JP2006130536A - Metal plate working method - Google Patents

Metal plate working method Download PDF

Info

Publication number
JP2006130536A
JP2006130536A JP2004323070A JP2004323070A JP2006130536A JP 2006130536 A JP2006130536 A JP 2006130536A JP 2004323070 A JP2004323070 A JP 2004323070A JP 2004323070 A JP2004323070 A JP 2004323070A JP 2006130536 A JP2006130536 A JP 2006130536A
Authority
JP
Japan
Prior art keywords
mold
forging
processing
metal plate
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004323070A
Other languages
Japanese (ja)
Inventor
Tadanobu Inoue
忠信 井上
Shiro Toritsuka
史郎 鳥塚
Hisashi Nagai
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004323070A priority Critical patent/JP2006130536A/en
Priority to PCT/JP2005/020781 priority patent/WO2006049348A1/en
Publication of JP2006130536A publication Critical patent/JP2006130536A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J7/00Hammers; Forging machines with hammers or die jaws acting by impact
    • B21J7/02Special design or construction
    • B21J7/18Forging machines working with die jaws, e.g. pivoted, movable laterally of the forging or pressing direction, e.g. for swaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal plate working method capable of manufacturing an ultrafine grain thick plate by inducing a large amount of strain in the entire area of a material while ensuring a plate thickness by using a metallic mold used in general forging. <P>SOLUTION: In the method for manufacturing the metal plate by successively forging a workpiece from each of two directions orthogonal to the longitudinal direction of the workpiece in a temperature range of ≤1/2 of the melting point of the metal of the workpiece, the workpiece is forged from one direction while the work or a die is moved with the feed of the workpiece or the die is set to be ≤1/2 of the width (W) of the die in a first step, and the workpiece is forged from the direction other than that in the first step while an end of the die is set to the position in a range between a top of a ridge expanded in the first step and the point at 1/2 of the distance (T) between ridges, and the workpiece is moved in the second step. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、超微細粒組織を有する厚板の製造を可能とする金属板材の加工方法に関するものである。   The present invention relates to a method for processing a metal plate that enables the manufacture of a thick plate having an ultrafine grain structure.

従来より材料内に大ひずみを導入することによって、組織が超微細になることが報告されている。例えば、温間加工溝ロール圧延(非特許文献1)、繰り返し重ね接合圧延による方法(非特許文献2)、温間多方向圧延による方法(非特許文献3)などである。これらの報告では、組織微細化技術の一方策として、材料全域に如何にして大ひずみを導入するかが問題とされている。   It has been reported that the structure becomes ultrafine by introducing a large strain into the material. For example, there are warm work groove roll rolling (Non-Patent Document 1), a method by repeated lap joint rolling (Non-Patent Document 2), a method by warm multi-directional rolling (Non-Patent Document 3), and the like. In these reports, as one measure of the structure refinement technique, it is a problem how to introduce a large strain throughout the material.

しかしながら、上記のようなこれまでの検討では材料の加工に圧延が用いられているため、ロール反力や噛み込み量の問題、さらには板厚中央へのひずみの導入が困難なことで、18mm以下の厚さの超微細粒板に限られていた。   However, in the above studies, since rolling is used for processing the material, problems of roll reaction force and biting amount, and further, it is difficult to introduce strain at the center of the plate thickness. It was limited to the ultrafine grain plate of the following thickness.

一方、このような状況において、板厚を確保しつつ材料内に大ひずみを導入することができる加工方法として、多方向加工(非特許文献4)が提案されている。そして、この加工法を実機に展開させることにより実製造ラインで板厚を確保し、大ひずみを材料全域に導入できる手法として、「鍛造・圧延ラインにより大ひずみ導入する金属加工方法」が本出願人により特許出願されている(特許文献1)。しかし、圧延と違い、鍛造の場合は板が長くなるにつれ、金型と材料の接触面積が大きくなり、加工の際のプレス反力がプレス能力を超えてしまう。また、厚板の長さは通常6〜16mもあり、この長さに相当する金型は存在し得ない。そこで、長さがあっても既存の金型で鍛造を行い、圧延を含めて超微細結晶粒を有する厚板を創製することが課題となっていた。
CAMP−ISIJ−Vol.12(1999),p385) CAMP−ISIJ−Vol.11(1998),p560) 鉄と鋼、Vol.89(2003),pp.765) 鉄と鋼、Vol.86(2000),pp.793,801) 特開2002−192201号公報
On the other hand, multi-directional processing (Non-Patent Document 4) has been proposed as a processing method capable of introducing a large strain in a material while securing a plate thickness in such a situation. And, by applying this processing method to an actual machine, the thickness of the actual production line can be secured, and as a method that can introduce large strains throughout the material, “Metal processing method that introduces large strains through forging and rolling lines” is filed in this application. Patent applications have been filed by humans (Patent Document 1). However, unlike rolling, in the case of forging, as the plate becomes longer, the contact area between the mold and the material increases, and the pressing reaction force during processing exceeds the pressing capability. Further, the length of the thick plate is usually 6 to 16 m, and a mold corresponding to this length cannot exist. Thus, it has been a problem to create a thick plate having ultrafine crystal grains including forging by forging with an existing mold even if the length is long.
(CAMP-ISIJ-Vol.12 (1999), p385) (CAMP-ISIJ-Vol.11 (1998), p560) Iron and steel, Vol.89 (2003), pp.765) Iron and steel, Vol.86 (2000), pp.793,801) JP 2002-192201 A

本発明は、以上のような背景から、従来の問題点を解消し、一般的な鍛造で用いられている金型を用いることによって、板厚を確保しつつ材料全域に大ひずみを導入させ、超微細粒厚板を創製することができる新しい方法を提供することを課題としている。   From the background as described above, the present invention eliminates the conventional problems and introduces large strains throughout the material while securing the plate thickness by using a mold used in general forging. It is an object of the present invention to provide a new method capable of creating an ultrafine grain plank.

本願発明は上記の課題を解決するものとして、以下の方法であることを特徴としている。   The present invention is characterized by the following method for solving the above-mentioned problems.

第1:被成形体の長さ方向に直角な2方向の各々から順次に鍛造して圧縮した金属板材を形成する方法であって、第1工程では、被成形体もしくは金型の送り量を金型の幅(W)の1/2以下として移動させつつ1方向より鍛造し、第2工程では、第1工程で張り出された山部の頂点と山間距離(T)の1/2の範囲内の位置に金型の端部を合わせて被成形体を移動させつつ第1工程とは別の方向より鍛造を行うことを特徴とする金属板材の加工方法。   First: A method of forming a metal plate material that is forged and compressed sequentially from each of two directions perpendicular to the length direction of the molded body, and in the first step, the feed amount of the molded body or mold is set Forging from one direction while moving it to be less than or equal to ½ of the width (W) of the mold, and in the second step, the peak of the peak protruding in the first step and half the distance (T) between the peaks A method for processing a metal plate material, wherein forging is performed from a direction different from the first step while moving a molding object while aligning an end of a mold at a position within a range.

第2:被成形体金属の融点の1/2以下の温度域において鍛造することを特徴とする金属板材の加工方法。   Second: A method for processing a metal plate material, comprising forging in a temperature range of ½ or less of the melting point of the metal to be formed.

第3:さらに90°異なる第1工程と同じ方向から、被成形体を、金型の幅(W)の1
/2以下として、山間距離(T)の1/2の範囲の位置に合わせて、移動させつつ鍛造することを特徴とする金属板材の加工方法。
Third: Further, from the same direction as the first step, which is different by 90 °, the object to be molded is 1 of the width (W) of the mold.
/ 2 or less, forging while moving according to the position in the range of 1/2 of the mountain distance (T), a method for processing a metal plate material.

第4:第1工程および第2工程の組合わせを複数回繰り返すことを特徴とする金属板材の加工方法。   Fourth: A method for processing a metal plate material, wherein the combination of the first step and the second step is repeated a plurality of times.

第5:結晶粒径(平均)1μm以下で、板厚18mm以上の金属板材を形成することを特徴とする以上いずれかの金属板材の加工方法。   Fifth: A metal plate material processing method according to any one of the above, wherein a metal plate material having a crystal grain size (average) of 1 μm or less and a plate thickness of 18 mm or more is formed.

第6:鋼板材を形成することを特徴とする以上いずれかの金属板材の加工方法。   Sixth: The method for processing any one of the metal plate materials as described above, wherein the steel plate material is formed.

第7:工程間あるいは鍛造後に圧延を行う工程を含むことを特徴とする金属板材の加工方法。   7th: The processing method of the metal plate material characterized by including the process of rolling between processes or after forging.

以上のとおりの本願発明においては、特有の条件に制御された鍛造という手段を採用していることが本質的な特徴である。   In the present invention as described above, it is an essential feature that a means of forging controlled under specific conditions is employed.

従来、自由鍛造においては互いに異なる方向から鍛造することが普通に行われているが、金型の端部の位置等は全く考慮されていない。これは鍛造の目的が材質の精密な制御ではないことによる。被成形体の形状を整える場合の圧縮率も非常に小さい。   Conventionally, forging is usually performed from different directions in free forging, but the position of the end of the mold is not considered at all. This is because the purpose of forging is not precise control of the material. The compression rate when adjusting the shape of the molding is also very small.

そして従来の自由鍛造では、通常、再結晶温度以上(多くは1200℃から開始)で行われている。これは、鍛造の目的が、鍛練(溶解時に生じる鋼塊中心部の偏析の破壊、その偏析によって生じる引け巣と言われる小さな穴(ポロシティ)の圧着)、そして成形であることによる。まずは、1200℃という高温でポロシティの圧着、偏析破壊を目的に鍛造し、その後最低でも900℃以上で圧延できるようなサイズや製品に近い形状に整える。組織微細化のような材質制御は、圧延を通じてあるいは熱処理等の調質処理で行うことが一般の常識である。   And in the conventional free forging, it is normally performed above the recrystallization temperature (many starts at 1200 ° C.). This is because the purpose of forging is forging (breakage of segregation at the center of a steel ingot generated during melting, pressure bonding of a small hole (porosity) called a shrinkage cavity caused by the segregation), and molding. First, it is forged for the purpose of pressure bonding and segregation fracture at a high temperature of 1200 ° C., and then adjusted to a size and shape close to a product that can be rolled at a minimum of 900 ° C. or higher. It is common general knowledge that material control such as microstructure refinement is performed through rolling or tempering treatment such as heat treatment.

このような従来の技術やその常識からすれば、本願発明のように自由鍛造で材質と形状を特有の条件のもとに一緒に制御するとのことは新しい着想であり、画期的なものである。   Based on such conventional technology and common sense, it is a new idea that the material and shape are controlled together under specific conditions by free forging as in the present invention, which is a revolutionary one. is there.

従来のように90度異なる方向から加工をするだけでは、後述の比較例で示したように組織不均一な領域が生じ、また、加工を90度異なる方向から何度も繰り返せば大ひずみが導入できるものの、長手方向に延びてしまい、幅が無くなり、最終形状は棒のようになってしまう。厚板創製のためには、本願発明のように、加工方向を90度変え、山部と金型端部の関係を特有のものとすることが必要である。効率よく均一な組織を創製する手段として、このような本願発明の考えは従来の技術からは想到できない。   If processing is performed from 90 degrees different from the conventional direction, a non-uniform region is generated as shown in the comparative example described later, and large strain is introduced if processing is repeated many times from 90 degrees. Although it can, it will extend in the longitudinal direction, lose its width, and the final shape will be like a stick. In order to create a thick plate, as in the present invention, it is necessary to change the processing direction by 90 degrees and to make the relationship between the peak and the mold end unique. As a means for efficiently creating a uniform tissue, the idea of the present invention cannot be conceived from the prior art.

上記のとおりの第1から第6の、本願発明によれば、これまで公知の技術からは全く予期できない特有の条件に制御された鍛造という手段のみによって超微細組織鋼の厚板の製造が容易とされる。そして、大がかりな設備導入は必要ではなく、例えば大型プレス機を所有する工場で本発明方法を適用することで、超微細組織鋼の厚板を製造することができる。   According to the first to sixth aspects of the present invention as described above, it is easy to produce a thick plate of ultra-fine textured steel only by means of forging controlled to a specific condition that has never been expected from the known techniques. It is said. In addition, it is not necessary to introduce large-scale equipment. For example, by applying the method of the present invention in a factory that owns a large press, a super-fine steel plate can be manufactured.

また、第7の発明によれば、以上の効果とともに、出荷製品の形状の制御が容易になるという効果が得られる。   Further, according to the seventh aspect, in addition to the above effects, an effect that the shape of the shipped product can be easily controlled is obtained.

本願発明は、上記のとおりの特徴を有するものであるが、以下にその実施の形態について説明する。本願発明の方法においては、添付した図面に沿ってその一実施形態について説明すると、まず第1工程では、図1に示したように、被成形体の長さ方向に直角な方向(y方向)を幅w1の金型によって鍛造加工を行い、次に被成形体を所定の量x1mm送り(金型を移動させてもよい)、再び鍛造加工を行い、この移動と鍛造を複数回繰り返す。このとき、鍛造加工された材料は図2(a)に示したような山と谷が一定の周期性を持って張り出された形状になる。次に第2工程では、図2に示したように、第1工程の方向と90°異なる方向(z方向)から幅w2の金型の端部がy方向の加工で張り出された山の
頂点近傍に位置づけて、頂点と山間距離(T)の1/2の範囲内で圧縮加工を行い、その後、被成形体を次の山の頂点近傍まで送り、再び鍛造加工を行い、これを複数回繰り返す。これにより所定の板厚まで加工する。上記の第1工程および第2工程の組合わせを所定の板厚にするまで繰り返してもよい。また、工程の途中で圧延を含めてもよい。z方向から加工する際に、金型の端部を山部の頂点近傍に接触させるのは、材料全域に大ひずみを導入するためである。y方向の圧縮加工では、導入されるひずみは大きい領域と小さい領域に分かれる。このため、次の工程で行われるz方向からの鍛造加工では、ひずみが小さい領域に大ひずみを導入する。つまり、y方向と90°異なる方向から加工する際に、上記のとおり、金型の端部を山部の頂点近傍の位置に合わせてから鍛造加工する。
The present invention has the characteristics as described above, and an embodiment thereof will be described below. In the method of the present invention, one embodiment thereof will be described with reference to the accompanying drawings. First, in the first step, as shown in FIG. 1, a direction perpendicular to the length direction of the molded body (y direction). Is forged with a mold having a width of w 1 , and then the workpiece is fed by a predetermined amount x 1 mm (the mold may be moved), then forged again, and this movement and forging are performed several times. repeat. At this time, the forged material has a shape in which peaks and valleys are projected with a certain periodicity as shown in FIG. Next, in the second step, as shown in FIG. 2, the end of the mold having a width w 2 bulged by processing in the y direction from a direction (z direction) that is 90 ° different from the direction of the first step. Is positioned in the vicinity of the apex, and is compressed within a range of 1/2 of the apex-to-mountain distance (T), and then the molded body is sent to the vicinity of the apex of the next peak, and forging is performed again. Repeat several times. Thus, processing is performed up to a predetermined plate thickness. The combination of the first step and the second step may be repeated until a predetermined plate thickness is obtained. Moreover, you may include rolling in the middle of a process. The reason for bringing the end of the mold into contact with the vicinity of the apex of the peak when machining from the z direction is to introduce a large strain throughout the material. In compression processing in the y direction, the strain introduced is divided into a large region and a small region. For this reason, in the forging process from the z direction performed in the next step, a large strain is introduced into a region where the strain is small. That is, when machining from a direction different from the y direction by 90 °, as described above, the forging is performed after matching the end of the mold with the position near the apex of the peak.

第1工程における1パス毎のx方向への送り量は、図1に示した金型の端部Rや角度φ、さらには圧縮率に依存するが、これらあらゆる組み合わせにおいても鍛造後の被成形体の表面端部(図1(b)のB点)から金型の幅w1の1/2以下であることが望ましい。
それより大きいと、ひずみの小さい領域が広がり、2工程目で鍛造しても大ひずみを被成形体全体に導入することが難しくなる。
The feed amount in the x direction for each pass in the first step depends on the end portion R and angle φ of the mold shown in FIG. 1 and further on the compression ratio. It is desirable that it is ½ or less of the width w 1 of the mold from the surface end of the body (point B in FIG. 1 (b)).
If it is larger than that, a region with a small strain spreads, and it becomes difficult to introduce a large strain into the entire workpiece even if it is forged in the second step.

また、送り量が小さくなると図2(a)に示したような山と谷が明確に観察されなくなる。その場合は、図2(a)に示した1工程目の金型の端部Rがパス毎に接触した距離をTとして、2工程目(z方向圧縮)では金型の端部が1/2Tの範囲で位置する場所に合わせてから鍛造することが必要である。   Further, when the feed amount is small, the peaks and valleys as shown in FIG. 2A are not clearly observed. In that case, the distance at which the end R of the first-step mold shown in FIG. 2A contacts for each pass is T, and the end of the mold is 1 / second in the second step (z-direction compression). It is necessary to forge after adjusting to a location located in the range of 2T.

材料は鉄鋼材料、アルミニウム、銅など金属材料全てが対象である。ただし、加工で導入されたひずみが蓄積されることが必要であり、一般的には各金属材料の融点の1/2以下から室温までの温度域で加工することが望ましい。   All materials are steel materials, aluminum, copper and other metal materials. However, it is necessary to accumulate strain introduced by processing, and it is generally desirable to perform processing in a temperature range from 1/2 or less of the melting point of each metal material to room temperature.

融点の1/2以下の温度は一般に金属材料の再結晶温度以下であり、この温度領域において導入したひずみに対応した微細結晶粒がより容易に好適に形成されることになる。   The temperature of ½ or less of the melting point is generally less than or equal to the recrystallization temperature of the metal material, and fine crystal grains corresponding to the strain introduced in this temperature region are more easily and suitably formed.

本願発明においては、たとえばより代表的な金属材料としては鉄鋼材料を例示することができる。本願発明の方法によれば、鍛造のみによって、結晶粒径(平均)1μm以下で、板厚18mm以上の超微細粒組織を有する厚板の鉄鋼材料の製造が可能となる。鋼がフェライト系の場合には、上記の温度域については、好適には、400℃−650℃の範囲が例示される。   In the present invention, a steel material can be exemplified as a more representative metal material. According to the method of the present invention, it is possible to produce a steel plate having a superfine grain structure with a crystal grain size (average) of 1 μm or less and a thickness of 18 mm or more only by forging. In the case where the steel is ferritic, the above temperature range is preferably exemplified by a range of 400 ° C to 650 ° C.

そして、結晶粒径(平均)を1ミクロン以下に微細化することは、鋼に関わらずアルミニウム、銅、マグネシウム等の金属でも重要な課題である。材料によらず、温度とひずみが重要な因子で、結晶粒微細化による既存製品の薄肉化は、どの材料にも共通の課題であ
る。また、18mm以上の微細粒厚板創製も重要な課題である。
And refinement | miniaturization of a crystal grain diameter (average) to 1 micron or less is an important subject also in metals, such as aluminum, copper, and magnesium, irrespective of steel. Regardless of the material, temperature and strain are important factors, and thinning existing products by refining crystal grains is a common issue for all materials. In addition, the creation of fine grain thick plates of 18 mm or more is also an important issue.

本願発明は、これらの課題を解決することができるものであって、各種材料を対象とした金属板材の加工を可能とする。   The present invention can solve these problems, and enables processing of metal plate materials for various materials.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

表1の組成(残部はFe)を有する150(厚)×100(幅)×1000(長 さ
)mmの鋼材を対象とし、最終板厚25mmあるいは35mmを有する材料を製造す る。加工によって材料に累積した相当ひずみは、不均一になるため、従来のように圧縮 率から単純に試算することはできない。そこで、有限要素法を用いた数値解析によって 蓄積する相当ひずみが算出される。なお、金型は材料に比べ非常に硬く変形しない。す なわち剛体として考える。
A material having a final thickness of 25 mm or 35 mm is manufactured for a steel material of 150 (thickness) × 100 (width) × 1000 (length) mm having the composition shown in Table 1 (the balance is Fe). Since the equivalent strain accumulated in the material due to processing becomes non-uniform, it cannot be simply calculated from the compression ratio as in the past. Therefore, the equivalent strain accumulated by numerical analysis using the finite element method is calculated. The mold is very hard and does not deform as compared with the material. In other words, think as a rigid body.

<実施例1>
加工温度500℃とした。この温度域は、銅の温間域であり、均一な微細粒組織を有するバルク材を創製のためには相当ひずみ2が必要とされている(塑性と加工Vol.42(2001),pp287−292)。金型の幅wは250mm、端部の曲率Rは20mmである。まず、y方向に圧縮(150→50mm)を行い、金型を100mm移動(すなわち、送り量<1/2W)させて圧縮を5回繰り返した。そのときの各断面における相当ひずみ分布を図3(a)、(b)に示した。導入されたひずみが大きい領域と小さい領域に分かれていることがわかる。2工程目では、金型を図3(b)で示した山部の頂点と金型端部が一致する場所にパス毎に移動(すなわち、金型端部が1/2Tの範囲)して、25mmまで4パス圧縮した。図3(c)、(d)は、各断面において、2工程後に蓄積された相当ひずみを示す。材料の広い範囲に2以上の大ひずみが導入されていることがわかる。
<実施例2>
加工温度500℃とした。金型の幅wは360mm、端部の曲率Rは50mmである。まず、y方向に圧縮(150→70mm)を行い、金型を100mm移動(すなわち、送り量<1/2W)させて圧縮を繰り返した。そのときのy−z断面における相当ひずみ分布を図4(a)に示した。2工程目では、金型を山部の頂点と金型端部が一致する場所にパス毎に移動(すなわち、金型端部が1/2Tの範囲)して、70mmまで4パス圧縮した。図4(b)は、y−z断面において、2工程後に蓄積された相当ひずみを示す。微細組織形成に必要な2以上の相当ひずみが断面に導入されていないのが分かる。3工程目ではy方向から35mmまで圧縮を行い、金型を100mm移動(すなわち、送り量<1/2W)させて圧縮を繰り返した。図4(c)は、y−z断面において、3工程後に蓄積された相当ひずみを示す。材料の断面全域に2以上の大ひずみが導入されていることがわかる。
<実施例3>
加工温度550−480℃で実機製造設備を用いて行った。金型の幅wは360mm、端部の曲率Rは50mmである。まず、y方向に圧縮(150→70mm)を行い、材料を100mm移動(すなわち、送り量<1/2W)させて圧縮を繰り返した。2工程目では、金型を山部の頂点と金型端部が一致する場所にパス毎に移動(すなわち、金型端部が1/2Tの範囲)して、70mmまで圧縮した。3工程目では、y方向から35mmまで圧縮を行い、材料を100mm移動(すなわち、送り量<1/2W)させて圧縮を繰り返した。図5(a)は、x−y断面におけるマクロ写真である。エッチングによる明瞭な差はなく、組織が均一になっていることが予測できる。図5(b)はA−A断面におけるマクロ写真と3つの場所における組織写真である。材料中心、表層近傍において組織は微細となっているのがわかる。結晶粒径は、0.7−0.8ミクロンであった。
<比較例1>
加工温度550−480℃で実機製造設備を用いて行った。金型の幅wは360mm、端部の曲率Rは50mmである。1工程目の材料送り量を200mm(すなわち、送り量>1/2W)にし、2工程目では金型を山部の頂点と金型端部が一致する場所にパス毎に移動(すなわち、金型端部が1/2Tの範囲)して、70mmまで圧縮した。3工程目では、y方向から35mmまで圧縮を行い、材料を200mm移動(すなわち、送り量>1/2W)させて圧縮を繰り返した。その他の条件は、実施例3と同条件である。図6(a)は、x−y断面におけるマクロ写真である。白い領域と黒い領域に分けられているのがわかる。図6(b)はA−A断面におけるマクロ写真と実施例3(図5(b))と同じ3つの場所における組織写真である。白い領域は、組織が微細になっているが、黒い領域では加工組織になっているだけで、微細組織が形成されていないのがわかる。すなわち、その領域に大ひずみが導入されていないことが考えられる。図7は同条件で数値解析したy−z断面の相当ひずみ分布である。2以上の大ひずみが導入された領域は、図6(b)の白い領域に、2未満の小ひずみの領域は図6(b)の黒い領域に対応しているのが分かる。材料の送り量が大きいために、大ひずみが材料全体に導入されず、微細粒組織が材料全体に形成されなかったのが実験と数値解析の結果から分かる
<比較例2>
加工温度550−480℃で実機製造設備を用いて行った。金型の幅wは360mm、端部の曲率Rは50mmである。1工程目の材料の送り量を100mm(すなわち、送り量<1/2W)にし、2工程目では金型を山部の頂点と金型端部が一致する場所にパス毎に移動(すなわち、金型端部が1/2Tの範囲)して、70mmまで圧縮した。3工程目では、y方向から35mmまで圧縮を行い、材料を200mm移動(すなわち、送り量>1/2W)させて圧縮を繰り返した。その他の条件は、実施例3と同条件である。図8は、実施例3と同じA−A断面におけるマクロ写真と3つの場所における組織写真である。微細組織が形成されていない黒い領域が存在しているのがわかる。1工程目の材料の送り量を1/2w以下にしても、3工程目で1/2w以上にしたことにより、大ひずみが材料全体に導入されず、微細粒組織が材料全体に形成されなかったのがわかる。
<Example 1>
The processing temperature was 500 ° C. This temperature region is a warm region of copper, and a considerable strain 2 is required to create a bulk material having a uniform fine grain structure (plasticity and processing Vol. 42 (2001), pp 287- 292). The width w of the mold is 250 mm, and the curvature R at the end is 20 mm. First, compression (150 → 50 mm) was performed in the y direction, and the mold was moved 100 mm (ie, feed amount <1/2 W), and the compression was repeated 5 times. The equivalent strain distribution in each cross section at that time is shown in FIGS. It can be seen that the introduced strain is divided into a large region and a small region. In the second step, the mold is moved for each pass to a place where the apex of the crest shown in FIG. 3B and the end of the mold coincide (that is, the end of the mold is in a range of 1 / 2T). 4 pass compression to 25 mm. 3C and 3D show the equivalent strain accumulated after two steps in each cross section. It can be seen that two or more large strains are introduced in a wide range of materials.
<Example 2>
The processing temperature was 500 ° C. The width w of the mold is 360 mm, and the curvature R at the end is 50 mm. First, compression was performed in the y direction (150 → 70 mm), and the mold was moved 100 mm (that is, feed amount <1/2 W), and the compression was repeated. The equivalent strain distribution in the yz section at that time is shown in FIG. In the second step, the mold was moved for each pass to a place where the apex of the ridge and the end of the mold coincided (that is, the end of the mold was 1 / 2T), and compressed by 4 passes to 70 mm. FIG. 4B shows the equivalent strain accumulated after two steps in the yz section. It can be seen that two or more equivalent strains necessary for forming the microstructure are not introduced into the cross section. In the third step, compression was performed from the y direction to 35 mm, and the mold was moved 100 mm (that is, the feed amount <1/2 W) and the compression was repeated. FIG. 4C shows the equivalent strain accumulated after 3 steps in the yz section. It can be seen that two or more large strains are introduced across the entire cross section of the material.
<Example 3>
The processing temperature was 550 to 480 ° C., using actual equipment. The width w of the mold is 360 mm, and the curvature R at the end is 50 mm. First, compression was performed in the y direction (150 → 70 mm), and the material was moved 100 mm (that is, the feed amount <1/2 W), and the compression was repeated. In the second step, the mold was moved for each pass to a place where the apex of the ridge and the end of the mold coincided (that is, the end of the mold was 1 / 2T) and compressed to 70 mm. In the third step, compression was performed from the y direction to 35 mm, and the material was moved 100 mm (that is, the feed amount <1/2 W) and the compression was repeated. FIG. 5A is a macro photograph in the xy section. There is no clear difference due to etching, and it can be predicted that the structure is uniform. FIG.5 (b) is the macro photograph in the AA cross section, and the structure | tissue photograph in three places. It can be seen that the structure is fine in the center of the material and in the vicinity of the surface layer. The crystal grain size was 0.7-0.8 microns.
<Comparative Example 1>
The processing temperature was 550 to 480 ° C., using actual equipment. The width w of the mold is 360 mm, and the curvature R at the end is 50 mm. The material feed amount in the first step is 200 mm (ie, feed amount> 1/2 W), and in the second step, the mold is moved for each pass to a place where the apex of the crest and the end of the die coincide (ie, the die). The mold end was in the range of 1 / 2T) and compressed to 70 mm. In the third step, compression was performed from the y direction to 35 mm, and the material was moved by 200 mm (that is, feed amount> 1/2 W) and the compression was repeated. Other conditions are the same as those in Example 3. FIG. 6A is a macro photograph in the xy section. You can see that it is divided into white and black areas. FIG. 6B is a macro photograph in the AA cross section and a structure photograph in the same three places as Example 3 (FIG. 5B). The white region has a fine structure, but the black region has only a processed structure, and it can be seen that no fine structure is formed. That is, it is considered that no large strain is introduced into the region. FIG. 7 shows the equivalent strain distribution of the yz section that was numerically analyzed under the same conditions. It can be seen that the region where two or more large strains are introduced corresponds to the white region of FIG. 6B, and the region of small strains less than 2 corresponds to the black region of FIG. 6B. It can be seen from the results of experiments and numerical analysis that a large amount of material is not fed so that a large strain is not introduced into the whole material and a fine grain structure is not formed in the whole material.
The processing temperature was 550 to 480 ° C., using actual equipment. The width w of the mold is 360 mm, and the curvature R at the end is 50 mm. The feed amount of the material in the first step is set to 100 mm (that is, the feed amount <1/2 W), and in the second step, the mold is moved for each pass to a place where the apex of the crest and the end of the die coincide (that is, The mold end was in the range of 1 / 2T) and compressed to 70 mm. In the third step, compression was performed from the y direction to 35 mm, and the material was moved by 200 mm (that is, feed amount> 1/2 W) and the compression was repeated. Other conditions are the same as those in Example 3. FIG. 8 is a macro photograph in the same AA cross section as in Example 3 and a structure photograph in three places. It can be seen that there is a black region where no fine structure is formed. Even if the feed amount of the material in the first step is 1/2 w or less, large strain is not introduced into the entire material and fine grain structure is not formed in the entire material because it is set to 1/2 w or more in the third step. I understand.

第1工程の概要を示した図である。It is the figure which showed the outline | summary of the 1st process. 第2工程の概要を示した図である。It is the figure which showed the outline | summary of the 2nd process. 実施例1における相当ひずみ分布図である。FIG. 3 is an equivalent strain distribution diagram in Example 1. 実施例2における相当ひずみ分布図である。6 is an equivalent strain distribution diagram in Example 2. FIG. 実施例3における(a)x−y断面のマクロ写真と、(b)A−A断面のマクロ写真、組織写真である。(A) The macro photograph of the xy cross section in Example 3, (b) The macro photograph of the AA cross section, and a structure | tissue photograph. 比較例1における(a)x−y断面のマクロ写真と、(b)A−A断面のマクロ写真、組織写真である。It is the macro photograph of the (a) xy cross section in the comparative example 1, and the macro photograph and structure | tissue photograph of (b) AA cross section. 数値解析したy−z断面の相当ひずみ分布図である。It is an equivalent strain distribution figure of a yz section analyzed numerically. 比較例2におけるA−A断面のマクロ写真と組織写真である。It is the macro photograph and structure | tissue photograph of the AA cross section in the comparative example 2. FIG.

Claims (7)

被成形体の長さ方向に直角な2方向の各々から順次に鍛造して金属板材を形成する方法であって、第1工程では、被成形体もしくは金型の送り量を金型の幅(W)の1/2以下として移動させつつ1方向より鍛造し、第2工程では、第1工程で張り出された山部の頂点と山間距離(T)の1/2の範囲内の位置に金型の端部を合わせて被成形体を移動させつつ第1工程とは別の方向より鍛造を行うことを特徴とする金属板材の加工方法。   A method of forming a metal plate by forging sequentially from each of two directions perpendicular to the length direction of the molded body. In the first step, the feed amount of the molded body or the mold is set to the width of the mold ( W) Forging from one direction while moving as 1/2 or less, and in the second step, it is at a position within the range of 1/2 of the peak distance between the peak and the mountain distance (T) protruding in the first step. A method for processing a metal plate material, wherein forging is performed in a direction different from the first step while moving the object to be molded together with the end of the mold. 被成形体金属の融点の1/2以下の温度域で鍛造することを特徴とする請求項1の金属板材の加工方法。   The metal plate material processing method according to claim 1, wherein forging is performed in a temperature range of ½ or less of a melting point of the metal to be formed. 請求項1または2の方法の後に、さらに90°異なる第1工程と同じ方向から、被成形
体を、金型の幅(W)の1/2以下として、山間距離(T)の1/2の範囲の位置に合わせて、移動させつつ鍛造することを特徴とする金属板材の加工方法。
After the method according to claim 1 or 2, from the same direction as the first step, which is different by 90 °, the object to be molded is ½ or less of the width (W) of the mold, and ½ of the mountain distance (T). A method for processing a metal plate material, characterized by forging while moving in accordance with the position of the range.
請求項1または2の方法における第1工程および第2工程の組合わせを複数回繰り返すことを特徴とする金属板材の加工方法。   A method for processing a metal sheet, wherein the combination of the first step and the second step in the method of claim 1 or 2 is repeated a plurality of times. 結晶粒径(平均)1μm以下で、板厚18mm以上の金属板材を形成することを特徴とする請求項1から4のいずれかの金属板材の加工方法。   The metal plate material processing method according to any one of claims 1 to 4, wherein a metal plate material having a crystal grain size (average) of 1 µm or less and a plate thickness of 18 mm or more is formed. 鋼板材を形成することを特徴とする請求項1から5のいずれかの金属板材の加工方法。   A method for processing a metal plate material according to any one of claims 1 to 5, wherein a steel plate material is formed. 請求項1から6のいずれかの方法において、工程間あるいは鍛造後に圧延を行う工程を含むことを特徴とする金属板材の加工方法。

7. The method for processing a metal sheet according to claim 1, further comprising a step of rolling between steps or after forging.

JP2004323070A 2004-11-08 2004-11-08 Metal plate working method Pending JP2006130536A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004323070A JP2006130536A (en) 2004-11-08 2004-11-08 Metal plate working method
PCT/JP2005/020781 WO2006049348A1 (en) 2004-11-08 2005-11-08 Method of machining metal plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323070A JP2006130536A (en) 2004-11-08 2004-11-08 Metal plate working method

Publications (1)

Publication Number Publication Date
JP2006130536A true JP2006130536A (en) 2006-05-25

Family

ID=36319330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323070A Pending JP2006130536A (en) 2004-11-08 2004-11-08 Metal plate working method

Country Status (2)

Country Link
JP (1) JP2006130536A (en)
WO (1) WO2006049348A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047554A (en) * 2014-08-25 2016-04-07 Jfeスチール株式会社 Slab forging method
CN111230513A (en) * 2020-02-04 2020-06-05 太原理工大学 Preparation method of aluminum alloy-aluminum-steel transition joint with metallurgical bonding interface space

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301621A (en) * 2006-05-12 2007-11-22 National Institute For Materials Science Method for producing metal plate material
RU2459682C1 (en) * 2010-12-21 2012-08-27 Закрытое акционерное общество "Волгоградский металлургический завод "Красный Октябрь" (ЗАО "ВМЗ "Красный Октябрь") Method of forging plates from ingots

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071082A (en) * 1999-09-08 2001-03-21 Sanyo Special Steel Co Ltd Stretch-forging method improving center characteristic in forged product
JP4186208B2 (en) * 2002-08-30 2008-11-26 株式会社Ihi Production facilities for fine grain steel
JP4089621B2 (en) * 2004-01-16 2008-05-28 株式会社Ihi Method for producing metal material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047554A (en) * 2014-08-25 2016-04-07 Jfeスチール株式会社 Slab forging method
CN111230513A (en) * 2020-02-04 2020-06-05 太原理工大学 Preparation method of aluminum alloy-aluminum-steel transition joint with metallurgical bonding interface space
CN111230513B (en) * 2020-02-04 2021-04-06 太原理工大学 Preparation method of aluminum alloy-aluminum-steel transition joint with metallurgical bonding interface space

Also Published As

Publication number Publication date
WO2006049348A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US8776570B2 (en) Workpiece bending method and apparatus
CN110695089B (en) Rolling method of bimetal composite plate with good plate shape
US11890660B2 (en) Preparation method for metal material
KR101630667B1 (en) Manufacturing method for metal
CN105414233A (en) Backward extrusion die with back pressure and processing technology adopting same
WO2006049348A1 (en) Method of machining metal plate material
RU2701435C1 (en) Method of making a metal element
Chang et al. Influence of grain size and temperature on micro upsetting of copper
CN109759531B (en) X-section drawing method based on center compaction
JP2010047840A (en) Material produced by powder metallurgy with improved isotropy of the mechanical property
JP2007301621A (en) Method for producing metal plate material
KR101074972B1 (en) Method for production of extrusion billet, and method for production of magnesium alloy material
JPH10216884A (en) Method for repeated lateral forging and forming of metallic material
Engel et al. Microforming and nanomaterials
JP2005238290A (en) Method for producing metal slab
JPS6324761B2 (en)
JP4765007B2 (en) Method for producing ferritic grain ultrafine steel plate
JP4930384B2 (en) H-section steel rolling method and rolling apparatus
JP2005319510A (en) Method for manufacturing hollow body of polygonal section and hollow body of polygonal section
Bedan et al. Improve Single Point Incremental Forming Process Performance Using Primary Stretching Forming Process
CN111037211B (en) Preparation method of metal component with hard and soft phases
JPH09276972A (en) Flat surface strain repeated working method
CN101337312A (en) Hardware ball-head forming technique
JP2008229659A (en) Billet and method of manufacturing the same
JPH0726027Y2 (en) Thickness reduction press die

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071026

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A02