulated. The pass band of each ladder filter 100 was set to be within the stop band range of the reflectors 3a and 3b.
(Example 3-1)
Piezoelectric substrate: LiTaO 3 (SAW propagation velocity v; 4,213 [m / s])
Period length of IDT electrode 2
: Λ 0 = 4.74 [μm]
Total number of electrode fingers 231 and 232
: N = 94 [book]
Interelectrode distance between IDT electrode 2 and reflectors 3a and 3b
: L 1 = L 2 = L = 1.327 [μm]
Passband
Upper frequency: f H = 831 [MHz]
Lower end frequency: f L = 823 [MHz]
Under the above conditions, f sp3 = 832.8 [MHz]> f H and satisfies the expression (4).

(Comparative Example 3-1)
Piezoelectric substrate: LiTaO 3 (SAW propagation velocity v; 4,213 [m / s])
Period length of IDT electrode 2
: Λ 0 = 4.745 [μm]
Total number of electrode fingers 231 and 232
: N = 84 [books]
Interelectrode distance between IDT electrode 2 and reflectors 3a and 3b
: L 1 = L 2 = L = 1.186 μm
Passband
Upper frequency: f H = 831 MHz
Lower frequency: f L = 823 MHz
Under the above conditions, f sp3 = 825.2 [MHz] <f H and Equation (4) is not satisfied.

(実施例3−1)のシミュレーション結果を図9(a)、図9(b)に示し、(比較例3−1)のシミュレーション結果を図10(a)、図10(b)に示す。各図の横軸は入力信号の周波数[MHz]を示し、縦軸はラダー型フィルタ100の減衰量を示している。図9(b)及び図10(b)は夫々図9(a)、図10(a)において破線で囲った領域についての拡大図である。   The simulation results of (Example 3-1) are shown in FIGS. 9 (a) and 9 (b), and the simulation results of (Comparative Example 3-1) are shown in FIGS. 10 (a) and 10 (b). In each figure, the horizontal axis indicates the frequency [MHz] of the input signal, and the vertical axis indicates the attenuation amount of the ladder filter 100. FIG. 9B and FIG. 10B are enlarged views of regions surrounded by broken lines in FIG. 9A and FIG. 10A, respectively.

図9(a)と図10(a)とを比較すると、(実施例3−1)、(比較例3−1)は互いによく似た周波数特性を示しているようにも見える。しかしながら図9(b)の拡大図によれば(実施例3−1)においてはラダー型フィルタ100の通過帯域においては、減衰量(挿入損失)の極大値は観察されず、リップルが発生していない。これに対して図10(b)の拡大図を見てみると、(比較例3−1)では通過帯域内にリップルが形成されており、この位置にてスプリアスが発生していることがわかる。スプリアスの影響を避けるためには通過帯域の幅を狭くしたり、通過帯域全体を高周波数側へ移動させたりする必要が生じ、例えば必要な周波数領域に通過帯域を設定することができないといった問題を生じる場合が多い。   Comparing FIG. 9A and FIG. 10A, it appears that (Example 3-1) and (Comparative example 3-1) show similar frequency characteristics. However, according to the enlarged view of FIG. 9B, in (Example 3-1), the maximum value of the attenuation (insertion loss) is not observed in the passband of the ladder filter 100, and ripples are generated. Absent. On the other hand, looking at the enlarged view of FIG. 10B, it can be seen that in (Comparative Example 3-1), a ripple is formed in the passband, and spurious is generated at this position. . In order to avoid the effect of spurious, it is necessary to narrow the passband width or move the entire passband to the high frequency side. For example, it is not possible to set the passband in the necessary frequency range. Often occurs.

以上のことから(4)式を満たす構成を備えた実施の形態に係わるSAW共振子1は、IDT電極2に過大な応力が加わらずまた、通過帯域の設定についての自由度が高い高性能の弾性波共振子であるといえる。   From the above, the SAW resonator 1 according to the embodiment having the configuration satisfying the expression (4) has a high performance in which excessive stress is not applied to the IDT electrode 2 and the degree of freedom in setting the passband is high. It can be said that it is an elastic wave resonator.

従来型のSAW共振子のアドミタンス特性図である。It is an admittance characteristic view of a conventional SAW resonator. 前記SAW共振子の第2のアドミタンス特性図である。FIG. 4 is a second admittance characteristic diagram of the SAW resonator. 本実施の形態に係るSAW共振子の平面図である。It is a top view of the SAW resonator which concerns on this Embodiment. 第2の実施の形態に係るSAW共振子の平面図である。It is a top view of the SAW resonator which concerns on 2nd Embodiment. 従来型のSAW共振子に係る第2のアドミタンス特性図である。It is a 2nd admittance characteristic figure concerning a conventional type SAW resonator. スプリアスの発生の有無に応じてIDT電極に加わる応力分布を示す特性図である。It is a characteristic view which shows the stress distribution added to an IDT electrode according to the presence or absence of generation | occurrence | production of a spurious. 従来型のSAW共振子を備えたラダー型フィルタの減衰量を示す周波数特性図である。It is a frequency characteristic figure which shows the attenuation amount of the ladder type filter provided with the conventional type SAW resonator. スプリアスの発生の有無に応じたIDT電極の破壊時間を示す特性図である。It is a characteristic view which shows the destruction time of the IDT electrode according to the presence or absence of generation | occurrence | production of a spurious. 実施例に係るSAW共振子を備えたラダー型フィルタの減衰量を示す周波数特性図である。It is a frequency characteristic figure which shows the attenuation amount of the ladder type filter provided with the SAW resonator which concerns on an Example. 比較例に係るSAW共振子を備えたラダー型フィルタの減衰量を示す周波数特性図である。It is a frequency characteristic figure which shows the attenuation amount of the ladder type filter provided with the SAW resonator which concerns on a comparative example. SAW共振子を備えたラダー型フィルタの概略構成図である。It is a schematic block diagram of the ladder type filter provided with the SAW resonator. SAW共振子の構成を示す平面図である。It is a top view which shows the structure of a SAW resonator. SAW共振子のアドミタンス特性と、ラダー型フィルタの減衰量との関係を示す特性図である。It is a characteristic view which shows the relationship between the admittance characteristic of a SAW resonator, and the attenuation amount of a ladder type filter. 従来型のSAW共振子を備えたラダー型フィルタの減衰量に係る周波数特性図である。It is a frequency characteristic figure concerning the amount of attenuation of a ladder type filter provided with the conventional type SAW resonator. 従来型のSAW共振子に係る第3のアドミタンス特性図である。It is a 3rd admittance characteristic figure concerning a conventional type SAW resonator.

符号の説明Explanation of symbols

1、1a SAW共振子
2 IDT電極
3a、3b 反射器
10 SAW共振子
21、22 バスバー
100 ラダー型フィルタ
101 直列腕
102 並列腕
231、232
電極指
301 電極指
DESCRIPTION OF SYMBOLS 1, 1a SAW resonator 2 IDT electrode 3a, 3b Reflector 10 SAW resonator 21, 22 Bus bar 100 Ladder type filter 101 Series arm 102 Parallel arm 231, 232
Electrode finger 301 Electrode finger

Claims (6)

IDT電極と、このIDT電極に対して弾性波の伝播方向の両側に配置されたグレーティング反射器と、を圧電基板上に備えた弾性波共振子において、
前記各グレーティング反射器のストップバンドの範囲内で使用されることと、
当該弾性波共振子が使用される帯域の上端周波数が下記数式1の条件を満たすことと、を備えたことを特徴とする弾性波共振子。
Figure 2009212572
但し、vは圧電基板を伝播する弾性波の平均速度、λはIDT電極の電極指の周期長、NはIDT電極の電極指の本数、L、LはIDT電極と夫々の反射器との電極間距離、fは弾性波共振子が使用される帯域の上端周波数、nは予め決めた2以上の自然数である。
In an acoustic wave resonator including an IDT electrode and a grating reflector disposed on both sides of the IDT electrode in the propagation direction of the elastic wave on the piezoelectric substrate,
Being used within the stopband of each grating reflector;
An elastic wave resonator comprising: an upper end frequency of a band in which the elastic wave resonator is used satisfies a condition of the following formula 1.
Figure 2009212572
Where v is the average velocity of the elastic wave propagating through the piezoelectric substrate, λ 0 is the period length of the electrode fingers of the IDT electrode, N is the number of electrode fingers of the IDT electrode, and L 1 and L 2 are the IDT electrodes and their respective reflectors The inter-electrode distance, f H is the upper end frequency of the band in which the acoustic wave resonator is used, and n is a predetermined natural number of 2 or more.
前記数式1のnが3であることを特徴とする請求項1に記載の弾性波共振子。   The elastic wave resonator according to claim 1, wherein n in Formula 1 is 3. 請求項1または2に記載の弾性波共振子を直列腕として備えることと、
通過帯域が前記各グレーティング反射器のストップバンドの範囲内にあることと、
前記数式1のfが前記通過帯域の上端周波数であることと、を備えたことを特徴とするラダー型フィルタ。
Comprising the acoustic wave resonator according to claim 1 as a series arm;
The passband is within the stopband of each grating reflector;
Ladder filter, wherein the equation 1 f H is provided with a be the upper end frequency of the pass band.
IDT電極と、このIDT電極に対して弾性波の伝播方向の両側に配置されたグレーティング反射器と、を圧電基板上に備えた弾性波共振子において、
前記各グレーティング反射器のストップバンドの範囲外で使用されることと、
当該弾性波共振子が使用される帯域の上端周波数が下記数式2の条件を満たすことと、を備えたことを特徴とする弾性波共振子。
Figure 2009212572
但し、vは圧電基板を伝播する弾性波の平均速度、λはIDT電極の電極指の周期長、λ’はグレーティング反射器の電極指の周期長、NはIDT電極の電極指の本数、M、Mは各グレーティング反射器の電極指の本数、L、LはIDT電極と夫々の反射器との電極間距離、fは弾性波共振子が使用される帯域の上端周波数、mは2以上の予め決めた自然数である。
In an acoustic wave resonator including an IDT electrode and a grating reflector disposed on both sides of the IDT electrode in the propagation direction of the elastic wave on the piezoelectric substrate,
Being used outside the stopband of each grating reflector;
An elastic wave resonator comprising: an upper end frequency of a band in which the elastic wave resonator is used satisfies a condition of the following Equation 2.
Figure 2009212572
Where v is the average velocity of the elastic wave propagating through the piezoelectric substrate, λ 0 is the period length of the electrode fingers of the IDT electrode, λ 0 ′ is the period length of the electrode fingers of the grating reflector, and N is the number of electrode fingers of the IDT electrode , M 1 and M 2 are the number of electrode fingers of each grating reflector, L 1 and L 2 are distances between the electrodes of the IDT electrode and each reflector, and f H is the upper end of the band where the acoustic wave resonator is used. The frequency m is a predetermined natural number of 2 or more.
前記数式2のmが3であることを特徴とする請求項4に記載の弾性波共振子。   The elastic wave resonator according to claim 4, wherein m in Formula 2 is 3. 5. 請求項4または5に記載の弾性波共振子を直列腕として備えることと、
通過帯域が前記各グレーティング反射器のストップバンドの範囲外にあることと、
前記数式2のfが前記通過帯域の上端周波数であることと、を備えたことを特徴とするラダー型フィルタ。
Including the acoustic wave resonator according to claim 4 as a series arm;
The passband is outside the stopband range of each grating reflector;
Ladder filter, characterized in that f H of Equation 2 is provided with, and it is the upper frequency of the passband.
JP2008050724A 2008-02-29 2008-02-29 Elastic wave resonator and ladder type filter Expired - Fee Related JP5166073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050724A JP5166073B2 (en) 2008-02-29 2008-02-29 Elastic wave resonator and ladder type filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050724A JP5166073B2 (en) 2008-02-29 2008-02-29 Elastic wave resonator and ladder type filter

Publications (2)

Publication Number Publication Date
JP2009212572A true JP2009212572A (en) 2009-09-17
JP5166073B2 JP5166073B2 (en) 2013-03-21

Family

ID=41185343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050724A Expired - Fee Related JP5166073B2 (en) 2008-02-29 2008-02-29 Elastic wave resonator and ladder type filter

Country Status (1)

Country Link
JP (1) JP5166073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079284A1 (en) * 2016-10-28 2018-05-03 株式会社村田製作所 Ladder type filter, duplexer, and elastic wave filter apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145183A (en) * 1996-11-14 1998-05-29 Murata Mfg Co Ltd Surface acoustic wave filter
JPH10209806A (en) * 1997-01-24 1998-08-07 Tdk Corp Surface acoustic wave device
JP2001308676A (en) * 2001-04-27 2001-11-02 Murata Mfg Co Ltd Surface acoustic wave filter
JP2003032080A (en) * 2001-07-18 2003-01-31 Toyo Commun Equip Co Ltd Saw resonator and ladder type saw filter
JP2003087096A (en) * 2001-09-17 2003-03-20 Toyo Commun Equip Co Ltd Ladder-type surface accoustic wave filter
JP2003188675A (en) * 2001-12-19 2003-07-04 Alps Electric Co Ltd Surface acoustic wave element and duplexer provided therewith
JP2005295203A (en) * 2004-03-31 2005-10-20 Tdk Corp Duplexer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145183A (en) * 1996-11-14 1998-05-29 Murata Mfg Co Ltd Surface acoustic wave filter
JPH10209806A (en) * 1997-01-24 1998-08-07 Tdk Corp Surface acoustic wave device
JP2001308676A (en) * 2001-04-27 2001-11-02 Murata Mfg Co Ltd Surface acoustic wave filter
JP2003032080A (en) * 2001-07-18 2003-01-31 Toyo Commun Equip Co Ltd Saw resonator and ladder type saw filter
JP2003087096A (en) * 2001-09-17 2003-03-20 Toyo Commun Equip Co Ltd Ladder-type surface accoustic wave filter
JP2003188675A (en) * 2001-12-19 2003-07-04 Alps Electric Co Ltd Surface acoustic wave element and duplexer provided therewith
JP2005295203A (en) * 2004-03-31 2005-10-20 Tdk Corp Duplexer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079284A1 (en) * 2016-10-28 2018-05-03 株式会社村田製作所 Ladder type filter, duplexer, and elastic wave filter apparatus
CN109863695A (en) * 2016-10-28 2019-06-07 株式会社村田制作所 Ladder type filter, duplexer and acoustic wave filter device
JPWO2018079284A1 (en) * 2016-10-28 2019-06-24 株式会社村田製作所 Ladder type filter, duplexer and elastic wave filter device
US11171630B2 (en) 2016-10-28 2021-11-09 Murata Manufacturing Co., Ltd. Ladder filter, duplexer, and elastic wave filter device
CN109863695B (en) * 2016-10-28 2024-03-12 株式会社村田制作所 Ladder filter, duplexer, and acoustic wave filter device

Also Published As

Publication number Publication date
JP5166073B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP6445152B2 (en) Elastic wave resonator, elastic wave filter, duplexer, and communication device
JP6247377B2 (en) Elastic wave element, filter element, and communication apparatus
JP5942740B2 (en) Ladder type filter and duplexer
KR100290204B1 (en) Multimode surface acoustic wave filter
JP6595342B2 (en) Elastic wave device, duplexer, and communication device
KR101793055B1 (en) Ladder filter
JP6394710B2 (en) Compound filter device
JP4694609B2 (en) Elastic wave filter
JP2011101350A (en) Piston mode acoustic wave device and method providing high coupling factor
JP2007019710A (en) Surface acoustic wave device
JP5397477B2 (en) Ladder type elastic wave filter device and duplexer
JP5369197B2 (en) Elastic wave device
KR20180123562A (en) Seismic wave device
JP6072604B2 (en) Surface acoustic wave device
JP2014504827A (en) Surface acoustic wave filter
JP6634973B2 (en) Surface acoustic wave filters, duplexers and multiplexers
JP2018182460A (en) Acoustic wave resonator, filter, and multiplexer
JP4607572B2 (en) Surface acoustic wave filter
JP2005244669A (en) Surface acoustic wave device
JP5166073B2 (en) Elastic wave resonator and ladder type filter
JP2018137517A (en) Surface acoustic wave resonator, demultiplexer and communication apparatus
US6335584B1 (en) Edge reflection type surface acoustic wave device
JP3866709B2 (en) Surface acoustic wave resonator and surface acoustic wave filter
JP5365406B2 (en) Elastic wave filter
JP2003133889A (en) Longitudinally coupled surface acoustic wave resonator filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees