JP2006130747A - Copper clad laminated sheet for cof and carrier tape for cof - Google Patents

Copper clad laminated sheet for cof and carrier tape for cof Download PDF

Info

Publication number
JP2006130747A
JP2006130747A JP2004320938A JP2004320938A JP2006130747A JP 2006130747 A JP2006130747 A JP 2006130747A JP 2004320938 A JP2004320938 A JP 2004320938A JP 2004320938 A JP2004320938 A JP 2004320938A JP 2006130747 A JP2006130747 A JP 2006130747A
Authority
JP
Japan
Prior art keywords
polyimide
copper
copper foil
cof
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004320938A
Other languages
Japanese (ja)
Other versions
JP4564336B2 (en
Inventor
Yuichi Tokuda
裕一 徳田
Ryuzo Nitta
龍三 新田
Koichi Hattori
公一 服部
Yasushi Matsumura
康史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004320938A priority Critical patent/JP4564336B2/en
Priority to KR1020050105539A priority patent/KR20060052481A/en
Priority to CN 200510117590 priority patent/CN1770439A/en
Priority to TW94138701A priority patent/TWI387017B/en
Publication of JP2006130747A publication Critical patent/JP2006130747A/en
Application granted granted Critical
Publication of JP4564336B2 publication Critical patent/JP4564336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper clad laminated sheet for COF which enables the formation of a fine pattern circuit and can prevent the sinking of a conductor at the eutectic time of Au-Sn into a polyimide layer. <P>SOLUTION: In the copper clad laminated sheet wherein the polyimide layer is provided on a copper foil, the polyimide layer has a thickness of 5-20 μm and is obtained by coating the copper foil with a polyimide in a solution state and drying and curing the coated copper foil. The polyimide layer shows non-thermoplastic characteristics at 350°C while the copper foil has a thickness of 5-50 μm and a surface roughness of 0.5-1.5 μm and has a metal treatment layer treated with at least one kind of a metal selected from Mo, Co, Ni and Zn, a chromate treatment layer and a silane coupling agent treatment layer. The 180° peel strength at the normal temperature between copper and the polyimide of the copper clad laminated sheet is 0.6 kN/m or above and a carrier tape for COF is obtained by processing the copper clad laminated sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、COF(Chip on Film)用銅張積層板及びこれを加工して得られるCOF用キャリアテープに関する。   The present invention relates to a copper clad laminate for COF (Chip on Film) and a carrier tape for COF obtained by processing the same.

COFは、半導体ICをフィルム状の配線板の上に搭載した複合部品のことである。多くの場合、COFはより大きなリジッド配線板やディスプレイ板に接続して使用されている。そして、フィルム状の配線板は、ポリイミド等の有機ポリマーフィルムと銅箔を積層した銅張積層板から作られる。   COF is a composite part in which a semiconductor IC is mounted on a film-like wiring board. In many cases, COF is used in connection with larger rigid wiring boards and display boards. And a film-like wiring board is made from the copper clad laminated board which laminated | stacked organic polymer films, such as a polyimide, and copper foil.

フィルム状の配線板は、銅張積層板の銅箔面上に感光性樹脂層を積層し、所望の配線パターンに対応した露光を行い、必要な部分の感光性樹脂を光硬化させ、現像により、未露光部分の感光性樹脂を除去した後、エッチングにより硬化レジストに覆われていない基板の被覆銅層を除去したり、めっきにより硬化レジストに覆われていない部分にめっき金属を析出させる。最後に、剥離により、硬化レジストを除去して、所望の導体パターンを有する配線板を得るというような方法が採用される。感光性樹脂を積層する方法としては、液状レジストを塗布、乾燥する方法や感光性樹脂フィルムをラミネートする方法がある。   A film-like wiring board is obtained by laminating a photosensitive resin layer on the copper foil surface of a copper-clad laminate, performing exposure corresponding to the desired wiring pattern, photocuring the photosensitive resin of the required part, and developing it. After removing the photosensitive resin in the unexposed portion, the coated copper layer of the substrate not covered with the cured resist is removed by etching, or the plating metal is deposited on the portion not covered with the cured resist by plating. Finally, a method is adopted in which the cured resist is removed by peeling to obtain a wiring board having a desired conductor pattern. As a method of laminating the photosensitive resin, there are a method of applying and drying a liquid resist and a method of laminating a photosensitive resin film.

COF用の銅張積層板としては、主にポリイミド樹脂フィルムに銅をスパッタして得られるポリイミド銅張積層板が使用されてきた。スパッタ方式の場合、金属層のピンホールにより歩留まりが悪化しやすいため、ピンホールがないポリイミド銅張積層板が望まれている。ピンホールがない銅張積層板としては、圧延銅箔や電解銅箔とポリイミドを積層したものがある。この積層板はキャスティングやラミネート方式により銅箔上にポリイミドを積層して得られるが、接着力等を向上するために、熱可塑性ポリイミド層を金属箔上に形成するものもある。   As a copper clad laminate for COF, a polyimide copper clad laminate obtained mainly by sputtering copper on a polyimide resin film has been used. In the case of the sputtering method, the yield is likely to deteriorate due to the pinhole of the metal layer, and therefore, a polyimide copper clad laminate having no pinhole is desired. As a copper clad laminated board without a pinhole, there exist what laminated | stacked the rolled copper foil, the electrolytic copper foil, and the polyimide. This laminate is obtained by laminating polyimide on a copper foil by casting or laminating methods, but there is also one in which a thermoplastic polyimide layer is formed on a metal foil in order to improve adhesive strength and the like.

一方、チップ実装は、ACF、NCP、超音波接合など低温で実装する方式から、Au-Au接合、Au-Sn接合など300℃以上の高温で実装する方式があるが、COFやTABラインでの実装方式や、チップと配線の接続信頼性の点から、Au-Au接合、Au-Sn接合が多く採用されている。   On the other hand, for chip mounting, there are methods for mounting at low temperatures such as ACF, NCP, and ultrasonic bonding, and methods for mounting at high temperatures of 300 ° C or higher such as Au-Au bonding and Au-Sn bonding. Au-Au junctions and Au-Sn junctions are often used from the viewpoint of mounting method and chip / wiring connection reliability.

特開2004-207670号公報JP 2004-207670 A 特開2004-153194号公報JP 2004-153194 A 特開2004-128337号公報JP 2004-128337 A 特開2004-31685号公報JP 2004-31685 A 特開2001-315256号公報JP 2001-315256 A 特開2003-71984号公報Japanese Patent Laid-Open No. 2003-71984 特開2003-23046号公報JP 2003-23046 A

特許文献1には、COF用フレキシブルプリント配線板であって、絶縁層の半導体チップが実装される側とは反対側の面上に、シラン化合物、シリカゾル等の離型剤層を設けた例が記載されている。特許文献2には、COF用の配線板の製造方法であって、パターニングを行うフォトリソグラフィー工程の後に絶縁層に離型剤層を形成する工程を具備する方法が記載されている。そして、この絶縁層が、導体層にポリイミド前駆体樹脂溶液を塗布又は熱圧着された熱可塑性樹脂層及び絶縁フィルムにより形成されたものであることが記載されている他、絶縁層が、熱圧着された熱硬化性樹脂層及び絶縁フィルムにより形成されたものであることについても記載されている。   Patent Document 1 discloses an example of a flexible printed wiring board for COF, in which a release agent layer such as a silane compound or silica sol is provided on the surface of the insulating layer opposite to the side on which the semiconductor chip is mounted. Are listed. Patent Document 2 describes a method of manufacturing a wiring board for COF, which includes a step of forming a release agent layer on an insulating layer after a photolithography step of patterning. In addition, it is described that the insulating layer is formed by a thermoplastic resin layer and an insulating film obtained by applying or thermocompression bonding a polyimide precursor resin solution to the conductor layer. It is also described that it is formed of a thermosetting resin layer and an insulating film.

特許文献3には、COFの製造方法であって、絶縁テープの表面に絶縁性樹脂の塗布を行う樹脂塗布工程と、半導体素子を絶縁性樹脂の上から加圧して配線パターン上に圧接させる半導体素子圧接工程と、絶縁性樹脂を硬化させて半導体素子を配線パターン上に圧接による電気的に接続された状態で固着する樹脂硬化工程とを備える方法が記載されている。特許文献4には、COFフィルムキャリアテープの製造方法であって、絶縁層の導電層とは反対側に補強フィルムを貼り付けて熱圧着する工程と、幅方向両側の領域にスプロケットホールを形成する工程と、補強フィルムと絶縁層との熱圧着を再度行う工程と、導電層上にレジストパターンを形成してエッチングすることにより配線パターンを形成すると共に複数のスプロケットホールの周囲にダミー配線を形成する工程とを具備する方法が記載されている。   Patent Document 3 discloses a method for manufacturing a COF, which includes a resin coating process in which an insulating resin is applied to the surface of an insulating tape, and a semiconductor in which a semiconductor element is pressed from above the insulating resin and pressed onto a wiring pattern. A method is described that includes an element pressing process and a resin curing process in which an insulating resin is cured and a semiconductor element is fixed on a wiring pattern in an electrically connected state by pressing. Patent Document 4 discloses a method for manufacturing a COF film carrier tape, in which a reinforcing film is pasted on the opposite side of the insulating layer from the conductive layer and thermocompression bonded, and sprocket holes are formed in regions on both sides in the width direction. Forming a wiring pattern by forming a resist pattern on the conductive layer and etching, and forming a dummy wiring around a plurality of sprocket holes; and a step of performing thermocompression bonding between the reinforcing film and the insulating layer again. A method comprising the steps is described.

特許文献5には、HDD用、COF用等に用いられるフレキシブル金属箔張積層板であって、金属箔と熱可塑性ポリイミド層と耐熱性ベースフィルムとを包含し、熱可塑性ポリイミド層が150〜300℃以下のガラス転移温度と1%以下の吸水率を有する熱可塑性ポリイミドであり、耐熱性ベースフィルムが350℃以上のガラス転移温度と2%以下の吸水率とを併せ有する熱可塑性ポリイミドフィルムをそれぞれ用いたものが記載されている。特許文献6には、非熱可塑性ポリイミド層の少なくとも片面に熱可塑性ポリイミド層が形成され、熱可塑性ポリイミド層の表面に銅箔が積層されたポリイミド銅張積層板であって、熱可塑性ポリイミドと接合する銅箔の厚みが5μm以下であるポリイミド銅張積層板が記載されており、これがCOF用等に用いられることが記載されている。特許文献7には、銅箔に特徴を有するCOF用銅張積層板が記載されている。   Patent Document 5 discloses a flexible metal foil-clad laminate used for HDD, COF, and the like, which includes a metal foil, a thermoplastic polyimide layer, and a heat-resistant base film, and has a thermoplastic polyimide layer of 150 to 300. A thermoplastic polyimide film having a glass transition temperature of 1 ° C. or less and a water absorption of 1% or less, and a heat resistant base film having a glass transition temperature of 350 ° C. or more and a water absorption of 2% or less, respectively. The ones used are listed. Patent Document 6 discloses a polyimide copper-clad laminate in which a thermoplastic polyimide layer is formed on at least one surface of a non-thermoplastic polyimide layer, and a copper foil is laminated on the surface of the thermoplastic polyimide layer, and bonded to the thermoplastic polyimide. The polyimide copper clad laminated board whose thickness of the copper foil to be performed is 5 micrometers or less is described, and it describes that this is used for COF etc. Patent Document 7 describes a copper clad laminate for COF that is characterized by copper foil.

一般的に、スパッタ方式で得られるポリイミド積層板の場合、熱可塑性樹脂層を必要としないため、300℃以上のチップ実装時に金属配線がポリイミド層に沈み込むという現象は起こらないが、上記のような問題がある。銅箔にポリイミド層を塗布又は圧着等により積層する場合は、銅箔とポリイミド層間の接着力を高めるためには、熱可塑性のポリイミドを用いることが一般に必要とされ、沈み込み現象等の問題がある。特に、COF製造工程におけるAu-Sn共晶を用いるフリップチップ実装の場合は、高温、高圧にさらされるため、熱変形を起こし、導体がポリイミド層に沈み込む問題があった。そこで、ポリイミド樹脂又はその前駆体溶液を、塗布法(キャスティング法ともいう)を採用して積層板を製造する際、銅箔を粗化し、アンカー効果を発揮させて、熱可塑性のポリイミドを用いることなく接着強度を上げる方法も提案されている。しかし、この方法は、COF用材料はファインパターンの回路形成が要求されるが、これを阻害するという問題がある。   In general, in the case of a polyimide laminate obtained by sputtering, a thermoplastic resin layer is not required, so that the phenomenon that metal wiring sinks into the polyimide layer does not occur when a chip is mounted at 300 ° C. or higher. There is a problem. When a polyimide layer is applied to a copper foil by lamination or pressure bonding, it is generally necessary to use a thermoplastic polyimide in order to increase the adhesion between the copper foil and the polyimide layer. is there. In particular, in the case of flip chip mounting using Au—Sn eutectic in the COF manufacturing process, since it is exposed to high temperature and high pressure, there has been a problem that thermal deformation occurs and the conductor sinks into the polyimide layer. Therefore, when a laminated sheet is produced by applying a polyimide resin or a precursor solution thereof using a coating method (also called a casting method), a copper foil is roughened to exert an anchor effect, and a thermoplastic polyimide is used. There has also been proposed a method for increasing the adhesive strength. However, this method has a problem in that the COF material is required to form a fine pattern circuit, but this is obstructed.

本発明は、ファインパターンの回路形成が可能で、Au-Sn共晶時の導体のポリイミド層への沈み込みを防止できるCOF用銅張積層板を提供することを目的とする。   An object of the present invention is to provide a copper clad laminate for COF that can form a circuit with a fine pattern and prevent the conductor from sinking into the polyimide layer during Au-Sn eutectic.

本発明は、銅箔上にポリイミド層が設けられた銅張積層板であって、ポリイミド層は銅箔上に溶液状態で塗布、乾燥及び硬化して得られたものであり、350℃で非熱可塑的特性を示し、また、銅箔のポリイミド積層面の表面粗度(Rz)が0.5〜1.5μmの範囲にあり、銅−ポリイミド間の常温における180°ピール強度が0.6kN/m以上であることを特徴とするCOF用銅張積層板である。また、本発明は、上記COF用銅張積層板を加工して得られるCOF用キャリアテープである。   The present invention is a copper clad laminate in which a polyimide layer is provided on a copper foil, and the polyimide layer is obtained by coating, drying and curing in a solution state on a copper foil, and is not heated at 350 ° C. It exhibits thermoplastic properties, and the surface roughness (Rz) of the polyimide laminate surface of the copper foil is in the range of 0.5 to 1.5 μm, and the 180 ° peel strength at room temperature between copper and polyimide is 0.6 kN / m or more. It is a copper clad laminate for COF characterized by being. The present invention also provides a carrier tape for COF obtained by processing the copper clad laminate for COF.

ここで、ポリイミド層が単層であることはCOF用銅張積層板の製造を容易にする。また、銅箔が無粗化電解銅箔であって、銅箔のポリイミド積層側の面が、モリブデン、コバルト、ニッケル及び亜鉛からなる群れから選ばれる1種以上の金属で処理された金属処理層と、クロメート処理層並びにシランカップリング剤処理層とを有することは、ポリイミド層と銅箔の接着強度を高めるために有利である。そして、上記金属処理層が、亜鉛とニッケルを必須とする合金層であることは、より高い接着強度を与える。更に、銅箔の厚みが5〜20μmの範囲にあり、かつポリイミド層の厚みが5〜50μmの範囲にあると、COF用キャリアテープとしての使用性が向上する。   Here, the fact that the polyimide layer is a single layer facilitates the production of a copper-clad laminate for COF. The copper foil is a non-roughened electrolytic copper foil, and the surface of the copper foil on the polyimide lamination side is treated with one or more metals selected from the group consisting of molybdenum, cobalt, nickel, and zinc. And having a chromate treatment layer and a silane coupling agent treatment layer is advantageous in order to increase the adhesive strength between the polyimide layer and the copper foil. And that the said metal treatment layer is an alloy layer which essentially requires zinc and nickel gives higher adhesive strength. Furthermore, when the thickness of the copper foil is in the range of 5 to 20 μm and the thickness of the polyimide layer is in the range of 5 to 50 μm, the usability as a carrier tape for COF is improved.

以下、本発明を更に説明する。
COF用銅張積層板は、銅箔とポリイミド層とからなり、銅箔は片面側にあっても、両面側にあってもよい。
The present invention will be further described below.
The copper clad laminate for COF comprises a copper foil and a polyimide layer, and the copper foil may be on one side or both sides.

ポリイミド層が、単層又は複数層からなることができるが、単層であればその製造が容易である。複数層からなる場合は、銅箔との接着強度を高めるための薄いポリイミド層を接着面側に有し、高温で高弾性を示す厚いポリイミド層を表面側に有する構成が好ましい。この場合の厚み比は、1:2〜1:100の範囲がよい。そして、ポリイミド層は350℃、好ましくは400℃で非熱可塑的特性を示す。なお、ポリイミド層が複数層からなる場合は、いずれのポリイミド層も上記特性を示す。ここで、非熱可塑的特性とは、貯蔵弾性率が0.5GPa以上を示すものをいう。貯蔵弾性率が高過ぎると接着性の低下傾向が見られるので、上記条件で3.0GPa以下を示すものが望ましい。以下、本発明で使用する非熱可塑的特性を示すポリイミド(層)を、非熱可塑性ポリイミド(層)又は単にポリイミド(層)ともいう。   The polyimide layer can be composed of a single layer or a plurality of layers, but if it is a single layer, its production is easy. When it consists of multiple layers, the structure which has the thin polyimide layer for raising the adhesive strength with copper foil on the adhesive surface side, and has the thick polyimide layer which shows high elasticity at high temperature on the surface side is preferable. The thickness ratio in this case is preferably in the range of 1: 2 to 1: 100. The polyimide layer exhibits non-thermoplastic properties at 350 ° C., preferably 400 ° C. In addition, when a polyimide layer consists of multiple layers, all the polyimide layers show the said characteristic. Here, the non-thermoplastic characteristics mean those having a storage elastic modulus of 0.5 GPa or more. If the storage elastic modulus is too high, a tendency of lowering the adhesiveness is seen, so that the one showing 3.0 GPa or less under the above conditions is desirable. Hereinafter, the polyimide (layer) having non-thermoplastic properties used in the present invention is also referred to as non-thermoplastic polyimide (layer) or simply polyimide (layer).

本発明のCOF用銅張積層板は、銅箔上にポリイミド又はポリイミドの前駆体の溶液を塗布し、乾燥、硬化してポリイミド層を形成することにより製造される。両面に銅箔を有する積層板は、このポリイミド層の表面に銅箔(ポリイミド層を有してもよい)を熱圧着することにより製造される。   The copper clad laminate for COF of the present invention is produced by applying a polyimide or polyimide precursor solution onto a copper foil, drying and curing to form a polyimide layer. The laminated board which has copper foil on both surfaces is manufactured by thermocompression-bonding copper foil (it may have a polyimide layer) to the surface of this polyimide layer.

非熱可塑ポリイミド層を形成する非熱可塑ポリイミドは、特に制限はないが、特定のジアミンと特定のテトラカルボン酸二無水物から合成されるポリイミドが好ましく利用できる。かかるジアミンとして、o-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミン、4,4'-ジアミノフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、4,4'-ジアミノ-ビフェニル、4,4'-ジアミノ-2,2'-ジメチルビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル)プロパン、アルキル基やアルコキシ基等の置換基を有してもよい4,4'-ジアミノ-ベンズアニリド等が挙げられる。これらは、単独又は2種類以上使用してもよい。また、その他のジアミンと併用することもできるが、上記のジアミン成分の使用量は70モル%以上であることが好ましい。   The non-thermoplastic polyimide forming the non-thermoplastic polyimide layer is not particularly limited, but a polyimide synthesized from a specific diamine and a specific tetracarboxylic dianhydride can be preferably used. Such diamines include o-phenylenediamine, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminophenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diamino. -Biphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl) propane, may have a substituent such as an alkyl group or an alkoxy group Good 4,4′-diamino-benzanilide and the like can be mentioned. These may be used alone or in combination of two or more. Further, although it can be used in combination with other diamines, the amount of the diamine component used is preferably 70 mol% or more.

かかる特定のテトラカルボン酸二無水物として、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸等が挙げられる。これらは、単独又は二種類以上使用してもよい。また、その他のテトラカルボン酸二無水物と併用することもできるが、上記特定のテトラカルボン酸二無水物の使用量は70モル%以上であることが好ましい。   As such specific tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Etc. These may be used alone or in combination of two or more. Further, although it can be used in combination with other tetracarboxylic dianhydrides, the amount of the specific tetracarboxylic dianhydride used is preferably 70 mol% or more.

更に、非熱可塑ポリイミド層を形成する非熱可塑ポリイミドとして、市販の非熱可塑性ポリイミドフィルムの中間体であるポリイミド溶液又はその前駆体溶液が使用できる。例えば、宇部興産株式会社のユーピレックス(登録商標)S、SGA、SN、東レ・デュポン株式会社のカプトン(登録商標)H、V、EN、鐘淵化学工業株式会社のアピカル(登録商標)AH、NPI、HP等の中間体が挙げられる。   Furthermore, as the non-thermoplastic polyimide for forming the non-thermoplastic polyimide layer, a polyimide solution that is an intermediate of a commercially available non-thermoplastic polyimide film or a precursor solution thereof can be used. For example, Upilex (registered trademark) S, SGA, SN of Ube Industries, Ltd., Kapton (registered trademark) H, V, EN of Toray DuPont Co., Ltd., Apical (registered trademark) AH, NPI of Kaneka Corporation And intermediates such as HP.

ポリイミド層の厚みは、格別な制限はないが、2〜100μm、好ましくは5〜50μmが適する。   The thickness of the polyimide layer is not particularly limited, but 2 to 100 μm, preferably 5 to 50 μm is suitable.

本発明で使用する銅箔は、銅又は銅を90%以上含む銅合金からなり、その厚みには格別な制限はないが、3〜30μm、好ましくは5〜20μmが適する。銅箔は、電解銅箔であっても、圧延銅箔であってもよいが、電解銅箔が好ましく使用される。そして、この銅箔は粗化処理されていないものが適する。   The copper foil used in the present invention is made of copper or a copper alloy containing 90% or more of copper, and the thickness thereof is not particularly limited, but 3 to 30 μm, preferably 5 to 20 μm is suitable. The copper foil may be an electrolytic copper foil or a rolled copper foil, but an electrolytic copper foil is preferably used. And this copper foil is not subjected to roughening treatment.

銅箔の表面(ポリイミド層と接する面をいう)は、ポリイミド層との接着性を改善するため、表面処理することが好ましい。この表面処理は、銅箔の表面に金属処理層、クロメート処理層及びシランカップリング剤処理層を順次設けることにより行うことが好ましい。   The surface of the copper foil (referring to the surface in contact with the polyimide layer) is preferably subjected to a surface treatment in order to improve the adhesion with the polyimide layer. This surface treatment is preferably performed by sequentially providing a metal treatment layer, a chromate treatment layer and a silane coupling agent treatment layer on the surface of the copper foil.

金属処理層を設ける方法は、銅箔の表面にMo、Co、Ni及びZnから選ばれる少なくとも1種の金属、好ましくはZnとNiの両者を必須とする金属を付着させる。この付着量は、金属として1〜50μg/cm2、好ましくは5〜50μg/cm2程度である。ZnとNiの両者を必須とする場合は、Znを1〜5μg/cm2、Niを1〜15μg/cm2とし、Ni/(Ni+Zn)比を0.70以上とすることがよい。金属を付着させる方法としては、電気又は化学メッキ法、真空又は化学蒸着法等の公知の方法が使用できる。 In the method of providing the metal treatment layer, at least one metal selected from Mo, Co, Ni, and Zn, preferably a metal essentially containing both Zn and Ni, is attached to the surface of the copper foil. The coating weight, 1~50μg / cm 2 as a metal, preferably 5-50 [mu] g / cm 2 approximately. When both Zn and Ni are essential, Zn is preferably 1 to 5 μg / cm 2 , Ni is 1 to 15 μg / cm 2 , and the Ni / (Ni + Zn) ratio is preferably 0.70 or more. As a method for attaching the metal, a known method such as an electric or chemical plating method, a vacuum or a chemical vapor deposition method can be used.

クロメート処理層を設ける方法は、重クロム酸ナトリウム溶液に金属処理層を設けた銅箔を浸漬し、電流を流す陰極処理等の公知の方法が使用できる。シランカップリング剤処理層を設ける方法は、クロメート処理層設けた銅箔に、3-グリドキシプロピルトリメトキシシランなどのシランカップリング剤含有溶液をスプレー法等で塗布し、これを乾燥する等の公知の方法が使用できる。   As a method for providing the chromate treatment layer, a known method such as cathodic treatment in which a copper foil provided with a metal treatment layer is immersed in a sodium dichromate solution and an electric current is passed can be used. A method for providing a silane coupling agent treatment layer is, for example, applying a silane coupling agent-containing solution such as 3-gridoxypropyltrimethoxysilane to a copper foil provided with a chromate treatment layer by a spray method or the like, and drying the solution. Known methods can be used.

本発明で使用する銅箔表面(表面処理された場合は、表面処理後の表面をいう)は、粗度(Rz)が0.5〜1.5μmの範囲にある。表面粗度(Rz)がこの範囲より小さいと良好な接着強度を得られないなどの問題があり、大きいと微細配線の形成が困難となるなどの問題が生じやすい。   The surface of the copper foil used in the present invention (when surface-treated means the surface after the surface treatment) has a roughness (Rz) in the range of 0.5 to 1.5 μm. If the surface roughness (Rz) is smaller than this range, there is a problem that good adhesive strength cannot be obtained. If the surface roughness (Rz) is large, problems such as difficulty in forming fine wiring are likely to occur.

本発明のCOF用銅張積層板は、銅箔表面に非熱可塑性ポリイミド又は前駆体の溶液(以下、ワニスともいう)を塗布し、乾燥、硬化する方法で製造できる。ワニスを塗布する方法としては、ダイコーター、コンマコータ、ロールコータ、グラビアコータ、カーテンコーター、スプレーコーター等の公知の方法が採用できる。この場合、必要により多層に塗布することができる。塗布したワニスを乾燥、硬化する方法は、通常の加熱乾燥炉が利用できる。乾燥炉の雰囲気としては、空気、イナートガス(窒素、アルゴン)等が利用できる。乾燥、硬化の温度としては、60〜400℃程度の温度範囲が好適に利用される。硬化はポリイミド前駆体がポリイミドとなるまで行う。なお、銅箔厚みを薄くする必要がある場合は、エッチング処理等により銅箔の一部を一様な厚みで除去して、銅箔厚みを所定の厚みとする。   The copper clad laminate for COF of the present invention can be produced by a method of applying a non-thermoplastic polyimide or precursor solution (hereinafter also referred to as varnish) to the copper foil surface, and drying and curing. As a method for applying the varnish, known methods such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, and a spray coater can be employed. In this case, it can be applied in multiple layers if necessary. As a method for drying and curing the applied varnish, a normal heating and drying furnace can be used. As the atmosphere of the drying furnace, air, inert gas (nitrogen, argon) or the like can be used. As the drying and curing temperature, a temperature range of about 60 to 400 ° C. is preferably used. Curing is performed until the polyimide precursor becomes polyimide. In addition, when it is necessary to make copper foil thickness thin, a part of copper foil is removed by uniform thickness by an etching process etc., and copper foil thickness is made into predetermined thickness.

このようにして得られた本発明のCOF用銅張積層板は、銅-ポリイミド層間の接着強度が、常温、180°ピール強度として、0.6kN/m以上である必要がある。好ましいピール強度範囲は、0.8〜2.0kN/mの範囲である。このようなピール強度は、上記したようなポリイミドから適当なポリイミドを選択すかるか、銅箔又は銅箔の表面処理条件から適当な銅箔又は処理条件を選択することによって得ることができる。ここで、180°ピール強度は具体的には実施例に記載の条件によって測定される。   The copper-clad laminate for COF of the present invention thus obtained needs to have an adhesive strength between the copper-polyimide layers of 0.6 kN / m or more at room temperature and 180 ° peel strength. A preferred peel strength range is 0.8 to 2.0 kN / m. Such peel strength can be obtained by selecting an appropriate polyimide from the polyimides as described above, or by selecting an appropriate copper foil or processing conditions from the surface treatment conditions of the copper foil or copper foil. Here, the 180 ° peel strength is specifically measured under the conditions described in the examples.

COF用銅張積層板から、COF用フィルムキャリアテープを製造する方法は、公知の方法を適宜選択使用することができる。例えば、COF用銅張積層板を所定幅のフィルムに切断し、フィルムの両側にはスプロケットを設けたのち、銅箔面側に感光性樹脂層を設け、所定の回路が得られるようなマスクを通して露光し、次いで、エッチング処理して、未露光部分又は露光部分のいずれかを除去する。次に、残った樹脂層をレジストとして露出した銅箔をエッチング処理して回路パターンを形成し、その後レジストを除去することによりCOF用フィルムキャリアテープとするなどの方法がある。   As a method for producing a film carrier tape for COF from a copper clad laminate for COF, a known method can be appropriately selected and used. For example, cut a copper-clad laminate for COF into a film of a predetermined width, and after providing sprockets on both sides of the film, provide a photosensitive resin layer on the copper foil surface side, and pass through a mask that provides a predetermined circuit It is exposed and then etched to remove either unexposed or exposed portions. Next, there is a method of forming a circuit pattern by etching the exposed copper foil using the remaining resin layer as a resist, and then removing the resist to obtain a COF film carrier tape.

本発明によれば、ピンホールが無く、Au-Au接合あるいはAu-Sn接合によるチップ実装時でも配線ずれが少ないCOF用の銅張り積層板を提供できる。必要によっては、アンダーフィル充填が可能となるCOF用の銅張り積層板を提供できる。   According to the present invention, it is possible to provide a copper-clad laminate for COF that has no pinholes and has little wiring displacement even when chip-mounted by Au-Au bonding or Au-Sn bonding. If necessary, a copper clad laminate for COF that can be filled with underfill can be provided.

図1は、ICチップをCOF用フィルムキャリアテープに実装する例を示す概念図であり、ICチップ1の金メッキされたバンブ2が、COF用フィルムキャリアテープのポリイミド層3上に形成されている回路4(COF用銅張積層板の銅箔を回路加工して得られ、錫メッキ等がされていてもよい)に接合する状態を示す。この際、350〜400℃程度の高温で熱圧着されるため、圧着部のポリイミド層3厚みが当初厚みT1から、T2に沈み込むことになる。この厚みの差T1-T2を可及的に小さくすることが望まれている。   FIG. 1 is a conceptual diagram showing an example in which an IC chip is mounted on a COF film carrier tape. A circuit in which a gold-plated bump 2 of an IC chip 1 is formed on a polyimide layer 3 of a COF film carrier tape. 4 shows a state in which the copper foil of the copper clad laminate for COF is obtained by circuit processing and may be tin-plated. At this time, since the thermocompression bonding is performed at a high temperature of about 350 to 400 ° C., the thickness of the polyimide layer 3 in the crimping portion sinks from the initial thickness T1 to T2. It is desired to reduce this thickness difference T1-T2 as much as possible.

以下、本発明を実施例により更に詳細に説明する。
実施例に用いられる略語は、次の通りである。
PMDA:無水ピロメリット酸
BPDA:3,3',4,4'-ビフェニルテトラカルボン酸
m-TB:4,4'-ジアミノ-2,2'-ジメチルビフェニル
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
DAPE:4,4'-ジアミノジフェニルエーテル
MABA:4,4'-ジアミノ-2'-ジメトキシ-ベンズアニリド
DMAc:ジメチルアセトアミド
Hereinafter, the present invention will be described in more detail with reference to examples.
Abbreviations used in the examples are as follows.
PMDA: pyromellitic anhydride
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic acid
m-TB: 4,4'-Diamino-2,2'-dimethylbiphenyl
BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propane
DAPE: 4,4'-diaminodiphenyl ether
MABA: 4,4'-diamino-2'-dimethoxy-benzanilide
DMAc: Dimethylacetamide

合成例1
DMAc425gに、m-TB21.78g(102.63×10-3mol)及びDAPE13.70g(68.42×10-3mol)を1Lのセパラブルフラスコの中で撹拌しながら溶解させた。次に、PMDA29.55g(135.49×10-3mol)とBPDA9.96g(33.87×10-3mol)をこの溶液に少しずつ投入して、重合反応を行い、高粘度のポリイミド前駆体溶液Aを得た。
Synthesis example 1
The DMAc425g, the m-TB21.78g a (102.63 × 10 -3 mol) and DAPE13.70g (68.42 × 10 -3 mol) was dissolved with stirring in a separable flask 1L. Then on and PMDA29.55g (135.49 × 10 -3 mol) BPDA9.96g a (33.87 × 10 -3 mol) in portions to this solution, and the polymerization reaction, the polyimide precursor solution A high viscosity Obtained.

合成例2
DMAc110.5kgに、MABA6651.3g(25.85mol)およびDAPE3450.9g(17.23mol)を130Lのステンレス容器の中で撹拌しながら溶解させた。次に、PMDA9266.2g(42.48mol)をこの溶液に少しずつ投入して、重合反応を行い、高粘度のポリイミド前駆体溶液Bを得た。
Synthesis example 2
MABA6651.3g (25.85mol) and DAPE3450.9g (17.23mol) were dissolved in 110.5kg of DMAc with stirring in a 130L stainless steel container. Next, PMDA9266.2g (42.48mol) was added little by little to this solution, and a polymerization reaction was performed to obtain a highly viscous polyimide precursor solution B.

合成例3
DMAc17386gにBAPP1294.43g(3.153mol)を溶解させた後、この溶液に、PMDA708.49g(3.248mol)を投入して、重合反応を行い、高粘度のポリイミド前駆体溶液Cを得た。
Synthesis example 3
After dissolving BAPP1294.43 g (3.153 mol) in DMAc17386 g, PMDA708.49 g (3.248 mol) was added to this solution and a polymerization reaction was carried out to obtain a highly viscous polyimide precursor solution C.

各合成例で得られたポリイミド前駆体溶液を、耐熱ガラス板に、イミド転化後のフィルム厚みが40μmになるようにバーコートし、130℃で5min乾燥した。その後、真空恒温槽に投入して200℃で30min、300℃で30min、350℃で30min熱処理をして、ガラス板から引き剥がすことで、厚みが40μmのポリイミドフィルムを得た。得られたポリイミドフィルムの示差走査熱量計分析(DSC)及び熱機械分析(TMA)でTgを測定し、動的熱機械測定(Dynamic Mechanical Analysis)で粘弾性測定を行った。   The polyimide precursor solution obtained in each synthesis example was bar-coated on a heat-resistant glass plate so that the film thickness after imide conversion was 40 μm, and dried at 130 ° C. for 5 minutes. Then, it was put into a vacuum thermostat, subjected to heat treatment at 200 ° C. for 30 min, 300 ° C. for 30 min, and 350 ° C. for 30 min, and peeled off from the glass plate to obtain a polyimide film having a thickness of 40 μm. Tg was measured by differential scanning calorimetry analysis (DSC) and thermomechanical analysis (TMA) of the obtained polyimide film, and viscoelasticity measurement was performed by dynamic mechanical analysis (Dynamic Mechanical Analysis).

合成例1で得られたポリイミド前駆体溶液Aより得られるポリイミドAは、Tgは観察されず、350℃における貯蔵弾性率が1GPaの非熱可塑性ポリイミドであった。
合成例2で得られたポリイミド前駆体溶液Bより得られるポリイミドBは、Tgは観察されず、350℃における貯蔵弾性率が1GPaの非熱可塑性ポリイミドであった。
合成例3で得られたポリイミド前駆体溶液Cより得られるポリイミドCは、300℃から350℃の間にTgが観察され、350℃における貯蔵弾性率は0.1GPaの熱可塑性ポリイミドであった。
Polyimide A obtained from the polyimide precursor solution A obtained in Synthesis Example 1 was a non-thermoplastic polyimide having no Tg observed and a storage elastic modulus at 350 ° C. of 1 GPa.
Polyimide B obtained from the polyimide precursor solution B obtained in Synthesis Example 2 was a non-thermoplastic polyimide having no Tg observed and a storage elastic modulus at 350 ° C. of 1 GPa.
In the polyimide C obtained from the polyimide precursor solution C obtained in Synthesis Example 3, Tg was observed between 300 ° C. and 350 ° C., and the storage elastic modulus at 350 ° C. was a thermoplastic polyimide of 0.1 GPa.

処理例1
平均厚さ18μmの無粗化電解銅箔を準備し、その表面を30℃の希硫酸にて油成分と表面の酸化皮膜の除去を行った。更に、硫酸ニッケル、ピロリン酸亜鉛、ピロリン酸カリウムからなるめっき液を用い、銅箔面にニッケル−亜鉛合金層を電解させた。
Processing example 1
An unroughened electrolytic copper foil with an average thickness of 18 μm was prepared, and the oil component and the oxide film on the surface were removed with diluted sulfuric acid at 30 ° C. on the surface. Furthermore, a nickel-zinc alloy layer was electrolyzed on the copper foil surface using a plating solution composed of nickel sulfate, zinc pyrophosphate, and potassium pyrophosphate.

処理例2
平均厚さ18μmの無粗化電解銅箔を準備し、その表面を30℃の希硫酸にて油成分と表面の酸化皮膜の除去を行った。更に硫酸ニッケル、ピロリン酸亜鉛、ピロリン酸カリウム、硫酸コバルトからなるめっき液を用い、銅箔面にコバルト−ニッケル−亜鉛合金層を電解させた。
Processing example 2
An unroughened electrolytic copper foil with an average thickness of 18 μm was prepared, and the oil component and the oxide film on the surface were removed with diluted sulfuric acid at 30 ° C. on the surface. Furthermore, a cobalt-nickel-zinc alloy layer was electrolyzed on the copper foil surface using a plating solution composed of nickel sulfate, zinc pyrophosphate, potassium pyrophosphate, and cobalt sulfate.

処理例3
平均厚さ18μmの粗化電解銅箔を準備し、その表面を30℃の希硫酸にて油成分と表面の酸化皮膜の除去を行った。更に、硫酸ニッケル、ピロリン酸亜鉛、ピロリン酸カリウムからなるめっき液を用い、銅箔面にニッケル−亜鉛合金層を電解させた。
Processing example 3
A roughened electrolytic copper foil with an average thickness of 18 μm was prepared, and the oil component and the oxide film on the surface were removed from the surface with dilute sulfuric acid at 30 ° C. Furthermore, a nickel-zinc alloy layer was electrolyzed on the copper foil surface using a plating solution composed of nickel sulfate, zinc pyrophosphate, and potassium pyrophosphate.

処理例4
更に、処理例1〜3で得られた金属処理層を形成した銅箔を、水洗し、無水クロム酸ナトリウム二水和物2g/l、pH値4、浴温度30℃の電解溶液を用いて、電流密度1A/dm2で5秒間、電解クロメート処理層を形成した。
Processing example 4
Further, the copper foil formed with the metal treatment layer obtained in treatment examples 1 to 3 was washed with water and an electrolytic solution having an anhydrous sodium chromate dihydrate of 2 g / l, a pH value of 4 and a bath temperature of 30 ° C. was used. Then, an electrolytic chromate treatment layer was formed at a current density of 1 A / dm 2 for 5 seconds.

処理例5
処理例4で得られた3種類のクロメート処理した銅箔を、水洗し、シランカップリング剤であるγ-グリシドキシプロピルトリメトキシシラン0.1wt%水溶液に10秒間浸漬後、直ちに80℃で乾燥し、シランカップリング剤処理層を形成した。得られた表面処理銅箔は、処理例1〜3で得られた金属処理層を形成した3種類の銅箔から得られたものであるので、順番に表面処理銅箔1、2、3という。
Processing example 5
The three types of chromate-treated copper foils obtained in Treatment Example 4 were washed with water, immersed in a 0.1 wt% γ-glycidoxypropyltrimethoxysilane aqueous solution as a silane coupling agent, and then immediately dried at 80 ° C. Then, a silane coupling agent treatment layer was formed. Since the obtained surface-treated copper foil was obtained from three types of copper foils on which the metal-treated layers obtained in treatment examples 1 to 3 were formed, the surface-treated copper foils 1, 2, and 3 were sequentially named. .

表面処理銅箔1〜3について、その表面粗度RzをJIS B 0601-1994「表面粗さの定義と表示」の5.1 十点平均荒さの定義に基き、触針式表面粗度計KLAテンコール社製P-15にて、測定長0.8mm、測定速度20μm/秒、荷重2gにて測定した。その結果、表面処理銅箔1及び2のRzはいずれも0.8μmであり、表面処理銅箔3のRzは2.5μmであった。   For surface-treated copper foils 1 to 3, the surface roughness Rz is determined based on the definition of ten-point average roughness in JIS B 0601-1994 “Definition and display of surface roughness”. Measurement was performed with a P-15 manufactured by Tencor at a measurement length of 0.8 mm, a measurement speed of 20 μm / second, and a load of 2 g. As a result, the Rz of the surface-treated copper foils 1 and 2 was 0.8 μm, and the Rz of the surface-treated copper foil 3 was 2.5 μm.

実施例1
ポリイミド前駆体溶液Aを、表面処理銅箔1に、イミド転化後のフィルム厚みが40μmになるようにバーコートした。その後、130℃で5min乾燥した。その後、これを真空恒温槽に投入して200℃で30min、300℃で30min、350℃で30min熱処理をして、ポリイミド層の厚みが40μmの銅張積層板を得た。この銅張積層板の銅箔表面を光学顕微鏡にて観察し、5μm以上のピンホール及びピンホールに起因する表面の凹みを計測した。その結果、ピンホール及び窪みの個数(ピンホール等の数という)は0個/cm2であった。
この銅張積層板を硫酸濃度5.0g/l、過酸化水素50g/l、銅濃度20g/lのエッチング液にて、全面を均一に1分間シャワーリングし、導体厚さ8.0μm、ポリイミド層の厚みが40μmのCOF用の銅張積層板を得た。
Example 1
The polyimide precursor solution A was bar-coated on the surface-treated copper foil 1 so that the film thickness after imide conversion was 40 μm. Thereafter, it was dried at 130 ° C. for 5 minutes. Thereafter, this was put into a vacuum thermostat and subjected to heat treatment at 200 ° C. for 30 min, 300 ° C. for 30 min, and 350 ° C. for 30 min to obtain a copper clad laminate having a polyimide layer thickness of 40 μm. The copper foil surface of this copper clad laminate was observed with an optical microscope, and pinholes of 5 μm or more and surface depressions due to the pinholes were measured. As a result, the number of pinholes and depressions (referred to as the number of pinholes, etc.) was 0 / cm 2 .
This copper clad laminate was uniformly showered for 1 minute with an etching solution of sulfuric acid concentration 5.0g / l, hydrogen peroxide 50g / l, copper concentration 20g / l, conductor thickness 8.0μm, polyimide layer A copper clad laminate for COF having a thickness of 40 μm was obtained.

このCOF用の銅張積層板の銅箔を1mm幅の回路に加工し、ポリイミドからの180°引き
剥がし強さを測定したところ、1.0kN/mであった。更に、この回路を熱風オーブン中150℃、168時間処理した後でも、0.5kN/mであり、実用可能であることが確認された。
The copper foil of the copper clad laminate for COF was processed into a 1 mm wide circuit, and the 180 ° peel strength from the polyimide was measured. As a result, it was 1.0 kN / m. Furthermore, even after this circuit was processed in a hot air oven at 150 ° C. for 168 hours, it was 0.5 kN / m, confirming that it was practical.

実施例2〜3及び比較例1〜4
表面処理銅箔の種類及びポリイミド前駆体溶液の種類を表1に示すものとした他は、実施例1と同様にしてCOF用の銅張積層板を得た。得られたCOF用の銅張積層板について、実施例1と同様な評価をした結果を表1に示す。なお、表1において、銅箔の種類は表面処理銅箔の種類を、ポリイミドの種類は、ポリイミド前駆体溶液の種類を示す。ピール強度の前は加熱処理前のピール強度を示し、後は150℃、168時間加熱処理後のピール強度を示す。また、微細加工性は50μmピッチ加工の精度を示す。変形量は後記する方法で試験した量を示す。
Examples 2-3 and Comparative Examples 1-4
A copper clad laminate for COF was obtained in the same manner as in Example 1 except that the type of surface-treated copper foil and the type of polyimide precursor solution were as shown in Table 1. Table 1 shows the results of the same evaluation as in Example 1 for the obtained copper clad laminate for COF. In Table 1, the type of copper foil indicates the type of surface-treated copper foil, and the type of polyimide indicates the type of polyimide precursor solution. The peel strength before the heat treatment is shown before the peel strength, and the peel strength after the heat treatment at 150 ° C. for 168 hours is shown thereafter. In addition, the fine workability indicates the accuracy of 50 μm pitch processing. The amount of deformation indicates the amount tested by the method described later.

比較例5
市販のスパッタめっき法による無接着剤銅張積層板について、上記と同様な評価をした結果を表1に示す。なお、この無接着剤銅張積層板のポリイミド層を水33.5g、水酸化カリウム33.5g、エチレンジアミン11g、エチレングリコール22gからなる70℃の水溶液に3時間浸漬し、導体層を得て、ポリイミドとの界面となっていた導体層表面の粗度Rzを測定したところ、0.8μmであった。
Comparative Example 5
Table 1 shows the results of evaluation similar to the above for a non-adhesive copper-clad laminate by a commercially available sputter plating method. The polyimide layer of this non-adhesive copper-clad laminate was immersed in a 70 ° C. aqueous solution consisting of 33.5 g of water, 33.5 g of potassium hydroxide, 11 g of ethylenediamine, and 22 g of ethylene glycol for 3 hours to obtain a conductor layer. The roughness Rz of the surface of the conductor layer that was the interface of was measured and found to be 0.8 μm.

Figure 2006130747
Figure 2006130747

実施例4
実施例1〜3で得た3種類の銅張積層板について、35mm幅にスリットした後にパンチングによりスプロケットホールを形成した。次に、フォトリソグラフィー法を用いて、ネガ型フォトレジストを塗布乾燥し、銅箔上にフォトレジスト層を形成し、50μmピッチのCOF用フォトマスクを介して露光、現像を行い、フォトレジスト層をパターニングした。続いて、フォトレジスト層パターンをマスクとして、銅箔層を塩化第二鉄水溶液にて溶解除去し、銅箔のパターンを形成した。更に、フォトレジスト層は塩基性の水溶液で除去した。得られた導体層パターンを観察したところ、短絡、断線、剥がれ等のない良好なフィルムキャリアテープが得られた。得られた回路を硫酸水溶液にて酸洗した後、シプレイ社製Tinposit LT-34にて錫メッキを施し、錫めっき済みフィルムキャリアテープを得た。
Example 4
The three types of copper-clad laminates obtained in Examples 1 to 3 were slit into 35 mm widths, and then sprocket holes were formed by punching. Next, using a photolithography method, a negative photoresist is applied and dried, a photoresist layer is formed on the copper foil, exposed and developed through a 50 μm pitch COF photomask, and the photoresist layer is formed. Patterned. Subsequently, using the photoresist layer pattern as a mask, the copper foil layer was dissolved and removed with an aqueous ferric chloride solution to form a copper foil pattern. Further, the photoresist layer was removed with a basic aqueous solution. When the obtained conductor layer pattern was observed, a good film carrier tape free from short circuit, disconnection, peeling or the like was obtained. The obtained circuit was pickled with an aqueous sulfuric acid solution and then tin-plated with Tinposit LT-34 manufactured by Shipley Co., thereby obtaining a tin-plated film carrier tape.

その後、フィルムキャリアテープのインナーリード部へ金バンプを有するICを実装した。実装は、フリップチップボンダー「TFC-2100」芝浦メカトロニクス(株)製を使用し、ボンディングヘッドツール温度は400℃、ステージ温度は100℃、接合圧力は1バンプ当たりの荷重が20gfになるように行った。   Thereafter, an IC having gold bumps was mounted on the inner lead portion of the film carrier tape. Mounting is done using flip chip bonder "TFC-2100" manufactured by Shibaura Mechatronics Co., Ltd., bonding head tool temperature is 400 ° C, stage temperature is 100 ° C, and bonding pressure is 20gf per bump. It was.

次にICを実装したCOFフィルムキャリアテープの断面を観察して、図1に示すT1(フィルム厚み)−T2(実装部フィルム厚み)=T3(実装による樹脂変形量)として、測定した。本実施例では、いずれも変形量T3は1μmであり、インナーリードとバンプの接続状態は良好であった。   Next, the cross section of the COF film carrier tape on which the IC was mounted was observed and measured as T1 (film thickness) −T2 (mounting part film thickness) = T3 (resin deformation amount due to mounting) shown in FIG. In this example, the deformation amount T3 was 1 μm, and the connection between the inner lead and the bump was good.

ICチップをCOF用フィルムキャリアテープに実装する例を示す概念図Conceptual diagram showing an example of mounting an IC chip on a film carrier tape for COF

符号の説明Explanation of symbols

1:ICチップ1、2:バンブ、3:ポリイミド層、4:回路

1: IC chip 1, 2: Bamboo, 3: Polyimide layer, 4: Circuit

Claims (6)

銅箔上にポリイミド層が設けられた銅張積層板であって、ポリイミド層は銅箔上に溶液状態で塗布、乾燥及び硬化して得られたものであり、350℃で非熱可塑的特性を示し、また、銅箔のポリイミド積層面の表面粗度(Rz)が0.5〜1.5μmの範囲にあり、銅−ポリイミド間の常温における180°ピール強度が0.6kN/m以上であることを特徴とするCOF用銅張積層板。   A copper-clad laminate with a polyimide layer provided on a copper foil, the polyimide layer being obtained by applying, drying and curing in a solution state on a copper foil, and non-thermoplastic properties at 350 ° C In addition, the surface roughness (Rz) of the polyimide laminate surface of the copper foil is in the range of 0.5 to 1.5 μm, and the 180 ° peel strength between copper and polyimide at normal temperature is 0.6 kN / m or more. A copper clad laminate for COF. ポリイミド層が単層である請求項1記載のCOF用銅張積層板。   The copper clad laminate for COF according to claim 1, wherein the polyimide layer is a single layer. 銅箔が無粗化電解銅箔であって、銅箔のポリイミド積層側の面が、モリブデン、コバルト、ニッケル及び亜鉛からなる群れから選ばれる1種以上の金属で処理された金属処理層と、クロメート処理層並びにシランカップリング剤処理層とを有する請求項1又は2記載のCOF用銅張積層板。   The copper foil is a non-roughened electrolytic copper foil, and the surface of the copper foil on the polyimide laminate side is treated with one or more metals selected from the group consisting of molybdenum, cobalt, nickel, and zinc; and The copper clad laminate for COF according to claim 1 or 2, further comprising a chromate treatment layer and a silane coupling agent treatment layer. 金属処理層が、亜鉛とニッケルを必須とする合金層である請求項3記載のCOF用銅張積層板。   The copper-clad laminate for COF according to claim 3, wherein the metal treatment layer is an alloy layer in which zinc and nickel are essential. 銅箔の厚みが5〜20μmの範囲にあり、かつポリイミド層の厚みが5〜50μmの範囲にある請求項1〜4いずれか記載のCOF用銅張積層板。   The copper clad laminate for COF according to any one of claims 1 to 4, wherein the thickness of the copper foil is in the range of 5 to 20 µm and the thickness of the polyimide layer is in the range of 5 to 50 µm. 請求項1〜5いずれか記載のCOF用銅張積層板を加工して得られるCOF用キャリアテープ。

A carrier tape for COF obtained by processing the copper clad laminate for COF according to claim 1.

JP2004320938A 2004-11-04 2004-11-04 Copper-clad laminate for COF and carrier tape for COF Expired - Fee Related JP4564336B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004320938A JP4564336B2 (en) 2004-11-04 2004-11-04 Copper-clad laminate for COF and carrier tape for COF
KR1020050105539A KR20060052481A (en) 2004-11-04 2005-11-04 Copper-clad laminate for cof and carrier tape for cof
CN 200510117590 CN1770439A (en) 2004-11-04 2005-11-04 Cof-use copper-clad laminate and cof- use carry band
TW94138701A TWI387017B (en) 2004-11-04 2005-11-04 Copper clad laminate for cof and carrier tape for cof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320938A JP4564336B2 (en) 2004-11-04 2004-11-04 Copper-clad laminate for COF and carrier tape for COF

Publications (2)

Publication Number Publication Date
JP2006130747A true JP2006130747A (en) 2006-05-25
JP4564336B2 JP4564336B2 (en) 2010-10-20

Family

ID=36724715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320938A Expired - Fee Related JP4564336B2 (en) 2004-11-04 2004-11-04 Copper-clad laminate for COF and carrier tape for COF

Country Status (4)

Country Link
JP (1) JP4564336B2 (en)
KR (1) KR20060052481A (en)
CN (1) CN1770439A (en)
TW (1) TWI387017B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132757A (en) * 2006-10-27 2008-06-12 Mitsui Mining & Smelting Co Ltd Surface treated copper foil for manufacturing flexible copper clad laminate, and flexible copper clad laminate obtained by using surface treated copper foil
JP2009226874A (en) * 2008-03-25 2009-10-08 Nippon Steel Chem Co Ltd Flexible copper clad laminate
KR20150143407A (en) 2013-04-16 2015-12-23 도요보 가부시키가이샤 Metal foil laminate
JP2019065266A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate, and circuit board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040873A1 (en) * 2006-11-29 2010-02-18 Nippon Mining & Metals Co., Ltd. Two-Layered Copper-Clad Laminate
CN101570679B (en) * 2008-05-03 2012-10-10 新高电子材料(中山)有限公司 Filling-free polyimide bonding agent applicable to once coating
US8512873B2 (en) * 2008-07-22 2013-08-20 Furukawa Electric Co., Ltd. Surface treated copper foil and copper clad laminate
JP5524475B2 (en) * 2008-11-28 2014-06-18 株式会社有沢製作所 Two-layer double-sided flexible metal laminate and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299359A (en) * 1999-04-16 2000-10-24 Kanegafuchi Chem Ind Co Ltd Tape for tab
JP2003041334A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003251741A (en) * 2001-12-10 2003-09-09 Mitsui Chemicals Inc Polyimide metal laminated sheet and manufacturing method thereof
JP2004025778A (en) * 2002-06-28 2004-01-29 Arakawa Chem Ind Co Ltd Metallic-foil laminated body and double-faced metallic-foil laminated body
JP2004083885A (en) * 2002-07-01 2004-03-18 Du Pont Toray Co Ltd Polyamic acid mixture, polyimide, polyimide film and use of the same
JP2004244656A (en) * 2003-02-12 2004-09-02 Furukawa Techno Research Kk Copper foil which can deal with high-frequency application and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477460B2 (en) * 2001-07-11 2003-12-10 三井金属鉱業株式会社 Laminated film for COF and COF film carrier tape
JP4090467B2 (en) * 2002-05-13 2008-05-28 三井金属鉱業株式会社 Flexible printed circuit board for chip-on-film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299359A (en) * 1999-04-16 2000-10-24 Kanegafuchi Chem Ind Co Ltd Tape for tab
JP2003041334A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003251741A (en) * 2001-12-10 2003-09-09 Mitsui Chemicals Inc Polyimide metal laminated sheet and manufacturing method thereof
JP2004025778A (en) * 2002-06-28 2004-01-29 Arakawa Chem Ind Co Ltd Metallic-foil laminated body and double-faced metallic-foil laminated body
JP2004083885A (en) * 2002-07-01 2004-03-18 Du Pont Toray Co Ltd Polyamic acid mixture, polyimide, polyimide film and use of the same
JP2004244656A (en) * 2003-02-12 2004-09-02 Furukawa Techno Research Kk Copper foil which can deal with high-frequency application and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132757A (en) * 2006-10-27 2008-06-12 Mitsui Mining & Smelting Co Ltd Surface treated copper foil for manufacturing flexible copper clad laminate, and flexible copper clad laminate obtained by using surface treated copper foil
JP2009226874A (en) * 2008-03-25 2009-10-08 Nippon Steel Chem Co Ltd Flexible copper clad laminate
KR20150143407A (en) 2013-04-16 2015-12-23 도요보 가부시키가이샤 Metal foil laminate
JP2019065266A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate, and circuit board
JP7212480B2 (en) 2017-09-29 2023-01-25 日鉄ケミカル&マテリアル株式会社 Polyimide films, metal-clad laminates and circuit boards

Also Published As

Publication number Publication date
CN1770439A (en) 2006-05-10
TWI387017B (en) 2013-02-21
KR20060052481A (en) 2006-05-19
TW200618145A (en) 2006-06-01
JP4564336B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
JP4736703B2 (en) Method for producing copper wiring polyimide film
KR101078234B1 (en) Copper-clad laminate
JP4221290B2 (en) Resin composition
JP4804806B2 (en) Copper-clad laminate and manufacturing method thereof
TWI387017B (en) Copper clad laminate for cof and carrier tape for cof
JP5886027B2 (en) Double-sided metal-clad laminate and method for producing the same
JPWO2009054456A1 (en) Method for manufacturing printed wiring board
JP4907580B2 (en) Flexible copper clad laminate
JP4642479B2 (en) COF laminate and COF film carrier tape
JP5256747B2 (en) Manufacturing method of copper wiring insulating film by semi-additive method, and copper wiring insulating film manufactured therefrom
JP5064035B2 (en) Manufacturing method of laminate for COF substrate
JP5000310B2 (en) COF laminate, COF film carrier tape, and electronic device
KR20080054442A (en) Process for producing metal wiring board
TW584596B (en) Method for manufacturing a polyimide and metal compound sheet
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP4921420B2 (en) Metal-clad laminate and manufacturing method thereof
TWI397136B (en) Laminate for cof and cof film carrier tape,and electronic device
JP4828439B2 (en) Method for producing flexible laminate
JP2007009186A (en) Polyimide film, polyimide metal laminate, and method for producing the same
JP2005271449A (en) Laminate for flexible printed circuit board
JP4911296B2 (en) Manufacturing method of metal wiring heat-resistant resin substrate
JP4328138B2 (en) Polyimide metal laminate
JP5073801B2 (en) Method for producing copper-clad laminate
JP2005197532A (en) Multilayered circuit board, manufacturing method thereof, and circuit base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160806

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees