JP2006130841A - Method for producing member having reflection preventing structure - Google Patents

Method for producing member having reflection preventing structure Download PDF

Info

Publication number
JP2006130841A
JP2006130841A JP2004324134A JP2004324134A JP2006130841A JP 2006130841 A JP2006130841 A JP 2006130841A JP 2004324134 A JP2004324134 A JP 2004324134A JP 2004324134 A JP2004324134 A JP 2004324134A JP 2006130841 A JP2006130841 A JP 2006130841A
Authority
JP
Japan
Prior art keywords
mold
molding
forming
antireflection structure
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004324134A
Other languages
Japanese (ja)
Other versions
JP4739729B2 (en
Inventor
Makoto Umetani
梅谷  誠
Takamasa Tamura
隆正 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004324134A priority Critical patent/JP4739729B2/en
Publication of JP2006130841A publication Critical patent/JP2006130841A/en
Application granted granted Critical
Publication of JP4739729B2 publication Critical patent/JP4739729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/412Profiled surfaces fine structured, e.g. fresnel lenses, prismatic reflectors, other sharp-edged surface profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a member having a high precision reflection preventing structure even when the surface has a large area and is shaped in a curved surface. <P>SOLUTION: A core having a catalytic function is formed on the surface of an original board material. Next, needle crystals are formed on the surface of the original board material by growing crystals on the core. Next, a mold is formed by using the original board material with the needle crystals formed. When the mold is an electroformed mold, a molding resin raw material is molded by injection molding, press molding, a nano-imprinting method, or the like by using the electroformed mold. An original board material mainly containing quartz glass is used as the original board material, and the surface of the original board material is subjected to dry etching with the needle crystals used as a mask. Next, when the mold is formed by forming a protective mold releasing film, a molding raw material of multi-component glass is press-molded by using the obtained mold. In this way, the member having the reflection preventing structure good in surface precision which comprises a resin having a large area and the shape of a curved surface and the multi-component glass. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、反射防止構造体を備えた部材の製造方法に関し、より特定的には、大面積かつ曲面形状の表面であっても高精度な反射防止構造体を形成できる反射防止構造体を備えた部材の製造方法に関する。   The present invention relates to a method of manufacturing a member including an antireflection structure, and more specifically, includes an antireflection structure that can form an antireflection structure with high accuracy even on a large-area and curved surface. The present invention relates to a method for manufacturing a member.

入射光に対する反射防止処理が施されたレンズなどの光学素子やカメラ鏡筒などの光学部品は、様々な用途で用いられている。これらの光学素子や光学部品の光学機能面には、蒸着、スパッタリング、および塗装等の手法により反射防止処理が一般的に施されており、低屈折率層からなる単層膜や低屈折率層と高屈折率層とを積層した多層膜等の反射防止膜が形成されている(例えば、特許文献1)。   Optical elements such as lenses and optical components such as camera barrels that have been subjected to antireflection treatment for incident light are used in various applications. The optical functional surfaces of these optical elements and optical components are generally subjected to antireflection treatment by techniques such as vapor deposition, sputtering, and coating, and are provided with a single layer film or a low refractive index layer comprising a low refractive index layer. And an antireflective film such as a multilayer film in which a high refractive index layer is laminated (for example, Patent Document 1).

このような反射防止膜は、蒸着やスパッタリングという一般的な方法で形成できるため広く用いられていたが、反射防止膜の光学的膜厚を高精度に制御するためには複雑な工程が必要となるため、生産性やコスト面での改善が望まれていた。また、このような反射防止膜は、波長依存性があるため、所定の波長以外での反射防止効果は小さくなり、撮像光学機器において必要とされる可視光領域全域で良好な反射防止を達成することは非常に困難であり、さらに、入射角が大きくなると反射防止効果が小さくなるという角度依存性の問題もあるため、波長依存性と角度依存性とが改善された反射防止の方法が望まれていた。   Such an antireflection film has been widely used because it can be formed by a general method such as vapor deposition or sputtering, but a complicated process is required to control the optical film thickness of the antireflection film with high accuracy. Therefore, improvement in productivity and cost has been desired. In addition, since such an antireflection film has wavelength dependency, the antireflection effect at a wavelength other than a predetermined wavelength is reduced, and good antireflection is achieved over the entire visible light region required in the imaging optical apparatus. In addition, since there is an angle dependency problem that the antireflection effect decreases as the incident angle increases, an antireflection method with improved wavelength dependency and angle dependency is desired. It was.

そこで、これらの問題点を改善する方法として、近年、光学素子あるいは光学部品の表面に、反射防止構造体と呼ばれる、非常に微細な錐状凹凸形状をアレイ状に配列した構造体を形成する技術が注目を集めている。反射防止構造体とは、より具体的には、錐状凹凸形状が入射光の波長以下のピッチ(例えば、可視光であればサブミクロンピッチ)でアレイ状に並べられたものであり、この錐状凹凸形状のピッチと高さの比であるアスペクト比は1以上である。   Therefore, as a method for solving these problems, in recent years, a technology for forming a structure called an antireflection structure on which the surface of an optical element or optical component is arranged in a very fine conical uneven shape is arranged in an array. Has attracted attention. More specifically, the antireflection structure is a structure in which conical uneven shapes are arranged in an array at a pitch equal to or smaller than the wavelength of incident light (for example, submicron pitch in the case of visible light). The aspect ratio, which is the ratio of the pitch and height of the concavo-convex shape, is 1 or more.

このような反射防止構造体を光学素子あるいは光学部品の表面に形成すると、表面の屈折率分布は非常に滑らかに変化するようになり、錐状凹凸形状の配列ピッチよりも長い波長の入射光は、ほとんど全て光学素子あるいは光学部品内部に進入する。したがって、光学素子あるいは光学部品の表面からの光の反射を防止することができる。また、入射光の入射角度が大きくなっても、反射防止効果はそれほど小さくならないという特徴を持つ。このように、光学素子あるいは光学部品の表面に反射防止構造体を形成できれば、反射防止膜での課題である波長依存性と入射角依存性が解決できる。   When such an antireflection structure is formed on the surface of an optical element or optical component, the refractive index distribution on the surface changes very smoothly, and incident light having a wavelength longer than the arrangement pitch of the conical concavo-convex shape is not received. , Almost all enter the inside of the optical element or optical component. Therefore, reflection of light from the surface of the optical element or optical component can be prevented. Moreover, even if the incident angle of incident light increases, the antireflection effect does not decrease so much. Thus, if the antireflection structure can be formed on the surface of the optical element or optical component, the wavelength dependency and the incident angle dependency, which are problems in the antireflection film, can be solved.

反射防止構造体を形成する方法としては、例えば、特許文献2に記載されたものがある。この方法では、まず、石英ガラス等からなる光学素子の材料表面に、電子ビーム(EB)描画法によりパターニングすることによりレジストパターンを形成し、このレジストパターンを元にして、光学素子の材料表面に直接にサブミクロンピッチ構造のクロム(Cr)マスクを形成する。そして、光学素子材料のマスクで覆われた以外の部分をドライエッチング処理により微細加工する。
特開2001−127852号公報 特開2001−272505号公報
As a method of forming the antireflection structure, for example, there is one described in Patent Document 2. In this method, first, a resist pattern is formed by patterning on the material surface of an optical element made of quartz glass or the like by an electron beam (EB) drawing method, and on the surface of the optical element material based on the resist pattern. A chromium (Cr) mask having a submicron pitch structure is directly formed. Then, the portion other than that covered with the mask of the optical element material is finely processed by dry etching.
JP 2001-127852 A JP 2001-272505 A

しかしながら、特許文献2に記載の方法のように、ドライエッチング処理を用いた微細加工法では、用いる光学材料によっては、エッチング処理後に表面が非常に荒れたり、エッチングレートが非常に遅くなることがあり、使用できる光学材料が限られるという問題がある。すなわち、石英ガラス等の単一成分材料であれば特に問題はないが、例えば、様々な光学常数で設計がなされる撮像光学機器に用いられる多成分ガラスや樹脂材料に上記した方法を適用しようとすると、所望の選択比が得られず、アスペクト比の大きい反射防止構造体を備えた光学素子あるいは光学部品を得ることはできない。   However, in the microfabrication method using the dry etching process as in the method described in Patent Document 2, depending on the optical material used, the surface may be very rough after the etching process or the etching rate may be very slow. There is a problem that optical materials that can be used are limited. That is, there is no particular problem as long as it is a single component material such as quartz glass, but for example, the above-described method is applied to multi-component glass and resin materials used in imaging optical devices designed with various optical constants. Then, a desired selection ratio cannot be obtained, and an optical element or an optical component including an antireflection structure having a large aspect ratio cannot be obtained.

また、特許文献2のように、サブミクロンピッチの非常に細かなパターンの形成には、EB描画法が用いられるのが一般的である。しかしながら、サブミクロンパターンのパターニングにEB描画法を用いると、非常に長時間の描画時間を要する。描画するパターン形状や条件にもよるが、例えば、5mm角の領域に0.25μmピッチで円形パターン(直径0.2μm)を描画するには、約5時間の描画時間を要する。したがって、例えば、カメラ鏡筒の内面全体に対応する面積(50mm角)に描画するには、500時間もの描画時間が必要となり、直接に、光学材料に反射防止構造体を形成して量産することは現実的に不可能であり、また、金型を製造することもかなり困難である。   In addition, as in Patent Document 2, the EB drawing method is generally used to form a very fine pattern with a submicron pitch. However, if the EB drawing method is used for patterning the submicron pattern, a very long drawing time is required. Depending on the pattern shape and conditions to be drawn, for example, it takes about 5 hours to draw a circular pattern (diameter 0.2 μm) at a pitch of 0.25 μm in a 5 mm square region. Therefore, for example, drawing on an area (50 mm square) corresponding to the entire inner surface of the camera barrel requires 500 hours of drawing time, and mass production is performed by directly forming an antireflection structure on the optical material. Is practically impossible and it is also quite difficult to manufacture molds.

さらには、EB描画法を用いる方法では、レンズなどの曲面形状の表面に微細パターンを描画することは非常に困難であり、非常に特殊な3次元位置制御のできるステージを備えた電子ビーム描画装置が必要となる。したがって、現実的には、電子ビーム描画を用いて、レンズ表面に反射防止構造体を形成することは不可能である。   Furthermore, in the method using the EB drawing method, it is very difficult to draw a fine pattern on a curved surface such as a lens, and an electron beam drawing apparatus provided with a stage capable of very special three-dimensional position control. Is required. Therefore, in reality, it is impossible to form an antireflection structure on the lens surface using electron beam drawing.

それ故に、本発明は、大面積かつ曲面形状の表面であっても、高精度な反射防止構造体を形成できる反射防止構造体を備えた部材の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for manufacturing a member provided with an antireflection structure that can form an antireflection structure with high accuracy even on a large-area and curved surface.

上記課題を解決する本発明は、以下の工程からなる反射防止構造体を備えた部材の製造方法である。すなわち、まず、原盤材料の表面に触媒機能を持った核形成を行う。次に、核の上に結晶を成長させることにより針状結晶を原盤材料の表面に形成する。次に、針状結晶が形成された原盤材料を用いて型を形成する。そして、得られた型を用いて反射防止構造体を備えた部材を形成する。このように、原盤材料の表面に形成された核の上に針状結晶を形成することで、大面積かつ曲面形状の表面であっても、高精度な反射防止構造体を形成でき、しかもこのような反射防止構造体を備えた型を安価に製造できる。このような型を容易に製造できることで、各種部材に反射防止構造体を容易に形成することができる。   This invention which solves the said subject is a manufacturing method of the member provided with the reflection preventing structure which consists of the following processes. That is, first, nucleation having a catalytic function is performed on the surface of the master material. Next, acicular crystals are formed on the surface of the master material by growing crystals on the nuclei. Next, a mold is formed using a master material on which needle-like crystals are formed. Then, a member provided with the antireflection structure is formed using the obtained mold. Thus, by forming a needle crystal on the core formed on the surface of the master material, a highly accurate antireflection structure can be formed even on a large area and curved surface. A mold having such an antireflection structure can be manufactured at low cost. Since such a mold can be easily manufactured, an antireflection structure can be easily formed on various members.

本発明における部材とは、具体的には、光学素子あるいは光学部品である。上述のように、大面積かつ曲面形状の表面であっても、高精度な反射防止構造体を備えた型を容易に製造できるため、光学素子あるいは光学部品のいずれにも、容易に反射防止構造体を形成することができる。   The member in the present invention is specifically an optical element or an optical component. As described above, even if the surface has a large area and a curved surface, a mold having a high-precision anti-reflection structure can be easily manufactured. Therefore, an anti-reflection structure can be easily applied to either an optical element or an optical component. The body can be formed.

針状結晶を原盤材料の表面に形成するときには、化学蒸着法、気相エピタキシー法、分子線エピタキシー法、および無電解メッキ法のうちのいずれかの方法により行い、核の上に、炭素、珪素、窒化珪素、二酸化珪素、窒化硼素、および金属の中から選ばれる少なくとも1種類を含む結晶を成長させる。   When forming acicular crystals on the surface of the master material, any one of chemical vapor deposition, vapor phase epitaxy, molecular beam epitaxy, and electroless plating may be used. A crystal containing at least one selected from silicon nitride, silicon dioxide, boron nitride, and metal is grown.

また、型を形成するときに、電鋳型を形成した場合には、部材を形成する際に、この電鋳型を用いて、樹脂材料からなる成形用素材を成型加工する。ここでの成型加工は、射出成形、プレス成形、およびナノインプリント法のいずれかの方法により行う。また、電鋳型を形成するときには、この電鋳型の成形面に撥水処理を施すようにしても良い。   Further, when an electroforming mold is formed when forming a mold, a molding material made of a resin material is molded using the electroforming mold when forming a member. The molding process here is performed by any one of injection molding, press molding, and nanoimprinting. Further, when forming the electroforming mold, the water repellent treatment may be applied to the molding surface of the electroforming mold.

また、本発明においては、型を形成するときに、針状結晶をマスクとして原盤材料の表面にドライエッチング処理を行い、次に、保護離型膜を形成することにより得られる場合には、得られた型を用いて多成分ガラスからなる成形用素材をプレス成形する。この時の原盤材料は、ドライエッチングによる表面荒れの少ない材料が好ましく、具体的には、石英ガラス、シリコン、ニッケル(Ni)合金、及び超硬合金上に酸化シリコン(SiO2 )膜又はシリコン(Si)膜を形成したものからなる群から選ばれる1つであることが望ましい。 Further, in the present invention, when forming the mold, if it is obtained by performing a dry etching process on the surface of the master material using the acicular crystal as a mask and then forming a protective release film, A molding material made of multi-component glass is press-molded using the obtained mold. The master material at this time is preferably a material with less surface roughness caused by dry etching. Specifically, a silicon oxide (SiO 2 ) film or silicon (on silica glass, silicon, nickel (Ni) alloy, and cemented carbide) It is desirable that it is one selected from the group consisting of Si) films.

保護離型膜は、白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウム、レニウム、タングステンおよびタンタルからなる群から選ばれる少なくとも1種類の金属にて形成されることが好ましい。   The protective release film is preferably formed of at least one metal selected from the group consisting of platinum, palladium, iridium, rhodium, osmium, ruthenium, rhenium, tungsten and tantalum.

また、プレス成形用型を形成するときには、保護離型膜を形成した後に、型の表面に炭素膜または窒化硼素膜を形成するようにしても良い。そして、多成分ガラスからなる成形用素材をプレス成形する際に、冷却せずに離型する。このような処理により、光学素子あるいは光学部品として多成分ガラスを用いても、形成された反射防止構造体の形状を損なうことなく容易に離型できる。なお、炭素膜または窒化硼素膜は、多成分ガラスからなる成形用素材の表面に形成するようにしても同様の効果が得られる。   When forming a press mold, a carbon film or boron nitride film may be formed on the surface of the mold after the protective release film is formed. Then, when the molding material made of multi-component glass is press-molded, it is released without cooling. By such treatment, even if multi-component glass is used as an optical element or optical component, it can be easily released without impairing the shape of the formed antireflection structure. The same effect can be obtained by forming the carbon film or boron nitride film on the surface of the molding material made of multi-component glass.

本発明における針状結晶とは、部材において反射を防止すべき光の波長以下のピッチでアレイ状に形成され、アスペクト比は1以上である。   The acicular crystals in the present invention are formed in an array at a pitch equal to or less than the wavelength of light that should be prevented from being reflected in the member, and the aspect ratio is 1 or more.

以上のように本発明によれば、反射防止構造体を備えた部材を形成するための型を、原盤材料の表面に触媒機能を持った核を形成して、この核の上に針状結晶を形成して形成することで、大面積や曲面上にも波長依存性や入射角依存性の非常に小さな反射防止構造体を容易に形成することができる。そして、得られた型を用いて光学材料を成形することにより、様々な光学材料で構成された各種の部材、すなわち光学素子や光学部品に精度の良い反射防止構造体を非常に容易に形成できる。   As described above, according to the present invention, a mold for forming a member having an antireflection structure is formed. A nucleus having a catalytic function is formed on the surface of a master material, and a needle-like crystal is formed on the nucleus. By forming the film, it is possible to easily form an antireflection structure having a very small wavelength dependency and incident angle dependency even on a large area or a curved surface. Then, by molding an optical material using the obtained mold, it is possible to very easily form a highly accurate antireflection structure on various members made of various optical materials, that is, optical elements and optical components. .

(第1の実施形態)
以下に、本発明の第1の実施形態に係る反射防止構造体を備えた部材の製造方法について説明する。本実施形態では、まず、原盤材料の表面に針状結晶を形成することにより電鋳型を形成し、この電鋳型を用いて、反射防止構造体を備えた部材を形成する。本実施形態における部材としては、具体的には、レンズ、プリズム、フィルター、光学シート、および回折格子等の光学素子や、レンズ鏡筒のような光学素子を保持するための機構部品等の光学部品が挙げられるが、以下の説明では、光学シートを例に挙げて説明する。
(First embodiment)
Below, the manufacturing method of the member provided with the reflection preventing structure which concerns on the 1st Embodiment of this invention is demonstrated. In this embodiment, first, an electroforming mold is formed by forming a needle-like crystal on the surface of a master material, and a member provided with an antireflection structure is formed using this electroforming mold. Specifically, the members in the present embodiment include optical elements such as lenses, prisms, filters, optical sheets, and diffraction gratings, and mechanical parts for holding optical elements such as lens barrels. In the following description, an optical sheet will be described as an example.

図1は、本実施形態に係る電鋳型を製造する過程における各段階での基板および型の断面図である。図1(a)は、電鋳型を形成するために使用する、原盤材料を示す。原盤材料には、(100)面に配向した直径100mmの単結晶シリコンウェハ基板11が用いられ、その表面は表面粗さRaが約2nm程度に平滑に研磨加工されている。この単結晶シリコンウェハ基板11の表面に、触媒機能を持った核を形成する。ここで、触媒機能を持った核とは、反応性ガスを核表面に吸着し、核の表面上で酸化還元反応などを引き起こす働きをするものであり、例えば、d電子を有する金属元素を蒸着法やスパッタリング法により、基板表面で初期的に形成される小さな核が挙げられる。   FIG. 1 is a cross-sectional view of a substrate and a mold at each stage in the process of manufacturing an electroforming mold according to the present embodiment. FIG. 1 (a) shows a master material used to form an electroforming mold. As the master material, a single crystal silicon wafer substrate 11 having a diameter of 100 mm oriented in the (100) plane is used, and the surface thereof is smoothly polished to a surface roughness Ra of about 2 nm. Nuclei having a catalytic function are formed on the surface of the single crystal silicon wafer substrate 11. Here, the nucleus having a catalytic function is a substance that adsorbs a reactive gas on the surface of the nucleus and causes a redox reaction or the like on the surface of the nucleus. For example, a metal element having d electrons is deposited. The small nuclei formed initially on the substrate surface by the method or the sputtering method can be mentioned.

図1(b)は、単結晶シリコンウェハ基板11の表面に、触媒機能を持った核としてCrの島状結晶12を形成した状態を示す。図1(b)に示す状態の基板を得るためには、まず、単結晶シリコンウェハ基板11の表面に、Cr金属を原料とした電子ビーム真空蒸着法によりCrを蒸着させる。そして、Crの島状結晶12が形成されたところで蒸着を停止する。得られた島状結晶12は(100)面に配向しており、250nmのピッチで、単結晶シリコンウェハ基板11の表面にほぼ均等に緻密に形成されていた。   FIG. 1B shows a state in which island islands 12 of Cr are formed on the surface of the single crystal silicon wafer substrate 11 as nuclei having a catalytic function. In order to obtain the substrate in the state shown in FIG. 1B, first, Cr is deposited on the surface of the single crystal silicon wafer substrate 11 by electron beam vacuum deposition using Cr metal as a raw material. Then, the deposition is stopped when the Cr island-like crystal 12 is formed. The obtained island crystals 12 were oriented in the (100) plane, and were formed almost uniformly and densely on the surface of the single crystal silicon wafer substrate 11 at a pitch of 250 nm.

図1(c)は、島状結晶12の上に、針状結晶13を形成した状態を示す。このような状態の基板を得るためには、まず、島状結晶12が形成された単結晶シリコンウェハ基板11を、TEOS(テトラエトオキシシラン)ガス雰囲気下に曝し、基板温度200℃、ガス圧50Paの条件下で周波数13.56MHzの高周波を印可することにより放電プラズマを発生させる。そして、CVD(chemical vapor deposition) 法により、島状結晶12の上に、シリコン(Si)の結晶を成長させて針状結晶13を形成する。結晶の成長は、針状結晶13の大きさが、直径250nm、高さ800nmとなったところで停止する。なお、本発明における針状結晶13は、反射防止構造体が形成された部材、ここでは光学シートを使用する際に反射を防止すべき光の波長(以下、使用波長と称す)以下のピッチでアレイ状に形成され、アスペクト比が1以上となるように形成する。   FIG. 1C shows a state in which the needle-like crystal 13 is formed on the island-like crystal 12. In order to obtain a substrate in such a state, first, the single crystal silicon wafer substrate 11 on which the island-like crystals 12 are formed is exposed to a TEOS (tetraethoxysilane) gas atmosphere, the substrate temperature is 200 ° C., the gas pressure is A discharge plasma is generated by applying a high frequency of 13.56 MHz under the condition of 50 Pa. Then, a crystal of silicon (Si) is grown on the island-like crystal 12 by a CVD (chemical vapor deposition) method to form a needle-like crystal 13. Crystal growth stops when the size of the acicular crystal 13 reaches a diameter of 250 nm and a height of 800 nm. In addition, the needle-like crystal 13 in the present invention has a pitch equal to or less than a wavelength of light (hereinafter referred to as a use wavelength) that should be prevented from being reflected when using a member on which an antireflection structure is formed, here, an optical sheet. It is formed in an array shape so that the aspect ratio is 1 or more.

図1(d)は、針状結晶13を形成した単結晶シリコンウェハ基板11から複製した電鋳型14を形成した状態を示す。このような状態の基板を得るためには、まず、針状結晶13が形成された単結晶シリコンウェハ基板11の表面をパラジウム(Pd)により活性化処理する。次に、この基板を、無電解ニッケル(Ni)−リン(P)メッキ溶液に浸漬して、針状結晶13の表面に厚み10nmの無電解Ni−Pメッキ層を形成することにより導電性を付与する。次いで、無電解Ni−Pメッキ層をカソード電極とし、対極に白金(Pt)板を用いて、スルファミン酸Niメッキ液中で、電流密度0.5A/dm2〜5A/dm2の条件下で、メッキ部分の厚みが約2mmになるまで電気メッキを行うことで、電鋳型14が得られる。 FIG. 1 (d) shows a state in which the electroforming mold 14 that is duplicated from the single crystal silicon wafer substrate 11 on which the needle-like crystal 13 is formed is formed. In order to obtain a substrate in such a state, first, the surface of the single crystal silicon wafer substrate 11 on which the needle-like crystals 13 are formed is activated with palladium (Pd). Next, this substrate is immersed in an electroless nickel (Ni) -phosphorus (P) plating solution to form an electroless Ni—P plating layer having a thickness of 10 nm on the surface of the needle-like crystal 13. Give. Next, using an electroless Ni—P plating layer as a cathode electrode and a platinum (Pt) plate as a counter electrode, in a sulfamic acid Ni plating solution, under a current density of 0.5 A / dm 2 to 5 A / dm 2 . The electroforming 14 is obtained by performing electroplating until the thickness of the plated portion becomes about 2 mm.

図1(e)は、反射防止構造体15を備えた電鋳型14の構成を示す断面図である。この電鋳型14は、図1(d)に示す状態の基板において、針状結晶13が形成された単結晶シリコンウェハ基板11と電鋳型14とを離型することにより得られる。得られた電鋳型14の成形面には、直径250nm、高さ800nmである針状結晶13の反転形状が、ピッチ250nmで、ほぼ均等にかつ緻密に形成された反射防止構造体15が形成される。   FIG. 1E is a cross-sectional view showing the configuration of the electroforming mold 14 provided with the antireflection structure 15. The electroforming mold 14 is obtained by separating the single-crystal silicon wafer substrate 11 on which the needle-like crystals 13 are formed and the electroforming mold 14 from the substrate in the state shown in FIG. On the molding surface of the obtained electroforming mold 14, an antireflection structure 15 is formed in which the inverted shape of the needle crystal 13 having a diameter of 250 nm and a height of 800 nm is formed almost uniformly and densely at a pitch of 250 nm. The

上記のように製造された電鋳型14は、あらかじめ原盤材料(単結晶シリコンウェハ基板11)の上に触媒機能を持った核を形成し、この核の上に針状結晶13を成長させているので、波長依存性や入射角依存性の非常に小さな反射防止構造体を容易に製造することができる。このような反射防止構造体を備えた電鋳型14は、加熱軟化した樹脂や低融点ガラス等を直接に、射出成形やプレス成形する成形型として用いることができる。以下に、上記のように製造された電鋳型14を用いて、光学シートに反射防止構造体を形成する工程について説明する。   In the electroforming mold 14 manufactured as described above, a nucleus having a catalytic function is formed in advance on a master material (single crystal silicon wafer substrate 11), and a needle crystal 13 is grown on the nucleus. Therefore, it is possible to easily manufacture an antireflection structure having very small wavelength dependency and incident angle dependency. The electroforming mold 14 provided with such an antireflection structure can be used as a mold for directly injection-molding or press-molding heat-softened resin, low melting point glass, or the like. Below, the process of forming an antireflection structure on an optical sheet using the electroforming mold 14 manufactured as described above will be described.

図2は、本実施形態に係る反射防止構造体を備えた光学シートを製造する過程における各段階での装置の断面図である。ここでは、光学シートを形成する成形用素材として、ポリオレフィン樹脂を用い、プレス成形により光学シートを形成する。図2(a)は、光学シートの製造に使用する成形機の構成を示す断面図である。成形機は、下型21、上型23、予熱ステージ24、プレスステージ25、冷却ステージ26、上ヘッド27、シリンダー28、型投入口29、および型取出し口210を備える。   FIG. 2 is a cross-sectional view of the device at each stage in the process of manufacturing an optical sheet including the antireflection structure according to the present embodiment. Here, a polyolefin resin is used as a molding material for forming the optical sheet, and the optical sheet is formed by press molding. Fig.2 (a) is sectional drawing which shows the structure of the molding machine used for manufacture of an optical sheet. The molding machine includes a lower die 21, an upper die 23, a preheating stage 24, a press stage 25, a cooling stage 26, an upper head 27, a cylinder 28, a die inlet 29, and a die outlet 210.

図2(a)において、シリンダー28によって上下方向(図中矢印方向)に可動自在に構成された上ヘッド27には、上記工程で形成した電鋳型14が上型23として固定されている。上型23と対向する位置にはプレスステージ25が配置されており、上型23およびプレスステージ25は、ともに所定の温度(ここでは180℃)に昇温されている。上型23と対をなす下型21は、表面を鏡面に研磨した平板石英ガラス(直径100mm、厚さ2mm)であり、成形用素材22である、直径80mm、厚さ1mmのポリオレフィン樹脂を載置した状態で、型投入口29から予熱ステージ24に供給される。予熱ステージ24は、180℃に昇温されている。予熱ステージ24に供給された下型21は、プレスステージ25、冷却ステージ26へと順次搬送される。   In FIG. 2A, the electroforming mold 14 formed in the above process is fixed as an upper mold 23 to an upper head 27 that is configured to be movable in a vertical direction (arrow direction in the figure) by a cylinder 28. A press stage 25 is disposed at a position facing the upper mold 23, and both the upper mold 23 and the press stage 25 are heated to a predetermined temperature (here, 180 ° C.). The lower mold 21 that forms a pair with the upper mold 23 is a flat quartz glass (diameter 100 mm, thickness 2 mm) whose surface is polished to a mirror surface, and mounts a polyolefin resin having a diameter 80 mm and a thickness 1 mm, which is a molding material 22. In the state where it is placed, it is supplied from the mold inlet 29 to the preheating stage 24. The preheating stage 24 is heated to 180 ° C. The lower mold 21 supplied to the preheating stage 24 is sequentially conveyed to the press stage 25 and the cooling stage 26.

図2(b)は、プレスステージ25へ供給された成形用素材22にプレス成形を行う状態を示す。シリンダー28の下降に伴って上型23が下降し、上型23と下型21によって成形用素材22はプレス成形される。ここでは、成形用素材22は、180℃に設定されたプレスステージ25上で、同じく180℃に設定された上型23および下型21により、5,000Nの圧力で1分間プレスされる。次に、そのままの圧力を保ちながら、プレスステージ、上型23、および下型21の温度を100℃まで下げたところで、シリンダー28を上昇させることにより、上ヘッド27とともに上型23を上昇させて、上型23を成形用素材22から離型させる。これにより、上型23に形成されていた反射防止構造体15が成形用素材22の表面へと転写され、反射防止構造体20が表面に形成された直径90mmの光学シート211が得られる。なお、上型23を離型させるときには、下型21はプレスステージ25に固定されるように外周部分をプレスステージ25に押し当てている(図示せず)ので、反射防止構造体20を備えた光学シート211は下型21に乗ったままの状態となる。この状態で、光学シート211を載置した下型21は、水冷している冷却ステージ26へと搬送される。   FIG. 2B shows a state in which the molding material 22 supplied to the press stage 25 is subjected to press molding. As the cylinder 28 descends, the upper mold 23 descends, and the molding material 22 is press-molded by the upper mold 23 and the lower mold 21. Here, the molding material 22 is pressed for 1 minute at a pressure of 5,000 N on the press stage 25 set to 180 ° C. by the upper mold 23 and the lower mold 21 which are also set to 180 ° C. Next, while maintaining the pressure as it is, when the temperature of the press stage, the upper mold 23 and the lower mold 21 is lowered to 100 ° C., the upper mold 23 is raised together with the upper head 27 by raising the cylinder 28. Then, the upper mold 23 is released from the molding material 22. As a result, the antireflection structure 15 formed on the upper mold 23 is transferred to the surface of the molding material 22, and an optical sheet 211 having a diameter of 90 mm on which the antireflection structure 20 is formed is obtained. When the upper mold 23 is released, the lower mold 21 is provided with the antireflection structure 20 because the outer peripheral portion is pressed against the press stage 25 so as to be fixed to the press stage 25 (not shown). The optical sheet 211 remains on the lower mold 21. In this state, the lower mold 21 on which the optical sheet 211 is placed is conveyed to the cooling stage 26 that is water-cooled.

図2(c)は、光学シート211を載置した下型21が冷却ステージ26へ搬送された状態を示す。冷却ステージ26へ搬送され、冷却された光学シート211は、下型21とともに、型取出し口210より成形機の外部へと搬出される。そして、下型21より冷却された光学シート211を取り外すことで、反射防止構造体20を備えた光学シート211の成形工程が完了する。得られた光学シート211は、直径90mm、厚み0.7mmのサイズであり、表面反射率を測定したところ波長600nmで、反射率0.1%であった。   FIG. 2C shows a state where the lower mold 21 on which the optical sheet 211 is placed is conveyed to the cooling stage 26. The optical sheet 211 that has been transported and cooled to the cooling stage 26 is carried out of the molding die 210 to the outside of the molding machine together with the lower die 21. And the shaping | molding process of the optical sheet 211 provided with the reflection preventing structure 20 is completed by removing the optical sheet 211 cooled from the lower mold | type 21. FIG. The obtained optical sheet 211 had a diameter of 90 mm and a thickness of 0.7 mm. When the surface reflectance was measured, the wavelength was 600 nm and the reflectance was 0.1%.

上記のように、反射防止構造体15を備えた電鋳型14を用いて、反射防止構造体20を備えた光学シート211を形成するに要した時間は、数分程度である。また、電鋳型14自体の製造に要した時間も、延べの加工時間は数時間程度である。これに較べ、従来より行われているEB描画法により反射防止構造体を形成する場合には、同サイズ(直径90mm)のポリオレフィン樹脂シートの表面に反射防止構造体を形成するだけで、数百時間以上もの描画時間がかかる。したがって、本発明の製造方法は、飛躍的に生産性が向上していると言える。   As described above, the time required to form the optical sheet 211 provided with the antireflection structure 20 using the electroforming mold 14 provided with the antireflection structure 15 is about several minutes. Further, the total processing time is about several hours for the time required for manufacturing the electroforming mold 14 itself. On the other hand, when an antireflection structure is formed by a conventional EB drawing method, it is only necessary to form an antireflection structure on the surface of a polyolefin resin sheet of the same size (diameter 90 mm). It takes more time to draw. Therefore, it can be said that the productivity of the manufacturing method of the present invention has been dramatically improved.

なお、上記において説明した電鋳型14は、図1(e)の工程の後に、さらに電鋳型14の成形面に撥水処理を施す工程を設けてもよい。撥水処理に使用する撥水処理剤には、従来公知の材料が使用でき、電鋳型14の成形面にこのような撥水処理材料をコーティングすることで、電鋳型14を成形型として用いる際に、成形用素材22、特に樹脂材料の付着が防止できる。従って、電鋳型14の成形面に撥水処理が施されていれば、図2(b)の工程において100℃まで成形型等の温度を下げなくても、容易に電鋳型14(上型23)を離型することができるようになり、さらに成形サイクルが短くなる。   The electroforming mold 14 described above may be further provided with a step of performing a water repellent treatment on the molding surface of the electroforming mold 14 after the step of FIG. A conventionally known material can be used as the water repellent agent used for the water repellent treatment, and when the electroforming mold 14 is used as a mold by coating the water repellent treatment material on the molding surface of the electroforming mold 14. Furthermore, adhesion of the molding material 22, particularly the resin material, can be prevented. Therefore, if the molding surface of the electroforming mold 14 is subjected to water repellent treatment, the electroforming mold 14 (upper mold 23) can be easily obtained without lowering the temperature of the molding die or the like to 100 ° C. in the step of FIG. ) Can be released, and the molding cycle is further shortened.

また、上記説明では、CVD法によりSiの針状結晶13を原盤材料の表面に形成した例を挙げて説明したが、本発明はこれに限定されるものではなく、CVD法に代えて気相エピタキシー(VPE)法、分子線エピタキシー(MBE)法、および無電解メッキ法のうちのいずれかの方法を適用できる。また、Siの針状結晶13だけでなく、炭素(C)、窒化珪素(SiC)、二酸化珪素(SiO2 )、窒化硼素(BN)、および金属の中から1種類以上を含む結晶を成長させて針状結晶とすることもできる。 In the above description, an example in which the Si needle crystal 13 is formed on the surface of the master material by the CVD method has been described. However, the present invention is not limited to this, and a vapor phase is substituted for the CVD method. Any one of an epitaxy (VPE) method, a molecular beam epitaxy (MBE) method, and an electroless plating method can be applied. Further, not only the Si needle crystal 13 but also a crystal containing one or more of carbon (C), silicon nitride (SiC), silicon dioxide (SiO 2 ), boron nitride (BN), and metal is grown. It can also be made into acicular crystals.

また、上記説明では、電鋳型14を上型として用いてプレス成形法により反射防止構造体を備えた部材を形成する例を挙げて説明したが、本発明はこれに限定されるものではなく、電鋳型14は、下型あるいは上型と下型の両方にも用いることができる。また、反射防止構造体を備えた部材を成形加工する際には、プレス成形法だけでなく、射出成形法やナノインプリント法等にも適用できる。   Further, in the above description, the example in which the member provided with the antireflection structure is formed by the press molding method using the electroforming mold 14 as an upper mold has been described, but the present invention is not limited thereto, The electroforming mold 14 can be used for a lower mold or both an upper mold and a lower mold. Moreover, when molding a member provided with an antireflection structure, it can be applied not only to a press molding method but also to an injection molding method, a nanoimprint method, and the like.

(実施の形態2)
以下に、本発明の第2の実施形態に係る反射防止構造体を備えた部材の製造方法について説明する。本実施形態では、反射防止構造体を備えた両面凸レンズの製造方法について説明する。本実施形態は、原盤材料として、石英ガラスを主体とする原盤材料を用い、反射防止構造体を備えた部材として多成分ガラスからなる両面凸レンズを形成する点で第1の実施形態とは異なる。ただし、原盤材料に針状結晶を形成する過程やプレス成形を行う成形機の基本的な構成は第1の実施形態とほぼ同様である。
(Embodiment 2)
Below, the manufacturing method of the member provided with the reflection preventing structure which concerns on the 2nd Embodiment of this invention is demonstrated. In the present embodiment, a method for manufacturing a double-sided convex lens having an antireflection structure will be described. This embodiment is different from the first embodiment in that a master disk material mainly composed of quartz glass is used as a master material, and a double-sided convex lens made of multicomponent glass is formed as a member having an antireflection structure. However, the process of forming the needle crystal on the master material and the basic configuration of the molding machine that performs press molding are substantially the same as those in the first embodiment.

図3は、本実施形態に係る反射防止構造体を備えた凸レンズ成形用型を製造する過程における各段階での原盤材料の断面図である。ここでは、ピッチ250nm、深さ800nmの円錐型の反射防止構造体を備えた多成分ガラスからなる両面凸レンズを製造するための成型用型を製造する過程について説明する。図3(a)は、凸レンズ成形用型の原盤材料の状態を示す。本実施の形態においては、このような原盤材料は、厚み2mm、直径5mmである円柱状の石英ガラス基板31を用い、石英ガラス基板31の表面(プレス面)に高精密研削加工及び研磨加工を施すことにより得られ、研磨加工が施された表面には、凸レンズの反転形状である凹曲面を有する成形面31aが形成されている。   FIG. 3 is a cross-sectional view of the master material at each stage in the process of manufacturing a convex lens molding die provided with the antireflection structure according to this embodiment. Here, a process of manufacturing a mold for manufacturing a double-sided convex lens made of multicomponent glass provided with a conical antireflection structure having a pitch of 250 nm and a depth of 800 nm will be described. FIG. 3A shows the state of the master material of the convex lens molding die. In the present embodiment, such a master material uses a cylindrical quartz glass substrate 31 having a thickness of 2 mm and a diameter of 5 mm, and performs high-precision grinding and polishing on the surface (press surface) of the quartz glass substrate 31. A molding surface 31a having a concave curved surface, which is an inverted shape of a convex lens, is formed on the surface obtained by applying and polishing.

図3(b)は、石英ガラス基板31の成形面31aに、触媒機能を持った核としてPdの島状結晶32が形成された状態を示す。図3(b)に示す島状結晶32を得るためには、まず、凹曲面に加工された石英ガラス基板31の成形面31aに、アルゴン(Ar)ガスを用いたスパッタリング法により、Pdをスパッタリングする。そして、Pdの島状結晶32が形成されたところでスパッタリングを停止する。この時、Arガスの圧力は0.5Paであり、供給した高周波(RF)電力は300Wである。   FIG. 3B shows a state in which Pd island-like crystals 32 are formed on the molding surface 31 a of the quartz glass substrate 31 as nuclei having a catalytic function. In order to obtain the island-shaped crystal 32 shown in FIG. 3B, first, Pd is sputtered on the molding surface 31a of the quartz glass substrate 31 processed into a concave curved surface by a sputtering method using argon (Ar) gas. To do. Then, the sputtering is stopped when the Pd island crystal 32 is formed. At this time, the pressure of Ar gas is 0.5 Pa, and the supplied high frequency (RF) power is 300 W.

図3(c)は、島状結晶32の上に針状結晶33を形成した状態を示す。このような状態の基板を得るためには、まず、無電解メッキ法により、Ni−Cu−Pの針状結晶33をPdの島状結晶32の上に成長させ、Ni−Cu−Pの針状結晶33の大きさが、直径250nm、高さが200nmとなったところで結晶成長を停止する。これにより、石英ガラス基板31の成形面31aに、反射防止構造体に対応するマスクとして、Ni−Cu−Pからなる、直径250nm、高さ200nmの針状結晶33が形成される。このNi−Cu−Pの針状結晶33のマスクは、使用波長以下のピッチでアレイ状に緻密に形成されている。   FIG. 3C shows a state in which the needle crystal 33 is formed on the island crystal 32. In order to obtain a substrate in such a state, first, Ni—Cu—P needle crystals 33 are grown on Pd island crystals 32 by electroless plating, and Ni—Cu—P needles are obtained. Crystal growth is stopped when the size of the crystal 33 reaches a diameter of 250 nm and a height of 200 nm. As a result, a needle-like crystal 33 made of Ni—Cu—P and having a diameter of 250 nm and a height of 200 nm is formed on the molding surface 31a of the quartz glass substrate 31 as a mask corresponding to the antireflection structure. The mask of the Ni—Cu—P needle-like crystals 33 is densely formed in an array at a pitch equal to or shorter than the wavelength used.

図3(d)は、針状結晶33をマスクとして、石英ガラス基板31の成形面31aをドライエッチング処理した状態を示す。このような状態の基板を得るためには、Ni−Cu−P針状結晶33のマスクが形成された石英ガラス基板31を、RFドライエッチング装置の中に入れ、CHF3 ガスとO2 ガスとを用いて、石英ガラス基板31の表面を、Ni−Cu−P針状結晶33のマスクが無くなるまでエッチング処理する。これにより、石英ガラス基板31の成形面31aに、ピッチ250nm、高さ800nmの円錐形状の反射防止構造体30が形成された凸レンズ成形用型34が得られる。この結果から、本実施の形態では、Ni−Cu−P針状結晶33のマスクと石英ガラスとのエッチングの選択比が4であることが判る。 FIG. 3D shows a state where the molding surface 31a of the quartz glass substrate 31 is dry-etched using the needle-like crystal 33 as a mask. In order to obtain a substrate in such a state, a quartz glass substrate 31 on which a mask of Ni—Cu—P needle crystals 33 is formed is placed in an RF dry etching apparatus, and CHF 3 gas, O 2 gas, Is used to etch the surface of the quartz glass substrate 31 until the mask of the Ni—Cu—P needle crystals 33 disappears. Thereby, the convex lens molding die 34 in which the conical antireflection structure 30 having a pitch of 250 nm and a height of 800 nm is formed on the molding surface 31 a of the quartz glass substrate 31 is obtained. From this result, it is understood that the etching selectivity between the mask of the Ni—Cu—P needle crystal 33 and the quartz glass is 4 in this embodiment.

最後に、スパッタリング法を用いて、Cr膜を介して表面保護のための離型保護膜として、Pt−Ir−W合金膜(図示せず)を0.05μmの厚みで形成した。以上により、反射防止構造体を有する凸レンズ成形用型34が得られた。得られた凸レンズ成形用型34は、曲面状の成型面に微細な形状を備えた反射防止構造体30が均一に形成されていた。   Finally, a sputtering method was used to form a Pt—Ir—W alloy film (not shown) with a thickness of 0.05 μm as a release protection film for surface protection via a Cr film. Thus, a convex lens molding die 34 having an antireflection structure was obtained. In the obtained convex lens molding die 34, the antireflection structure 30 having a fine shape on the curved molding surface was uniformly formed.

以下に、上記のように製造された凸レンズ成形用型34を用いて、反射防止構造体を備えた多成分ガラスからなる両凸レンズを製造する方法について説明する。図4は、両凸レンズの製造に使用する成形機の構成を示す断面図である。成形機の基本的な構成は、第1の実施形態で説明した図2に示す成形機とほぼ同様である。   Hereinafter, a method for producing a biconvex lens made of multi-component glass having an antireflection structure using the convex lens molding die 34 produced as described above will be described. FIG. 4 is a cross-sectional view showing a configuration of a molding machine used for manufacturing a biconvex lens. The basic configuration of the molding machine is almost the same as the molding machine shown in FIG. 2 described in the first embodiment.

図4(a)に示す成形機では、反射防止構造体を備えた凸レンズ成形用型34を2個用意し、そのうち1個に、さらに離型性を良くするためにCのスパッタ膜を0.05μmの厚みで形成する。Cのスパッタ膜が形成された凸レンズ成形用型34は上型43として上ヘッド47に固定し、スパッタ膜が形成されていない凸レンズ成形用型34は下型41として予熱ステージ44に載置した。そして、型の酸化防止のために、ガス導入口412より、N2ガスを30リットル/分の流量で成形機内に導入し、プレスステージ45を所定の温度(ここでは、580℃)に昇温するとともに、予熱ステージ44も580℃に昇温した。成形用素材42には、直径4.3mm、厚み2mmのマーブル状のクラウン系硼珪酸ガラス(ガラス転移点(Tg):501℃、屈伏点(At):549℃)を用い、下型41の上に載せた状態で型投入口49より成形機の内部に投入し、580℃に設定した予熱ステージ44で3分間加熱した。 In the molding machine shown in FIG. 4 (a), two convex lens molding dies 34 having antireflection structures are prepared, and one of them is provided with a C sputtered film in order to further improve mold release properties. It is formed with a thickness of 05 μm. The convex lens molding die 34 on which the C sputtered film was formed was fixed to the upper head 47 as the upper die 43, and the convex lens molding die 34 on which the sputtered film was not formed was placed on the preheating stage 44 as the lower die 41. Then, in order to prevent the oxidation of the mold, N 2 gas is introduced into the molding machine from the gas inlet 412 at a flow rate of 30 liters / minute, and the press stage 45 is heated to a predetermined temperature (here, 580 ° C.). At the same time, the preheating stage 44 was also heated to 580 ° C. As the molding material 42, a marble crown-type borosilicate glass (glass transition point (Tg): 501 ° C., yield point (At): 549 ° C.) having a diameter of 4.3 mm and a thickness of 2 mm is used. In the state of being placed on top, it was introduced into the molding machine through the mold inlet 49 and heated on the preheating stage 44 set at 580 ° C. for 3 minutes.

図4(b)は、プレスステージ45に供給された成形用素材42にプレス加工を行う状態を示す。プレスステージ45は、580℃に設定されており、シリンダー48が下降することにより上型43が下降し、上型43と下型41によって成形用素材42はプレス成形される。プレス条件は、1000Nの加圧力で2分間である。そして、そのまま温度を下げずに、シリンダー48を上昇させて、上ヘッド47とともに上型43を上昇させ、上型43を成形用素材42から離型させた。これにより、上型43および下型41に形成されていた反射防止構造体30が成形用素材42の表面に転写され、光学素子411として表面に反射防止構造体30が形成された両凸面レンズが得られる。なお、上型43を離型するときには、下型41はプレスステージ45に固定されるよう、外周部分をプレスステージ45に押し当てている(図示せず)ので、成形された反射防止構造体を備えた光学素子411が下型41に乗った状態となり、その状態で、300℃に設定した冷却ステージ46に搬送され、3分間冷却される。   FIG. 4B shows a state in which the forming material 42 supplied to the press stage 45 is subjected to press working. The press stage 45 is set to 580 ° C., and the upper die 43 is lowered when the cylinder 48 is lowered, and the molding material 42 is press-molded by the upper die 43 and the lower die 41. The pressing conditions are 2 minutes at a pressure of 1000 N. Then, without lowering the temperature as it is, the cylinder 48 is raised, the upper die 43 is raised together with the upper head 47, and the upper die 43 is released from the molding material 42. As a result, the antireflection structure 30 formed on the upper mold 43 and the lower mold 41 is transferred to the surface of the molding material 42, and a biconvex lens having the antireflection structure 30 formed on the surface is formed as the optical element 411. can get. When the upper mold 43 is released, the lower mold 41 is pressed against the press stage 45 so that the lower mold 41 is fixed to the press stage 45 (not shown). The provided optical element 411 is put on the lower mold 41, and in that state, it is transported to the cooling stage 46 set to 300 ° C. and cooled for 3 minutes.

図4(c)は、反射防止構造体を備えた光学素子411を載置した下型41が冷却ステージ46に搬送された状態を示す。冷却ステージ46に搬送された光学素子411は、下型41とともに型取出し口410より成形機の外部に搬出される。そして、下型41より取り外すことにより、反射防止構造体を備えた光学素子411の製造が完了する。得られた光学素子411は、直径4.5mm、厚さ1.3mmの両凸レンズであり、表面反射率を測定すると波長600nmで、反射率0.05%であった。   FIG. 4C shows a state in which the lower mold 41 on which the optical element 411 having the antireflection structure is placed is conveyed to the cooling stage 46. The optical element 411 conveyed to the cooling stage 46 is carried out of the molding machine through the mold take-out port 410 together with the lower mold 41. And by removing from the lower mold | type 41, manufacture of the optical element 411 provided with the reflection preventing structure is completed. The obtained optical element 411 was a biconvex lens having a diameter of 4.5 mm and a thickness of 1.3 mm. When the surface reflectance was measured, the wavelength was 600 nm and the reflectance was 0.05%.

このように、本実施形態にかかる反射防止構造体を備えた部材の製造方法によると、多成分ガラスを成型用素材42として用いても、図4(b)の工程において説明したように、型の温度を下げなくても、すなわち成型用素材42を冷却しなくても、反射防止構造体の形状を損なうことなく容易に離型することができる。また、両凸レンズのような曲面上にも容易に反射防止構造体を成形できるようになる。したがって、様々な用途の光学素子および光学部品に適用できる。   As described above, according to the method for manufacturing the member provided with the antireflection structure according to the present embodiment, even if multi-component glass is used as the molding material 42, as described in the process of FIG. Even without lowering the temperature, that is, without cooling the molding material 42, the mold can be easily released without impairing the shape of the antireflection structure. Further, the antireflection structure can be easily formed on a curved surface such as a biconvex lens. Therefore, it can be applied to optical elements and optical components for various uses.

なお、上記説明では、成型用型の表面にC膜を形成した例を挙げて説明したが、C膜の他にも窒化硼素膜も適用でき、さらには成型用型の代わりに成型用素材42の表面にこれらの膜を形成するようにしても同様の効果が得られる。また、上記説明では、上記説明では凸レンズ成形用型を形成するために円柱形状の原盤材料を用いたが、その形状は特に限定されるものではなく、製造する光学素子および光学部品の形状に応じて適宜選択可能である。   In the above description, the example in which the C film is formed on the surface of the molding die has been described. However, a boron nitride film can be applied in addition to the C film, and the molding material 42 can be used instead of the molding die. Even if these films are formed on the surface, the same effect can be obtained. In the above description, a cylindrical master material is used to form the convex lens mold in the above description, but the shape is not particularly limited, and depends on the shape of the optical element and optical component to be manufactured. Can be selected as appropriate.

また、上記説明では、保護離型膜として、Pt−Ir−W合金膜を形成した例を挙げて説明したが、本発明はこれに限定されるものではなく、白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウム、レニウム、タングステンおよびタンタルからなる群から選ばれる少なくとも1種類の金属にて形成されたものが適用できる。   In the above description, the example in which the Pt—Ir—W alloy film is formed as the protective release film has been described. However, the present invention is not limited to this, and platinum, palladium, iridium, rhodium, A material formed of at least one metal selected from the group consisting of osmium, ruthenium, rhenium, tungsten and tantalum is applicable.

さらに、上記説明では、反射防止構造体の形状の形成に無電解メッキ法によるNi−Cu−P針状結晶を用いたが、原盤材料の表面に触媒機能を持った核形成を行った後、核の上に、CVD法、VPE法、あるいはMBE法により、C、Si、SiC、SiO2、BN、金属の中から1種類以上を含む結晶を成長させることにより、針状結晶を原盤材料表面に形成することができる。 Furthermore, in the above description, Ni-Cu-P needle-like crystals by electroless plating were used to form the shape of the antireflection structure, but after performing nucleation with a catalytic function on the surface of the master material, By growing a crystal containing one or more of C, Si, SiC, SiO 2 , BN, and metal on the core by CVD, VPE, or MBE, the acicular crystal is formed on the surface of the master material. Can be formed.

本発明は、大面積かつ曲面形状の表面であっても、高精度な反射防止構造体を形成できるという特徴を有するので、反射防止効果が要求されるレンズ素子、プリズム素子、およびミラー素子などの光学素子やレンズ鏡筒のような光学部品等に広く適用可能であり、これらの光学素子や光学部品が用いられる光再生記録装置の光ピックアップ光学系、デジタルスチルカメラなどの撮影光学系、プロジェクタの投影系および照明系、光走査光学系等に好適である。   Since the present invention has a feature that a highly accurate antireflection structure can be formed even on a large surface and a curved surface, such as a lens element, a prism element, and a mirror element that require an antireflection effect. Widely applicable to optical components such as optical elements and lens barrels, etc., optical pickup optical systems of optical reproduction recording devices in which these optical elements and optical components are used, photographing optical systems such as digital still cameras, projectors Suitable for projection systems, illumination systems, optical scanning optical systems, and the like.

本発明の第1の実施の形態に係る反射防止構造体を備えた電鋳型の製造方法を説明する図The figure explaining the manufacturing method of the electroforming mold provided with the anti-reflective structure concerning the 1st Embodiment of this invention 同実施の形態に係る反射防止構造体を備えた光学シートの製造方法を説明する図The figure explaining the manufacturing method of the optical sheet provided with the reflection preventing structure concerning the embodiment 本発明の第2の実施の形態に係る反射防止構造体を備えた凸レンズ成形型の製造方法を説明する図The figure explaining the manufacturing method of the convex lens shaping | molding die provided with the reflection preventing structure which concerns on the 2nd Embodiment of this invention. 同実施の形態に係る反射防止構造体を備えた両凸レンズの成形方法を説明する図The figure explaining the shaping | molding method of the biconvex lens provided with the reflection preventing structure which concerns on the same embodiment

符号の説明Explanation of symbols

11 単結晶シリコンウェハ基板
12 島状結晶
13 針状結晶
14 電鋳型
15 反射防止構造体
20 反射防止構造体
21、41 下型
22、42 成形用素材
23、43 上型
24、44 予熱ステージ
25、45 プレスステージ
26、46 冷却ステージ
27、47 上ヘッド
28、48 シリンダー
29、49 型投入口
210、410 型取出し口
211、411 光学素子
31 石英ガラス基板
32 島状結晶
33 針状結晶
34 凸レンズ成形用型
412 ガス導入口

DESCRIPTION OF SYMBOLS 11 Single-crystal silicon wafer substrate 12 Island-like crystal 13 Needle-like crystal 14 Electromold 15 Antireflection structure 20 Antireflection structure 21, 41 Lower mold 22, 42 Molding material 23, 43 Upper mold 24, 44 Preheating stage 25, 45 Press stage 26, 46 Cooling stage 27, 47 Upper head 28, 48 Cylinder 29, 49 Type inlet 210, 410 Type outlet 211, 411 Optical element 31 Quartz glass substrate 32 Island crystal 33 Needle crystal 34 For convex lens molding Type 412 Gas inlet

Claims (12)

原盤材料の表面に触媒機能を持った核形成を行う工程と、
前記核の上に結晶を成長させることにより針状結晶を原盤材料の表面に形成する工程と、
前記針状結晶が形成された原盤材料を用いて型を形成する工程と、
前記型を用いて反射防止構造体を備えた部材を形成する工程とを備えることを特徴とする、反射防止構造体を備えた部材の製造方法。
Nucleation process with catalytic function on the surface of the master material;
Forming acicular crystals on the surface of the master material by growing crystals on the nuclei;
Forming a mold using a master material on which the needle-like crystals are formed;
Forming a member provided with the antireflection structure using the mold, and a method for producing the member provided with the antireflection structure.
前記部材は、光学素子あるいは光学部品であることを特徴とする、請求項1に記載の反射防止構造体を備えた部材の製造方法。   The method for producing a member having an antireflection structure according to claim 1, wherein the member is an optical element or an optical component. 前記針状結晶を原盤材料の表面に形成する工程は、化学蒸着法、気相エピタキシー法、分子線エピタキシー法、および無電解メッキ法のうちのいずれかの方法により行い、前記核の上に、炭素、珪素、窒化珪素、二酸化珪素、窒化硼素、および金属の中から選ばれる少なくとも1種類を含む結晶を成長させることを特徴とする、請求項1に記載の反射防止構造体を備えた部材の製造方法。   The step of forming the acicular crystal on the surface of the master material is performed by any one of chemical vapor deposition, vapor phase epitaxy, molecular beam epitaxy, and electroless plating, and on the nucleus, The member having an antireflection structure according to claim 1, wherein a crystal containing at least one selected from carbon, silicon, silicon nitride, silicon dioxide, boron nitride, and metal is grown. Production method. 前記型を形成する工程では、電鋳型を形成し、
前記部材を形成する工程では、前記電鋳型を用いて、樹脂材料からなる成形用素材を成型加工することを特徴とする、請求項1に記載の反射防止構造体を備えた部材の製造方法。
In the step of forming the mold, an electroforming mold is formed,
The method for producing a member having an antireflection structure according to claim 1, wherein in the step of forming the member, a molding material made of a resin material is molded using the electroforming mold.
前記成型加工を行う工程は、射出成形法、プレス成形法、およびナノインプリント法のいずれかの方法により行うことを特徴とする、請求項4に記載の反射防止構造体を備えた部材の製造方法。   The method for producing a member having an antireflection structure according to claim 4, wherein the step of performing the molding process is performed by any one of an injection molding method, a press molding method, and a nanoimprint method. 前記電鋳型を形成する工程は、当該電鋳型の成形面に撥水処理を施す工程をさらに含むことを特徴とする、請求項4に記載の反射防止構造体を備えた部材の製造方法。   The method of manufacturing a member having an antireflection structure according to claim 4, wherein the step of forming the electroforming mold further includes a step of performing a water repellent treatment on a molding surface of the electroforming mold. 前記型を形成する工程では、前記針状結晶をマスクとして前記原盤材料の表面にドライエッチング処理を行う工程と、保護離型膜を形成する工程とを含み、
前記部材を形成する工程は、前記型を用いて多成分ガラスからなる成形用素材をプレス成形することを特徴とする、請求項1に記載の反射防止構造体を備えた部材の製造方法。
The step of forming the mold includes a step of performing a dry etching process on the surface of the master material using the acicular crystal as a mask, and a step of forming a protective release film,
The method for producing a member having an antireflection structure according to claim 1, wherein the step of forming the member comprises press-molding a molding material made of multi-component glass using the mold.
前記原盤材料は、ドライエッチングによる表面荒れの少ない材料であり、石英ガラス、シリコン、ニッケル合金、及び超硬合金上に酸化シリコン膜又はシリコン膜を形成したものからなる群から選ばれる1つであることを特徴とする、請求項7に記載の反射防止構造体を備えた部材の製造方法。   The master material is a material with less surface roughness caused by dry etching, and is one selected from the group consisting of quartz glass, silicon, nickel alloy, and cemented carbide formed with a silicon oxide film or a silicon film. The manufacturing method of the member provided with the reflection preventing structure of Claim 7 characterized by the above-mentioned. 前記保護離型膜は、白金、パラジウム、イリジウム、ロジウム、オスミウム、ルテニウム、レニウム、タングステンおよびタンタルからなる群から選ばれる少なくとも1種類の金属にて形成されることを特徴とする、請求項7に記載の反射防止構造体を備えた部材の製造方法。   The protective release film is formed of at least one metal selected from the group consisting of platinum, palladium, iridium, rhodium, osmium, ruthenium, rhenium, tungsten and tantalum. The manufacturing method of the member provided with the reflection preventing structure of description. 前記プレス成形用型を形成する工程は、前記保護離型膜を形成した後に、当該型の表面に炭素膜または窒化硼素膜を形成する工程をさらに含み、
多成分ガラスからなる成形用素材をプレス成形する際に、冷却せずに離型することを特徴とする、請求項7に記載の反射防止構造体を備えた部材の製造方法。
The step of forming the press molding die further includes the step of forming a carbon film or a boron nitride film on the surface of the die after forming the protective release film,
The method for producing a member having an antireflection structure according to claim 7, wherein the molding material made of multicomponent glass is press-molded without being cooled.
前記プレス成形に先だって前記多成分ガラスからなる成形用素材の表面に、炭素膜または窒化硼素膜を形成する工程をさらに含み、
多成分ガラスからなる成形用素材をプレス成形する際に、冷却せずに離型することを特徴とする、請求項7に記載の反射防止構造体を備えた部材の製造方法。
Prior to the press molding, further comprising a step of forming a carbon film or a boron nitride film on the surface of the molding material made of the multicomponent glass,
The method for producing a member having an antireflection structure according to claim 7, wherein the molding material made of multicomponent glass is press-molded without being cooled.
前記針状結晶は、前記部材において反射を防止すべき光の波長以下のピッチでアレイ状に形成され、アスペクト比は1以上であることを特徴とする、請求項1に記載の反射防止構造体を備えた部材の製造方法。
2. The antireflection structure according to claim 1, wherein the acicular crystals are formed in an array at a pitch equal to or less than a wavelength of light to be prevented from being reflected in the member, and an aspect ratio is 1 or more. The manufacturing method of the member provided with.
JP2004324134A 2004-11-08 2004-11-08 Method for manufacturing member having antireflection structure Expired - Fee Related JP4739729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324134A JP4739729B2 (en) 2004-11-08 2004-11-08 Method for manufacturing member having antireflection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324134A JP4739729B2 (en) 2004-11-08 2004-11-08 Method for manufacturing member having antireflection structure

Publications (2)

Publication Number Publication Date
JP2006130841A true JP2006130841A (en) 2006-05-25
JP4739729B2 JP4739729B2 (en) 2011-08-03

Family

ID=36724801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324134A Expired - Fee Related JP4739729B2 (en) 2004-11-08 2004-11-08 Method for manufacturing member having antireflection structure

Country Status (1)

Country Link
JP (1) JP4739729B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001935A1 (en) * 2006-06-30 2008-01-03 Panasonic Corporation Antireflection structure and method for producing the same
WO2008010330A1 (en) * 2006-07-21 2008-01-24 Nippon Sheet Glass Company, Limited Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold
JP2009122216A (en) * 2007-11-13 2009-06-04 Sumitomo Metal Mining Co Ltd Absorption type nd filter
JP2009155152A (en) * 2007-12-26 2009-07-16 Hitachi Maxell Ltd Method for manufacturing die for molding optical element and method for manufacturing optical element
KR100966789B1 (en) * 2010-02-01 2010-06-29 박상준 Scribing device for substrate cutting by one-step process
EP2213447A2 (en) 2009-01-30 2010-08-04 Sony Corporation Apparatus and method for manufacturing optical element and optical element
CN101879765A (en) * 2009-05-08 2010-11-10 索尼公司 Moulding die making method, pressing mold and mechanograph manufacture method
JP2011003333A (en) * 2009-06-17 2011-01-06 Panasonic Electric Works Co Ltd Lighting fixture
JP2011031406A (en) * 2009-07-30 2011-02-17 Hoya Corp Optical element molding mold having nonreflective dust-proof structure, method for producing optical element molding mold having nonreflective dust-proof structure, optical element having nonreflective dust-proof structure, imaging device, and lens exchange-type digital camera
KR101055634B1 (en) 2010-06-10 2011-08-10 한국기계연구원 Method of three dimensions imprint lithography
JP2012133398A (en) * 2012-03-26 2012-07-12 Canon Electronics Inc Camera
US8252849B2 (en) 2009-11-27 2012-08-28 Hyundai Motor Company Coating agent for poly(methyl methacrylate) panel nano imprinting and methods of use
US8328371B2 (en) 2006-08-09 2012-12-11 Tokyo University Of Science Educational Foundation Administrative Organization Anti-reflection structure body, method of producing the same and method of producing optical member
JP2013512178A (en) * 2009-12-01 2013-04-11 サン−ゴバン グラス フランス Surface structuring method by ion beam etching, structured surface and utilization
JP2013512179A (en) * 2009-12-01 2013-04-11 サン−ゴバン グラス フランス Surface structuring method by reactive ion beam etching, structured surface and utilization
CN104441370A (en) * 2014-11-11 2015-03-25 上海理工大学 Mould for wafer lens array with moth-eye-imitation nano-structure, and processing method of mould
WO2017074264A1 (en) * 2015-10-27 2017-05-04 Agency For Science, Technology And Research Nanoinjection molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287790A (en) * 1993-04-02 1994-10-11 Honda Motor Co Ltd Production of porous electroform body
JPH10112440A (en) * 1996-08-14 1998-04-28 Siemens Ag Micro-pattern forming method
JP2003043203A (en) * 2001-08-01 2003-02-13 Hitachi Maxell Ltd Antireflection film, method for manufacturing the same, stamper for manufacture of antireflection film, method for manufacturing the stamper, casting mold for manufacture of stamper and method for manufacturing the casting mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287790A (en) * 1993-04-02 1994-10-11 Honda Motor Co Ltd Production of porous electroform body
JPH10112440A (en) * 1996-08-14 1998-04-28 Siemens Ag Micro-pattern forming method
JP2003043203A (en) * 2001-08-01 2003-02-13 Hitachi Maxell Ltd Antireflection film, method for manufacturing the same, stamper for manufacture of antireflection film, method for manufacturing the stamper, casting mold for manufacture of stamper and method for manufacturing the casting mold

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001935A1 (en) * 2006-06-30 2008-01-03 Panasonic Corporation Antireflection structure and method for producing the same
JP4820871B2 (en) * 2006-06-30 2011-11-24 パナソニック株式会社 Antireflection structure and manufacturing method thereof
WO2008010330A1 (en) * 2006-07-21 2008-01-24 Nippon Sheet Glass Company, Limited Transfer mold, method for manufacturing transfer mold, and method for manufacturing transferred product using the transfer mold
US8328371B2 (en) 2006-08-09 2012-12-11 Tokyo University Of Science Educational Foundation Administrative Organization Anti-reflection structure body, method of producing the same and method of producing optical member
JP2009122216A (en) * 2007-11-13 2009-06-04 Sumitomo Metal Mining Co Ltd Absorption type nd filter
JP2009155152A (en) * 2007-12-26 2009-07-16 Hitachi Maxell Ltd Method for manufacturing die for molding optical element and method for manufacturing optical element
US8064139B2 (en) 2009-01-30 2011-11-22 Sony Corporation Apparatus for manufacturing optical element, method of manufacturing optical element, optical element, and imaging device
EP2213447A2 (en) 2009-01-30 2010-08-04 Sony Corporation Apparatus and method for manufacturing optical element and optical element
CN101879765A (en) * 2009-05-08 2010-11-10 索尼公司 Moulding die making method, pressing mold and mechanograph manufacture method
JP2011003333A (en) * 2009-06-17 2011-01-06 Panasonic Electric Works Co Ltd Lighting fixture
JP2011031406A (en) * 2009-07-30 2011-02-17 Hoya Corp Optical element molding mold having nonreflective dust-proof structure, method for producing optical element molding mold having nonreflective dust-proof structure, optical element having nonreflective dust-proof structure, imaging device, and lens exchange-type digital camera
US8252849B2 (en) 2009-11-27 2012-08-28 Hyundai Motor Company Coating agent for poly(methyl methacrylate) panel nano imprinting and methods of use
JP2013512179A (en) * 2009-12-01 2013-04-11 サン−ゴバン グラス フランス Surface structuring method by reactive ion beam etching, structured surface and utilization
JP2013512178A (en) * 2009-12-01 2013-04-11 サン−ゴバン グラス フランス Surface structuring method by ion beam etching, structured surface and utilization
KR100966789B1 (en) * 2010-02-01 2010-06-29 박상준 Scribing device for substrate cutting by one-step process
KR101055634B1 (en) 2010-06-10 2011-08-10 한국기계연구원 Method of three dimensions imprint lithography
JP2012133398A (en) * 2012-03-26 2012-07-12 Canon Electronics Inc Camera
CN104441370A (en) * 2014-11-11 2015-03-25 上海理工大学 Mould for wafer lens array with moth-eye-imitation nano-structure, and processing method of mould
WO2017074264A1 (en) * 2015-10-27 2017-05-04 Agency For Science, Technology And Research Nanoinjection molding

Also Published As

Publication number Publication date
JP4739729B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4739729B2 (en) Method for manufacturing member having antireflection structure
US6119485A (en) Press-molding die, method for manufacturing the same and glass article molded with the same
EP2627605B1 (en) Process for producing highly ordered nanopillar or nanohole structures on large areas
EP1679532A1 (en) Optical element having antireflection structure, and method for producing optical element having antireflection structure
JP2009128538A (en) Method for manufacturing antireflection structure
KR100740797B1 (en) Resin forming mold and production method for the resin forming mold
JP2005132660A (en) Manufacturing method of optical element having non-reflective structure and optical element having non-reflective structure manufactured through the method
US20180311877A1 (en) Nanoinjection molding
JP2004359481A (en) Method for manufacturing replica pattern for lens molding
JP2006235195A (en) Method for manufacturing member with antireflective structure
JP2010260279A (en) Method of manufacturing mold stamper, mold stamper and method of producing molding
JP2010072484A (en) Optical element, method of manufacturing mold for molding optical element and method of manufacturing optical element
JP2005132679A (en) Manufacturing method of optical element having non-reflective structure and optical element having non-reflective structure manufactured through the method
JP5792026B2 (en) Optical element and method for manufacturing optical element
JPH10337734A (en) Mold and its manufacture
JP4779866B2 (en) Method for manufacturing antireflection structure
JP4345123B2 (en) Resin bonded optical element and manufacturing method thereof
JPH10231129A (en) Mold for press molding and glass molded product by the mold
JPH0319154A (en) Stamper
JPH0243380A (en) Metallic mold for forming optical disk substrate and production thereof
WO2019223109A1 (en) Flexible nanoimprint template and manufacturing method therefor
JP5081666B2 (en) Fine pattern molding die and manufacturing method thereof
JPH11147725A (en) Mold for press forming and glass formed product by the same
JP2009128542A (en) Method for manufacturing antireflection structure
JP5282304B2 (en) Manufacturing method of glass element molding die, glass element molding die, optical element molding method, and glass blank molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees